CN116741805A - 一种高击穿电压增强型氮化镓器件及其制备方法 - Google Patents

一种高击穿电压增强型氮化镓器件及其制备方法 Download PDF

Info

Publication number
CN116741805A
CN116741805A CN202310690732.7A CN202310690732A CN116741805A CN 116741805 A CN116741805 A CN 116741805A CN 202310690732 A CN202310690732 A CN 202310690732A CN 116741805 A CN116741805 A CN 116741805A
Authority
CN
China
Prior art keywords
layer
gan
metal
undoped gan
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310690732.7A
Other languages
English (en)
Inventor
崔鹏
代嘉铖
汉多科•林纳威赫
崔潆心
钟宇
徐明升
韩吉胜
李树强
徐现刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202310690732.7A priority Critical patent/CN116741805A/zh
Publication of CN116741805A publication Critical patent/CN116741805A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种高击穿电压增强型氮化镓器件及其制备方法,属于微电子晶体管研究技术领域,包括衬底以及位于衬底上的AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层,AlGaN势垒层上方左侧为第一p‑GaN帽层,无掺杂GaN层上方为第二p‑GaN帽层,AlGaN势垒层上方两端为金属源电极、金属漏电极,第一p‑GaN帽层上方为T型金属栅电极,第二p‑GaN帽层上方为金属基电极,本发明基于未掺杂的GaN帽层和P型掺杂的GaN帽层结构,实现了高击穿电压的增强型GaN功率器件的制备,器件结构简单,栅极调控能量强,具有易操作,工艺简单,击穿电压提高明显等优势。

Description

一种高击穿电压增强型氮化镓器件及其制备方法
技术领域
本发明涉及一种高击穿电压增强型氮化镓器件及其制备方法,属于微电子晶体管研究技术领域。
背景技术
当今社会,电动汽车、高速铁路、5G通信、航空航天等领域的技术正在高速发展,导致对更高击穿电压、更大输出功率的半导体晶体管的需求日益迫切。传统的硅晶体管的击穿电压、输出功率较低,在大功率、高电压的工作环境下容易损坏。相比于硅材料,氮化镓(GaN)具有更宽的带隙,更强的原子键、更稳定的化学性质,使其具有优良的热导率,更高的电子漂移速度,和更高的击穿电压,在消费性电子产品、服务器、电动汽车和工业制造等领域的具有广阔的应用前景。由GaN材料制备的GaN高电子迁移率晶体管(HEMT)由于极化效应,具有二维电子气(2DEG),无需掺杂就能得到高电子迁移率的性能,较大地降低了导通电阻,提高了频率特性。
AlGaN/GaN HEMT也有局限性,由于常规的AlGaN/GaN HEMT为耗尽性器件,无法直接应用在集成电路中,而凹槽栅和F基气体处理等方法虽然可以实现增强型功能,但其对工艺的精度要求较高,且器件的性能不够稳定。目前商用的增强型GaN HEMT器件普遍使用p-GaN帽层耗尽栅极下方的2DEG,从而实现增强型的功能。但p-GaN HEMT的击穿电压一般不超过650V,工艺中通常使用生长钝化层和制作场版(FP)来提高器件的击穿电压,但其效果十分有限,且增加了工艺的复杂度,提高了成本并降低了器件良率。
中国专利文件CN110429132A公开了一种增强型GaN器件的制备方法,其通过对冒层的设计来实现器件的增强型,但其器件击穿电压并未实现针对性的提高。
发明内容
针对现有技术的不足,本发明提供一种GaN高电子迁移率场效应晶体管(HEMT)集成GaN极化超级结的器件结构,实现了GaN HEMT增强型功能的同时还具有极高的击穿电压。
本发明基于未掺杂的GaN冒层和P型掺杂的GaN冒层结构,实现了高击穿电压的增强型GaN功率器件的制备,增强型器件的实现是氮化镓功率器件实现应用的前提。器件结构简单,栅极调控能量强,该击穿电压的提高,基于未掺杂的GaN冒层的选择性刻蚀,具有易操作,工艺简单,击穿电压提高明显等优势。本发明生长条件稳定,可重复性强,器件所实现的增强型和高电压是功率器件所需要重点解决的关键问题。
本发明的技术方案如下:
一种高击穿电压增强型氮化镓高电子迁移率晶体管,包括衬底(1),位于衬底上的AlN成核层(2),AlN成核层上方为无掺杂GaN缓冲层(3),无掺杂GaN缓冲层上方为AlN插层(4),AlN插层上方为AlGaN势垒层(5),AlGaN势垒层上方右侧为无掺杂GaN层(6),AlGaN势垒层上方左侧为第一p-GaN帽层(7),无掺杂GaN层上方为第二p-GaN帽层(8),AlGaN势垒层上方且第一p-GaN帽层左侧为金属源电极(9),AlGaN势垒层上方且无掺杂GaN层右侧为金属漏电极(10),金属源电极右侧的第一p-GaN帽层上方为T型金属栅电极(11),金属漏电极左侧的第二p-GaN帽层上方为金属基电极(12),AlGaN势垒层(5)上方除金属源电极、金属漏电极、金属栅电极、金属基电极外均覆盖有SiO2钝化层。
所述AlN成核层(2)、无掺杂GaN缓冲层(3)、AlN插层(4)、AlGaN势垒层(5)、无掺杂GaN层(6)、第一p-GaN帽层(7)、金属源电极(9)、金属漏电极(10)、T型金属栅电极(11)组成异质结场效应晶体管,所述AlN成核层(2)、无掺杂GaN缓冲层(3)、AlN插层(4)、AlGaN势垒层(5)、无掺杂GaN层(6)、第二p-GaN帽层(8)、金属源电极(9)、金属基电极(12)组成极化异质结二极管。
根据本发明优选的,所述衬底材料(1)的材料为蓝宝石、硅、碳化硅。
根据本发明优选的,所述AlN成核层(2)的厚度为3-300nm,进一步优选的,AlN成核层(2)的厚度为100nm。
根据本发明优选的,所述无掺杂GaN缓冲层(3)的厚度为0.5-10μm,进一步优选的,无掺杂GaN缓冲层(3)的厚度为2μm。
根据本发明优选的,所述AlN插层(4)的厚度为0.5-2nm,进一步优选的,AlN插层(4)的厚度为1nm。
根据本发明优选的,所述AlGaN势垒层(5)的厚度为20-70nm,Al的摩尔比为12-30%,进一步优选的,AlGaN势垒层(5)的厚度为47nm,Al的摩尔比为25%。
根据本发明优选的,所述无掺杂GaN层(6)的厚度为30-80nm,进一步优选的,无掺杂GaN层(6)的厚度为50nm。
根据本发明优选的,所述第一p-GaN帽层(7)的厚度为60-120nm,进一步优选的,第一p-GaN帽层(7)的厚度为80nm。
根据本发明优选的,所述第二p-GaN帽层(8)的厚度为60-120nm,进一步优选的,第二p-GaN帽层(8)的厚度为80nm。
根据本发明优选的,所述的金属源电极(9)和金属漏电极(10)的材料为Ti/Al/Ni/Au、Ti/Al/Ti/Au或Ti/Al/Mo/Au金属叠层,进一步优选的,金属源电极(9)和金属漏电极(10)的材料为Ti/Al/Ni/Au金属叠层。
根据本发明优选的,所述的T型金属栅电极(11)的材料为Ni/Au、Pt/Al或Pd/Au金属叠层,进一步优选的,T型金属栅电极(11)的材料为Ni/Au金属叠层。
根据本发明优选的,所述的金属基电极(12)的材料为Ti/Al/Ni/Au、Ti/Al/Ti/Au或Ti/Al/Mo/Au金属叠层,进一步优选的,金属基电极(12)的材料为Ti/Al/Ni/Au金属叠层。
一种高击穿电压增强型氮化镓高电子迁移率晶体管的制备方法,包括以下步骤:
S1、使用MOCVD在衬底上外延生长AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层;
S2、通过干法刻蚀去除部分无掺杂GaN层(6);
S3、在AlGaN势垒层和无掺杂GaN层的上方生长SiO2作为掩膜;
S4、在AlGaN势垒层特定区域和无掺杂GaN层上方的特定区域刻蚀SiO2;
S5、在SiO2上方和特定刻蚀区域上方生长p-GaN帽层;
S6、使用氢氟酸腐蚀SiO2;在AlGaN势垒层上方的刻蚀区域形成第一p-GaN帽层,在无掺杂GaN层上方的刻蚀区域形成第二p-GaN帽层;
S7、在AlGaN势垒层的上方两端蒸镀金属源电极和金属漏电极,退火形成欧姆接触;
S8、在金属源电极、AlGaN势垒层、p-GaN帽层和金属漏电极上方生长SiO2钝化层;
S9、刻蚀特定区域的SiO2钝化层;
S10、在第一p-GaN帽层和第二p-GaN帽层上方的SiO2钝化层的刻蚀区域蒸镀金属基电极和T型金属栅电极。
根据本发明优选的,步骤S1中的AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层、以及步骤S5中的p-GaN帽层的生长方法为金属有机化学气相沉积法(MOCVD)或分子束外延法(MBE)等高质量成膜方法,进一步优选的,步骤S1中的AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层、以及步骤S5中的p-GaN帽层的生长方法为金属有机化学气相沉积法(MOCVD)。
步骤S3-S6中利用SiO2选区生长p-GaN帽层,具体包括以下步骤:
(1).提供需要进行选区生长的外延材料;
(2).使用LPCVD装置在外延材料的上方生长SiO2;
(3).在SiO2上涂覆光刻胶;
(4).利用光刻显影技术,显露出需要生长p-GaN帽层的区域;
(5).使用ICP装置刻蚀SiO2;
(6).使用去胶液去除涂覆的光刻胶,实现在SiO2层上开孔出需要生长p-GaN帽层的区域;
(7).使用MOCVD装置在SiO2的上方生长p-GaN帽层;
(8).使用氢氟酸浸泡上述材料,去除SiO2和SiO2上方的p-GaN帽层,实现选区生长p-GaN帽层。
根据本发明优选的,步骤S2中刻蚀无掺杂GaN层的方法为电感耦合等离子体刻蚀(ICP)或反应离子刻蚀(RIE),进一步优选的,步骤S2中刻蚀无掺杂GaN层的方法为电感耦合等离子体刻蚀(ICP)。
利用ICP刻蚀无掺杂GaN层(6),具体包括以下步骤:
1).提供需要进行ICP刻蚀的无掺杂GaN层(6)及其外延材料;
2).在所述材料上涂覆光刻胶;
3).利用光刻显影技术,显露出需要刻蚀的无掺杂GaN层(6)区域;
4).使用ICP装置刻蚀无掺杂GaN层(6);
5).使用化学溶液去除涂覆的光刻胶,实现无掺杂GaN层(6)只存在于AlGaN势垒层(5)上方的特定区域。
根据本发明优选的,步骤S3中所述的SiO2的生长方式为低压力化学气相沉积法(LPCVD)或者是等离子体增强气相沉积法(PECVD)。
根据本发明优选的,步骤S7中所述的源电极和漏电极的退火处理方式为在N2中850℃中退火40s。
与现有技术相比,本发明提供一种制备高击穿电压的增强型p-GaN/AlGaN/GaN高电子迁移率场效应晶体管(HEMT),同时集成GaN/AlGaN/GaN极化异质结二极管的方法。
本发明采用未掺杂的GaN冒层和P型掺杂的GaN冒层结构相结合,该结构既能通过P型掺杂的GaN冒层实现器件增强型,也能基于未掺杂GaN冒层的选区刻蚀实现器件高击穿电压特性,而增强型和高击穿是GaN功率器件所需要解决的两个核心问题,本申请器件制备具有易操作、工艺简单、重复性强、击穿电压提高明显、有效降低器件漏电、提高器件输出功率等优势。
本发明的有益效果在于:
1.更高的击穿电压
通常的增强型p-GaN/AlGaN/GaN HEMT击穿电压较低,很难达到650V及以上,本发明在AlGaN势垒层上生长了无掺杂GaN,该结构会在AlGaN势垒层上方的无掺杂GaN层中生成二维空穴气(2DHG),有效平衡了AlGaN势垒层下方的无掺杂GaN缓冲层中二维电子气(2DEG)的电场尖峰,生成较宽的耗尽区,使得器件的击穿电压可以大幅增加至1000V及以上;
2.实现增强型功能
常规的AlGaN/GaN高电子迁移率场效应晶体管(HEMT)通常为耗尽型常开器件,无法直接应用在电力电子集成电路中。本发明在金属栅电极和金属基电极下生长了p-GaN帽层,完全耗尽栅极下的二维电子气,实现了器件的增强型功能,并且具有工艺简单,器件性能稳定的优点。
3.漏电流更小
本发明在GaN/AlGaN/GaN极化异质结场效应晶体管的上方沉积了SiO2钝化层,降低了器件的表面态密度,消除了表面沟道效应,从而抑制电流崩塌效应,降低了器件的漏电流。
4.电子迁移率更高
本发明在在GaN/AlGaN/GaN异质结下方外延了AlN成核层,在AlGaN/GaN中间外延了AlN插层,AlN成核层增大了异质结界面的有效导带不连续性和极化效应,并且降低了合金散射,从而使得2DEG面密度有所提高,2DEG迁移率和面密度乘积也明显提高。AlN***层的采用增加了GaN层的面内压应力并有利于减弱AlGaN/GaN界面粗糙度散射,从而提高了GaN/AlGaN/GaN极化异质结场效应晶体管的2DEG面密度和迁移率。
附图说明
图1为本发明衬底结构示意图;
图2为本发明步骤S1生长完毕后的结构示意图;
图3为本发明步骤S2刻蚀去除部分无掺杂GaN层后的结构示意图;
图4为本发明步骤S3生长SiO2后的结构示意图;
图5为本发明步骤S4特定区域刻蚀SiO2后的结构示意图;
图6为本发明步骤S5生长p-GaN帽层后的结构示意图;
图7为本发明步骤S6形成第一p-GaN帽层、第二p-GaN帽层后的结构示意图;
图8为本发明步骤S7形成金属源电极和金属漏电极后的结构示意图;
图9为本发明步骤S8生长SiO2钝化层后的结构示意图;
图10为本发明步骤S9刻蚀SiO2钝化层后的结构示意图;
图11为本发明步骤S10制作完毕后的器件结构示意图。
其中:1、衬底,2、AlN成核层,3、无掺杂GaN缓冲层,4、AlN插层,5、AlGaN势垒层,6、无掺杂GaN层,7、第一p-GaN帽层,8、第二p-GaN帽层,9、金属源电极,10、金属漏电极,11、T型金属栅电极,12、金属基电极,13、SiO2钝化层。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
实施例1:
一种高击穿电压增强型氮化镓高电子迁移率晶体管,包括衬底(1),位于衬底上的AlN成核层(2),AlN成核层上方为无掺杂GaN缓冲层(3),无掺杂GaN缓冲层上方为AlN插层(4),AlN插层上方为AlGaN势垒层(5),AlGaN势垒层上方右侧为无掺杂GaN层(6),AlGaN势垒层上方左侧为第一p-GaN帽层(7),无掺杂GaN层上方为第二p-GaN帽层(8),AlGaN势垒层上方且第一p-GaN帽层左侧为金属源电极(9),AlGaN势垒层上方且无掺杂GaN层右侧为金属漏电极(10),金属源电极右侧的第一p-GaN帽层上方为T型金属栅电极(11),金属漏电极左侧的第二p-GaN帽层上方为金属基电极(12),AlGaN势垒层(5)上方除金属源电极、金属漏电极、金属栅电极、金属基电极外均覆盖有SiO2钝化层。
所述AlN成核层(2)、无掺杂GaN缓冲层(3)、AlN插层(4)、AlGaN势垒层(5)、无掺杂GaN层(6)、第一p-GaN帽层(7)、金属源电极(9)、金属漏电极(10)、T型金属栅电极(11)组成异质结场效应晶体管,所述AlN成核层(2)、无掺杂GaN缓冲层(3)、AlN插层(4)、AlGaN势垒层(5)、无掺杂GaN层(6)、第二p-GaN帽层(8)、金属源电极(9)、金属基电极(12)组成极化异质结二极管。
衬底材料(1)的材料为蓝宝石或硅或碳化硅。AlN成核层(2)的厚度为100nm,无掺杂GaN缓冲层(3)的厚度为2μm,AlN插层(4)的厚度为1nm,AlGaN势垒层(5)的厚度为47nm,Al的摩尔比为25%,无掺杂GaN层(6)的厚度为50nm,第一p-GaN帽层(7)的厚度为80nm,第二p-GaN帽层(8)的厚度为80nm,金属源电极(9)和金属漏电极(10)的材料为Ti/Al/Ni/Au金属叠层,T型金属栅电极(11)的材料为Ni/Au金属叠层,金属基电极(12)的材料为Ti/Al/Ni/Au金属叠层。
实施例2:
一种高击穿电压增强型氮化镓高电子迁移率晶体管,其结构如实施例1所述,所不同的是,AlN成核层(2)的厚度为3nm。无掺杂GaN缓冲层(3)的厚度为0.5μm,AlN插层(4)的厚度为0.5nm,AlGaN势垒层(5)的厚度为20nm,Al的摩尔比为12%,无掺杂GaN层(6)的厚度为30nm,第一p-GaN帽层(7)的厚度为60nm,第二p-GaN帽层(8)的厚度为60nm,金属源电极(9)和金属漏电极(10)的材料为Ti/Al/Ti/Au金属叠层,T型金属栅电极(11)的材料为Pt/Al金属叠层,金属基电极(12)的材料为Ti/Al/Ti/Au金属叠层。
实施例3:
一种高击穿电压增强型氮化镓高电子迁移率晶体管,其结构如实施例1所述,所不同的是,AlN成核层(2)的厚度为300nm。无掺杂GaN缓冲层(3)的厚度为10μm,AlN插层(4)的厚度为2nm,AlGaN势垒层(5)的厚度为70nm,Al的摩尔比为30%,无掺杂GaN层(6)的厚度为80nm,第一p-GaN帽层(7)的厚度为120nm,第二p-GaN帽层(8)的厚度为120nm,金属源电极(9)和金属漏电极(10)的材料为Ti/Al/Mo/Au金属叠层,T型金属栅电极(11)的材料为Pd/Au金属叠层,金属基电极(12)的材料为Ti/Al/Mo/Au金属叠层。
实施例4:
一种制备实施例1所述高击穿电压增强型氮化镓高电子迁移率场效应晶体管的制备方法,包括以下步骤:
S1、使用MOCVD在衬底上外延生长AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层;生长方法为金属有机化学气相沉积法(MOCVD),如图2;
S2、通过干法刻蚀去除部分无掺杂GaN层(6);如图3;刻蚀无掺杂GaN层的方法为电感耦合等离子体刻蚀(ICP);具体包括以下步骤:
1).提供需要进行ICP刻蚀的无掺杂GaN层(6)及其外延材料;
2).在所述材料上涂覆光刻胶;
3).利用光刻显影技术,显露出需要刻蚀的无掺杂GaN层(6)区域;
4).使用ICP装置刻蚀无掺杂GaN层(6);
5).使用化学溶液去除涂覆的光刻胶,实现无掺杂GaN层(6)只存在于AlGaN势垒层(5)上方的特定区域。
S3、使用LPCVD装置在AlGaN势垒层和无掺杂GaN层的上方生长SiO2作为掩膜,SiO2的生长方式为低压力化学气相沉积法(LPCVD);如图4;
S4、在SiO2上涂覆光刻胶,利用光刻显影技术,显露出需要生长p-GaN帽层的区域,使用ICP装置在AlGaN势垒层特定区域和无掺杂GaN层上方的特定区域刻蚀SiO2;使用去胶液去除涂覆的光刻胶,实现在SiO2层上开孔出需要生长p-GaN帽层的区域,如图5;
S5、使用MOCVD装置在SiO2上方和特定刻蚀区域上方生长p-GaN帽层;生长方法为金属有机化学气相沉积法(MOCVD);如图6;
S6、使用氢氟酸浸泡上述材料,利用氢氟酸腐蚀SiO2,去除SiO2和SiO2上方的p-GaN帽层,实现选区生长p-GaN帽层;在AlGaN势垒层上方的刻蚀区域形成第一p-GaN帽层,在无掺杂GaN层上方的刻蚀区域形成第二p-GaN帽层;如图7;
S7、在AlGaN势垒层的上方两端蒸镀金属源电极和金属漏电极,退火形成欧姆接触;如图8;退火处理方式为在N2中850℃中退火40s。
S8、在金属源电极、AlGaN势垒层、p-GaN帽层和金属漏电极上方生长SiO2钝化层;如图9;
S9、刻蚀特定区域的SiO2钝化层;如图10;
S10、在第一p-GaN帽层和第二p-GaN帽层上方的SiO2钝化层的刻蚀区域蒸镀金属基电极和T型金属栅电极,最终形成器件结构如图11所示。

Claims (10)

1.一种高击穿电压增强型氮化镓器件,其特征在于,包括衬底,位于衬底上方为AlN成核层,AlN成核层上方为无掺杂GaN缓冲层,无掺杂GaN缓冲层上方为AlN插层,AlN插层上方为AlGaN势垒层,AlGaN势垒层上方右侧为无掺杂GaN层,AlGaN势垒层上方左侧为第一p-GaN帽层,无掺杂GaN层上方为第二p-GaN帽层,AlGaN势垒层上方且第一p-GaN帽层左侧为金属源电极,AlGaN势垒层上方且无掺杂GaN层右侧为金属漏电极,金属源电极右侧的第一p-GaN帽层上方为T型金属栅电极,金属漏电极左侧的第二p-GaN帽层上方为金属基电极,AlGaN势垒层上方除金属源电极、金属漏电极、金属栅电极、金属基电极外均覆盖有SiO2钝化层;
所述AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层、第一p-GaN帽层、金属源电极、金属漏电极、T型金属栅电极组成异质结场效应晶体管,所述AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层、第二p-GaN帽层、金属源电极、金属基电极组成极化异质结二极管。
2.根据权利要求1所述的高击穿电压增强型氮化镓器件,其特征在于,所述高击穿电压增强型氮化镓器件包含以下方案的一种或多种:
Ⅰ、所述衬底的材料为蓝宝石、硅、碳化硅;
Ⅱ、所述AlN成核层的厚度为3-300nm;
Ⅲ、所述无掺杂GaN缓冲层的厚度为0.5-10μm;
Ⅳ、所述AlN插层的厚度为0.5-2nm;
Ⅴ、所述AlGaN势垒层的厚度为20-70nm,Al的摩尔比为12-30%;
Ⅵ、所述无掺杂GaN层的厚度为30-80nm;
Ⅶ、所述第一p-GaN帽层的厚度为60-120nm;
Ⅷ、所述第二p-GaN帽层的厚度为60-120nm;
Ⅸ、所述的金属源电极和金属漏电极的材料为Ti/Al/Ni/Au、Ti/Al/Ti/Au、Ti/Al/Mo/Au金属叠层的任意一种;
Ⅹ、所述的T型金属栅电极的材料为Ni/Au、Pt/Al或Pd/Au金属叠层的任意一种;
Ⅺ、所述的金属基电极的材料为Ti/Al/Ni/Au、Ti/Al/Ti/Au或Ti/Al/Mo/Au金属叠层的任意一种。
3.根据权利要求2所述的高击穿电压增强型氮化镓器件,其特征在于,AlN成核层的厚度为100nm,无掺杂GaN缓冲层的厚度为2μm,AlN插层的厚度为1nm;AlGaN势垒层的厚度为47nm,Al的摩尔比为25%;无掺杂GaN层的厚度为50nm,第一p-GaN帽层的厚度为80nm,第二p-GaN帽层的厚度为80nm,金属源电极和金属漏电极的材料为Ti/Al/Ni/Au金属叠层,T型金属栅电极的材料为Ni/Au金属叠层,金属基电极的材料为Ti/Al/Ni/Au金属叠层。
4.一种制备权利要求1所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,包括以下步骤:
S1、使用MOCVD在衬底上外延生长AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层;
S2、通过干法刻蚀去除部分无掺杂GaN层;
S3、在AlGaN势垒层和无掺杂GaN层的上方生长SiO2作为掩膜;
S4、在AlGaN势垒层特定区域和无掺杂GaN层上方的特定区域刻蚀SiO2;
S5、在SiO2上方和特定刻蚀区域上方生长p-GaN帽层;
S6、使用氢氟酸腐蚀SiO2;在AlGaN势垒层上方的刻蚀区域形成第一p-GaN帽层,在无掺杂GaN层上方的刻蚀区域形成第二p-GaN帽层;
S7、在AlGaN势垒层的上方两端蒸镀金属源电极和金属漏电极,退火形成欧姆接触;
S8、在金属源电极、AlGaN势垒层、p-GaN帽层和金属漏电极上方生长SiO2钝化层;
S9、刻蚀特定区域的SiO2钝化层;
S10、在第一p-GaN帽层和第二p-GaN帽层上方的SiO2钝化层的刻蚀区域蒸镀金属基电极和T型金属栅电极。
5.根据权利要求4所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,步骤S1中的AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层、以及步骤S5中的p-GaN帽层的生长方法为金属有机化学气相沉积法或分子束外延法,进一步优选的,步骤S1中的AlN成核层、无掺杂GaN缓冲层、AlN插层、AlGaN势垒层、无掺杂GaN层、以及步骤S5中的p-GaN帽层的生长方法为金属有机化学气相沉积法。
6.根据权利要求4所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,步骤S3-S6中利用SiO2选区生长p-GaN帽层,具体包括以下步骤:
(1).提供需要进行选区生长的外延材料;
(2).使用LPCVD装置在外延材料的上方生长SiO2;
(3).在SiO2上涂覆光刻胶;
(4).利用光刻显影技术,显露出需要生长p-GaN帽层的区域;
(5).使用ICP装置刻蚀SiO2;
(6).使用去胶液去除涂覆的光刻胶,实现在SiO2层上开孔出需要生长p-GaN帽层的区域;
(7).使用MOCVD装置在SiO2的上方生长p-GaN帽层;
(8).使用氢氟酸浸泡上述材料,去除SiO2和SiO2上方的p-GaN帽层,实现选区生长p-GaN帽层。
7.根据权利要求4所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,步骤S2中刻蚀无掺杂GaN层的方法为电感耦合等离子体刻蚀或反应离子刻蚀。
8.根据权利要求7所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,步骤S2中刻蚀无掺杂GaN层的方法为电感耦合等离子体刻蚀;利用ICP刻蚀无掺杂GaN层,具体包括以下步骤:
1).提供需要进行ICP刻蚀的无掺杂GaN层及其外延材料;
2).在所述材料上涂覆光刻胶;
3).利用光刻显影技术,显露出需要刻蚀的无掺杂GaN层区域;
4).使用ICP装置刻蚀无掺杂GaN层;
5).使用化学溶液去除涂覆的光刻胶,实现无掺杂GaN层只存在于AlGaN势垒层上方的特定区域。
9.根据权利要求4所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,步骤S3中所述的SiO2的生长方式为低压力化学气相沉积法或者是等离子体增强气相沉积法。
10.根据权利要求4所述的高击穿电压增强型氮化镓器件的制备方法,其特征在于,步骤S7中所述的源电极和漏电极的退火处理方式为在N2中850℃中退火40s。
CN202310690732.7A 2023-06-12 2023-06-12 一种高击穿电压增强型氮化镓器件及其制备方法 Pending CN116741805A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310690732.7A CN116741805A (zh) 2023-06-12 2023-06-12 一种高击穿电压增强型氮化镓器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310690732.7A CN116741805A (zh) 2023-06-12 2023-06-12 一种高击穿电压增强型氮化镓器件及其制备方法

Publications (1)

Publication Number Publication Date
CN116741805A true CN116741805A (zh) 2023-09-12

Family

ID=87910975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310690732.7A Pending CN116741805A (zh) 2023-06-12 2023-06-12 一种高击穿电压增强型氮化镓器件及其制备方法

Country Status (1)

Country Link
CN (1) CN116741805A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118099208A (zh) * 2024-04-26 2024-05-28 山东大学 一种增强型GaN HEMT器件结构和制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118859A (zh) * 2015-07-29 2015-12-02 电子科技大学 一种隧穿增强型hemt器件
CN113555429A (zh) * 2021-07-06 2021-10-26 华南师范大学 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN115398647A (zh) * 2021-03-11 2022-11-25 株式会社Powdec 常关型极化超结GaN系场效应晶体管和电气设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118859A (zh) * 2015-07-29 2015-12-02 电子科技大学 一种隧穿增强型hemt器件
CN115398647A (zh) * 2021-03-11 2022-11-25 株式会社Powdec 常关型极化超结GaN系场效应晶体管和电气设备
CN113555429A (zh) * 2021-07-06 2021-10-26 华南师范大学 高击穿电压和低导通电阻的常开hfet器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118099208A (zh) * 2024-04-26 2024-05-28 山东大学 一种增强型GaN HEMT器件结构和制造方法

Similar Documents

Publication Publication Date Title
CN110034186B (zh) 基于复合势垒层结构的iii族氮化物增强型hemt及其制作方法
CN110190116B (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
JP4179539B2 (ja) 化合物半導体装置及びその製造方法
CN110112215B (zh) 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法
CN107680998A (zh) 一种GaN基p型栅HFET器件及其制备方法
CN111900203B (zh) 一种GaN基高空穴迁移率晶体管及其制备方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
WO2022199309A1 (zh) 具有p-GaN盖帽层的HEMT器件及制备方法
CN115799331B (zh) 一种基于蓝宝石衬底的多凹槽AlGaN/GaN HEMT器件
CN114883407B (zh) 基于Fin-FET栅结构HEMT及其制作方法
CN114883406B (zh) 一种增强型GaN功率器件及其制备方法
CN116387246A (zh) p-GaN增强型MIS-HEMT器件及其制备方法
CN111739800B (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN114843337A (zh) 双栅结构氮化镓高电子迁移率晶体管及其制作方法
CN116741805A (zh) 一种高击穿电压增强型氮化镓器件及其制备方法
CN114496788A (zh) 一种p型沟道氮化镓晶体管及其制备方法
CN113628962A (zh) Ⅲ族氮化物增强型hemt器件及其制造方法
CN113745333A (zh) 一种含δ掺杂势垒层的常关型氧化镓基MIS-HEMT器件及其制备方法
CN112885899A (zh) 一种自对准低欧姆接触电阻GaN HEMT器件及其制造方法
CN212380426U (zh) 一种二维AlN/GaN HEMT射频器件
CN114883396B (zh) 一种凹陷式Fin-JFET栅结构HEMT及制作方法
CN114843187B (zh) 一种GaN基多纳米沟道高电子迁移率晶体管的制备方法
CN113270494B (zh) 双渐变沟道氮化镓基垂直结构射频器件及其制备方法
CN112768508B (zh) 背栅全控型AlGaN/GaN异质结增强型功率HEMT器件及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination