WO2022190585A1 - 車両制御装置、車両制御方法、および車両制御システム - Google Patents

車両制御装置、車両制御方法、および車両制御システム Download PDF

Info

Publication number
WO2022190585A1
WO2022190585A1 PCT/JP2021/048878 JP2021048878W WO2022190585A1 WO 2022190585 A1 WO2022190585 A1 WO 2022190585A1 JP 2021048878 W JP2021048878 W JP 2021048878W WO 2022190585 A1 WO2022190585 A1 WO 2022190585A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
control device
difference
lateral
Prior art date
Application number
PCT/JP2021/048878
Other languages
English (en)
French (fr)
Inventor
弘貴 菅原
健太郎 上野
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US18/281,242 priority Critical patent/US20240158009A1/en
Priority to EP21930429.2A priority patent/EP4306375A1/en
Priority to CN202180095354.7A priority patent/CN116940492A/zh
Priority to JP2023505132A priority patent/JPWO2022190585A1/ja
Publication of WO2022190585A1 publication Critical patent/WO2022190585A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a vehicle control system.
  • Patent Literature 1 discloses a cant estimation method for estimating the cant of a road on which a vehicle travels.
  • This cant estimation method includes the steps of obtaining vehicle information including speed, lateral acceleration, steering angle, yaw rate and position information of a plurality of vehicles including a first vehicle; estimating the cant of the roadway; and storing the estimated cant in a cant angle database available to a plurality of vehicles in association with information of the position of the first vehicle.
  • the actual trajectory of the vehicle shifts toward the lower gradient due to gravity, and the target
  • the followability of the actual trajectory to the trajectory is degraded.
  • the actual trajectory may deviate from the target trajectory due to the application of an external force that deflects the vehicle due to a crosswind, and the actual trajectory may deviate from the target trajectory due to vehicle characteristics such as alignment that are involved in the deflection of the vehicle 10. be.
  • the present invention has been made in view of the conventional circumstances, and aims to provide a vehicle control device, a vehicle control method, and a vehicle control method capable of estimating an amount of disturbance with high accuracy and improving followability to a target trajectory. and to provide a vehicle control system.
  • information about a difference in lateral position between a target trajectory of the vehicle and an actual trajectory of the vehicle is obtained, and the information about the difference in lateral position is used to obtain the A disturbance amount corresponding to a difference in position in the left-right direction is estimated, and a control command for causing the vehicle to follow the target trajectory is obtained using the disturbance amount.
  • FIG. 1 is a block diagram showing a first embodiment of a vehicle control system
  • FIG. FIG. 4 is a diagram showing one aspect of various variables and a coordinate system used for calculating a lateral acceleration command
  • FIG. 10 is a diagram showing a left-right deviation as a straight line distance
  • FIG. 4 is a diagram showing a lateral deviation as a length along a road surface
  • FIG. 10 is a diagram showing a state of occurrence of a left-right deviation due to a left-right gradient; 4 is a time chart illustrating changes in the left-right deviation and the left-right gradient estimated value, and showing a state in which the change in the left-right gradient estimated value is not limited; 4 is a time chart illustrating changes in the left-right deviation and the left-right gradient estimated value, and showing a state in which the change in the left-right gradient estimated value is restricted; It is a block diagram which shows 2nd Embodiment of a vehicle control system.
  • FIG. 11 is a block diagram showing a third embodiment of a vehicle control system; FIG. FIG.
  • FIG. 4 is a diagram for explaining a process of estimating a lateral gradient based on a yaw rate, vehicle speed, and lateral acceleration; 1 is a block diagram showing a system that implements steering control and braking force control with respect to lateral acceleration commands; FIG.
  • FIG. 1 is a block diagram showing a first embodiment of a vehicle control system 100. As shown in FIG. 1
  • a vehicle control system 100 is mounted on a vehicle 10 such as a four-wheeled vehicle. Then, the vehicle control system 100 controls the steering angle of the electronically controlled power steering device 600 so that the vehicle 10 follows the target trajectory (in other words, the target path) during automatic driving.
  • the vehicle control system 100 has a vehicle state detection device 200 , an external world recognition device 300 , an automatic driving control device 400 , a vehicle motion control device 500 , an electronically controlled power steering device 600 and an ESC (Electric Stability Control) unit 700 .
  • the automatic driving control device 400, the vehicle motion control device 500, and the ESC unit 700 are electronic control devices mainly composed of microcomputers 400A, 500A, and 700A that perform calculations based on input information and output calculation results.
  • Microcomputers 400A, 500A, and 700A include MPU (Microprocessor Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the microcomputer 400A of the automatic driving control device 400 has the function of a trajectory generator 410 that calculates a target trajectory.
  • the trajectory generation unit 410 uses the vehicle state detection device 200 and the external world recognition device 300 to acquire the position information of the vehicle 10 (in other words, the information of the own vehicle position), the driving state information of the vehicle, and the surrounding information, A target trajectory is calculated based on the acquired information. Then, the microcomputer 500A of the vehicle motion control device 500 calculates a steering control command, more specifically, a steering angle control command or a steering torque control command for causing the vehicle 10 to follow the target trajectory calculated by the automatic driving control device 400. and outputs the calculated steering control command to the electronically controlled power steering device 600 .
  • a steering control command more specifically, a steering angle control command or a steering torque control command for causing the vehicle 10 to follow the target trajectory calculated by the automatic driving control device 400.
  • the electronically controlled power steering device 600 is a steering device that changes the traveling direction of the vehicle 10 by changing the angles of the front wheels 11L and 11R of the vehicle 10 .
  • the electronically controlled power steering device 600 includes a steering actuator 601 such as a motor that changes the angles of the front wheels 11L and 11R, which are steered wheels, and a steering control unit 602 that is an actuator control device that controls the steering actuator 601 .
  • the steering control unit 602 controls the steering actuator 601 based on the steering control command acquired from the vehicle motion control device 500 to realize the steering angle or steering torque according to the steering control command. That is, in the vehicle control system 100, the automatic driving control device 400 generates a target trajectory for the vehicle 10, the vehicle motion control device 500 obtains a control command for causing the vehicle 10 to follow the target trajectory, and the steering control unit 602 A control command is obtained to control the steering actuator 601 .
  • Vehicle state detection device 200 includes wheel speed/vehicle speed sensor 210 for detecting wheel speed or vehicle speed, yaw rate sensor 220 for detecting yaw rate of vehicle 10, lateral G sensor 230 for detecting lateral acceleration of vehicle 10, front wheels 11L and 11R.
  • a steering angle sensor 240 for detecting a steering angle is provided.
  • the external world recognition device 300 also includes a stereo camera 310 , a navigation system 320 , an inter-vehicle communication device 330 , a radar 340 and an omnidirectional camera 350 .
  • the stereo camera 310 detects and identifies objects around the vehicle 10 and obtains the distance to the objects. That is, the stereo camera 310 measures the parallax from the difference in the appearance of the left and right cameras, and calculates the distance to the object using the principle of triangulation.
  • the navigation system 320 has a GPS (Global Positioning System) receiver and a map database, and acquires information on the current position of the vehicle 10, information on the route to the destination, and the like.
  • the GPS receiver of navigation system 320 measures the latitude and longitude of the position of vehicle 10 by receiving signals from GPS satellites.
  • the map database of the navigation system 320 is a database formed in a storage device mounted on the vehicle 10, and the map information includes information such as road positions, road shapes, and intersection positions.
  • Vehicle-to-vehicle communication device 330 acquires road traffic information, behavior information of other vehicles, location information of other vehicles, and the like from other vehicles through wireless communication between vehicles.
  • the radar 340 detects an obstacle ahead of the vehicle 10, measures the distance to the obstacle ahead and the speed of the obstacle ahead, and outputs information about the obstacle ahead.
  • the omnidirectional camera 350 is a device that converts the viewpoint of images obtained from a plurality of cameras mounted on the front, back, left, and right of the vehicle 10, and obtains an image of looking down on the vehicle from above, that is, a bird's-eye view image.
  • the automatic driving control device 400 recognizes the situation around the vehicle based on the information of the vehicle position and the objects around the vehicle acquired from the external world recognition device 300, and based on the recognition result. Generate a target trajectory.
  • the automatic driving control device 400 uses GPS positioning, dead reckoning, recognition results of the surrounding situation by the stereo camera 310, etc., based on information obtained from other vehicles traveling around the vehicle 10 by inter-vehicle communication. Get the location information of .
  • the method of acquiring the positional information of the vehicle 10 using positioning by dead reckoning and the recognition result of the surrounding situation by the stereo camera 310 or the like is a method of acquiring information about the position of the vehicle 10 based on the signal of the vehicle-mounted sensor.
  • dead reckoning for example, the position of the vehicle 10 is estimated based on the vehicle speed and yaw angle of the vehicle 10 .
  • the method of acquiring the position information of the vehicle 10 based on positioning by GPS or information obtained from other vehicles traveling in the surroundings by vehicle-to-vehicle communication is related to the position of the vehicle 10 based on signals received from the outside of the vehicle 10. It is a method of obtaining information.
  • signals received from outside the vehicle 10 are signals received from GPS satellites, more specifically, time data, satellite orbit information, and the like.
  • a signal received from outside the vehicle 10 is a signal received from another vehicle through inter-vehicle communication.
  • the ESC unit 700 When the ESC unit 700 detects that the vehicle 10 is slipping, the ESC unit 700 controls the output of the driving device of the vehicle 10 and/or the brake pressure of each wheel in the braking device of the vehicle 10, thereby preventing the vehicle 10 from slipping. Carry out control to keep the attitude stable.
  • the ESC unit 700 acquires information such as the vehicle speed, lateral acceleration, steering angle, and yaw rate of the vehicle 10 from the vehicle state detection device 200, and monitors the driving operation of the driver and the movement of the vehicle 10 based on the acquired vehicle information. . Then, ESC unit 700 activates a function for keeping the posture of vehicle 10 stable based on the driving operation of the driver and the movement of vehicle 10 .
  • the ESC unit 700 also estimates the lateral slope of the road on which the vehicle 10 travels based on the acquired vehicle information, and outputs information on the estimated lateral slope to the vehicle motion control device 500 .
  • the vehicle motion control device 500 includes a vehicle model 510 , a controller 520 , a look-ahead compensator 530 , a gradient correction value generator 540 , a gradient corrector 550 , a control amount correction value generator 560 and an actuator controller 570 .
  • the vehicle model 510, the control unit 520, and the look-ahead compensation unit 530 constitute a follow-up control unit 501 that obtains a control command for causing the vehicle 10 to follow the target trajectory.
  • the follow-up control unit 501 uses model predictive control to calculate a lateral acceleration command, which is a control command for causing the vehicle 10 to follow the target trajectory generated by the automatic driving control device 400 .
  • Model predictive control is a well-known control method that predicts future behavior using a model of the controlled object and determines the manipulated variable of the controlled object while solving an optimization problem at each time.
  • the vehicle model 510 is used to predict the response after a predetermined prediction time (for example, after 500 ms), and the follow-up error in the prediction section is calculated. is searched for a lateral acceleration command yd2c (in other words, a lateral acceleration target value) that reduces .
  • a lateral acceleration command yd2c in other words, a lateral acceleration target value
  • the vehicle motion control device 500 controls the positional difference in the left-right direction, which is the distance between the vehicle 10 (in other words, the actual trajectory of the vehicle 10 ) and the target trajectory (hereinafter referred to as the “lateral deviation”), the vehicle 10 . (in other words, the traveling direction of the vehicle 10 with respect to the target trajectory) and information on the curvature of the target trajectory. Based on the lateral deviation (in other words, lateral position deviation), the orientation of the vehicle 10, and the curvature of the target trajectory, the vehicle motion control device 500 calculates a lateral acceleration command yd2c so that the lateral deviation becomes small. . In other words, the vehicle motion control device 500 has a function as a lateral direction difference acquisition unit that acquires information about the lateral difference between the target trajectory of the vehicle 10 and the actual trajectory of the vehicle 10 .
  • FIG. 2 is a diagram showing one mode of various variables and a coordinate system used for calculating the lateral acceleration command yd2c.
  • the nearest point P in FIG. 2 is the position of the vehicle 10 on the target trajectory, more specifically, the closest point from the center of gravity CG of the vehicle 10 .
  • FIG. 2 is an imaginary line that is parallel to the tangential direction of the target trajectory at the nearest point P and passes through the center of gravity CG of the vehicle 10.
  • FIG. A coordinate system is used in which the center of gravity CG of the vehicle 10 is the origin, the tangential direction to the track is the x-axis, and the direction from the center of gravity CG to the closest point P is the y-axis.
  • Equation 1 is an arithmetic expression for the lateral acceleration command yd2c.
  • G1, G2, and G3 are gains given as constants
  • R is the curvature of the target trajectory
  • V is the vehicle speed
  • ⁇ y is the lateral deviation between the center of gravity CG of the vehicle 10 and the target trajectory (specifically, the center of gravity of the vehicle 10 to the nearest point)
  • ⁇ yd1 is the speed of the vehicle 10 toward the target trajectory
  • is the angle (in other words, orientation) of the vehicle 10 with respect to the tangent to the target trajectory
  • yd2r is the centrifugal acceleration corresponding to the curvature R of the target trajectory.
  • the lateral deviation ⁇ y is acquired as a different physical quantity depending on the positioning method of the vehicle position.
  • the lateral deviation ⁇ y is acquired as lateral deviation on an actual road surface having a lateral gradient, that is, as information on the length along the road surface.
  • the lateral deviation ⁇ y is acquired as lateral deviation on a virtual plane assuming that no lateral gradient is provided, that is, as information on a straight line distance.
  • FIG. 3 shows the lateral deviation .DELTA.y as information on the straight distance
  • FIG. 4 shows the lateral deviation .DELTA.y as information on the length along the road surface. 3 and 4, the direction through which the paper is pierced is the traveling direction of the vehicle 10. As shown in FIG.
  • vehicle control system 100 detects the position of the vehicle using the GPS receiver of navigation system 320
  • the position of the vehicle is detected by GPS coordinates of latitude and longitude, so the lateral gradient of the road surface is taken into account.
  • the lateral deviation ⁇ y is obtained as straight-line distance information, as shown in FIG.
  • the vehicle control system 100 detects the position of the vehicle by dead reckoning based on vehicle motion information
  • the position of the vehicle is estimated taking into account the influence of the road surface gradient. , is obtained as length information along the road surface as shown in FIG.
  • the vehicle control system 100 detects the vehicle position based on the results of external recognition by the stereo camera 310, the radar 340, the omnidirectional camera 350, etc.
  • the external environment of the vehicle 10 actually traveling on the road surface is recognized. Therefore, the lateral deviation ⁇ y is obtained as information on the length along the road surface, as shown in FIG.
  • the lateral deviation ⁇ y is obtained as straight-line distance information, as shown in FIG.
  • the actuator control unit 570 converts the lateral acceleration command yd2c acquired from the follow-up control unit 501 into a steering control command, which is a steering angle or steering torque control command, and the steering control command is used for steering control of the electronically controlled power steering device 600. Output to unit 602 . Then, the steering control unit 602 realizes the lateral acceleration command yd2c by controlling the steering actuator 601 based on the acquired steering control command.
  • the gradient correction value generation unit 540, the gradient correction unit 550, and the control amount correction value generation unit 560 estimate the amount of disturbance that deflects the trajectory of the vehicle 10 in the horizontal direction using the information of the lateral deviation ⁇ y.
  • Lateral acceleration command yd2c (or steering control command) is corrected using the obtained disturbance amount. That is, the vehicle motion control device 500 uses the information of the lateral deviation ⁇ y to estimate the disturbance amount corresponding to the lateral deviation ⁇ y, and the estimated disturbance amount to cause the vehicle 10 to follow the target trajectory. It has a function of a follow-up control unit that obtains a control command for
  • the disturbance that deflects the track of the vehicle 10 in the horizontal direction is an external force that acts on the vehicle 10, such as the lateral gradient of the road and a crosswind, to deflect the track of the vehicle 10 in the horizontal direction, and the track of the vehicle 10.
  • vehicle characteristics such as wheel alignment that will result in lateral deflection. For example, if the road has a lateral gradient, the actual trajectory of the vehicle 10 may deviate from the target trajectory toward a lower gradient due to gravity, and the followability to the target trajectory may deteriorate.
  • the wind pressure may cause the actual trajectory of the vehicle 10 to deviate from the target trajectory in the leeward direction, thereby deteriorating the ability to follow the target trajectory.
  • FIG. 5 shows the occurrence of the lateral deviation ⁇ y on a road having a lateral gradient.
  • the right side of the traveling direction of the vehicle 10 is high and the left side is a road with a low lateral gradient.
  • a left-right deviation ⁇ y occurs.
  • the lateral acceleration command yd2c obtained by the follow-up control unit 501 using Equation 1 is changed in a direction to reduce the lateral deviation ⁇ y.
  • the calculation process of the lateral acceleration command yd2c using Equation 1 is suitable for reducing the lateral deviation ⁇ y in the absence of disturbance. Even if it is implemented, the convergence to the target trajectory may be delayed or a steady-state error may occur.
  • the vehicle motion control device 500 estimates the amount of disturbance such as the lateral gradient and the crosswind, and corrects the lateral acceleration command yd2c (or the steering control command) calculated according to Equation 1 based on the estimated amount of disturbance.
  • Equation 1 is an equation for deriving the lateral acceleration command yd2c assuming that the lateral gradient of the road surface on which the vehicle 10 travels is zero. Therefore, the vehicle motion control device 500 corrects the lateral acceleration command yd2c (or the steering control command) so as to compensate for the difference between the lateral gradient of the road surface on the target trajectory and the lateral gradient of the road surface on the actual trajectory of the vehicle 10. It will be.
  • the vehicle motion control device 500 acquires the information of the estimated value of the lateral gradient from the ESC unit 700, and the estimated value of the lateral gradient suppresses deterioration of the followability to the disturbance. Accuracy is low for use in control for Therefore, gradient correction value generator 540 obtains horizontal gradient correction value ⁇ LRG for correcting horizontal gradient estimated value LRG1 [deg] estimated by ESC unit 700 using horizontal deviation ⁇ y.
  • the gradient correction unit 550 corrects the left/right gradient estimated value LRG1 estimated by the ESC unit 700 with the left/right gradient correction value ⁇ LRG generated by the gradient correction value generating unit 540 to obtain the final left/right gradient estimated value LRG.
  • the lateral gradient estimated value LRG becomes a value that reflects, with high accuracy, the lateral gradient, the crosswind, and various disturbances that deflect the vehicle 10, such as vehicle characteristics.
  • the control amount correction value creation unit 560 obtains the control amount correction value based on the left/right gradient estimated value LRG (in other words, the estimated value of the disturbance amount), and uses the obtained control amount correction value to calculate the horizontal
  • the acceleration command yd2c (or the steering control command based on the lateral acceleration command yd2c calculated according to Equation 1) is corrected.
  • the slope correction value generator 540 obtains the lateral slope correction value ⁇ LRG on the assumption that the lateral acceleration controlled based on the lateral deviation ⁇ y and the component force of the gravitational acceleration are balanced.
  • Equation 2 is derived from Equation 1.
  • Equation 2 is transformed into Equation 3.
  • the left/right gradient correction value ⁇ LRG can be obtained from Equation 4. That is, the left/right gradient correction value ⁇ LRG can be derived from the component force [m/s 2 ] of the gravitational acceleration and the arcsine of the gravitational acceleration [9.8 m/s 2 ].
  • Gradient correction unit 550 acquires information on left/right gradient correction value ⁇ LRG obtained by gradient correction value creation unit 540 and left/right gradient estimated value LRG1 estimated by ESC unit 700, and according to Equation 6, final left/right gradient Calculate the estimated value LRG [deg].
  • the gradient correction value creation unit 540 calculates the lateral gradient correction value ⁇ LRG to 0 [deg], and the gradient correction unit 550 sets the left/right gradient estimate value LRG1 estimated by the ESC unit 700 as it is to the final left/right gradient estimate value LRG.
  • the gradient correction value generating unit 540 calculates the lateral gradient correction value ⁇ LRG for increasing and correcting the lateral gradient estimated value LRG1, and corrects the gradient.
  • a section 550 sets the result of increasing the left/right gradient estimated value LRG1 estimated by the ESC unit 700 by the left/right gradient correction value ⁇ LRG as the final left/right gradient estimated value LRG.
  • the gradient correction value generator 540 calculates a lateral gradient correction value ⁇ LRG for decreasing the lateral gradient estimated value LRG1.
  • the gradient correction unit 550 reduces the left/right gradient estimated value LRG1 estimated by the ESC unit 700 by the left/right gradient correction value ⁇ LRG, and sets the result as the final left/right gradient estimated value LRG. That is, the left-right deviation ⁇ y is caused by the estimation error of the left-right gradient estimated value LRG1 by the ESC unit 700, the crosswind, variations in vehicle characteristics, and the like.
  • the lateral gradient estimated value LRG as a result of correcting the lateral gradient estimated value LRG1 with the lateral gradient correction value ⁇ LRG based on the lateral deviation ⁇ y serves as information representing the amount of disturbance such as the lateral gradient and the crosswind with high accuracy.
  • the control amount correction value creation unit 560 acquires the information of the left/right gradient estimated value LRG from the gradient correction unit 550, and based on the left/right gradient estimated value LRG, obtains the control amount correction value that suppresses the occurrence of the left/right deviation ⁇ y due to the left/right gradient. .
  • the lateral acceleration command yd2c is calculated so as to reduce the lateral deviation ⁇ y without considering disturbances that deflect the vehicle 10, such as lateral gradients and crosswinds. diminished sexuality.
  • the control amount correction value creation unit 560 corrects the lateral acceleration command yd2c calculated according to Equation 1 according to the disturbance amount (that is, the lateral gradient estimated value LRG), thereby changing the lateral acceleration command yd2c to the disturbance amount. Correct to the expected value. By correcting the lateral acceleration command yd2c in accordance with the estimated lateral gradient value LRG, deterioration in followability to the target trajectory is suppressed even if there is a disturbance.
  • the slope correction value creation unit 540 sets the lateral slope correction value ⁇ LRG to 0, so that the lateral acceleration command yd2c can be corrected using the lateral slope estimated value LRG1 as it is. be implemented.
  • the upper limit value is set as a value that the lateral deviation ⁇ y exceeds only when the vehicle 10 starts moving. That is, when the lateral deviation ⁇ y is outside the predetermined range, the vehicle motion control device 500 does not estimate the amount of disturbance using the information on the lateral deviation ⁇ y. Further, when the vehicle 10 is traveling without using the target trajectory, the gradient correction value generation unit 540 and the gradient correction unit 550 stop correcting the lateral gradient estimated value LRG1.
  • the slope correction value creating unit 540 or the slope correcting unit 550 can generate the lateral slope correction value ⁇ LRG even if the lateral deviation ⁇ y changes suddenly.
  • the final left/right gradient estimated value LRG is gradually changed to limit the rate of change of the lateral acceleration command yd2c within a predetermined range.
  • FIG. 6 shows a case in which a sudden change in the lateral deviation ⁇ y is directly reflected in the final lateral gradient estimated value LRG.
  • FIG. 7 shows a case where the final lateral gradient estimated value LRG gradually follows the sudden change in the lateral deviation ⁇ y.
  • the final left-right gradient estimated value LRG also changes abruptly according to the sudden change in the left-right deviation ⁇ y.
  • the amount of change per calculation cycle of the left-right gradient estimated value LRG or the left-right gradient correction value ⁇ LRG is limited based on the upper limit value.
  • the estimated value LRG changes gradually.
  • the final lateral gradient estimated value LRG is gradually changed even if the lateral deviation ⁇ y suddenly changes, a sudden change in the lateral acceleration command yd2c accompanying a sudden change in the lateral deviation ⁇ y can be suppressed, and the steering angle Sudden changes in the torque can be suppressed, and smooth vehicle motion can be achieved.
  • the slope correction value generating unit 540 calculates the difference between the predicted value and the actual value of the lateral deviation ⁇ y, in other words, the difference at the past point in time.
  • a lateral gradient correction value ⁇ LRG can be calculated from the difference between the predicted value and the current actual value.
  • the slope correction value creation unit 540 calculates the lateral deviation ⁇ y z-50 , which is the predicted value 500 ms before, as shown in Equation 7.
  • the lateral gradient correction value ⁇ LRG is calculated based on the difference (in other words, prediction error) from the lateral deviation ⁇ y, which is the actual value at the present time.
  • the vehicle motion control device 500 calculates the lateral gradient, which is the actual value, based on the difference between the predicted value, the lateral deviation ⁇ y z-50 , and the actual value, the lateral deviation ⁇ y.
  • the disturbance amount is estimated by correcting the estimated value LRG1.
  • the vehicle motion control device 500 obtains information on the lateral gradient estimated by the electronic control device of the active suspension based on the detection output of the G sensor (acceleration sensor), The estimated value can be corrected based on the left-right deviation ⁇ y.
  • An active suspension is a device that controls the movement of the vehicle 10 by applying hydraulic force to the suspension.
  • Such an active suspension generally has an acceleration sensor that detects vibrations and sway that occur according to road surface unevenness and the running state of the vehicle 10 . Then, the electronic control unit of the active suspension can estimate the lateral gradient from the detection output of the acceleration sensor.
  • the information of the lateral gradient obtained from the image of the stereo camera 310 is obtained by the vehicle motion control device 500. can do. Furthermore, the vehicle motion control device 500 corrects the information of the lateral gradient estimated value LRG1 acquired from the outside based on the lateral deviation ⁇ y to obtain the information of the lateral gradient estimated value LRG used for the follow-up control, instead of obtaining the information of the lateral deviation ⁇ y. can directly obtain the information of the left-right gradient estimated value LRG used for tracking control.
  • FIG. 8 is a block diagram showing a second embodiment of a vehicle control system 100.
  • a vehicle motion control device 500 shown in FIG. is calculated directly.
  • the vehicle motion control device 500 of FIG. 8 has a slope estimation portion 580 instead of the slope correction value generation portion 540 and the slope correction portion 550 of the vehicle motion control device 500 of FIG.
  • Gradient estimating section 580 acquires information of lateral deviation ⁇ y and outputs information of lateral gradient estimated value LRG. Specifically, gradient estimating section 580 uses the angle information calculated according to Equation 4 or Equation 7 as it is as left/right gradient estimated value LRG, and outputs it to control amount correction value generating section 560 . Based on the lateral gradient estimated value LRG obtained from the gradient estimating section 580, the control amount correction value generating section 560 obtains a correction value for correcting the lateral acceleration command yd2c according to the disturbance that deflects the vehicle 10.
  • the lateral acceleration command yd2c can be set in consideration of the amount of disturbance including the lateral gradient, and it is possible to suppress deterioration in followability to the target trajectory due to the disturbance. Further, in the vehicle control system 100 of FIG. 8, the vehicle motion control device 500 does not need to acquire the information of the lateral gradient estimated value LRG1 from the outside, and the vehicle motion control device 500 does not need to correct the lateral slope estimated value. As a result, the configuration and processing of the vehicle motion control device 500 can be simplified.
  • the vehicle motion control device 500 can have a function of estimating the lateral gradient from vehicle motion information such as the lateral acceleration, yaw rate, and vehicle speed of the vehicle 10, and a function of correcting the lateral gradient estimated value based on the lateral deviation ⁇ y.
  • FIG. 9 is a block diagram showing a third embodiment of the vehicle control system 100. As shown in FIG. The vehicle motion control device 500 shown in FIG. 9 obtains the lateral gradient estimated value LRG2 from the lateral acceleration, yaw rate, and vehicle speed, and obtains the lateral gradient correction value ⁇ LRG based on the information of the lateral deviation ⁇ y. Then, the vehicle motion control device 500 performs follow-up control based on the lateral gradient estimated value LRG obtained by correcting the lateral gradient estimated value LRG2 with the lateral gradient correction value ⁇ LRG.
  • FIG. 10 is a diagram for explaining the calculation processing of the lateral gradient estimated value LRG2 based on the vehicle motion state information, more specifically, the yaw rate, the vehicle speed, and the lateral acceleration, in the gradient estimator 590. As shown in FIG.
  • the gradient estimator 590 obtains the lateral force applied to the vehicle 10 based on the centrifugal force calculation result and the lateral acceleration detection value.
  • Lateral force [G] lateral acceleration - centrifugal force
  • the gradient estimating section 590 obtains the left/right gradient estimated value LRG2 based on the calculation result of the force applied in the lateral direction.
  • Left-right gradient estimated value LRG2 sin -1 (force applied in the lateral direction)
  • the slope correction value creation unit 540 like the slope correction value creation unit 540 of the vehicle control system 100 shown in FIG. .
  • the gradient correction unit 550 acquires the left/right gradient estimated value LRG2 obtained by the gradient estimation unit 590 and the left/right gradient correction value ⁇ LRG obtained by the gradient correction value generation unit 540, and converts the left/right gradient estimated value LRG2 to the left/right gradient correction value ⁇ LRG.
  • the result corrected by is set as the final left-right gradient estimation value LRG.
  • the vehicle motion control device 500 shown in FIG. 9 uses the information on the lateral deviation ⁇ y as well as the information on the lateral acceleration of the vehicle 10, the information on the yaw rate of the vehicle 10, and the information on the vehicle speed of the vehicle 10 to control the vehicle 10.
  • Estimate the amount of disturbance to be deflected In the vehicle control system 100 of FIG. 9 as well, the lateral acceleration command yd2c can be set in consideration of the amount of disturbance including the lateral gradient, and it is possible to suppress deterioration of the followability to the target trajectory due to the disturbance.
  • the vehicle motion control device 500 (more specifically, the actuator control unit 570) has a function of controlling steering by the electronically controlled power steering device 600 as control for causing the actual trajectory of the vehicle 10 to follow the target trajectory, as well as a braking function.
  • a control function can be provided to change the left-right distribution of the braking force command in the device (in other words, the difference between the left and right braking forces).
  • FIG. 11 is a block diagram showing vehicle control system 100 in which vehicle motion control device 500 includes steering control functions and braking control functions. Actuator control unit 570 shown in FIG. 11 controls steering by electronically controlled power steering device 600 and braking force by braking device 900 so that the actual trajectory of vehicle 10 follows the target trajectory.
  • the braking device 900 is a braking device capable of individually adjusting the braking force of each wheel of the vehicle 10.
  • the braking device 900 is a hydraulic braking device capable of individually adjusting the brake fluid pressure supplied to each wheel. be.
  • the actuator control unit 570 converts the lateral acceleration command yd2c into a steering control command, which is a steering angle or steering torque command, and a brake fluid pressure command (more specifically, a left and right distribution command of the brake fluid pressure), A steering control command is output to the electronically controlled power steering device 600 and a brake fluid pressure command is output to the braking device 900 .
  • vehicle motion control device 500 can realize lateral acceleration command yd2c by controlling at least one of the steering by electronically controlled power steering device 600 and the braking force by braking device 900 .
  • the vehicle motion control device 500 causes the actual trajectory of the vehicle 10 to follow the target trajectory mainly by controlling the steering by the electronically controlled power steering device 600, and changes the difference between the left and right braking forces to change the target trajectory and the actual trajectory. can be fine-tuned.
  • Actuator control unit 570 of vehicle motion control device 500 has a function of controlling steering by electronically controlled power steering device 600 and a function of controlling the difference in driving force between the left and right wheels of the drive device of vehicle 10 .
  • Actuator control unit 570 can realize lateral acceleration command yd2c by controlling at least one of the steering by electronically controlled power steering device 600 and the driving force by the driving device.
  • the actuator control unit 570 of the vehicle motion control device 500 realizes the lateral acceleration command yd2c by controlling the steering by the electronically controlled power steering device 600, the braking force by the braking device 900, and the driving force by the driving device. can do. That is, actuator control section 570 of vehicle motion control device 500 can realize lateral acceleration command yd2c by controlling at least one of the steering device and the braking/driving device of vehicle 10 .
  • the arithmetic processing of the lateral acceleration command yd2c in the vehicle motion control device 500 is not limited to processing using model predictive control, and may be processing without using model predictive control.
  • the lateral deviation ⁇ y can be, for example, the lateral deviation at the point of sight ahead or the distance from the vehicle 10 to the target trajectory in the lateral direction of the vehicle 10 as the lateral deviation ⁇ y. It is not limited to specifying the lateral deviation ⁇ y.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本発明に係る車両制御装置、車両制御方法、および車両制御システムは、その一態様として、車両の目標軌道と前記車両の実軌道との左右方向の位置の差に関する情報を取得し、前記左右方向の位置の差に関する情報を用いて、前記左右方向の位置の差に相当する外乱量を推定し、前記外乱量を用いて、前記車両を前記目標軌道に追従させるための制御指令を求める。これにより、外乱量を精度良く推定して、目標軌道への追従性を向上させることができる。

Description

車両制御装置、車両制御方法、および車両制御システム
 本発明は、車両制御装置、車両制御方法、および車両制御システムに関する。
 特許文献1には、車両の走行路のカントを推定するカント推定方法が開示されている。
 このカント推定方法は、第1の車両を含む複数の車両の速度、横加速度、操舵角、ヨーレートおよび位置の情報を含む車両情報を取得するステップと、車両情報に基づいて、第1の車両の走行路のカントを推定するステップと、推定されたカントを、第1の車両の位置の情報と関連付けて、複数の車両で利用可能なカント角データベースに記憶するステップと、を含む。
特開2019-172220号公報
 ところで、車両の実軌道を目標軌道に追従させる自動運転では、たとえば、車両が左右勾配(換言すれば、横断勾配)を有する道路を走行すると、実軌道が重力によって勾配の低い方へずれ、目標軌道に対する実軌道の追従性が低下する場合があった。
 また、横風によっても車両を偏向させる外力が車両に加わって実軌道が目標軌道からずれ、更に、アライメントなどの車両10の偏向に関与する車両特性によっても、実軌道が目標軌道からずれる可能性がある。
 ここで、道路の左右勾配や横風などの外乱によって目標軌道への追従性が低下することを抑止するためには、外乱量を高い精度で推定し、操舵制御指令などの制御指令を外乱量に見合う指令とすることが必要となる。
 しかし、たとえば、車速、横加速度、ヨーレートなどの車両運動に関する情報に基づき外乱量を推定する処理では、外乱量を高い精度で推定することが難しく、車両制御装置が、外乱量の推定結果に基づき車両を制御しても、目標軌道に対する実軌道の追従性が外乱によって低下することを十分に抑止できなかった。
 本発明は、従来の実情に鑑みてなされたものであり、その目的は、外乱量を精度良く推定して、目標軌道への追従性を向上させることができる、車両制御装置、車両制御方法、および車両制御システムを提供することにある。
 本発明によれば、その1つの態様において、車両の目標軌道と前記車両の実軌道との左右方向の位置の差に関する情報を取得し、前記左右方向の位置の差に関する情報を用いて、前記左右方向の位置の差に相当する外乱量を推定し、前記外乱量を用いて、前記車両を前記目標軌道に追従させるための制御指令を求める。
 本発明によれば、外乱量を精度良く推定して、目標軌道への追従性を向上させることができる。
車両制御システムの第1実施形態を示すブロック図である。 横加速度指令の算出に用いる各種変数及び座標系の一態様を示す図である。 直線距離としての左右偏差を示す図である。 路面に沿った長さとしての左右偏差を示す図である。 左右勾配による左右偏差の発生状態を示す図である。 左右偏差と左右勾配推定値との変化を例示するタイムチャートであって、左右勾配推定値の変化を制限しない状態を示すタイムチャートである。 左右偏差と左右勾配推定値との変化を例示するタイムチャートであって、左右勾配推定値の変化を制限した状態を示すタイムチャートである。 車両制御システムの第2実施形態を示すブロック図である。 車両制御システムの第3実施形態を示すブロック図である。 ヨーレート、車速、および横加速度に基づく左右勾配の推定処理を説明するための図である。 横加速度指令に対し操舵制御及び制動力制御を実施するシステムを示すブロック図である。
 以下、本発明に係る車両制御装置、車両制御方法、および車両制御システムの実施形態を、図面に基づいて説明する。
 図1は、車両制御システム100の第1実施形態を示すブロック図である。
 車両制御システム100は、4輪自動車などの車両10に搭載される。
 そして、車両制御システム100は、自動運転において、車両10が目標軌道(換言すれば、目標パス)に追従するように、電子制御パワーステアリング装置600による舵角を制御する。
 車両制御システム100は、車両状態検出装置200、外界認識装置300、自動運転制御装置400、車両運動制御装置500、電子制御パワーステアリング装置600、ESC(Electric Stability Control)ユニット700を有する。
 自動運転制御装置400、車両運動制御装置500、およびESCユニット700は、入力した情報に基づいて演算を行って演算結果を出力するマイクロコンピュータ400A,500A,700Aを主体とする電子制御装置である。
 マイクロコンピュータ400A,500A,700Aは、MPU(Microprocessor Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。
 自動運転制御装置400のマイクロコンピュータ400Aは、目標軌道を演算する軌道生成部410の機能を有する。
 軌道生成部410は、車両状態検出装置200および外界認識装置300を用いて、車両10の位置情報(換言すれば、自車位置の情報)、車両の運転状態情報、および周辺情報を取得し、取得した各情報に基づき目標軌道を演算する。
 そして、車両運動制御装置500のマイクロコンピュータ500Aは、自動運転制御装置400が演算した目標軌道に車両10を追従させるための操舵制御指令、詳細には、舵角制御指令または操舵トルク制御指令を演算し、演算した操舵制御指令を電子制御パワーステアリング装置600へ出力する。
 電子制御パワーステアリング装置600は、車両10の前輪11L,11Rの角度を変えることで車両10の進行方向を変える操舵装置である。
 電子制御パワーステアリング装置600は、操舵輪である前輪11L,11Rの角度を変えるモータなどの操舵アクチュエータ601と、操舵アクチュエータ601を制御するアクチュエータ制御装置である操舵コントロールユニット602とを備える。
 操舵コントロールユニット602は、車両運動制御装置500から取得した操舵制御指令に基づき操舵アクチュエータ601を制御して、操舵制御指令に応じた舵角あるいは操舵トルクを実現させる。
 つまり、車両制御システム100においては、自動運転制御装置400が車両10の目標軌道を生成し、車両運動制御装置500が車両10を目標軌道に追従させるための制御指令を求め、操舵コントロールユニット602が制御指令を取得して操舵アクチュエータ601を制御する。
 車両状態検出装置200は、車輪速若しくは車速を検出する車輪速/車速センサ210、車両10のヨーレートを検出するヨーレートセンサ220、車両10の横加速度を検出する横Gセンサ230、前輪11L,11Rの舵角を検出する舵角センサ240を備える。
 また、外界認識装置300は、ステレオカメラ310、ナビゲーションシステム320、車車間通信装置330、レーダ340、全方位カメラ350を備える。
 ステレオカメラ310は、車両10の周囲の対象物を検出・識別し、対象物までの距離などを求める。
 つまり、ステレオカメラ310は、左右のカメラの見え方のずれから視差を計測し、三角測量の原理を用いて対象物までの距離を算出する。
 ナビゲーションシステム320は、GPS(Global Positioning System)受信部及び地図データベースを備え、車両10の現在位置の情報、目的地までの経路の情報などを取得する。
 ナビゲーションシステム320のGPS受信部は、GPS衛星から信号を受信することにより、車両10の位置の緯度及び経度を測定する。
 ナビゲーションシステム320の地図データベースは、車両10が搭載する記憶装置内に形成したデータベースであって、地図情報は、道路位置,道路形状,交差点位置などの情報を含む。
 車車間通信装置330は、車両同士の無線通信によって、他の車両から、道路交通情報、他車の挙動情報、他車の位置情報などを取得する。
 レーダ340は、車両10の前方障害物の検出、更に、前方障害物までの距離や前方障害物の速度の測定を行ない、前方障害物に関する情報として出力する。
 全方位カメラ350は、車両10の前後左右に装着された複数のカメラから得られた映像の視点を変換し、自車を上から見下ろしたような画像、つまり、俯瞰画像を得る装置である。
 自動運転制御装置400は、外界認識装置300から取得した自車位置や自車周囲の物体の情報などに基づき自車周辺の状況を認識し、認識結果に基づき車両10の走行経路の目標である目標軌道を生成する。
 ここで、自動運転制御装置400は、GPSによる測位、デッドレコニング、ステレオカメラ310などによる周辺状況の認識結果、更に、車車間通信によって周囲を走行する他車から得た情報などに基づき、車両10の位置情報を取得する。
 デッドレコニングによる測位や、ステレオカメラ310などによる周辺状況の認識結果を用いて車両10の位置情報を取得する方法は、車載センサの信号に基づき車両10の位置に関する情報を取得する方法である。
 デッドレコニングでは、たとえば、車両10の車速、ヨー角に基づき車両10の位置を推定する。
 一方、GPSによる測位や、車車間通信によって周囲を走行する他車から得た情報などに基づき車両10の位置情報を取得する方法は、車両10の外部から受信した信号に基づき車両10の位置に関する情報を取得する方法である。
 そして、GPSによる測位では、車両10の外部から受信した信号は、GPS衛星から受信した信号、詳細には、時刻のデータ、衛星の軌道の情報などである。
 また、車車間通信を用いた測位では、車両10の外部から受信した信号は、車車間通信によって他車から受信した信号である。
 ESCユニット700は、車両10がスリップする挙動を検知した際に、車両10の駆動装置の出力、および/または、車両10の制動装置における個々の車輪のブレーキ圧を制御することで、車両10の姿勢を安定に保つ制御を実施する。
 ESCユニット700は、車両状態検出装置200から、車両10の車速、横加速度、舵角、ヨーレートなどの情報を取得し、取得した車両情報に基づき運転者の運転操作および車両10の動きを監視する。そして、ESCユニット700は、運転者の運転操作および車両10の動きに基づいて、車両10の姿勢を安定に保つための機能を作動させる。
 また、ESCユニット700は、取得した車両情報に基づいて車両10が走行する道路の左右勾配を推定し、推定した左右勾配の情報を車両運動制御装置500に出力する。
 車両運動制御装置500は、車両モデル510、制御部520、先読み補償部530、勾配補正値作成部540、勾配補正部550、制御量補正値作成部560、アクチュエータ制御部570を有する。
 ここで、車両モデル510、制御部520、および、先読み補償部530は、車両10を目標軌道に追従させるための制御指令を求める追従制御部501を構成する。
 追従制御部501は、自動運転制御装置400が生成した目標軌道に車両10を追従させるための制御指令である横加速度指令を、モデル予測制御(Model Predictive Control)を利用して演算する。
 モデル予測制御は、制御対象のモデルを利用して未来の挙動を予測し、各時刻で最適化問題を解きながら制御対象の操作量を決定する、公知の制御方法である。
 車両運動制御装置500(詳細には、追従制御部501)におけるモデル予測制御においては、車両モデル510を用いて所定の予測時間後(たとえば、500ms後)の応答を予測し、予測区間における追従誤差を小さくする横加速度指令yd2c(換言すれば、横加速度の目標値)を探索する。
 係るモデル予測制御を利用すれば、電子制御パワーステアリング装置600の操舵アクチュエータ601の応答遅れなどによって、車両10の目標軌道への追従性が低下することを抑止でき、また、フィードフォワード制御により自然な軌道制御を実現できる。
 車両運動制御装置500は、車両10(換言すれば、車両10の実軌道)と目標軌道との間の距離である左右方向の位置の差(以下、「左右偏差」と称する。)、車両10の向き(換言すれば、目標軌道に対する車両10の進行方向)、および、目標軌道の曲率の情報を取得する。
 そして、車両運動制御装置500は、左右偏差(換言すれば、横位置偏差)、車両10の向き、および、目標軌道の曲率に基づいて、左右偏差が小さくなるように横加速度指令yd2cを算出する。
 つまり、車両運動制御装置500は、車両10の目標軌道と車両10の実軌道との左右方向の差に関する情報を取得する左右方向差取得部としての機能を有する。
 図2は、横加速度指令yd2cの算出に用いる各種変数及び座標系の一態様を示す図である。
 なお、図2の最近接点Pは、目標軌道上で車両10の位置、詳細には、車両10の重心CGから最も近い点である。
 また、図2の軌道接線方向は、最近接点Pでの目標軌道の接線方向と平行で、車両10の重心CGを通る仮想線である。
 そして、車両10の重心CGを原点とし、軌道接線方向をx軸、重心CGから最近接点Pに向かう方向をy軸とする座標系を用いる。
 数式1は、横加速度指令yd2cの演算式である。
Figure JPOXMLDOC01-appb-M000001
 数式1において、G1,G2,G3は定数として与えられるゲイン、Rは目標軌道の曲率、Vは車速、Δyは車両10の重心CGと目標軌道との左右偏差(詳細には、車両10の重心から最近接点までの距離)、Δyd1は目標軌道に向かう車両10の速度、θは目標軌道の接線に対する車両10の角度(換言すれば、向き)、yd2rは目標軌道の曲率Rに相当する遠心加速度である。
 なお、左右偏差Δyは、自車位置の測位方法によって異なる物理量として取得される。たとえば、左右偏差Δyは、左右勾配が設けられている実際の路面上での左右偏差、つまり、路面に沿った長さの情報として取得される。或いは、左右偏差Δyは、左右勾配が設けられていないと仮定した仮想平面上での左右偏差、つまり、直線距離の情報として取得される。
 図3は、直線距離の情報としての左右偏差Δyを示し、図4は、路面に沿った長さの情報としての左右偏差Δyを示す。
 なお、図3および図4において、紙面を貫通する方向が車両10の進行方向である。
 たとえば、車両制御システム100が、ナビゲーションシステム320のGPS受信部を用いて自車位置を検出する場合、自車位置は緯度と経度とのGPS座標で検出されるため、路面の左右勾配は考慮されず、左右偏差Δyは、図3に示したように、直線距離の情報として求められる。
 一方、車両制御システム100が、車両運動に関する情報に基づくデッドレコニングによって自車位置を検出する場合、自車位置は、路面勾配の影響を加味して推定されることになるため、左右偏差Δyは、図4に示したように、路面に沿った長さの情報として求められる。
 更に、車両制御システム100が、ステレオカメラ310、レーダ340、全方位カメラ350などによる外界認識の結果に基づき自車位置を検出する場合、実際に路面上を走行している車両10の外界を認識するので、左右偏差Δyは、図4に示したように、路面に沿った長さの情報として求められる。
 但し、外界認識の結果に基づき求めた自車位置の情報を路面の左右勾配に応じて補正する場合や、外界認識の結果に基づき地図データを参照して自車位置を推定する場合などでは、左右偏差Δyは、図3に示したように、直線距離の情報として求められる。
 アクチュエータ制御部570は、追従制御部501から取得した横加速度指令yd2cを、舵角あるいは操舵トルクの制御指令である操舵制御指令に変換し、係る操舵制御指令を電子制御パワーステアリング装置600の操舵コントロールユニット602に出力する。
 そして、操舵コントロールユニット602は、取得した操舵制御指令に基づき操舵アクチュエータ601を制御することで、横加速度指令yd2cを実現させる。
 一方、勾配補正値作成部540、勾配補正部550、および、制御量補正値作成部560は、車両10の軌道を左右方向に偏向させる外乱量を左右偏差Δyの情報を用いて推定し、推定した外乱量を用いて横加速度指令yd2c(または操舵制御指令)を補正する。
 つまり、車両運動制御装置500は、左右偏差Δyの情報を用いて、左右偏差Δyに相当する外乱量を推定する外乱推定部、および、推定した外乱量を用いて、車両10を目標軌道に追従させるための制御指令を求める追従制御部の機能を備える。
 ここで、車両10の軌道を左右方向に偏向させる外乱は、道路の左右勾配、横風などの車両10に作用することで車両10の軌道を左右方向に偏向させる外力、および、車両10の軌道を左右方向に偏向させることになるホイールアライメントなどの車両特性を含む。
 たとえば、道路に左右勾配があると、車両10の実軌道が重力によって目標軌道から勾配の低い方へずれ、目標軌道への追従性が低下する場合がある。
 また、車両10の進行方向に対して直交する方向の横風が吹いている場合、風圧によって車両10の実軌道が目標軌道から風下方向にずれ、目標軌道への追従性が低下する場合がある。
 図5は、左右勾配を有する道路での左右偏差Δyの発生状態を示す。
 図5の場合、車両10の進行方向の右側が高く左側が低い左右勾配を有する道路であるため、重力によって車両10の軌道が目標軌道よりも左側(換言すれば、勾配の低い側)にずれて左右偏差Δyが発生する。
 左右勾配や風などの外乱によって左右偏差Δyが発生すれば、追従制御部501が数式1を用いて求める横加速度指令yd2cは、左右偏差Δyを小さくする方向に変更される。
 しかし、数式1を用いた横加速度指令yd2cの算出処理は、外乱のない状態での左右偏差Δyの縮小に適合するものであるため、数式1から算出された横加速度指令yd2cにしたがって操舵制御が実施されても、目標軌道への収束が遅れたり、定常偏差が生じる場合がある。
 そこで、車両運動制御装置500は、左右勾配や横風などの外乱量を推定し、数式1にしたがって算出した横加速度指令yd2c(または操舵制御指令)を、推定した外乱量に基づき補正することで、目標軌道への追従性が外乱によって低下することを抑止する。
 なお、左右勾配にのみ着目すると、数式1は、車両10が走行する路面の左右勾配が零であると仮定して横加速度指令yd2cを導出する式である。したがって、車両運動制御装置500は、目標軌道における路面の左右勾配と、車両10の実軌道における路面の左右勾配との差を補償するように、横加速度指令yd2c(または操舵制御指令)を補正することになる。
 図1に示した車両制御システム100は、車両運動制御装置500は、ESCユニット700から左右勾配の推定値の情報を取得するが、係る左右勾配の推定値は、外乱に対する追従性の低下を抑止するための制御に用いるには精度が低い。
 そこで、勾配補正値作成部540は、ESCユニット700が推定した左右勾配推定値LRG1[deg]を補正するための左右勾配補正値ΔLRGを、左右偏差Δyを用いて求める。
 そして、勾配補正部550は、ESCユニット700が推定した左右勾配推定値LRG1を、勾配補正値作成部540が作成した左右勾配補正値ΔLRGで補正して、最終的な左右勾配推定値LRGを求める。
 これにより、左右勾配推定値LRGは、左右勾配、横風、更に、車両特性などの車両10を偏向させる各種外乱を、高い精度で反映した値になる。
 制御量補正値作成部560は、制御量補正値を左右勾配推定値LRG(換言すれば、外乱量の推定値)に基づき求め、求めた制御量補正値で、数式1にしたがって算出された横加速度指令yd2c(または、数式1にしたがって算出された横加速度指令yd2cに基づく操舵制御指令)を補正する。
 たとえば、左右勾配を有する道路を車両10が走行する場合、左右勾配の低い方向に向けて重力の分力が発生し、車両10がこの分力に引っ張られるため、目標軌道と実軌道とに左右偏差Δyが生じる。
 そこで、勾配補正値作成部540は、左右偏差Δyに基づき制御した横加速度と、重力加速度の分力とが釣り合うと仮定して、左右勾配補正値ΔLRGを求める。
 左右偏差Δyに基づき制御した横加速度と重力加速度の分力とが釣り合うと仮定すると、数式1から数式2が導かれる。
Figure JPOXMLDOC01-appb-M000002
 ここで、左右偏差Δyを一定と仮定して、角度θおよび曲率Rを零とすると、数式2は数式3に変換される。
Figure JPOXMLDOC01-appb-M000003
 したがって、左右勾配補正値ΔLRGは、ゲインG1が1であるとすると、数式4から求めることができる。
Figure JPOXMLDOC01-appb-M000004
 つまり、左右勾配補正値ΔLRGは、重力加速度の分力[m/s2]と、重力加速度[9.8m/s2]のアークサインで導出することができる。
 たとえば、左右偏差Δyが0.2mであったとすると、左右勾配補正値ΔLRGは、数式5に示すようにΔLRG=1.169[deg]となる。
Figure JPOXMLDOC01-appb-M000005
 勾配補正部550は、勾配補正値作成部540が求めた左右勾配補正値ΔLRGの情報、および、ESCユニット700が推定した左右勾配推定値LRG1を取得し、数式6にしたがって、最終的な左右勾配推定値LRG[deg]を求める。
Figure JPOXMLDOC01-appb-M000006
 たとえば、左右偏差Δyが零で、車両10の実軌道が目標軌道に追従できている場合、勾配補正値作成部540は、左右勾配補正値ΔLRGを0[deg]に算出し、勾配補正部550は、ESCユニット700が推定した左右勾配推定値LRG1をそのまま最終的な左右勾配推定値LRGに設定する。
 一方、車両10が目標軌道に対して左右勾配の低い方を走行している場合、勾配補正値作成部540は、左右勾配推定値LRG1を増大補正する左右勾配補正値ΔLRGを算出し、勾配補正部550は、ESCユニット700が推定した左右勾配推定値LRG1を左右勾配補正値ΔLRGで増大させた結果を最終的な左右勾配推定値LRGに設定する。
 また、車両10が目標軌道に対して左右勾配の高い方を走行している場合、勾配補正値作成部540は、左右勾配推定値LRG1を減少補正する左右勾配補正値ΔLRGを算出する。
 勾配補正部550は、ESCユニット700が推定した左右勾配推定値LRG1を左右勾配補正値ΔLRGで減少させた結果を最終的な左右勾配推定値LRGに設定する。
 つまり、左右偏差Δyは、ESCユニット700による左右勾配推定値LRG1の推定誤差や横風、車両特性のばらつきなどに影響されて発生する。したがって、左右偏差Δyに基づく左右勾配補正値ΔLRGで左右勾配推定値LRG1を補正した結果としての左右勾配推定値LRGは、左右勾配や横風などの外乱量を高い精度で表す情報となる。
 制御量補正値作成部560は、勾配補正部550から左右勾配推定値LRGの情報を取得し、左右勾配推定値LRGに基づき、左右勾配による左右偏差Δyの発生を抑止する制御量補正値を求める。
 前述した数式1では、左右勾配や横風などの車両10を偏向させる外乱を考慮せず、左右偏差Δyを小さくするように横加速度指令yd2cが算出されるため、外乱が発生すると目標軌道への追従性が低下する。
 そこで、制御量補正値作成部560は、数式1にしたがって算出した横加速度指令yd2cを外乱量(つまり、左右勾配推定値LRG)に応じて補正することで、横加速度指令yd2cを、外乱量を見込んだ値に修正する。
 係る左右勾配推定値LRGに応じた横加速度指令yd2cの補正処理によって、外乱があっても目標軌道への追従性が低下することが抑止される。
 なお、車両10の発進時などにおいては、大きな左右偏差Δyが検出される場合があり、係る左右偏差Δyを基づき左右勾配補正値ΔLRGが算出されると、目標軌道への追従性を低下させる可能性がある。
 そこで、勾配補正値作成部540は、左右偏差Δyが上限値よりも大きい場合、左右勾配補正値ΔLRGを零とすることで、左右勾配推定値LRG1をそのまま用いて横加速度指令yd2cの補正処理が実施されるようにする。
 ここで、前記上限値は、車両10の発進時などに限って左右偏差Δyが超える値として設定される。
 つまり、車両運動制御装置500は、左右偏差Δyが所定範囲外であるとき、左右偏差Δyの情報を用いた外乱量の推定を行わない。
 また、車両10が目標軌道を使わずに走行している場合、勾配補正値作成部540及び勾配補正部550は、左右勾配推定値LRG1の補正は停止する。
 更に、道路の左右勾配は、道路の構造上急に変化しないため、勾配補正値作成部540若しくは勾配補正部550は、左右偏差Δyが急に変化した場合であっても、左右勾配補正値ΔLRG若しくは最終的な左右勾配推定値LRGを徐々に変化させ、引いては、横加速度指令yd2cの変化速度を所定範囲内に制限する。
 図6および図7は、左右偏差Δyの急変に対する左右勾配推定値LRG(又は左右勾配補正値ΔLRG)の変化を示す図である。図6は、左右偏差Δyの急変を最終的な左右勾配推定値LRGにそのまま反映させた場合を示す。図7は、左右偏差Δyの急変に対し最終的な左右勾配推定値LRGを徐々に追従させた場合を示す。
 図6の場合、左右偏差Δyの急変に応じて最終的な左右勾配推定値LRGも急変する。これに対し、図7の場合、左右勾配推定値LRG若しくは左右勾配補正値ΔLRGの演算周期当たりの変化量を上限値に基づき制限するので、左右偏差Δyが急変しても、最終的な左右勾配推定値LRGは徐々に変化する。
 このように、左右偏差Δyが急変しても最終的な左右勾配推定値LRGを徐々に変化させれば、左右偏差Δyの急変に伴って横加速度指令yd2cが急変することが抑止され、舵角の急変を抑止して滑らかな車両運動を実現できる。
 また、追従制御部501が、前述したようにモデル予測制御を実施する場合、勾配補正値作成部540は、左右偏差Δyの予測値と実際値との差、換言すれば、過去の時点での予測値と現在の実際値との差から左右勾配補正値ΔLRGを算出することができる。
 たとえば、追従制御部501が、500ms後の左右偏差Δyz-50を推定する場合、勾配補正値作成部540は、数式7に示すように、500ms前の予測値である左右偏差Δyz-50と、現時点での実際値である左右偏差Δyとの差(換言すれば、予測誤差)に基づき、左右勾配補正値ΔLRGを算出する。
Figure JPOXMLDOC01-appb-M000007
 車両運動制御装置500は、数式7にしたがって左右勾配補正値ΔLRGを求める場合、予測値である左右偏差Δyz-50と実際値である左右偏差Δyとの差に基づき、実際値である左右勾配推定値LRG1を補正して、外乱量を推定することになる。
 ところで、図1に示した車両制御システム100において、車両運動制御装置500は、ESCユニット700が推定した左右勾配推定値LRG1の情報を取得するが、左右勾配を推定する外部の電子制御装置をESCユニット700に限定するものではない。
 たとえば、車両10がアクティブサスペンションを備える場合、車両運動制御装置500は、アクティブサスペンションの電子制御装置がGセンサ(加速度センサ)の検出出力に基づき推定した左右勾配の情報を取得し、取得した左右勾配推定値を左右偏差Δyに基づき補正することができる。
 アクティブサスペンションは、サスペンションに油圧の力を加えることで車両10の動きをコントロールする装置である。係るアクティブサスペンションは、一般的に、路面の凹凸や車両10の走行状態に応じて発生する振動や動揺を検出する加速度センサを有する。
 そして、アクティブサスペンションの電子制御装置は、加速度センサの検出出力から左右勾配を推定することができる。
 また、ステレオカメラ310の画像処理装置若しくはステレオカメラ310の画像を取得する自動運転制御装置400において、ステレオカメラ310の画像から求められた左右勾配の情報を、車両運動制御装置500が取得するシステムとすることができる。
 更に、車両運動制御装置500は、外部から取得した左右勾配推定値LRG1の情報を左右偏差Δyに基づき補正して追従制御に用いる左右勾配推定値LRGの情報を得る代わりに、左右偏差Δyの情報から追従制御に用いる左右勾配推定値LRGの情報を直接求めることができる。
 図8は、車両制御システム100の第2実施形態を示すブロック図であって、この図8に示す車両運動制御装置500は、左右偏差Δyの情報から追従制御に用いる左右勾配推定値LRGの情報を直接算出する。
 図8の車両運動制御装置500は、図1の車両運動制御装置500における勾配補正値作成部540および勾配補正部550に代えて、勾配推定部580を有する。
 勾配推定部580は、左右偏差Δyの情報を取得し、左右勾配推定値LRGの情報を出力する。
 詳細には、勾配推定部580は、数式4または数式7にしたがって算出される角度の情報をそのまま左右勾配推定値LRGとし、制御量補正値作成部560に出力する。
 そして、制御量補正値作成部560は、横加速度指令yd2cを車両10を偏向させる外乱に応じて補正するための補正値を、勾配推定部580から取得した左右勾配推定値LRGに基づき求める。
 図8の車両制御システム100においても、左右勾配を含む外乱量を見込んだ横加速度指令yd2cを設定でき、外乱によって目標軌道への追従性が低下することを抑止できる。
 また、図8の車両制御システム100では、車両運動制御装置500が外部から左右勾配推定値LRG1の情報を取得する必要がなく、また、車両運動制御装置500において左右勾配推定値の補正処理が不要となり、車両運動制御装置500の構成、処理を簡略化できる。
 また、車両運動制御装置500は、車両10の横加速度、ヨーレート、車速などの車両運動情報から左右勾配を推定する機能、更に、左右偏差Δyに基づき左右勾配推定値を補正する機能を備えることができる。
 図9は、車両制御システム100の第3実施形態を示すブロック図である。
 図9に示す車両運動制御装置500は、横加速度、ヨーレート、車速から左右勾配推定値LRG2を求める一方、左右偏差Δyの情報に基づき左右勾配補正値ΔLRGを求める。そして、車両運動制御装置500は、左右勾配推定値LRG2を左右勾配補正値ΔLRGで補正して得た左右勾配推定値LRGに基づいて追従制御を実施する。
 図9の車両運動制御装置500は、図1の車両運動制御装置500に対し、車両状態検出装置200から取得した車両運動状態の情報に基づき左右勾配を推定する勾配推定部590が付加されている。
 図10は、勾配推定部590における、車両運動状態の情報、詳細には、ヨーレート、車速、および横加速度に基づく左右勾配推定値LRG2の算出処理を説明するための図である。
 勾配推定部590は、まず、車両10にかかる遠心力を、ヨーレートの検出値および車速の検出値に基づき求める。
 遠心力=ヨーレート×車速
 次いで、勾配推定部590は、車両10に対し横方向にかかる力を、遠心力の算出結果、および、横加速度の検出値に基づき求める。
 横方向にかかる力[G]=横加速度-遠心力
 そして、勾配推定部590は、左右勾配推定値LRG2を、横方向にかかる力の算出結果に基づき求める。
 左右勾配推定値LRG2=sin-1(横方向にかかる力)
 一方、勾配補正値作成部540は、図1に示した車両制御システム100の勾配補正値作成部540と同様に、数式4または数式7にしたがって、左右偏差Δyに基づき左右勾配補正値ΔLRGを求める。
 勾配補正部550は、勾配推定部590が求めた左右勾配推定値LRG2と、勾配補正値作成部540が求めた左右勾配補正値ΔLRGとを取得し、左右勾配推定値LRG2を左右勾配補正値ΔLRGで補正した結果を、最終的な左右勾配推定値LRGに設定する。
 つまり、図9に示した車両運動制御装置500は、左右偏差Δyに関する情報とともに、車両10の横加速度に関する情報、車両10のヨーレートに関する情報、および車両10の車速に関する情報を用いて、車両10を偏向させる外乱量を推定する。
 図9の車両制御システム100においても、左右勾配を含む外乱量を見込んだ横加速度指令yd2cを設定でき、外乱によって目標軌道への追従性が低下することを抑止できる。
 ところで、車両運動制御装置500(詳細には、アクチュエータ制御部570)は、車両10の実軌道を目標軌道に追従させるための制御として、電子制御パワーステアリング装置600による操舵を制御する機能とともに、制動装置における制動力指令の左右配分(換言すれば、制動力の左右差)を変更する制御機能を備えることができる。
 図11は、車両運動制御装置500が、操舵制御機能及び制動制御機能を備える、車両制御システム100を示すブロック図である。
 図11に示すアクチュエータ制御部570は、車両10の実軌道を目標軌道に追従させるために、操舵装置である電子制御パワーステアリング装置600による操舵と制動装置900による制動力とを制御する。
 制動装置900は、車両10の各車輪の制動力を個別に調整することが可能な制動装置であって、たとえば、各車輪に供給するブレーキ液圧を個別に調整可能な油圧式の制動装置である。
 そして、アクチュエータ制御部570は、横加速度指令yd2cを、舵角あるいは操舵トルクの指令である操舵制御指令と、ブレーキ液圧指令(詳細には、ブレーキ液圧の左右配分指令)とに変換し、操舵制御指令を電子制御パワーステアリング装置600に出力し、ブレーキ液圧指令を制動装置900に出力する。
 つまり、車両運動制御装置500は、電子制御パワーステアリング装置600による操舵と制動装置900による制動力との少なくとも一方を制御することで、横加速度指令yd2cを実現することができる。
 たとえば、車両運動制御装置500は、電子制御パワーステアリング装置600による操舵の制御を主体として車両10の実軌道を目標軌道に追従させるようにし、制動力の左右差を変えることで目標軌道と実軌道との偏差を微修正することができる。
 また、車両運動制御装置500のアクチュエータ制御部570は、電子制御パワーステアリング装置600による操舵を制御する機能とともに、車両10の駆動装置による左右輪での駆動力の差を制御する機能を備える。
 そして、アクチュエータ制御部570は、電子制御パワーステアリング装置600による操舵と駆動装置による駆動力との少なくとも一方を制御することで、横加速度指令yd2cを実現することができる。
 更に、車両運動制御装置500のアクチュエータ制御部570は、電子制御パワーステアリング装置600による操舵と、制動装置900による制動力と、駆動装置による駆動力とを制御することで、横加速度指令yd2cを実現することができる。
 つまり、車両運動制御装置500のアクチュエータ制御部570は、車両10の操舵装置および制駆動装置のうちの少なくとも1つを制御することで、横加速度指令yd2cを実現することができる。
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 たとえば、車両10の目標軌道の作成と、車両10の実軌道を目標軌道に追従させるための制御指令の作成とを、1つの制御装置で実施するシステムとすることができる。
 また、車両運動制御装置500における横加速度指令yd2cの演算処理を、モデル予測制御を用いた処理に限定するものではなく、モデル予測制御を用いない処理とすることができる。
 また、左右偏差Δyは、たとえば、前方注視点での左右偏差としたり、車両10の左右方向での車両10から目標軌道までの距離を左右偏差Δyとしたりすることができ、図2に示した左右偏差Δyの特定に限定するものではない。
 10…車両、100…車両制御システム、200…車両状態検出装置、300…外界認識装置、400…自動運転制御装置(第1制御装置)、500…車両運動制御装置(第2制御装置、車両制御装置)、600…電子制御パワーステアリング装置(操舵装置)、602…操舵コントロールユニット(アクチュエータ制御装置)、700…ESCユニット

Claims (20)

  1.  車両の目標軌道と前記車両の実軌道との左右方向の位置の差に関する情報を取得する左右方向差取得部と、
     前記左右方向差取得部で取得された前記左右方向の位置の差に関する情報を用いて、前記左右方向の位置の差に相当する外乱量を推定する外乱推定部と、
     前記外乱推定部で推定した前記外乱量を用いて、前記車両を前記目標軌道に追従させるための制御指令を求める追従制御部と、
     を備える、車両制御装置。
  2.  請求項1記載の車両制御装置であって、
     前記左右方向差取得部は、
     車載センサの信号に基づいた前記車両の位置に関する情報を用いて求められた、前記左右方向の位置の差に関する情報を取得する、
     車両制御装置。
  3.  請求項2記載の車両制御装置であって、
     前記車載センサの信号は、前記車両の車速に関する信号及び前記車両のヨー角に関する信号のうちの少なくとも1つである、
     車両制御装置。
  4.  請求項1記載の車両制御装置であって、
     前記左右方向差取得部は、
     前記車両の外部から受信した信号に基づいた前記車両の位置に関する情報を用いて求められた、前記左右方向の位置の差に関する情報を取得する、
     車両制御装置。
  5.  請求項4記載の車両制御装置であって、
     前記車両の外部からの信号は、車車間通信によって他の車両から受信した信号、および、GPS衛星から受信した信号のうちの少なくとも1つである、
     車両制御装置。
  6.  請求項1記載の車両制御装置であって、
     前記外乱推定部は、
     前記車両に作用して前記車両を偏向させる外力および前記車両の偏向に関与する前記車両の特性のうちの少なくとも1つを、前記外乱量として推定する、
     車両制御装置。
  7.  請求項6記載の車両制御装置であって、
     前記車両を偏向させる外力は、横風によって前記車両に加わる外力である、
     車両制御装置。
  8.  請求項1記載の車両制御装置であって、
     前記外乱推定部は、
     前記左右方向の位置の差に関する情報とともに、前記車両の横加速度に関する情報、前記車両のヨーレートに関する情報、および前記車両の車速に関する情報のうちの少なくとも1つを用いて、前記外乱量を推定する、
     車両制御装置。
  9.  請求項1記載の車両制御装置であって、
     前記外乱推定部は、
     過去の前記左右方向の位置の差に関する情報、および、現在の前記左右方向の位置の差に関する情報を用いて、前記外乱量を推定する、
     車両制御装置。
  10.  請求項9記載の車両制御装置であって、
     前記過去の前記左右方向の位置の差に関する情報は予測値で、前記現在の前記左右方向の位置の差に関する情報は実際値であり、
     前記外乱推定部は、
     前記予測値と実際値との差に基づき前記実際値を変更した結果を用いて、前記外乱量を推定する、
     車両制御装置。
  11.  請求項1記載の車両制御装置であって、
     前記追従制御部は、
     前記制御指令としての前記車両の横加速度の制御指令を、前記左右方向の位置の差が小さくなるように求める、
     車両制御装置。
  12.  請求項11記載の車両制御装置であって、
     前記追従制御部は、
     前記横加速度の制御指令を、前記目標軌道における路面の左右勾配と、前記実軌道における路面の左右勾配との差を補償するように求める、
     車両制御装置。
  13.  請求項12記載の車両制御装置であって、
     前記追従制御部は、
     前記横加速度の制御指令の変化速度を所定範囲内に制限する、
     車両制御装置。
  14.  請求項12記載の車両制御装置であって、
     前記追従制御部は、
     前記横加速度の制御指令を、前記実軌道が前記目標軌道より路面の左右勾配において高い位置にある場合は低い位置にある場合に比べて小さくする、
     車両制御装置。
  15.  請求項12記載の車両制御装置であって、
     前記追従制御部は、
     前記横加速度の制御指令を、前記左右方向の位置の差に関する情報とともに、前記車両の向きに関する情報及び前記目標軌道の曲率に関する情報のうちの少なくとも1つを用いて求める、
     車両制御装置。
  16.  請求項1記載の車両制御装置であって、
     前記外乱推定部は、
     前記左右方向の位置の差に関する情報が所定範囲外であるとき、前記左右方向の位置の差に関する情報を用いた前記外乱量の推定を行わない、
     車両制御装置。
  17.  請求項1記載の車両制御装置であって、
     前記追従制御部は、
     前記制御指令によって、前記車両の操舵装置および制駆動装置のうちの少なくとも1つを制御する、
     車両制御装置。
  18.  請求項1記載の車両制御装置であって、
     前記左右方向差取得部は、
     前記左右方向の位置の差に関する情報を、直線距離の情報または路面にそった長さの情報として取得する、
     車両制御装置。
  19.  車両制御方法であって、
     車両の目標軌道と前記車両の実軌道との左右方向の位置の差に関する情報を取得するステップと、
     取得された前記左右方向の位置の差に関する情報を用いて、前記左右方向の位置の差に相当する外乱量を推定するステップと、
     推定された前記外乱量を用いて、前記車両を前記目標軌道に追従させるための制御指令を求めるステップと、
     を備える、車両制御方法。
  20.  車両制御システムであって、
     第1制御装置と、第2制御装置と、アクチュエータ制御装置と、を備え、
     前記第1制御装置は、
     車両の目標軌道を生成し、
     前記第2制御装置は、
     前記目標軌道と前記車両の実軌道との左右方向の位置の差に関する情報を取得する左右方向差取得部と、
     前記左右方向差取得部で取得された前記左右方向の位置の差に関する情報を用いて、前記左右方向の位置の差に相当する外乱量を推定する外乱推定部と、
     前記外乱推定部で推定した前記外乱量を用いて、前記車両を前記目標軌道に追従させるための制御指令を求める追従制御部と、
     を備え、
     前記アクチュエータ制御装置は、
     前記制御指令を取得する、
     車両制御システム。
PCT/JP2021/048878 2021-03-11 2021-12-28 車両制御装置、車両制御方法、および車両制御システム WO2022190585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/281,242 US20240158009A1 (en) 2021-03-11 2021-12-28 Vehicle Control Apparatus, Vehicle Control Method, and Vehicle Control System
EP21930429.2A EP4306375A1 (en) 2021-03-11 2021-12-28 Vehicle control device, vehicle control method, and vehicle control system
CN202180095354.7A CN116940492A (zh) 2021-03-11 2021-12-28 车辆控制装置、车辆控制方法以及车辆控制***
JP2023505132A JPWO2022190585A1 (ja) 2021-03-11 2021-12-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-038825 2021-03-11
JP2021038825 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022190585A1 true WO2022190585A1 (ja) 2022-09-15

Family

ID=83227220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048878 WO2022190585A1 (ja) 2021-03-11 2021-12-28 車両制御装置、車両制御方法、および車両制御システム

Country Status (5)

Country Link
US (1) US20240158009A1 (ja)
EP (1) EP4306375A1 (ja)
JP (1) JPWO2022190585A1 (ja)
CN (1) CN116940492A (ja)
WO (1) WO2022190585A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146061A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 走行制御装置
JP2017047798A (ja) * 2015-09-02 2017-03-09 富士重工業株式会社 車両の走行制御装置
JP2019172220A (ja) 2018-03-29 2019-10-10 トヨタ自動車株式会社 カント推定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146061A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 走行制御装置
JP2017047798A (ja) * 2015-09-02 2017-03-09 富士重工業株式会社 車両の走行制御装置
JP2019172220A (ja) 2018-03-29 2019-10-10 トヨタ自動車株式会社 カント推定方法

Also Published As

Publication number Publication date
CN116940492A (zh) 2023-10-24
JPWO2022190585A1 (ja) 2022-09-15
US20240158009A1 (en) 2024-05-16
EP4306375A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
CN109421709B (zh) 车辆的驾驶辅助装置
CN111610780B (zh) 一种自动驾驶车路径跟踪控制方法及其装置
JP6055525B1 (ja) 車両の走行制御装置
US10988139B2 (en) Vehicle position control method and device vehicle position control device for correcting position in drive-assisted vehicle
US10077072B2 (en) Vehicle steering device and vehicle steering control method with reduced lateral speed
US9645250B2 (en) Fail operational vehicle speed estimation through data fusion of 6-DOF IMU, GPS, and radar
JP6259797B2 (ja) 車両走行制御装置
JP4835054B2 (ja) 車両安定化制御システム
JP6748619B2 (ja) 車両制御装置、車両制御方法および車両制御システム
JP4899626B2 (ja) 走行制御装置
US11904936B2 (en) Driving support device for vehicle
CN112703539B (zh) 行驶路径生成装置及车辆控制装置
CN115151475B (zh) 转向控制装置
JP7481531B2 (ja) 車両走行制御装置
JP7206970B2 (ja) 車両運動制御方法及び車両運動制御装置
US11623685B2 (en) System and method for active steering control with automatic torque compensation
Hayakawa et al. Driver-compatible steering system for wide speed-range path following
JP7206971B2 (ja) 車両運動制御方法及び車両運動制御装置
WO2022190585A1 (ja) 車両制御装置、車両制御方法、および車両制御システム
WO2022024873A1 (ja) 車両制御装置、車両制御方法、及び車両制御システム
JP2005170327A (ja) 車両用自動操舵制御装置
WO2023089889A1 (ja) 車両制御装置、車両制御方法、及び車両制御システム
WO2022172337A1 (ja) 制御演算装置および制御演算方法
WO2022190910A1 (ja) 車両制御装置、車両制御方法、目標軌道算出方法、及び車両
US20230134824A1 (en) Steering control system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505132

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180095354.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18281242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021930429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930429

Country of ref document: EP

Effective date: 20231011