WO2022190414A1 - ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器 - Google Patents

ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器 Download PDF

Info

Publication number
WO2022190414A1
WO2022190414A1 PCT/JP2021/034029 JP2021034029W WO2022190414A1 WO 2022190414 A1 WO2022190414 A1 WO 2022190414A1 JP 2021034029 W JP2021034029 W JP 2021034029W WO 2022190414 A1 WO2022190414 A1 WO 2022190414A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
gan layer
gate electrode
normally
Prior art date
Application number
PCT/JP2021/034029
Other languages
English (en)
French (fr)
Inventor
弘治 河合
修一 八木
啓修 成井
Original Assignee
株式会社パウデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021038916A external-priority patent/JP6941904B1/ja
Priority claimed from JP2021143739A external-priority patent/JP7061779B1/ja
Application filed by 株式会社パウデック filed Critical 株式会社パウデック
Priority to CN202180025734.3A priority Critical patent/CN115398647A/zh
Priority to US17/921,225 priority patent/US20230170407A1/en
Publication of WO2022190414A1 publication Critical patent/WO2022190414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Definitions

  • the present invention relates to a normally-off polarization superjunction GaN (gallium nitride) field effect transistor and electrical equipment using this normally-off polarization superjunction GaN field effect transistor.
  • GaN gallium nitride
  • a polarization super junction (PSJ) GaN-based field effect transistor FET
  • PJ polarization super junction
  • FET field effect transistor
  • This polarization superjunction GaN-based field effect transistor has a polarization superjunction region including a structure in which an undoped GaN layer, an Al x Ga 1-x N layer and an undoped GaN layer are sequentially laminated.
  • This polarization super-junction GaN-based field effect transistor is capable of high breakdown voltage, high output, high efficiency, and high-speed operation, which are difficult to achieve with silicon (Si)-based power transistors.
  • an undoped InGaN layer or a p-type InGaN layer is provided on the AlGaN layer, and a gate electrode is provided thereon to form a normally-off type.
  • a diode composed of a double-gate polarization superjunction GaN-based field effect transistor see Patent Document 3.
  • 2DEG two-dimensional electron gas
  • transistors are often required to have so-called fail-safe operation, in which the transistor is turned off when the control signal (gate signal) is lost.
  • the normally-on polarization superjunction GaN-based field effect transistors described in Patent Documents 1 and 2 are made normally-off by constructing a cascode circuit or a modified cascode circuit using a low withstand voltage normally-off SiMOS transistor.
  • a cascode circuit or a modified cascode circuit using a low withstand voltage normally-off SiMOS transistor there is a disadvantage in that the circuit becomes complicated.
  • the problem to be solved by the present invention is a normally-off type polarization superjunction GaN-based field effect transistor that can easily realize a normally-off type transistor without using a complicated circuit, and this normally-off type.
  • An object of the present invention is to provide high-performance electrical equipment using a polarization superjunction GaN-based field effect transistor.
  • the present invention a first undoped GaN layer; an AlxGa1 -xN layer (0 ⁇ x ⁇ 1) on the first undoped GaN layer; a second undoped GaN layer having an island shape on the Al x Ga 1-x N layer; a p-type GaN layer on the second undoped GaN layer; a p-type In y Ga 1-y N layer (0 ⁇ y ⁇ 1) on the p-type GaN layer; a source electrode on the AlxGa1 -xN layer; a drain electrode on the AlxGa1 -xN layer; a first gate electrode electrically connected to the p-type InyGa1 -yN layer ; A p-type In z Ga 1-z N layer (0 ⁇ z ⁇ 1) on the Al x Ga 1-x N layer and adjacent to the end of the second undoped GaN layer on the source electrode side and thereon a second gate electrode; has The p-type GaN layer is present on the entire surface of the second undo
  • the polarization superjunction region is the portion other than the gate electrode contact region.
  • a first undoped GaN layer, an Al x Ga 1-x N layer, a second undoped GaN layer and a p-type GaN layer, where the p-type GaN layer exists only on one side of the second undoped GaN layer on the source electrode side consists of the first undoped GaN layer, the Al x Ga 1-x N layer and the second undoped GaN layer in the portion where the p-type GaN layer does not exist.
  • the thickness of the first undoped GaN layer, Al x Ga 1-x N layer, the second undoped GaN layer and the p-type GaN layer are typically selected according to Patent Document 2.
  • the thickness of the first undoped GaN layer, the Al x Ga 1-x is typically selected according to Patent Document 1.
  • the AlxGa1 -xN layer is typically undoped, but may be an n-type or p-type AlxGa1 -xN layer doped with donors (n-type impurities) or acceptors (p-type impurities). , for example, an n-type Al x Ga 1-x N layer doped with Si.
  • the AlxGa1 -xN layer is typically undoped. Between the first undoped GaN layer and the Al x Ga 1-x N layer and/or between the second undoped GaN layer and the Al x Ga 1-x N layer, typically An undoped Al u Ga 1-u N layer (0 ⁇ u ⁇ 1, u>x), for example an AlN layer, is provided.
  • the gap between the first undoped GaN layer and the Al x Ga 1-x N layer Infiltration into the Al x Ga 1-x N layer side of the two-dimensional electron gas formed in the first undoped GaN layer in the vicinity of the hetero interface can be reduced, and the electron mobility is significantly increased. be able to.
  • This Al u Ga 1-u N layer may generally be sufficiently thin, for example, about 0.5 to 2 nm.
  • the drain current when the gate voltage of the second gate electrode is 0 [V] and the drain voltage is 1.0 [V] is the drain current when the gate voltage of the second gate electrode is 5 [V]. It is 1/100 or less of the current (rated current).
  • the second gate electrode may be provided on the p-type In z Ga 1-z N layer via a gate insulating film.
  • a MIS (Metal Insulator Semiconductor) structure is formed by the second gate electrode, the gate insulating film and the p-type In z Ga 1-z N layer.
  • Each terminal of this normally-off polarization superjunction GaN-based field effect transistor can be connected according to the application.
  • the first gate electrode and the second gate electrode they can be operated as an integrated gate electrode.
  • the first gate electrode and the source electrode can act as a field plate.
  • the first gate electrode may be fixed at a positive potential with respect to the potential of the source electrode.
  • a diode can be operated.
  • the p-type In y Ga 1-y N layer and the p-type In z Ga 1-z N layer can be basically formed by any method, but can be easily formed by a sputtering method. can.
  • this invention having at least one transistor,
  • the above transistor is a first undoped GaN layer; an AlxGa1 -xN layer (0 ⁇ x ⁇ 1) on the first undoped GaN layer; a second undoped GaN layer having an island shape on the Al x Ga 1-x N layer; a p-type GaN layer on the second undoped GaN layer; a p-type In y Ga 1-y N layer (0 ⁇ y ⁇ 1) on the p-type GaN layer; a source electrode on the AlxGa1 -xN layer; a drain electrode on the AlxGa1 -xN layer; a first gate electrode electrically connected to the p-type InyGa1 -yN layer ; A p-type In z Ga 1-z N layer (0 ⁇ z ⁇ 1) on the Al x Ga 1-x N layer and adjacent to the end of the second undoped GaN layer on the source electrode side and thereon a second gate electrode; has The p-type GaN layer is present on the entire surface of
  • electrical equipment includes almost anything that uses electricity, regardless of its application, function, size, etc. Examples include electronic equipment, moving bodies, power units, construction machinery, and machine tools.
  • Electronic equipment includes robots, computers, game machines, vehicle-mounted equipment, home appliances (air conditioners, etc.), industrial products, mobile phones, mobile devices, IT equipment (servers, etc.), power conditioners used in solar power generation systems, power transmission system and so on.
  • Mobile objects include railway vehicles, automobiles (such as electric vehicles), motorcycles, aircraft, rockets, and spacecraft.
  • a GaN-based field effect transistor can be easily realized, and a high-performance electronic device can be realized using this normally-off polarization superjunction GaN-based field effect transistor.
  • FIG. 1 is a cross-sectional view showing a normally-off polarization superjunction GaN-based FET according to a first embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an energy band diagram of each region of a normally-off polarization superjunction GaN-based FET according to a first embodiment of the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is a cross-sectional view for explaining the operating mechanism of a normally-off polarization superjunction GaN-based FET according to a first embodiment of the invention
  • Schematic diagram showing the potential distribution when a reverse bias is applied across the drain and source of the normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention, and 0 V is applied across the gate and source. is.
  • FIG. 2 is a cross-sectional view for explaining a method of manufacturing a normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view for explaining a method of manufacturing a normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view for explaining a method of manufacturing a normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view for explaining a method of manufacturing a normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention
  • 1 is a circuit diagram showing a measurement circuit used for measuring static characteristics of a normally-off polarization super-junction GaN-based FET according to an example
  • FIG. 4 is a schematic diagram showing drain current-drain voltage characteristics of a normally-off polarization superjunction GaN-based FET according to an example
  • FIG. 4 is a schematic diagram showing drain current-gate voltage characteristics of a normally-off polarization superjunction GaN-based FET according to an example
  • FIG. 13 is a schematic diagram showing the logarithm of the drain current in the drain current-gate voltage characteristic shown in FIG.
  • FIG. 4 is a schematic diagram showing breakdown voltage characteristics in an off state of a normally-off polarization super-junction GaN-based FET according to an example
  • FIG. 4 is a cross-sectional view showing a Hall element fabricated for measuring the two-dimensional electron gas concentration and the two-dimensional hole gas concentration in a specific region of the normally-off polarization superjunction GaN-based FET according to the example.
  • FIG. 4 is a cross-sectional view showing a Hall element fabricated for measuring the two-dimensional electron gas concentration and the two-dimensional hole gas concentration in a specific region of the normally-off polarization superjunction GaN-based FET according to the example.
  • FIG. 4 is a schematic diagram showing breakdown voltage characteristics in an off state of a normally-off polarization super-junction GaN-based FET according to an example
  • FIG. 4 is a cross-sectional view showing a Hall element fabricated for measuring the two-dimensional electron gas concentration and the two-dimensional hole gas concentration in a specific region of the normally-
  • FIG. 4 is a cross-sectional view showing a Hall element fabricated for measuring the two-dimensional electron gas concentration and the two-dimensional hole gas concentration in a specific region of the normally-off polarization superjunction GaN-based FET according to the example.
  • FIG. 4 is a cross-sectional view showing a Hall element fabricated for measuring the two-dimensional electron gas concentration and the two-dimensional hole gas concentration in a specific region of the normally-off polarization superjunction GaN-based FET according to the example.
  • 15D is a plan view showing the electrode arrangement of the Hall element shown in FIGS. 15A and 15D;
  • FIG. FIG. 15C is a plan view showing the electrode arrangement of the Hall element shown in FIGS.
  • FIG. 15B and 15C 1 is a circuit diagram showing a first example of a method of connecting terminals of a normally-off polarization super-junction GaN-based FET according to a first embodiment of the present invention
  • FIG. FIG. 4 is a circuit diagram showing a second example of a method of connecting terminals of the normally-off polarization super-junction GaN-based FET according to the first embodiment of the present invention
  • FIG. 5 is a circuit diagram showing a third example of a method of connecting terminals of the normally-off polarization super-junction GaN-based FET according to the first embodiment of the present invention
  • FIG. 4 is a circuit diagram showing a second example of a method of connecting terminals of the normally-off polarization super-junction GaN-based FET according to the first embodiment of the present invention
  • FIG. 5 is a circuit diagram showing a third example of a method of connecting terminals of the normally-off polarization super-junction GaN-based FET according to the first embodiment of
  • FIG. 5 is a circuit diagram showing a fourth example of a method of connecting terminals of the normally-off polarization super-junction GaN-based FET according to the first embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing a normally-off polarization superjunction GaN-based FET according to a second embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing a normally-off polarization superjunction GaN-based FET according to a third embodiment of the present invention
  • FIG. 10 is a schematic diagram showing an energy band diagram of a region immediately below a gate electrode 20 of a normally-off polarization superjunction GaN-based FET according to a third embodiment of the present invention
  • FIG. 10 is a schematic diagram showing an energy band diagram of a region immediately below a gate electrode 20 of a normally-off polarization superjunction GaN-based FET according to a third embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an energy band diagram of a region immediately below the gate electrode 20 of the normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention
  • FIG. 11 is a schematic diagram showing an energy band diagram of a region immediately below the gate electrode 20 of the normally-off polarization superjunction GaN-based FET according to the third embodiment of the present invention when gate voltage is applied
  • FIG. 4 is a schematic diagram showing an energy band diagram of a region immediately below the gate electrode 20 of the normally-off polarization superjunction GaN-based FET according to the first embodiment of the present invention when gate voltage is applied;
  • FIG. 11 is a schematic diagram showing an energy band diagram of a region immediately below the gate electrode 20 of the normally-off polarization superjunction GaN-based FET according to the third embodiment of the present invention when gate voltage is applied
  • FIG. 4 is a schematic diagram showing an energy band diagram of a region immediately below the gate electrode 20 of the normally-off polarization superjunction
  • FIG. 5 is a cross-sectional view showing a normally-off polarization superjunction GaN-based FET according to a fourth embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing a normally-off polarization superjunction GaN-based FET according to a fifth embodiment of the present invention
  • an undoped GaN layer 11 and Al x are formed on a substrate 10 via a buffer layer (not shown).
  • a Ga 1-x N layer 12 and an undoped GaN layer 13 are sequentially laminated.
  • the substrate 10 is preferably a substrate on which a GaN-based semiconductor grows on the C-plane, such as a C-plane sapphire substrate, a Si substrate, or an SiC substrate.
  • the buffer layer is made of, for example, polycrystalline or amorphous GaN, AlN, AlGaN, AlGaN/GaN superlattice, or the like.
  • the Al x Ga 1-x N layer 12 is typically undoped, but may be an n-type or p-type Al x Ga 1-x N layer doped with donors (n-type impurities) or acceptors (p-type impurities). may be
  • the undoped GaN layer 13 has an island shape, and the Al x Ga 1-x N layer 12 is exposed around it. In FIG. 1, the upper portion of the Al x Ga 1- x N layer 12 also has the same island-like shape as the undoped GaN layer 13, and the thickness of the Al x Ga 1-x N layer 12 in other portions is island-like.
  • a p-type GaN layer 14 is laminated on the entire surface of the undoped GaN layer 13 .
  • the thickness of one side portion of the p-type GaN layer 14 on the drain electrode 18 side, which will be described later, is smaller than the thickness of the one side portion on the source electrode 17 side, which will be described later.
  • This thin portion of the p-type GaN layer 14 corresponds to a polarized superjunction region (PSJ region).
  • a p-type In y Ga 1-y N layer 15 is stacked on the p-type GaN layer 14 in the thicker portion.
  • the p-type In y Ga 1-y N layer 15 may be laminated on the entire surface of the p-type GaN layer 14 in the thick portion, but here, the drain of the p-type GaN layer 14 in the thick portion is used. A case where it is formed only on a portion excluding a portion on the electrode 18 side is illustrated.
  • the p-type GaN layer 14 is doped with magnesium (Mg) as a p-type impurity, and the p-type InyGa1 -yN layer 15 is similarly doped with Mg.
  • Mg magnesium
  • a gate electrode 16 is provided on the p-type In y Ga 1-y N layer 15 .
  • the gate electrode 16 is formed of a metal having a large work function, typically nickel (Ni), in order to make ohmic contact with the p-type In y Ga 1-y N layer 15 .
  • the gate electrode 16 may be made of a laminated film in which another metal film is laminated on the Ni film.
  • p-type InyGa1 with respect to an island-shaped laminated structure composed of an undoped GaN layer 13, a p-type GaN layer 14 and a p-type InyGa1 -yN layer 15.
  • a source electrode 17 is provided on the -y N layer 15 side, and a drain electrode 18 is provided on the opposite side. As will be described later, the source electrode 17 and the drain electrode 18 are in ohmic contact with the 2DEG formed in the undoped GaN layer 11 in the vicinity of the heterointerface between the undoped GaN layer 11 and the AlxGa1 -xN layer 12. It is composed of a low work function metal, typically titanium (Ti), for example.
  • the source electrode 17 and the drain electrode 18 may be made of a laminated film in which an aluminum (Al) film, a nickel (Ni) film, a gold (Au) film, or the like is laminated on a Ti film.
  • p-type In z Ga is further formed on the island-shaped Al x Ga 1-x N layer 12 and near the end of the undoped GaN layer 13 on the source electrode 17 side.
  • a 1-z N layer 19 and a gate electrode 20 are provided thereon.
  • the In composition z of the p-type In z Ga 1-z N layer 19 may be the same as or different from the In composition y of the p-type In y Ga 1-y N layer 15 .
  • the In composition z of the p-type In z Ga 1-z N layer 19 satisfies 0 ⁇ z ⁇ 1.
  • the In composition z and thickness t of the p-type In z Ga 1-z N layer 19 are selected as required, but the In composition z is typically selected to be 0.20 or less.
  • the thin portion of the p-type GaN layer 14, the undoped GaN layer 13 directly below this portion, the Al x Ga 1-x N layer 12 and the undoped GaN Layer 11 constitutes the polarization superjunction region (intrinsic polarization superjunction region).
  • p-type In y Ga 1-y N layer 15, thick p-type GaN layer 14, undoped GaN layer 13 immediately below p-type GaN layer 14, Al x Ga 1-x N layer 12 and undoped GaN Layer 11 constitutes the gate electrode contact region.
  • the concentration of 2DEG 22 in the portion between gate electrode 20 and source electrode 17 is also n 3 .
  • n 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 the magnitude relationship of n 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 is schematically indicated by the size and density of circles representing electrons.
  • the concentration n 0 of the 2DEG 22 in the portion immediately below the gate electrode 20 is sufficiently low to the extent that the 2DEG 22 is almost depleted. Therefore, it can be said that the electron channel composed of the 2DEG 22 is discontinued in the portion immediately below the gate electrode 20 .
  • n 0 ⁇ (1/1000) ⁇ n 3 the concentration p 1 of the 2DHG 21 in the portion immediately below the gate electrode 16 and the concentration p 2 of the 2DHG 21 in the polarization superjunction region.
  • FIG. 2 shows an energy band diagram in the direction perpendicular to the substrate 10 in each region of this normally-off polarization superjunction GaN-based FET. 2, from the left, the energy band diagram of the portion immediately below the gate electrode 20, the energy band diagram of the portion immediately below the gate electrode 16, the energy band diagram of the portion of the polarization superjunction region, and the polarization superjunction region and the drain electrode 18. The energy band diagram for the portion between and is shown. These energy band diagrams are qualitative to show the relative concentrations of 2DEG22 and 2DHG21 at each site. In FIG .
  • the vertical axis represents electron energy
  • Ec is the energy at the lower end of the conduction band
  • Ev is the energy at the upper end of the valence band
  • Ef is the Fermi energy.
  • FIG. 2 in the portion between the polarized superjunction region and the drain electrode 18, undoped GaN in the vicinity of the hetero interface between the undoped GaN layer 11 and the Al x Ga 1-x N layer 12 A 2DEG 22 with a concentration of n 3 is formed in the layer 11 .
  • the conduction band is raised by the polarization effect of the undoped GaN layer 13 and the p-type GaN layer 14, resulting in heterogeneity between the undoped GaN layer 11 and the AlxGa1 -xN layer 12.
  • the concentration n 2 of the 2DEG 22 formed in the undoped GaN layer 11 in the vicinity of the interface is lower than the concentration n 3 .
  • the valence band is raised by the same effect, resulting in a concentration p 2DHG21 is formed.
  • the conduction band is further raised by the p-type InyGa1 -yN layer 15, and as a result, the heterointerface between the undoped GaN layer 11 and the AlxGa1 -xN layer 12 is increased.
  • the concentration n 1 of the 2DEG 22 formed in the undoped GaN layer 11 in the vicinity is lower than the concentration n 2 .
  • the same effect further raises the valence band, resulting in an increase in the valence band in the portion near the heterointerface between the undoped GaN layer 13 and the AlxGa1 -xN layer 12.
  • a 2DHG 21 with a concentration p 1 greater than the concentration p 2 is formed.
  • the concentration n 0 of the 2DEG 22 is at least n 1 or less so that the electron channel composed of the 2DEG 22 is interrupted in this portion. has a very small concentration of , which is practically zero.
  • the source electrode 17, the gate electrode 16 and the gate electrode 20 are connected together, and a positive voltage Vdg is applied to the drain electrode 18 with respect to the source electrode 17, the gate electrode 16 and the gate electrode 20. .
  • a reverse bias is applied between the gate electrode 16 and the drain electrode 18 and between the gate electrode 20 and the drain electrode 18, and holes in the 2DHG 21 in the polarization superjunction region are extracted from the gate electrode 16, resulting in a polarization superjunction.
  • Electrons in the 2DEG 22 of the region are withdrawn from the drain electrode 18 . Since the concentration n 0 of the 2DEG 22 immediately below the gate electrode 20 is substantially 0, no current flows from the source electrode 17 to the drain electrode 18 via the 2DEG 22 . That is, it is normally off.
  • FIGS. 4 and 5 The electric field distribution and potential distribution of the normally-off polarization superjunction GaN-based FET in this state are shown in FIGS. 4 and 5, respectively.
  • the electric field is substantially uniform in the polarized superjunction region. Therefore, as shown in FIG. 5, in the polarized superjunction region, the potential gently drops toward the drain electrode 18 side.
  • a peak electric field is generated at the connection point between the 2DEG 22 having a concentration of n 2 and the 2DEG 22 having a concentration of n 3 .
  • the voltage borne by the main body of the polarized superjunction region is much larger than that of the superjunction region.
  • the breakdown voltage of the normally-off type polarized super-junction GaN-based FET is borne by the main body of the polarized super-junction region, so that the withstand voltage is extremely high. Therefore, this normally-off polarization super-junction GaN-based FET can obtain high withstand voltage while maintaining normally-off.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • nitrogen are deposited on a substrate 10 by, for example, a conventionally known MOCVD (metal organic chemical vapor deposition) method.
  • MOCVD metal organic chemical vapor deposition
  • the growth temperature of the undoped GaN layer 11, the AlxGa1 -xN layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 is, for example, about 1100C.
  • a sapphire substrate for example, a C-plane sapphire substrate
  • a Si substrate for example, a SiC substrate, or the like
  • a GaN layer, an AlN layer, an AlGaN layer, an AlGaN/GaN superlattice layer, or the like can be used as the buffer layer.
  • a GaN layer for example, it is grown at a low temperature of, for example, about 530.degree.
  • Cp 2 Mg Biscyclopentadienylmagnesium
  • H 2 hydrogen
  • nitrogen used as carrier gases during the growth of the p-type GaN layer 14.
  • N2 is used.
  • a mask such as a resist pattern having a shape corresponding to the element formation region on the p-type GaN layer 14, the p-type GaN layer 14, the undoped GaN layer 13, and the AlxGa1 -x are formed using this mask.
  • Element isolation is performed by sequentially etching the N layer 12 and the undoped GaN layer 11 to an intermediate depth in the thickness direction of the undoped GaN layer 11 and patterning them into a predetermined shape. After this, the mask is removed. This patterning can be performed by etching such as reactive ion etching (RIE).
  • RIE reactive ion etching
  • the GaN layer 13 and the Al x Ga 1-x N layer 12 are sequentially etched to a depth halfway in the thickness direction of the Al x Ga 1-x N layer 12 to pattern into a predetermined shape.
  • This patterning can be performed by etching such as the RIE method. After this, the mask is removed.
  • the p-type GaN layer 14 is etched and thinned halfway in the thickness direction using this mask. This etching can be performed by the RIE method or the like. After this, the mask is removed. This state is shown in FIG.
  • a p-type InyGa1 -yN layer 15 is grown on the entire surface by, for example, MOCVD or sputtering.
  • the p-type In y Ga 1-y N layer 15 is patterned to remove the source of the thick portion of the p-type GaN layer 14 and the island-shaped undoped GaN layer 13 . A portion close to the end on the electrode 17 side is left. This patterning can be performed by etching such as RIE or wet etching.
  • a gate electrode 16 is formed on the p-type In y Ga 1-y N layer 15 on the p-type GaN layer 14 .
  • a gate electrode 20 is formed on the p-type In z Ga 1-z N layer 19 on the Al x Ga 1-x N layer 12 .
  • the desired normally-off polarization superjunction GaN-based FET shown in FIG. 1 is manufactured.
  • Example 2 A normally-off type polarized superjunction GaN-based FET was fabricated and various evaluations were performed.
  • the growth temperature of the undoped GaN layer 11, the AlxGa1 -xN layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 was 1100C.
  • N 2 gas and H 2 gas were used as carrier gases during growth.
  • Cp 2 Mg was used as a p-type dopant when growing the p-type GaN layer 14 .
  • the surface of the p-type GaN layer 14 in the element isolation region is masked, and the upper portion of the undoped GaN layer 11 is etched by ICP (inductively coupled plasma)-RIE using a chlorine (Cl)-based gas for element isolation. Until etched.
  • ICP inductively coupled plasma
  • the p-type GaN layer 14, the undoped GaN layer 13 and the Al x Ga 1-x N layer 12 are formed by masking the surface of the p-type GaN layer 14 in the portions corresponding to the gate electrode contact region and the polarization superjunction region. Etching was performed sequentially until the remaining thickness of the x Ga 1-x N layer 12 was 15 nm.
  • the p-type GaN layer 14 in the polarization superjunction region was thinned by etching while masking the surface of the region other than the polarization superjunction region.
  • the growth temperature of the p-type InyGa1 -yN layer 15 was set to 950C. 100% N 2 was used as a carrier gas during growth.
  • the p-type In y Ga 1-y N layer 15 is subjected to ICP- Etching was performed by RIE to leave the p-type In y Ga 1-y N layer 15 only at the portions where the gate electrodes 16 and 20 were to be formed.
  • the surface of the region excluding the portions where the source electrode 17 and the drain electrode 18 are to be formed is masked with a SiO 2 film, and Ti/Al/Ni/Au is laminated on the source electrode forming portion and the drain electrode forming portion by a vacuum vapor deposition method.
  • an ohmic alloy treatment was performed in N 2 at 800° C. for 60 seconds.
  • the surface of the region excluding the portions where the gate electrode 16 and the gate electrode 20 are to be formed is masked with a SiO 2 film, and the p-type In y Ga 1-y N layer 15 and Al x Ga on the p-type GaN layer 14 are formed.
  • a Ti/Ni/Au laminated film is formed on the p-type In y Ga 1-y N layer 15 close to the end of the undoped GaN layer 13 on the source electrode 17 side on the 1-x N layer 12 by vacuum deposition.
  • rapid thermal annealing was performed in N 2 at 500° C. for 100 seconds to perform ohmic alloying.
  • the p-type In z Ga 1-z N layer 19 is formed by the p-type In y Ga 1-y N layer 15 .
  • a normally-off polarization superjunction GaN-based FET was fabricated as described above.
  • the PSJ length of this normally-off polarization superjunction GaN-based FET is 15 ⁇ m
  • the gate length of the gate electrode 16 is 5 ⁇ m
  • the gate width is 100 mm
  • the gate electrode 20 has a gate length of 5 ⁇ m
  • a polarization superjunction region of The distance between the drain electrode 18 side end and the drain electrode 18 is 3 ⁇ m
  • the thickness of the Al x Ga 1-x N layer 12 immediately below the gate electrode 20 is about 15 nm.
  • FIG. 13 shows the I d -V g characteristic shown in FIG . clearly indicated.
  • V th is about 0.7 [V].
  • V th is set to V g when the drain current I d is 1/100 of the maximum rated drain current is that the circuit system can be substantially protected when the gate signal is lost as a normally-off FET. Because there is
  • the vertical axis in FIG. 14 is a logarithmic axis.
  • I d ⁇ 30 [ ⁇ A] at V d ⁇ 1.5 [kV] I understand.
  • a Hall element was fabricated for measuring the concentration of 2DEG22 and the concentration of 2DHG21 in each region. Specifically, for the measurement of n 0 , a Hall element H 1 shown in FIG. 15A having the same layer structure as the portion of the concentration n 0 of the 2DEG 22 shown in FIG. 1 was produced. For the measurement of n 1 and p 1 , a Hall element H 2 shown in FIG.
  • FIG. 15B having the same layer structure as that of the portion of concentration n 1 of 2DEG 22 and concentration p 1 of 2DHG 21 shown in FIG. 1 was fabricated.
  • a Hall element H 3 shown in FIG. 15C having the same layer structure as the part with the concentration n 2 of 2DEG 22 and the concentration p 2 of 2DHG 21 shown in FIG. 1 was fabricated.
  • a Hall element H 4 shown in FIG. 15D having the same layer structure as the concentration n 3 portion of the 2DEG 22 shown in FIG. 1 was fabricated.
  • FIG. 16A shows the electrode arrangement of Hall elements H 1 and H 4
  • FIG. 16B shows the electrode arrangement of Hall elements H 2 and H 3 .
  • 15A and 15D are cross-sectional views along the dashed line in FIG. 16A.
  • 15B and 15C are cross-sectional views along the dashed line in FIG. 16B.
  • the size of these Hall elements H 1 -H 4 is approximately 4 ⁇ 4 mm 2 .
  • four electrodes E 1 to E 4 are provided on the Al x Ga 1-x N layer 12 to measure the concentration of the 2DEG 22 .
  • electrodes E 1 to E 4 are provided on the Al x Ga 1-x N layer 12 in order to measure the concentration of the 2DEG 22.
  • 2DHG 21 are provided on the p-type In y Ga 1-y N layer 15 with four electrodes E 11 to E 14 .
  • These Hall elements H 1 to H 4 were manufactured by the same process as used for manufacturing the normally-off polarization superjunction GaN-based FETs.
  • Table 1 shows the measurement results of the concentration n 0 , the electron mobility ⁇ e and the resistance R measured by the Hall element H 1 .
  • Table 2 shows the measurement results of the concentration n 1 , the electron mobility ⁇ e and the resistance R measured by the Hall element H 2 .
  • Table 3 shows the measurement results of the concentration p 1 , the hole mobility ⁇ p and the resistance R measured by the Hall element H 2 .
  • Table 4 shows the measurement results of the concentration n 2 , the electron mobility ⁇ e and the resistance R measured by the Hall element H 3 .
  • Table 5 shows the measurement results of the concentration p 2 , the hole mobility ⁇ p and the resistance R measured by the Hall element H 3 .
  • Table 6 shows the measurement results of the concentration n 3 , the electron mobility ⁇ e and the resistance R measured by the Hall element H 4 .
  • This normally-off polarization superjunction GaN-based FET is a two-gate transistor that operates in AND. Drain current flows when both gate electrode 16 and gate electrode 20 are on. No drain current flows when either the gate electrode 16 or the gate electrode 20 is off. However, since the gate electrode 16 is normally on, it can be operated as a normally off transistor by the gate electrode 20 . In this case, three types of connection methods are conceivable.
  • FIG. 17A shows the case where the gate electrode 16 and the gate electrode 20 are connected to operate as a three-terminal transistor.
  • the gate electrode 16 is indicated by G1
  • the gate electrode 20 by G0
  • the source electrode 17 by S the drain electrode 18 by D (the same applies hereinafter).
  • FIG. 17B shows the case where the gate electrode 16 is connected to the source electrode 17 to operate like an internal cascode.
  • FIG. 17C shows a modified cascode in which a positive bias voltage is applied to the gate electrode 16 with respect to the source electrode 17.
  • connection methods shown in FIGS. 17A, 17B, and 17C are logically the same, but may have different transient characteristics during switching. Therefore, the normally-off type polarized super-junction GaN-based FET can be used properly depending on what kind of circuit it is applied to.
  • FIG. 17D shows a connection between the source electrode 17 and two gate electrodes 16 and 20, which can be operated as a diode.
  • the gate electrode 16 on the p-type InyGa1 -yN layer 15 and the p-type InzGa1 -zN layer 19 on the AlxGa1 -xN layer 12 With respect to the concentration of the 2DEG 22 and the concentration of the 2DHG 21, n 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 and p 1 >p 2 are established, so that the low breakdown voltage normally-off type SiMOS No 2DEG 22 substantially exists directly under the gate electrode 20 during non-operation (during thermal equilibrium) without using a complicated circuit such as a cascode circuit using transistors or a modified cascode circuit. A junction GaN-based FET can be easily realized. Also, this normally-off type polarization super
  • the p-type GaN layer 14 does not exist in the polarization superjunction region. This is different from the normally-off polarization superjunction GaN-based FET according to the first embodiment. Others are the same as those of the normally-off polarization superjunction GaN-based FET according to the first embodiment.
  • a gate electrode 20 is provided on a p-type In z Ga 1-z N layer 19 with a gate insulating film 23 interposed therebetween. That is, the gate electrode 20, the gate insulating film 23 and the p-type InzGa1 -zN layer 19 form an MIS structure. Since the portion of the gate electrode 20 has the MIS structure as described above, a gate voltage of, for example, +3 V or higher is applied to the gate electrode 20 when the normally-off polarization superjunction GaN-based FET is turned on from the off state.
  • the gate insulating film 23 is made of an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or the like. Specifically, it is made of Al2O3 , SiO2 , AlN, SiNx , SiON, or the like. It is not limited.
  • the thickness of the gate insulating film 23 is selected as necessary, and is, for example, 3 nm or more and 100 nm or less, typically 3 nm or more and 30 nm or less. Except for the above, this normally-off polarization super-junction GaN-based FET is the same as the normally-off polarization super-junction GaN-based FET according to the first embodiment.
  • FIG. 20A shows an enlarged energy band diagram of the portion immediately below the gate electrode 20 of this normally-off polarization superjunction GaN-based FET.
  • SiN x is assumed as the gate insulating film 23 as an example.
  • ⁇ E c is the E c of the undoped GaN layer 11 and the E c of the Al x Ga 1-x N layer 12 at the hetero interface between the undoped GaN layer 11 and the Al x Ga 1-x N layer 12. difference (conduction band discontinuity value).
  • FIG. 20B shows an energy band diagram of a portion immediately below the gate electrode 20 of the normally-off polarization superjunction GaN-based FET according to the first embodiment in which the gate electrode 20 is provided directly on the z Ga 1-z N layer 19. .
  • a gate electrode 20 provided directly on the p-type In z Ga 1 -z N layer 19 is in Schottky contact with the p-type In z Ga 1-z N layer 19 .
  • FIGS. 20A and 20B reveals that both energy band diagrams are substantially identical.
  • FIG. 21A shows an energy band diagram when a positive gate voltage V g is applied to the gate electrode 20 in the normally-off polarization superjunction GaN-based FET shown in FIG. 20A
  • FIG. FIG. 21B shows an energy band diagram when the same positive gate voltage V g is applied to the gate electrode 20 in the Marie-off polarization superjunction GaN-based FET.
  • the difference between the normally-off polarization super-junction GaN-based FET shown in FIG. 20A and the normally-off polarization super-junction GaN-based FET shown in FIG. 23 band is tilted as shown in FIG.
  • a positive gate voltage V g is applied that is larger than that of the normally-off polarization superjunction GaN-based FET according to the first embodiment shown in FIG. 20B.
  • V g negative gate voltage
  • the gate insulating film 23 is formed on the entire surface.
  • the gate insulating film 23 is removed by etching except for the portion on the p-type In z Ga 1-z N layer 19 .
  • the gate electrode 16 is formed on the p-type InyGa1 -yN layer 15 on the p-type GaN layer 14, and the p-type InzGa1 - z on the AlxGa1 -xN layer 12 is formed.
  • a gate electrode 20 is formed on the gate insulating film 23 formed on the N layer 19 .
  • the intended normally-off polarization superjunction GaN-based FET shown in FIG. 19 is manufactured.
  • the growth temperature of the undoped GaN layer 11, the AlxGa1 -xN layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 is 1100C.
  • N 2 gas and H 2 gas are used as carrier gas during growth.
  • Cp 2 Mg is used as a p-type dopant for growing the p-type GaN layer 14 .
  • the surface of the p-type GaN layer 14 in the element isolation region is masked, and etching for element isolation is performed by ICP-RIE using a Cl-based gas until the upper portion of the undoped GaN layer 11 is etched.
  • the p-type GaN layer 14, the undoped GaN layer 13 and the Al x Ga 1-x N layer 12 are formed by masking the surface of the p-type GaN layer 14 in the portions corresponding to the gate electrode contact region and the polarization superjunction region.
  • the x Ga 1-x N layer 12 is sequentially etched until the remaining thickness is 15 nm.
  • the surface of the region other than the polarization superjunction region is masked and etched to thin the p-type GaN layer 14 in the polarization superjunction region.
  • the growth temperature of the p-type InyGa1 -yN layer 15 is set to 950.degree. 100% N 2 is used as a carrier gas during growth.
  • the p-type In y Ga 1-y N layer 15 is subjected to ICP- Etching is performed by RIE to leave the p-type In y Ga 1-y N layer 15 only in the portions where the gate electrodes 16 and 20 are to be formed.
  • the surface of the region excluding the portions where the source electrode 17 and the drain electrode 18 are to be formed is masked with a SiO 2 film, and Ti/Al/Ni/Au is laminated on the source electrode forming portion and the drain electrode forming portion by a vacuum vapor deposition method.
  • ohmic alloy treatment is performed in N 2 at 800° C. for 60 seconds.
  • this SiNx film is applied to the portion on the p-type InyGa1 -yN layer 15 remaining in the portion where the gate electrode 20 is to be formed. remove by etching.
  • the surface of the region excluding the portions where the gate electrode 16 and the gate electrode 20 are to be formed is masked with a SiO 2 film, and the p-type In y Ga 1-y N layer 15 and Al x Ga on the p-type GaN layer 14 are formed.
  • a normally-off polarization superjunction GaN-based FET is fabricated as described above.
  • the gate electrode 16 on the p-type InyGa1 -yN layer 15 and the p-type InzGa1 -zN layer 19 on the AlxGa1 -xN layer 12 and a gate electrode 20 provided through a gate insulating film 23, and regarding the concentrations of 2DEG 22 and 2DHG 21, n 0 ⁇ n 1 ⁇ n 2 ⁇ n 3 and p 1 >p 2 are established.
  • the 2DEG 22 is substantially formed in the portion immediately below the gate electrode 20 during non-operation (during thermal equilibrium) without using a complicated circuit such as a cascode circuit using low-voltage normally-off SiMOS transistors or a modified cascode circuit.
  • a normally-off polarization superjunction GaN-based FET which does not exist in nature, can be easily realized.
  • the MIS structure is formed by the gate electrode 20, the gate insulating film 23 and the p-type InzGa1 -zN layer 19.
  • this normally-off type polarization superjunction GaN-based FET can be used as a transistor having various characteristics by selecting the connection method of each terminal, or can be used as a diode.
  • the p-type GaN layer 14 does not exist in the polarization superjunction region. This is different from the normally-off polarization superjunction GaN-based FET according to the third embodiment. Others are the same as those of the normally-off polarization superjunction GaN-based FET according to the third embodiment.
  • the portion of the Al x Ga 1-x N layer 12 where the source electrode 17 and the drain electrode 18 are provided is is the same or almost the same as the thickness of the Al x Ga 1-x N layer 12 in the portion where the undoped GaN layer 13 is provided. It is different from the superjunction GaN system FET. Others are the same as those of the normally-off polarization superjunction GaN-based FET according to the third embodiment.
  • the method of manufacturing the normally-off polarization super-junction GaN-based FET according to the third embodiment is the same as the method of manufacturing the normally-off polarization super-junction GaN-based FET, except that it is left only on the portion of the Al x Ga 1-x N layer 12 forming 18 .
  • This patterning can be performed, for example, by etching such as the RIE method.
  • the thickness of this Al x Ga 1-x N layer varies from the thickness of the Al x Ga 1-x N layer 12 below the undoped GaN layer 13 to the Al x It is the same or almost the same as the value minus the thickness of the Ga 1-x N layer 12 . By doing so, the source electrode 17 and the drain electrode 18 can be formed on the Al x Ga 1-x N layer 12 having the same thickness as the portion under the undoped GaN layer 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

このノーマリーオフ型分極超接合GaN系FETは、順次積層されたアンドープGaN層11、Alx Ga1-x N層12、島状のアンドープGaN層13、p型GaN層14およびp型Iny Ga1-y N層15を有し、最上層にゲート電極16、Alx Ga1-x N層12上にソース電極17およびドレイン電極18、Alx Ga1-x N層12上に、アンドープGaN層13の一端部に近接したp型Inz Ga1-z N層19およびゲート電極20を有する。ゲート電極20はゲート絶縁膜を介してp型Inz Ga1-z N層19上に設けられてもよい。非動作時にアンドープGaN層11/Alx Ga1-x N層12ヘテロ界面に形成される2DEG22の、ゲート電極20の直下の部分の濃度をn0 、ゲート電極16の直下の部分の濃度をn1 、分極超接合領域の濃度をn2 、分極超接合領域とドレイン電極18との間の部分の濃度をn3 としたとき、n0 ≦n1 <n2 <n3 である。

Description

ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
 この発明は、ノーマリーオフ型分極超接合GaN(窒化ガリウム)系電界効果トランジスタおよびこのノーマリーオフ型分極超接合GaN系電界効果トランジスタを用いた電気機器に関する。
 従来、パワートランジスタとして分極超接合(Polarization Super Junction;PSJ)GaN系電界効果トランジスタ(FET)が知られている(特許文献1、2参照)。この分極超接合GaN系電界効果トランジスタは、アンドープGaN層、AlGa1-x N層およびアンドープGaN層が順次積層された構造を含む分極超接合領域を有する。この分極超接合GaN系電界効果トランジスタは、シリコン(Si)系のパワートランジスタでは実現が難しい、高耐圧、高出力、高効率、高速動作が可能である。
 なお、AlGaN/GaN HEMT(High Electron Mobility Transistor)においては、AlGaN層上にアンドープInGaN層あるいはp型InGaN層を設け、その上にゲート電極を設けた構造とすることでノーマリーオフ型とすることが知られている(非特許文献1、2参照)。また、ダブルゲート分極超接合GaN系電界効果トランジスタにより構成されたダイオードが知られている(特許文献3参照)。
特許第5828435号公報 特許第5669119号公報 特許第6679036号公報
Mizutani et al.,"AlGaN/GaN HEMTs with thin InGaN cap layerfor normally-off operation",IEEE Electron Device Letters, Vol.28, No.7,p.549,July(2007) 李旭、他、"p-InGaN cap層を用いたノーマリーオフ型AlGaN/GaN HEMTs",信学技報(IEICE technical report),2008
 特許文献1、2に記載の分極超接合GaN系電界効果トランジスタは、主として、非動作時(熱平衡状態)にゲート電極直下の部分も含めて、下層のアンドープGaN層とAlGa1-x N層との間のヘテロ界面の近傍の部分におけるアンドープGaN層に2次元電子ガス(2DEG)が存在しているため、ゲート電圧V=0Vやオープン状態のときに、ソース電極とドレイン電極との間に電圧を印加したとき、ソース電極とドレイン電極との間に電流が流れる、所謂ノーマリーオン型のトランジスタであった。
 一方、トランジスタには、制御信号(ゲート信号)喪失のときにトランジスタがオフ状態である、所謂フェールセーフ動作が求められることも多い。特許文献1、2に記載のノーマリーオン型の分極超接合GaN系電界効果トランジスタでは、低耐圧ノーマリーオフ型SiMOSトランジスタを用いてカスコード回路あるいは変形カスコード回路を組むことでノーマリーオフ型化することが可能とされているが、この場合、回路が複雑化する点で不利となる。
 そこで、この発明が解決しようとする課題は、複雑な回路を用いることなくノーマリーオフ型トランジスタを容易に実現することができるノーマリーオフ型分極超接合GaN系電界効果トランジスタおよびこのノーマリーオフ型分極超接合GaN系電界効果トランジスタを用いた高性能の電気機器を提供することである。
 上記課題を解決するために、この発明は、
 第1アンドープGaN層と、
 上記第1アンドープGaN層上のAlGa1-x N層(0<x<1)と、
 上記AlGa1-x N層上の、島状の形状を有する第2アンドープGaN層と、
 上記第2アンドープGaN層上のp型GaN層と、
 上記p型GaN層上のp型InGa1-y N層(0<y<1)と、
 上記AlGa1-x N層上のソース電極と、
 上記AlGa1-x N層上のドレイン電極と、
 上記p型InGa1-y N層と電気的に接続された第1ゲート電極と、
 上記AlGa1-x N層上の、上記第2アンドープGaN層の上記ソース電極側の端部に近接したp型InGa1-z N層(0<z<1)およびその上の第2ゲート電極と、
を有し、
 上記p型GaN層は上記第2アンドープGaN層の全面または上記ソース電極側の片側部分にのみ存在し、
 上記p型InGa1-y N層は、上記p型GaN層が上記第2アンドープGaN層の全面に存在する場合は上記p型GaN層の上記ソース電極側の片側部分にのみ存在し、上記p型GaN層が上記第2アンドープGaN層の上記ソース電極側の片側部分にのみ存在する場合は上記p型GaN層の全面または一部に存在し、
 非動作時において、上記第1アンドープGaN層と上記AlGa1-x N層との間のヘテロ界面の近傍の部分における上記第1のアンドープGaN層に形成される2次元電子ガスの、上記第2ゲート電極の直下の部分における濃度をn、上記第1ゲート電極の直下の部分における濃度をn、分極超接合領域における濃度をn、上記分極超接合領域と上記ドレイン電極との間の部分における濃度をnとしたとき、
   n≦n<n<n
であるノーマリーオフ型分極超接合GaN系電界効果トランジスタである。
 このノーマリーオフ型分極超接合GaN系電界効果トランジスタにおいて、分極超接合領域は、p型GaN層が第2アンドープGaN層の全面に存在する場合は、ゲート電極コンタクト領域の部分を除いた部分の第1アンドープGaN層、AlGa1-x N層、第2アンドープGaN層およびp型GaN層からなり、p型GaN層が第2アンドープGaN層のソース電極側の片側部分にのみ存在する場合は、p型GaN層が存在しない部分の第1アンドープGaN層、AlGa1-x N層および第2アンドープGaN層からなる。分極超接合領域が前者のように第1アンドープGaN層、AlGa1-x N層、第2アンドープGaN層およびp型GaN層からなる場合、第1アンドープGaN層の厚さ、AlGa1-x N層の厚さおよびAl組成x、第2アンドープGaN層の厚さ、p型GaN層の厚さおよび不純物濃度は、典型的には、特許文献2に準拠して選択される。また、分極超接合領域が後者のように第1アンドープGaN層、AlGa1-x N層および第2アンドープGaN層からなる場合、第1アンドープGaN層の厚さ、AlGa1-x N層の厚さおよびAl組成x、第2アンドープGaN層の厚さは、典型的には、特許文献1に準拠して選択される。
 このノーマリーオフ型分極超接合GaN系電界効果トランジスタにおいては、典型的には、非動作時において、第2アンドープGaN層とAlGa1-x N層との間のヘテロ界面の近傍の部分における第2のアンドープGaN層に形成される2次元正孔ガスの、第1ゲート電極の直下の部分における濃度をp、分極超接合領域における濃度をpとしたとき、
   p>p
である。
 AlGa1-x N層は、典型的にはアンドープであるが、ドナー(n型不純物)またはアクセプタ(p型不純物)がドープされたn型またはp型のAlGa1-x N層、例えばSiがドープされたn型AlGa1-x N層であってもよい。AlGa1-x N層は典型的にはアンドープである。必要に応じて、第1アンドープGaN層とAlGa1-x N層との間、および/または、第2アンドープGaN層とAlGa1-x N層との間に、典型的にはアンドープのAlGa1-u N層(0<u≦1、u>x)、例えばAlN層が設けられる。第2アンドープGaN層とAlGa1-x N層との間にAlGa1-u N層を設けることで、第2アンドープGaN層とAlGa1-x N層との間のヘテロ界面の近傍の部分における第2アンドープGaN層に形成される2次元正孔ガスのAlGa1-x N層側への染み込みを少なくすることができ、正孔の移動度を格段に増加させることができる。また、第1アンドープGaN層とAlGa1-x N層との間にAlGa1-u N層を設けることで、第1アンドープGaN層とAlGa1-x N層との間のヘテロ界面の近傍の部分における第1アンドープGaN層に形成される2次元電子ガスのAlGa1-x N層側への染み込みを少なくすることができ、電子の移動度を格段に増加させることができる。このAlGa1-u N層は一般的には十分に薄くてよく、例えば0.5~2nm程度で足りる。
 典型的には、第2ゲート電極のゲート電圧が0[V]、ドレイン電圧が1.0[V]のときのドレイン電流が、第2ゲート電極のゲート電圧が5[V]のときのドレイン電流(定格電流)の1/100以下である。
 このノーマリーオフ型分極超接合GaN系電界効果トランジスタにおいて、第2ゲート電極は、p型InGa1-z N層上にゲート絶縁膜を介して設けられることもある。この場合、第2ゲート電極、ゲート絶縁膜およびp型InGa1-z N層によりMIS(Metal Insulator Semiconductor)構造が形成される。
 このノーマリーオフ型分極超接合GaN系電界効果トランジスタの各端子は用途に応じて接続することができる。例えば、第1ゲート電極と第2ゲート電極とを互いに電気的に接続することにより、一体のゲート電極として動作させることができる。また、第1ゲート電極とソース電極とを互いに電気的に接続することにより、第1ゲート電極をフィールドプレートとして作用させることができる。また、第1ゲート電極をソース電極の電位に対して正の電位に固定してもよい。また、第1ゲート電極、第2ゲート電極およびソース電極を互いに電気的に接続することにより、ダイオードの動作をさせることができる。
 p型InGa1-y N層およびp型InGa1-z N層は、基本的にはどのような方法によって形成してもよいが、スパッタリング法によれば簡便に形成することができる。
 また、この発明は、
 少なくとも一つのトランジスタを有し、
 上記トランジスタは、
 第1アンドープGaN層と、
 上記第1アンドープGaN層上のAlGa1-x N層(0<x<1)と、
 上記AlGa1-x N層上の、島状の形状を有する第2アンドープGaN層と、
 上記第2アンドープGaN層上のp型GaN層と、
 上記p型GaN層上のp型InGa1-y N層(0<y<1)と、
 上記AlGa1-x N層上のソース電極と、
 上記AlGa1-x N層上のドレイン電極と、
 上記p型InGa1-y N層と電気的に接続された第1ゲート電極と、
 上記AlGa1-x N層上の、上記第2アンドープGaN層の上記ソース電極側の端部に近接したp型InGa1-z N層(0<z<1)およびその上の第2ゲート電極と、
を有し、
 上記p型GaN層は上記第2アンドープGaN層の全面または上記ソース電極側の片側部分にのみ存在し、
 上記p型InGa1-y N層は、上記p型GaN層が上記第2アンドープGaN層の全面に存在する場合は上記p型GaN層の上記ソース電極側の片側部分にのみ存在し、上記p型GaN層が上記第2アンドープGaN層の上記ソース電極側の片側部分にのみ存在する場合は上記p型GaN層の全面または一部に存在し、
 非動作時において、上記第1アンドープGaN層と上記AlGa1-x N層との間のヘテロ界面の近傍の部分における上記第1のアンドープGaN層に形成される2次元電子ガスの、上記第2ゲート電極の直下の部分における濃度をn、上記第1ゲート電極の直下の部分における濃度をn、分極超接合領域における濃度をn、上記分極超接合領域と上記ドレイン電極との間の部分における濃度をnとしたとき、
   n≦n<n<n
であるノーマリーオフ型分極超接合GaN系電界効果トランジスタである電気機器である。
 ここで、電気機器は、およそ電気を用いるもの全てを含み、用途、機能、大きさなどを問わないが、例えば、電子機器、移動体、動力装置、建設機械、工作機械などである。電子機器は、ロボット、コンピュータ、ゲーム機器、車載機器、家庭電気製品(エアコンディショナーなど)、工業製品、携帯電話、モバイル機器、IT機器(サーバーなど)、太陽光発電システムで使用するパワーコンディショナー、送電システムなどである。移動体は、鉄道車両、自動車(電動車両など)、二輪車、航空機、ロケット、宇宙船などである。
 この電気機器の発明においては、上記以外のことについては、その性質に反しない限り、上記のノーマリーオフ型分極超接合GaN系電界効果トランジスタの発明に関連して説明したことが成立する。
 この発明によれば、非動作時(熱平衡時)において第2ゲート電極の直下の部分に2次元電子ガスが実質的に存在しないことにより、複雑な回路を用いることなくノーマリーオフ型分極超接合GaN系電界効果トランジスタを容易に実現することができ、このノーマリーオフ型分極超接合GaN系電界効果トランジスタを用いて高性能の電子機器を実現することができる。
この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETを示す断面図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの各領域のエネルギーバンド図を示す略線図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの動作メカニズムを説明するための断面図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETのドレイン-ソース間に逆バイアスを印加し、ゲート-ソース間に0Vを印加した時の電界分布を示す略線図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETのドレイン-ソース間に逆バイアスを印加し、ゲート-ソース間に0Vを印加した時の電位分布を示す略線図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法を説明するための断面図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法を説明するための断面図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法を説明するための断面図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法を説明するための断面図である。 実施例によるノーマリーオフ型分極超接合GaN系FETの静特性を測定するために用いた測定回路を示す回路図である。 実施例によるノーマリーオフ型分極超接合GaN系FETのドレイン電流-ドレイン電圧特性を示す略線図である。 実施例によるノーマリーオフ型分極超接合GaN系FETのドレイン電流-ゲート電圧特性を示す略線図である。 図12に示すドレイン電流-ゲート電圧特性のドレイン電流を対数表示した略線図である。 実施例によるノーマリーオフ型分極超接合GaN系FETのオフ状態の耐圧特性を示す略線図である。 実施例によるノーマリーオフ型分極超接合GaN系FETの特定領域の2次元電子ガス濃度および2次元正孔ガス濃度を測定するために作製したホール素子を示す断面図である。 実施例によるノーマリーオフ型分極超接合GaN系FETの特定領域の2次元電子ガス濃度および2次元正孔ガス濃度を測定するために作製したホール素子を示す断面図である。 実施例によるノーマリーオフ型分極超接合GaN系FETの特定領域の2次元電子ガス濃度および2次元正孔ガス濃度を測定するために作製したホール素子を示す断面図である。 実施例によるノーマリーオフ型分極超接合GaN系FETの特定領域の2次元電子ガス濃度および2次元正孔ガス濃度を測定するために作製したホール素子を示す断面図である。 図15Aおよび図15Dに示すホール素子の電極配置を示す平面図である。 図15Bおよび図15Cに示すホール素子の電極配置を示す平面図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの端子の接続方法の第1の例を示す回路図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの端子の接続方法の第2の例を示す回路図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの端子の接続方法の第3の例を示す回路図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの端子の接続方法の第4の例を示す回路図である。 この発明の第2の実施の形態によるノーマリーオフ型分極超接合GaN系FETを示す断面図である。 この発明の第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETを示す断面図である。 この発明の第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETのゲート電極20の直下の領域のエネルギーバンド図を示す略線図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETのゲート電極20の直下の領域のエネルギーバンド図を示す略線図である。 この発明の第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETのゲート電圧印加時のゲート電極20の直下の領域のエネルギーバンド図を示す略線図である。 この発明の第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETのゲート電圧印加時のゲート電極20の直下の領域のエネルギーバンド図を示す略線図である。 この発明の第4の実施の形態によるノーマリーオフ型分極超接合GaN系FETを示す断面図である。 この発明の第5の実施の形態によるノーマリーオフ型分極超接合GaN系FETを示す断面図である。
 以下、発明を実施するための形態(以下、実施の形態という。)について説明する。
〈第1の実施の形態〉
[ノーマリーオフ型分極超接合GaN系FET]
 図1に示すように、第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETにおいては、基板10上に、バッファ層(図示せず)を介して、アンドープGaN層11、AlGa1-x N層12およびアンドープGaN層13が順次積層されている。基板10は、好適には、GaN系半導体がC面成長する基板、例えば、C面サファイア基板、Si基板、SiC基板などである。バッファ層は、例えば、多結晶あるいは非晶質のGaNやAlNやAlGaN、さらにはAlGaN/GaN超格子などからなる。AlGa1-x N層12は典型的にはアンドープであるが、ドナー(n型不純物)またはアクセプタ(p型不純物)がドープされたn型またはp型のAlGa1-x N層であってもよい。アンドープGaN層13は島状の形状を有し、その周囲にはAlGa1-x N層12が露出している。図1においては、AlGa1-x N層12の上部もアンドープGaN層13と同じ島状の形状を有し、その他の部分のAlGa1-x N層12の厚さが島状の部分のAlGa1-x N層12の厚さより小さい場合が示されているが、AlGa1-x N層12の上部が島状の形状を有しておらず、AlGa1-x N層12の厚さが均一であってもよい。アンドープGaN層13上には全面にp型GaN層14が積層されている。p型GaN層14のうちの後述のドレイン電極18側の片側部分の厚さは後述のソース電極17側の片側部分の厚さに比べて小さくなっている。p型GaN層14のこの厚さが小さい部分は分極超接合領域(PSJ領域)に対応する。厚さが大きい部分のp型GaN層14上にはp型InGa1-y N層15が積層されている。p型InGa1-y N層15は厚さが大きい部分のp型GaN層14の全面に積層されていてもよいが、ここでは、厚さが大きい部分のp型GaN層14のドレイン電極18側の一部を除いた部分にのみ形成されている場合が図示されている。p型GaN層14にはp型不純物としてマグネシウム(Mg)がドープされ、p型InGa1-y N層15には同じくMgがドープされている。p型InGa1-y N層15のIn組成yは0<y<1である。より詳細には、p型InGa1-y N層15のIn組成yおよび厚さtは必要に応じて選ばれるが、In組成yは典型的には0.20以下に選ばれる。In組成yおよび厚さtは典型的には概ねy×t≦0.20×5[nm]を満たすように選ばれる。例えば、y=0.10の場合には概ねt=10nmあるいはそれ以下に選ばれる。
 p型InGa1-y N層15上にゲート電極16が設けられている。ゲート電極16はp型InGa1-y N層15にオーミックコンタクトさせるため、仕事関数が大きい金属、例えば典型的にはニッケル(Ni)により形成される。ゲート電極16は、Ni膜上に他の金属膜を積層した積層膜からなるものであってもよい。また、AlGa1-x N層12上に、アンドープGaN層13、p型GaN層14およびp型InGa1-y N層15からなる島状の積層構造に関してp型InGa1-y N層15側の部分にソース電極17が、反対側の部分にドレイン電極18がそれぞれ設けられている。ソース電極17およびドレイン電極18は、後述のとおり、アンドープGaN層11とAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるアンドープGaN層11に形成される2DEGにオーミックコンタクトすることができるように、仕事関数が小さい金属、典型的には例えばチタン(Ti)により構成される。ソース電極17およびドレイン電極18は、Ti膜の上にアルミニウム(Al)膜、ニッケル(Ni)膜、金(Au)膜などを積層した積層膜からなるものであってもよい。AlGa1-x N層12上にはさらに、島状のAlGa1-x N層12の上部およびアンドープGaN層13のソース電極17側の端部に近接してp型InGa1-z N層19およびその上のゲート電極20が設けられている。p型InGa1-z N層19のIn組成zはp型InGa1-y N層15のIn組成yと同一でも異なっていてもよい。p型InGa1-z N層19のIn組成zは0<z<1である。より詳細には、p型InGa1-z N層19のIn組成zおよび厚さtは必要に応じて選ばれるが、In組成zは典型的には0.20以下に選ばれる。In組成zおよび厚さtは典型的には概ねz×t≦0.20×5[nm]を満たすように選ばれる。例えば、z=0.10の場合には概ねt=10nmあるいはそれ以下に選ばれる。
 このノーマリーオフ型分極超接合GaN系FETにおいては、p型GaN層14のうちの厚さが小さい部分、この部分の直下のアンドープGaN層13、AlGa1-x N層12よびアンドープGaN層11が分極超接合領域(真性分極超接合領域)を構成する。p型InGa1-y N層15、厚さが大きい部分のp型GaN層14およびこのp型GaN層14の直下のアンドープGaN層13、AlGa1-x N層12およびアンドープGaN層11はゲート電極コンタクト領域を構成する。
 このノーマリーオフ型分極超接合GaN系FETにおいては、ピエゾ分極および自発分極により、アンドープGaN層11とAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるAlGa1-x N層12に正の固定電荷が誘起され、また、AlGa1-x N層12とアンドープGaN層13との間のヘテロ界面の近傍の部分におけるAlGa1-x N層12に負の固定電荷が誘起されている。このため、このノーマリーオフ型分極超接合GaN系FETにおいては、非動作時(熱平衡状態)に、AlGa1-x N層12とアンドープGaN層13との間のヘテロ界面の近傍の部分におけるアンドープGaN層13に2DHG21が形成され、かつ、アンドープGaN層11とAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるアンドープGaN層11に2DEG22が形成されている。
 このノーマリーオフ型分極超接合GaN系FETにおいては、非動作時(熱平衡状態)において、ゲート電極20の直下の部分における2DEG22の濃度n、ゲート電極16の直下の部分における2DEG22の濃度n、分極超接合領域における2DEG22の濃度n、分極超接合領域とドレイン電極18との間の部分における2DEG22の濃度nに対し、n≦n<n<nが成立する。ゲート電極20とソース電極17との間の部分における2DEG22の濃度もnである。図1においては、n≦n<n<nの大小関係を電子を示す○の大きさおよび密度で模式的に示している。この場合、ゲート電極20の直下の部分における2DEG22の濃度nは、2DEG22がほぼ空乏化していると言える程度に十分に低くなっている。このため、2DEG22からなる電子チャネルは、ゲート電極20の直下の部分において途絶していると言える。典型的には、n<(1/1000)×nである。一方、ゲート電極16の直下の部分における2DHG21の濃度p、分極超接合領域における2DHG21の濃度pに対し、概ねp>pが成立している。
 このノーマリーオフ型分極超接合GaN系FETの各領域における基板10に垂直な方向のエネルギーバンド図を図2に示す。図2の左から順に、ゲート電極20の直下の部分のエネルギーバンド図、ゲート電極16の直下の部分のエネルギーバンド図、分極超接合領域の部分のエネルギーバンド図および分極超接合領域とドレイン電極18との間の部分のエネルギーバンド図が示されている。これらのエネルギーバンド図は各部の2DEG22および2DHG21の相対的な濃度を示すための定性的なものである。図2において、縦軸は電子エネルギー、Eは伝導帯の下端のエネルギー、Eは価電子帯の上端のエネルギー、Eはフェルミエネルギーを示す。図2に示すように、分極超接合領域とドレイン電極18との間の部分においては、アンドープGaN層11とAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるアンドープGaN層11に濃度nの2DEG22が形成されている。また、分極超接合領域においては、アンドープGaN層13およびp型GaN層14による分極効果により伝導帯が引き上げられ、結果としてアンドープGaN層11とAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるアンドープGaN層11に形成される2DEG22の濃度nは濃度nより低くなる。分極超接合領域においては、同じ効果により価電子帯が引き上げられ、結果としてアンドープGaN層13とAlGa1-x N層12との間のヘテロ界面の近傍の部分における価電子帯に濃度pの2DHG21が形成される。ゲート電極16の部分においては、p型InGa1-y N層15により伝導帯がさらに引き上げられ、結果としてアンドープGaN層11とAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるアンドープGaN層11に形成される2DEG22の濃度nは濃度nより低くなる。ゲート電極16の部分においては、同じ効果により価電子帯がさらに引き上げられ、結果としてアンドープGaN層13とAlGa1-x N層12との間のヘテロ界面の近傍の部分における価電子帯に濃度pより大きい濃度pの2DHG21が形成される。ゲート電極20の部分においては、p型InGa1-z N層19による分極効果により、2DEG22の濃度nは、この部分で2DEG22からなる電子チャネルが途絶されるように、少なくともn以下の極めて小さい濃度、実質的に0になっている。
[ノーマリーオフ型分極超接合GaN系FETの動作メカニズム]
 図3に示すように、ソース電極17、ゲート電極16およびゲート電極20を互いに結線し、これらのソース電極17、ゲート電極16およびゲート電極20に対し、ドレイン電極18に正電圧Vdgを印加する。この場合、ゲート電極16とドレイン電極18との間およびゲート電極20とドレイン電極18との間は逆バイアスとなって分極超接合領域の2DHG21の正孔はゲート電極16から引き抜かれ、分極超接合領域の2DEG22の電子はドレイン電極18から引き抜かれる。ゲート電極20の直下の2DEG22の濃度nは実質的に0であるので、ソース電極17から2DEG22を介してドレイン電極18に流れる電流はない。すなわち、ノーマリーオフとなっている。
 この状態のノーマリーオフ型分極超接合GaN系FETの電界分布および電位分布をそれぞれ図4および図5に示す。図4に示すように、分極超接合領域においては、電界はほぼ一様である。このため、図5に示すように、分極超接合領域においては、電位はなだらかにドレイン電極18側に向かって下降する。図4に示すように、分極超接合領域のドレイン電極18側の端部では、濃度nの2DEG22と濃度nの2DEG22との接続点でピーク電界が発生するが、そのピーク電界が受け持つ電圧に比較して分極超接合領域本体が受け持つ電圧の方が遙かに大きい。すなわち、このノーマリーオフ型分極超接合GaN系FETが破壊に至る電圧は分極超接合領域本体が受け持つため、耐圧が非常に高くなる。従って、このノーマリーオフ型分極超接合GaN系FETは、ノーマリーオフを維持しつつ、高耐圧性を得ることができる。
[ノーマリーオフ型分極超接合GaN系FETの製造方法]
 まず、図6に示すように、基板10上に、例えば、従来公知のMOCVD(有機金属化学気相成長)法により、Ga原料としてTMG(トリメチルガリウム)、Al原料としてTMA(トリメチルアルミニウム)、窒素原料としてNH(アンモニア)、キャリアガスとしてNガスおよびHガスを用いて、バッファ層(図示せず)、アンドープGaN層11、AlGa1-x N層12、アンドープGaN層13およびp型GaN層14を順次エピタキシャル成長させる。アンドープGaN層11、AlGa1-x N層12、アンドープGaN層13およびp型GaN層14の成長温度は例えば1100℃程度である。基板10としては、サファイア基板(例えば、C面サファイア基板)、Si基板、SiC基板などを用いることができる。バッファ層は、GaN層、AlN層、AlGaN層、AlGaN/GaN超格子層などを用いることができる。バッファ層として例えばGaN層を用いる場合には例えば530℃程度の低温で成長させる。p型GaN層14の成長の際のp型ドーパントとしてはビスシクロペンタジエニルマグネシウム(CpMg)を用い、p型GaN層14の成長の際のキャリアガスとしては水素(H)および窒素(N)を用いる。
 次に、p型GaN層14上に素子形成領域に対応する形状のレジストパターンなどのマスクを形成した後、このマスクを用いてp型GaN層14、アンドープGaN層13、AlGa1-x N層12およびアンドープGaN層11をアンドープGaN層11の厚さ方向の途中の深さまで順にエッチングして所定形状にパターニングすることにより素子分離を行う。この後、マスクを除去する。このパターニングは反応性イオンエッチング(RIE)法などによるエッチングにより行うことができる。
 次に、p型GaN層14上に、図1に示すp型GaN層14の平面形状に対応する形状のレジストパターンなどのマスクを形成した後、このマスクを用いてp型GaN層14、アンドープGaN層13およびAlGa1-x N層12をAlGa1-x N層12の厚さ方向の途中の深さまで順にエッチングして所定形状にパターニングする。このパターニングはRIE法などによるエッチングにより行うことができる。この後、マスクを除去する。
 次に、分極超接合領域以外の領域の表面にレジストパターンなどのマスクを形成した後、このマスクを用いてp型GaN層14を厚さ方向の途中の深さまでエッチングして薄化する。このエッチングはRIE法などにより行うことができる。この後、マスクを除去する。この状態を図7に示す。
 次に、図8に示すように、例えば、MOCVD法やスパッタリング法などにより全面にp型InGa1-y N層15を成長させる。
 次に、図9に示すように、例えば、p型InGa1-y N層15をパターニングすることによりp型GaN層14の厚い部分の上の部分および島状のアンドープGaN層13のソース電極17側の端部に近接した部分を残す。このパターニングは、例えばRIE法やウェットエッチング法などによるエッチングにより行うことができる。島状のアンドープGaN層13のソース電極17側の端部に近接した部分に残されたp型InGa1-y N層15によりp型InGa1-z N層19が形成される。すなわち、この場合、p型InGa1-z N層19はp型InGa1-y N層15により形成され、z=yである。
 この後、AlGa1-x N層12上にソース電極17およびドレイン電極18を形成した後、p型GaN層14上のp型InGa1-y N層15上にゲート電極16を形成するとともに、AlGa1-x N層12上のp型InGa1-z N層19上にゲート電極20を形成する。
 以上により、図1に示す目的とするノーマリーオフ型分極超接合GaN系FETが製造される。
(実施例)
 ノーマリーオフ型分極超接合GaN系FETを作製し、様々な評価を行った。
 すなわち、まず、基板10としてC面サファイア基板を用い、その上に、MOCVD法により、厚さ30nmのGaN低温バッファ層、厚さ3000nmのアンドープGaN層11、厚さ30nmでx=0.21のAlGa1-x N層12、厚さ50nmのアンドープGaN層13および厚さ40nmでMg濃度[Mg]=5×1019cm-3のp型GaN層14を順次エピタキシャル成長させた。アンドープGaN層11、AlGa1-x N層12、アンドープGaN層13およびp型GaN層14の成長温度は1100℃とした。成長時のキャリアガスとしてはNガスおよびHガスを用いた。p型GaN層14の成長の際のp型ドーパントとしてはCpMgを用いた。
 次に、素子分離領域におけるp型GaN層14の表面をマスクし、素子分離を行うためのエッチングを、塩素(Cl)系ガスによるICP(誘導結合プラズマ)-RIEによりアンドープGaN層11の上部がエッチングされるまで行った。
 次に、ゲート電極コンタクト領域および分極超接合領域に対応する部分のp型GaN層14の表面をマスクしてp型GaN層14、アンドープGaN層13およびAlGa1-x N層12をAlGa1-x N層12の残りの厚さが15nmとなるまで順次エッチングした。
 次に、分極超接合領域以外の領域の表面をマスクしてエッチングすることにより、分極超接合領域のp型GaN層14を薄化した。
 次に、MOCVD法により、厚さ5nmでx=0.18、[Mg]=1×1020cm-3のp型InGa1-y N層15をエピタキシャル成長させた。p型InGa1-y N層15の成長温度は950℃とした。成長時のキャリアガスとしては100%Nを用いた。
 次に、ゲート電極16およびゲート電極20を形成する部分のp型InGa1-y N層15の表面をマスクしてp型InGa1-y N層15をCl系ガスによるICP-RIEによりエッチングし、p型InGa1-y N層15をゲート電極16およびゲート電極20を形成する部分にのみ残した。
 次に、ソース電極17およびドレイン電極18を形成する部位を除いた領域の表面をSiO膜でマスクし、ソース電極形成部およびドレイン電極形成部に真空蒸着法によりTi/Al/Ni/Au積層膜を形成してソース電極17およびドレイン電極18を形成した後、N中、800℃、60秒間のオーミックアロイ処理を行った。
 次に、ゲート電極16およびゲート電極20を形成する部位を除いた領域の表面をSiO膜でマスクし、p型GaN層14上のp型InGa1-y N層15およびAlGa1-x N層12上の、アンドープGaN層13のソース電極17側の端部に近接したp型InGa1-y N層15上に真空蒸着法によりTi/Ni/Au積層膜を形成してそれぞれゲート電極16およびゲート電極20を形成した後、N中、500℃、100秒間の急速熱処理(Rapid Thermal Annealing;RTA)を行い、オーミックアロイ処理を行った。この場合、p型InGa1-z N層19はp型InGa1-y N層15により形成されている。
 以上のようにしてノーマリーオフ型分極超接合GaN系FETを作製した。このノーマリーオフ型分極超接合GaN系FETのPSJ長は15μm、ゲート電極16のゲート長は5μm、ゲート幅は100mm、ゲート電極20のゲート長は5μm、ゲート幅は100mm、分極超接合領域のドレイン電極18側の端部とドレイン電極18との間の距離は3μm、ゲート電極20の直下のAlGa1-x N層12の厚さは約15nmである。
 こうして作製したノーマリーオフ型分極超接合GaN系FETの電気特性を調べるために、図10に示すように結線して測定回路を形成し、ゲート電極16とゲート電極20とを共通にした3端子素子として静特性を測定した。
(ドレイン電流(I)-ドレイン電圧(V)特性)
 ゲート電圧VをパラメータとしたI-V特性の測定結果を図11に示す。図11に示すように、V=0ではIはほぼ0[A]であった。
(ドレイン電流(I)-ゲート電圧(V)特性)
 V=1.0[V]と設定したときのI-V特性の測定結果を図12に示す。図12に示すように、IはV=0[V]過ぎから立ち上がっている。図13は図12に示すI-V特性に対し、Iを対数表示(Log)にして分解能を高めたものであり、V=0[V]過ぎからのIの立ち上がりがより明確に示されている。閾値電圧Vthの定義をドレイン電流IがFETの定格ドレイン電流(本FETの場合、V=1[V]、V=5[V]で、I~2.5[A])の1/100程度(2.5×10-2[A])のときのVと定義すると、Vthは約0.7[V]である。すなわち、ノーマリーオフが実現されていることが分かる。なお、Vthを、ドレイン電流Iが最大定格ドレイン電流の1/100であるときのVとしたのは、ノーマリーオフ型FETとしてゲート信号喪失時に回路系を実質的に保護できる範囲であるからである。
(オフ耐圧特性)
 V=-8[V]に設定してノーマリーオフ型分極超接合GaN系FETをオフ状態としたとき、Vに対してIを測定した結果を図14に示す。図14の縦軸は対数軸である。図14に示すように、このノーマリーオフ型分極超接合GaN系FETでは、V~1.5[kV]においてI~30[μA]であり、非常に高い耐圧が得られていることが分かる。
 このノーマリーオフ型分極超接合GaN系FETにおける各領域の2DEG22の濃度および2DHG21の濃度を測定し、n≦n<n<nおよびp>pが成立することを実証した結果について説明する。各領域の2DEG22の濃度および2DHG21の濃度を測定するためのホール(Hall)素子を作製した。具体的には、nの測定のために、図1に示す2DEG22の濃度nの部分と同じ層構造を有する図15Aに示すホール素子Hを作製した。nおよびpの測定のために、図1に示す2DEG22の濃度nおよび2DHG21の濃度pの部分と同じ層構造を有する図15Bに示すホール素子Hを作製した。nおよびpの測定のために、図1に示す2DEG22の濃度nおよび2DHG21の濃度pの部分と同じ層構造を有する図15Cに示すホール素子Hを作製した。nの測定のために、図1に示す2DEG22の濃度nの部分と同じ層構造を有する図15Dに示すホール素子Hを作製した。図16Aはホール素子H、Hの電極配置を示し、図16Bはホール素子H、Hの電極配置を示す。図15Aおよび図15Dは図16Aの一点鎖線に沿っての断面図である。図15Bおよび図15Cは図16Bの一点鎖線に沿っての断面図である。これらのホール素子H~Hの大きさは約4×4mmである。図16Aに示すように、ホール素子H、Hにおいては、2DEG22の濃度を測定するためにAlGa1-x N層12上に四つの電極E~Eが設けられている。図16Bに示すように、ホール素子H、Hにおいては、2DEG22の濃度を測定するためにAlGa1-x N層12上に電極E~Eが設けられていることに加え、2DHG21の濃度を測定するためにp型InGa1-y N層15上に四つの電極E11~E14が設けられている。これらのホール素子H~Hはノーマリーオフ型分極超接合GaN系FETの作製に用いたものと同じプロセスで作製した。
 ホール素子Hによる濃度n、電子の移動度μおよび抵抗Rの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ホール素子Hによる濃度n、電子の移動度μおよび抵抗Rの測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ホール素子Hによる濃度p、正孔の移動度μおよび抵抗Rの測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ホール素子Hによる濃度n、電子の移動度μおよび抵抗Rの測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 ホール素子Hによる濃度p、正孔の移動度μおよび抵抗Rの測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 ホール素子Hによる濃度n、電子の移動度μおよび抵抗Rの測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表1~6より、n≦n<n<nおよびp>pが確かに成立していることが分かる。
[ノーマリーオフ型分極超接合GaN系FETの使用形態]
 このノーマリーオフ型分極超接合GaN系FETは、ANDで動作する2ゲートトランジスタである。ゲート電極16およびゲート電極20の両者がオンの場合、ドレイン電流が流れる。ゲート電極16およびゲート電極20のいずれかがオフの場合はドレイン電流は流れない。ところが、ゲート電極16がノーマリーオンであるので、ゲート電極20によってノーマリーオフ型トランジスタとして動作させることができる。この場合、3種類の接続方法が考えられる。
 図17Aはゲート電極16とゲート電極20とを接続して3端子トランジスタとして動作させる場合である。ただし、図17Aにおいては、ゲート電極16をG1、ゲート電極20をG0、ソース電極17をS、ドレイン電極18をDと示してある(以下同様)。
 図17Bはゲート電極16をソース電極17と接続して、内部カスコード的な動作をさせる場合である。
 図17Cは変形カスコードとして、ゲート電極16にソース電極17に対して正のバイアス電圧を印加するものである。
 図17A、図17Bおよび図17Cに示す接続方法は、ロジック的にはいずれも同じであるが、スイッチング時の過渡的な特性は異なっている可能性がある。従って、このノーマリーオフ型分極超接合GaN系FETをどのような回路に応用するかによって使い分けることができる。
 図17Dはソース電極17と二つのゲート電極16およびゲート電極20とを接続したもので、ダイオードとして動作させることができる。
 以上のように、この第1の実施の形態によれば、アンドープGaN層11、AlGa1-x N層12、アンドープGaN層13、p型GaN層14およびp型InGa1-y N層15の積層構造に加えて、p型InGa1-y N層15上のゲート電極16とAlGa1-x N層12上のp型InGa1-z N層19上のゲート電極20とを有し、2DEG22の濃度および2DHG21の濃度に関し、n≦n<n<nおよびp>pが成立していることにより、低耐圧ノーマリーオフ型SiMOSトランジスタを用いたカスコード回路あるいは変形カスコード回路のような複雑な回路を用いることなく、非動作時(熱平衡時)にゲート電極20の直下の部分に2DEG22が実質的に存在しないノーマリーオフ型分極超接合GaN系FETを容易に実現することができる。また、このノーマリーオフ型分極超接合GaN系FETは各端子の接続方法の選択により様々な特性を有するトランジスタとして用いることができ、あるいはダイオードとして用いることができる。
〈第2の実施の形態〉
[ノーマリーオフ型分極超接合GaN系FET]
 図18に示すように、第2の実施の形態によるノーマリーオフ型分極超接合GaN系FETにおいては、特許文献1と同様に、分極超接合領域にp型GaN層14が存在しないことが第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETと異なる。その他のことは第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETと同様である。
[ノーマリーオフ型分極超接合GaN系FETの製造方法]
 このノーマリーオフ型分極超接合GaN系FETの製造方法は、分極超接合領域におけるアンドープGaN層13上に最終的にp型GaN層14を形成しないことを除いて、第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法と同様である。
 この第2の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。
〈第3の実施の形態〉
[ノーマリーオフ型分極超接合GaN系FET]
 図19に示すように、このノーマリーオフ型分極超接合GaN系FETにおいては、p型InGa1-z N層19上にゲート絶縁膜23を介してゲート電極20が設けられている。すなわち、ゲート電極20、ゲート絶縁膜23およびp型InGa1-z N層19によりMIS構造が形成されている。このようにゲート電極20の部分がMIS構造となっているため、このノーマリーオフ型分極超接合GaN系FETをオフの状態からオンにするときにゲート電極20に例えば+3V以上のゲート電圧を印加した場合に、たとえ2DEG22の一部の電子がAlGa1-x N層12を通ってp型InGa1-z N層19に達したとしてもゲート絶縁膜23により阻まれてゲート電極20に到達せず、その結果、チャネルに流れるゲート電流の大幅な低減を図ることができる。ゲート絶縁膜23は、無機酸化物、無機窒化物、無機酸窒化物などからなり、具体的には、例えば、Al、SiO、AlN、SiN、SiONなどからなるが、これらに限定されるものではない。ゲート絶縁膜23の厚さは必要に応じて選ばれるが、例えば3nm以上100nm以下、典型的には3nm以上30nm以下である。このノーマリーオフ型分極超接合GaN系FETの上記以外のことは、第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETと同様である。
 図20Aに、このノーマリーオフ型分極超接合GaN系FETのゲート電極20の直下の部分のエネルギーバンド図を拡大して示す。図20Aでは、一例としてゲート絶縁膜23としてSiNを想定している。図20A中、ΔEは、アンドープGaN層11とAlGa1-x N層12との間のヘテロ界面におけるアンドープGaN層11のEとAlGa1-x N層12のEとの差(伝導帯不連続値)を示す。このノーマリーオフ型分極超接合GaN系FETとの比較のために、ゲート電極20をゲート絶縁膜23を介してp型InGa1-z N層19上に設けるのではなく、p型InGa1-z N層19上に直接ゲート電極20を設ける第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETのゲート電極20の直下の部分のエネルギーバンド図を図20Bに示す。p型InGa1-z N層19上に直接設けたゲート電極20はp型InGa1-z N層19とショットキー接触している。図20Aと図20Bとを比較すると、両エネルギーバンド図は実質的に同一であることが分かる。図20Aに示すノーマリーオフ型分極超接合GaN系FETにおいてゲート電極20に正のゲート電圧Vを印加したときのエネルギーバンド図を図21Aに、図20Bに示す第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETにおいてゲート電極20に同じく正のゲート電圧Vを印加したときのエネルギーバンド図を図21Bに示す。図20Aに示すノーマリーオフ型分極超接合GaN系FETと図20Bに示すノーマリーオフ型分極超接合GaN系FETとの相違点は、前者においては正のゲート電圧Vの印加時にゲート絶縁膜23のバンドを図21Aに示すように傾斜させるため、その分、図20Bに示す第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETに比べて大きな正のゲート電圧Vを印加し、負のゲート電圧Vの印加時も同様により大きな負のゲート電圧Vを印加することだけである。
[ノーマリーオフ型分極超接合GaN系FETの動作メカニズム]
 このノーマリーオフ型分極超接合GaN系FETの動作メカニズムは、第1の実施の形態によるノーマリーオフ型分極超接合GaN系FETの動作メカニズムと基本的に同様である。
[ノーマリーオフ型分極超接合GaN系FETの製造方法]
 まず、第1の実施の形態と同様にして、AlGa1-x N層12上にソース電極17およびドレイン電極18を形成する工程まで実施した後、全面にゲート絶縁膜23を形成する。次に、p型InGa1-z N層19上の部分を除いてこのゲート絶縁膜23をエッチング除去する。次に、p型GaN層14上のp型InGa1-y N層15上にゲート電極16を形成するとともに、AlGa1-x N層12上のp型InGa1-z N層19上に形成されたゲート絶縁膜23上にゲート電極20を形成する。
 以上により、図19に示す目的とするノーマリーオフ型分極超接合GaN系FETが製造される。
(実施例)
 まず、基板10としてC面サファイア基板を用い、その上に、MOCVD法により、厚さ30nmのGaN低温バッファ層、厚さ3000nmのアンドープGaN層11、厚さ30nmでx=0.21のAlGa1-x N層12、厚さ50nmのアンドープGaN層13および厚さ40nmでMg濃度[Mg]=5×1019cm-3のp型GaN層14を順次エピタキシャル成長させる。アンドープGaN層11、AlGa1-x N層12、アンドープGaN層13およびp型GaN層14の成長温度は1100℃とする。成長時のキャリアガスとしてはNガスおよびHガスを用いる。p型GaN層14の成長の際のp型ドーパントとしてはCpMgを用いる。
 次に、素子分離領域におけるp型GaN層14の表面をマスクし、素子分離を行うためのエッチングを、Cl系ガスによるICP-RIEによりアンドープGaN層11の上部がエッチングされるまで行う。
 次に、ゲート電極コンタクト領域および分極超接合領域に対応する部分のp型GaN層14の表面をマスクしてp型GaN層14、アンドープGaN層13およびAlGa1-x N層12をAlGa1-x N層12の残りの厚さが15nmとなるまで順次エッチングする。
 次に、分極超接合領域以外の領域の表面をマスクしてエッチングすることにより、分極超接合領域のp型GaN層14を薄化する。
 次に、MOCVD法により、厚さ5nmでx=0.18、[Mg]=1×1020cm-3のp型InGa1-y N層15をエピタキシャル成長させる。p型InGa1-y N層15の成長温度は950℃とする。成長時のキャリアガスとしては100%Nを用いる。
 次に、ゲート電極16およびゲート電極20を形成する部分のp型InGa1-y N層15の表面をマスクしてp型InGa1-y N層15をCl系ガスによるICP-RIEによりエッチングし、p型InGa1-y N層15をゲート電極16およびゲート電極20を形成する部分にのみ残す。
 次に、ソース電極17およびドレイン電極18を形成する部位を除いた領域の表面をSiO膜でマスクし、ソース電極形成部およびドレイン電極形成部に真空蒸着法によりTi/Al/Ni/Au積層膜を形成してソース電極17およびドレイン電極18を形成した後、N中、800℃、60秒間のオーミックアロイ処理を行う。
 次に、全面にゲート絶縁膜23としてSiN膜を形成した後、このSiN膜を、ゲート電極20を形成する部分に残されたp型InGa1-y N層15上の部分を除いてエッチング除去する。次に、ゲート電極16およびゲート電極20を形成する部位を除いた領域の表面をSiO膜でマスクし、p型GaN層14上のp型InGa1-y N層15およびAlGa1-x N層12上の、アンドープGaN層13のソース電極17側の端部に近接したp型InGa1-y N層15上のSiN膜上に真空蒸着法によりTi/Ni/Au積層膜を形成してそれぞれゲート電極16およびゲート電極20を形成した後、N中、500℃、100秒間のRTAを行い、ゲート電極16のオーミックアロイ処理を行う。この場合、p型InGa1-z N層19はp型InGa1-y N層15により形成される。
 以上のようにしてノーマリーオフ型分極超接合GaN系FETを作製する。
 以上のように、この第3の実施の形態によれば、アンドープGaN層11、AlGa1-x N層12、アンドープGaN層13、p型GaN層14およびp型InGa1-y N層15の積層構造に加えて、p型InGa1-y N層15上のゲート電極16とAlGa1-x N層12上のp型InGa1-z N層19上にゲート絶縁膜23を介して設けられたゲート電極20とを有し、2DEG22の濃度および2DHG21の濃度に関し、n≦n<n<nおよびp>pが成立していることにより、低耐圧ノーマリーオフ型SiMOSトランジスタを用いたカスコード回路あるいは変形カスコード回路のような複雑な回路を用いることなく、非動作時(熱平衡時)にゲート電極20の直下の部分に2DEG22が実質的に存在しないノーマリーオフ型分極超接合GaN系FETを容易に実現することができる。また、このノーマリーオフ型分極超接合GaN系FETにおいては、ゲート電極20、ゲート絶縁膜23およびp型InGa1-z N層19によりMIS構造が形成されているため、このノーマリーオフ型分極超接合GaN系FETをオフの状態からオンにするときにゲート電極20に例えば+3以上のゲート電圧を印加しても、チャネルに流れるゲート電流の大幅な低減を図ることができ、ひいては省エネルギー化を図ることができる。さらにまた、このノーマリーオフ型分極超接合GaN系FETは各端子の接続方法の選択により様々な特性を有するトランジスタとして用いることができ、あるいはダイオードとして用いることができる。
〈第4の実施の形態〉
[ノーマリーオフ型分極超接合GaN系FET]
 図22に示すように、第4の実施の形態によるノーマリーオフ型分極超接合GaN系FETにおいては、特許文献1と同様に、分極超接合領域にp型GaN層14が存在しないことが第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETと異なる。その他のことは第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETと同様である。
[ノーマリーオフ型分極超接合GaN系FETの製造方法]
 このノーマリーオフ型分極超接合GaN系FETの製造方法は、分極超接合領域におけるアンドープGaN層13上に最終的にp型GaN層14を形成しないことを除いて、第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法と同様である。
 この第4の実施の形態によれば、第3の実施の形態と同様な利点を得ることができる。
〈第5の実施の形態〉
[ノーマリーオフ型分極超接合GaN系FET]
 図23に示すように、第5の実施の形態によるノーマリーオフ型分極超接合GaN系FETにおいては、ソース電極17およびドレイン電極18が設けられている部分のAlGa1-x N層12の厚さが、アンドープGaN層13が設けられている部分のAlGa1-x N層12の厚さと同一またはほぼ同一となっていることが第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETと異なる。その他のことは第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETと同様である。
[ノーマリーオフ型分極超接合GaN系FETの製造方法]
 このノーマリーオフ型分極超接合GaN系FETの製造方法は、p型GaN層14を厚さ方向の途中の深さまでエッチングして薄化した後、p型InGa1-y N層15をエピタキシャル成長させる前に、MOCVD法などにより所定の厚さのAlGa1-x N層を全面にエピタキシャル成長させた後、このAlGa1-x N層をパターニングすることによりソース電極17およびドレイン電極18を形成する部分のAlGa1-x N層12上にのみ残すことを除いて、第3の実施の形態によるノーマリーオフ型分極超接合GaN系FETの製造方法と同様である。このパターニングは、例えば、RIE法などによるエッチングにより行うことができる。このAlGa1-x N層の厚さは、アンドープGaN層13の下の部分のAlGa1-x N層12の厚さからソース電極17およびドレイン電極18を形成する部分のAlGa1-x N層12の厚さを引いた値と同一またはほぼ同一とする。こうすることで、ソース電極17およびドレイン電極18をアンドープGaN層13の下の部分と同じ厚さを有するAlGa1-x N層12上に形成することができる。
 この第5の実施の形態によれば、第3の実施の形態と同様な利点を得ることができる。
 以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施の形態および実施例において挙げた数値、構造、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料などを用いてもよい。
 10 基板
 11 アンドープGaN層
 12 AlGa1-x N層
 13 アンドープGaN層
 14 p型GaN層
 15 p型InGa1-y N層
 16 ゲート電極
 17 ソース電極
 18 ドレイン電極
 19 p型InGa1-z N層
 20 ゲート電極
 21 2DHG
 22 2DEG
 23 ゲート絶縁膜

Claims (10)

  1.  第1アンドープGaN層と、
     上記第1アンドープGaN層上のAlGa1-x N層(0<x<1)と、
     上記AlGa1-x N層上の、島状の形状を有する第2アンドープGaN層と、
     上記第2アンドープGaN層上のp型GaN層と、
     上記p型GaN層上のp型InGa1-y N層(0<y<1)と、
     上記AlGa1-x N層上のソース電極と、
     上記AlGa1-x N層上のドレイン電極と、
     上記p型InGa1-y N層と電気的に接続された第1ゲート電極と、
     上記AlGa1-x N層上の、上記第2アンドープGaN層の上記ソース電極側の端部に近接したp型InGa1-z N層(0<z<1)およびその上の第2ゲート電極と、
    を有し、
     上記p型GaN層は上記第2アンドープGaN層の全面または上記ソース電極側の片側部分にのみ存在し、
     上記p型InGa1-y N層は、上記p型GaN層が上記第2アンドープGaN層の全面に存在する場合は上記p型GaN層の上記ソース電極側の片側部分にのみ存在し、上記p型GaN層が上記第2アンドープGaN層の上記ソース電極側の片側部分にのみ存在する場合は上記p型GaN層の全面または一部に存在し、
     非動作時において、上記第1アンドープGaN層と上記AlGa1-x N層との間のヘテロ界面の近傍の部分における上記第1のアンドープGaN層に形成される2次元電子ガスの、上記第2ゲート電極の直下の部分における濃度をn、上記第1ゲート電極の直下の部分における濃度をn、分極超接合領域における濃度をn、上記分極超接合領域と上記ドレイン電極との間の部分における濃度をnとしたとき、
       n≦n<n<n
    であるノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  2.  非動作時において、上記第2アンドープGaN層と上記AlGa1-x N層との間のヘテロ界面の近傍の部分における上記第2のアンドープGaN層に形成される2次元正孔ガスの、上記第1ゲート電極の直下の部分における濃度をp、上記分極超接合領域における濃度をpとしたとき、
       p>p
    である請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  3.  上記第2ゲート電極のゲート電圧が0[V]、ドレイン電圧が1.0[V]のときのドレイン電流が、上記第2ゲート電極のゲート電圧が5[V]のときのドレイン電流の1/100以下である請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  4.  上記第1ゲート電極と上記第2ゲート電極とが互いに電気的に接続され、一体のゲート電極として動作する請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  5.  上記第1ゲート電極と上記ソース電極とが互いに電気的に接続され、上記第1ゲート電極がフィールドプレートとして作用する請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  6.  上記第1ゲート電極が上記ソース電極の電位に対して正の電位に固定されている請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  7.  上記第1ゲート電極、上記第2ゲート電極および上記ソース電極が互いに電気的に接続され、ダイオードの動作をする請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  8.  上記第2ゲート電極は上記p型InGa1-z N層上にゲート絶縁膜を介して設けられている請求項1記載のノーマリーオフ型分極超接合GaN系電界効果トランジスタ。
  9.  少なくとも一つのトランジスタを有し、
     上記トランジスタは、
     第1アンドープGaN層と、
     上記第1アンドープGaN層上のAlGa1-x N層(0<x<1)と、
     上記AlGa1-x N層上の、島状の形状を有する第2アンドープGaN層と、
     上記第2アンドープGaN層上のp型GaN層と、
     上記p型GaN層上のp型InGa1-y N層(0<y<1)と、
     上記AlGa1-x N層上のソース電極と、
     上記AlGa1-x N層上のドレイン電極と、
     上記p型InGa1-y N層と電気的に接続された第1ゲート電極と、
     上記AlGa1-x N層上の、上記第2アンドープGaN層の上記ソース電極側の端部に近接したp型InGa1-z N層(0<z<1)およびその上の第2ゲート電極と、
    を有し、
     上記p型GaN層は上記第2アンドープGaN層の全面または上記ソース電極側の片側部分にのみ存在し、
     上記p型InGa1-y N層は、上記p型GaN層が上記第2アンドープGaN層の全面に存在する場合は上記p型GaN層の上記ソース電極側の片側部分にのみ存在し、上記p型GaN層が上記第2アンドープGaN層の上記ソース電極側の片側部分にのみ存在する場合は上記p型GaN層の全面または一部に存在し、
     非動作時において、上記第1アンドープGaN層と上記AlGa1-x N層との間のヘテロ界面の近傍の部分における上記第1のアンドープGaN層に形成される2次元電子ガスの、上記第2ゲート電極の直下の部分における濃度をn、上記第1ゲート電極の直下の部分における濃度をn、分極超接合領域における濃度をn、上記分極超接合領域と上記ドレイン電極との間の部分における濃度をnとしたとき、
       n≦n<n<n
    であるノーマリーオフ型分極超接合GaN系電界効果トランジスタである電気機器。
  10.  上記ノーマリーオフ型分極超接合GaN系電界効果トランジスタの上記第2ゲート電極は上記p型InGa1-z N層上にゲート絶縁膜を介して設けられている請求項9記載の電気機器。
PCT/JP2021/034029 2021-03-11 2021-09-16 ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器 WO2022190414A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180025734.3A CN115398647A (zh) 2021-03-11 2021-09-16 常关型极化超结GaN系场效应晶体管和电气设备
US17/921,225 US20230170407A1 (en) 2021-03-11 2021-09-16 NORMALLY-OFF MODE POLARIZATION SUPER JUNCTION GaN-BASED FIELD EFFECT TRANSISTOR AND ELECTRICAL EQUIPMENT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-038916 2021-03-11
JP2021038916A JP6941904B1 (ja) 2021-03-11 2021-03-11 ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
JP2021-143739 2021-09-03
JP2021143739A JP7061779B1 (ja) 2021-09-03 2021-09-03 ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器

Publications (1)

Publication Number Publication Date
WO2022190414A1 true WO2022190414A1 (ja) 2022-09-15

Family

ID=83227797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034029 WO2022190414A1 (ja) 2021-03-11 2021-09-16 ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器

Country Status (3)

Country Link
US (1) US20230170407A1 (ja)
CN (1) CN115398647A (ja)
WO (1) WO2022190414A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116741805A (zh) * 2023-06-12 2023-09-12 山东大学 一种高击穿电压增强型氮化镓器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261053A (ja) * 1998-03-09 1999-09-24 Furukawa Electric Co Ltd:The 高移動度トランジスタ
JP2008091394A (ja) * 2006-09-29 2008-04-17 National Institute Of Advanced Industrial & Technology 電界効果トランジスタ及びその製造方法
JP2011109131A (ja) * 2011-02-02 2011-06-02 Panasonic Corp 窒化物半導体装置
JP2015207610A (ja) * 2014-04-18 2015-11-19 株式会社パウデック 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261053A (ja) * 1998-03-09 1999-09-24 Furukawa Electric Co Ltd:The 高移動度トランジスタ
JP2008091394A (ja) * 2006-09-29 2008-04-17 National Institute Of Advanced Industrial & Technology 電界効果トランジスタ及びその製造方法
JP2011109131A (ja) * 2011-02-02 2011-06-02 Panasonic Corp 窒化物半導体装置
JP2015207610A (ja) * 2014-04-18 2015-11-19 株式会社パウデック 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体

Also Published As

Publication number Publication date
US20230170407A1 (en) 2023-06-01
CN115398647A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US9196614B2 (en) Inverted III-nitride P-channel field effect transistor with hole carriers in the channel
US8648390B2 (en) Transistor with enhanced channel charge inducing material layer and threshold voltage control
EP2735031B1 (en) Method for growing iii-v epitaxial layers
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US8692292B2 (en) Semiconductor device including separated gate electrode and conductive layer
WO2015125471A1 (ja) 電界効果トランジスタ
KR101092467B1 (ko) 인헨스먼트 노말리 오프 질화물 반도체 소자 및 그 제조방법
US8969881B2 (en) Power transistor having segmented gate
CN103026491A (zh) 常关断型三族氮化物金属-二维电子气隧穿结场效应晶体管
JP2006339561A (ja) 電界効果トランジスタ及びその製造方法
WO2007007548A1 (ja) トランジスタ及びその動作方法
JP4474292B2 (ja) 半導体装置
CN111194483A (zh) 具有多金属栅极的晶体管
WO2010016564A1 (ja) 半導体装置
US9385001B1 (en) Self-aligned ITO gate electrode for GaN HEMT device
WO2022190414A1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
JP7007548B2 (ja) 化合物半導体装置及びその製造方法
JP2013239735A (ja) 電界効果トランジスタ
EP3405979B1 (en) Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device
WO2021106236A1 (ja) ダイオード、ダイオードの製造方法および電気機器
JP7061779B1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
JP6941904B1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
WO2022172503A1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930263

Country of ref document: EP

Kind code of ref document: A1