WO2022186226A1 - 軟磁性金属粉末 - Google Patents

軟磁性金属粉末 Download PDF

Info

Publication number
WO2022186226A1
WO2022186226A1 PCT/JP2022/008676 JP2022008676W WO2022186226A1 WO 2022186226 A1 WO2022186226 A1 WO 2022186226A1 JP 2022008676 W JP2022008676 W JP 2022008676W WO 2022186226 A1 WO2022186226 A1 WO 2022186226A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic metal
metal powder
powder
less
Prior art date
Application number
PCT/JP2022/008676
Other languages
English (en)
French (fr)
Inventor
真司 堀江
誠治 石谷
拓己 井澤
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to KR1020237028794A priority Critical patent/KR20230150965A/ko
Priority to CN202280017678.3A priority patent/CN116917063A/zh
Publication of WO2022186226A1 publication Critical patent/WO2022186226A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Definitions

  • the present invention relates to soft magnetic metal powder. Specifically, since the soft magnetic metal powder is composed of fine particles, it is possible to produce a powder compact with a high compacting density, and since the content of boron that reduces saturation magnetization is small, a powder magnetic core with excellent magnetic properties can be produced.
  • the present invention also relates to a soft magnetic metal powder that can form a thin layer with excellent surface smoothness because it is an aggregate of fine particles with a narrow particle size distribution.
  • powder magnetic cores are required to have a high compacting density.
  • the soft magnetic metal powder is an aggregate composed of fine particles, it is expected that the compacting density of the powder magnetic core will be improved.
  • the compacting density of the powder magnetic core can also be improved by using soft magnetic metal powder with a wide particle size distribution and filling the gaps between large particles with medium and small particles.
  • Soft magnetic metal powder with a wide particle size distribution can be produced by general methods such as water atomization, gas atomization, and spray pyrolysis.
  • soft magnetic metal powder with a wide particle size distribution has the problem that it is difficult to obtain good surface smoothness when it is made into a thin layer.
  • a soft magnetic metal powder composed of fine particles that has a high compacting density, a low B content and can be used to produce a dust core with excellent magnetic properties, and a thin layer that has a narrow particle size distribution and excellent surface smoothness. Development of a soft magnetic metal powder capable of forming is desired.
  • Patent Document 1 discloses a liquid-phase reduction method in which a reducing liquid containing a B-based reducing agent is added dropwise to an iron salt aqueous solution containing an iron salt, a complexing agent, a dispersant, a pH adjuster, and a P-based reducing agent. A method for producing soft magnetic metal powder with a small particle size is described.
  • the present inventors have made it a technical task to solve the above-mentioned problems, and as a result of repeated trial and error trial production and experiments, the average particle diameter is 0 even if a large amount of B-based reducing agent is not added. 0.05 ⁇ m or more and 1.5 ⁇ m or less fine particles, and a coefficient of variation represented by standard deviation of particle diameter/average particle diameter is 0.25 or less, and a narrow particle size distribution is produced. It succeeded in doing so and solved the above technical problem.
  • the soft magnetic metal powder according to the present invention can produce a powder compact with a high compacting density, it is possible to produce a powder magnetic core with improved magnetic properties due to densification, and the content of B that lowers the saturation magnetization is low, it is a soft magnetic metal powder that can produce a powder magnetic core with even better magnetic properties, and can also form a thin layer with excellent surface smoothness.
  • the present invention has an average particle diameter of 0.05 ⁇ m or more and 1.5 ⁇ m or less, a coefficient of variation represented by the following (formula) of 0.25 or less, and a boron (B) content of 5.0 ⁇ m or less. It is a soft magnetic metal powder containing less than 0% by weight (but not including 0). (Formula) Standard deviation of particle size/average particle size ( ⁇ /D)
  • the present invention also provides the soft magnetic metal powder having an iron (Fe) content of 90% by weight or more.
  • the present invention also provides the soft magnetic metal powder coated with one or more metal oxides.
  • the present invention also provides the soft magnetic metal powder, wherein the metal element of the metal oxide is aluminum (Al), silicon (Si), zirconium (Zr), titanium (Ti), yttrium (Y) or phosphorus (P). is.
  • the present invention provides the soft magnetic metal powder produced by a liquid phase reduction method in which a reducing liquid containing a B-based reducing agent is dropped into an aqueous metal salt solution containing a metal salt, a complexing agent, a pH adjuster, and a P-based reducing agent. is a manufacturing method.
  • the present invention is a soft magnetic metal powder having an average particle size of 0.05 ⁇ m to 1.5 ⁇ m and is an aggregate of fine particles, so that a high compacting density can be achieved, so that a powder magnetic core with high magnetic properties can be produced. can be done.
  • the soft magnetic metal powder has a narrow particle size distribution with a coefficient of variation represented by "standard deviation of particle size/average particle size" of 0.25 or less, a thin layer with excellent surface smoothness can be formed.
  • the iron (Fe) content is 90% by weight or more, a powder magnetic core with high saturation magnetization can be produced.
  • the soft magnetic metal powder is coated with a metal oxide, it is possible to ensure electrical insulation between the particles, thereby suppressing energy loss.
  • the soft magnetic metal powder in the present invention is an aggregate of fine particles and has a narrow particle size distribution, it is possible to produce a powder compact with a high compacting density and to form a thin layer with excellent surface smoothness.
  • the average particle size of the soft magnetic metal powder is preferably 0.05 ⁇ m to 1.5 ⁇ m, more preferably 0.07 ⁇ m to 1.0 ⁇ m.
  • the average particle size is less than 0.05 ⁇ m, the ratio of the oxide film on the particle surface increases, resulting in a decrease in saturation magnetization. ) is increased and the surface smoothness of the thin layer may be lowered.
  • the oxygen (O) content in the soft magnetic metal powder is preferably less than 8.0% by weight, more preferably 5.0% by weight or less, in order to suppress a decrease in saturation magnetization due to an oxide film.
  • the coefficient of variation represented by "standard deviation of particle size/average particle size" of soft magnetic metal powder particles is preferably 0.25 or less, more preferably 0.22 or less.
  • Rmax can be less than 3.5 ⁇ m.
  • the particle size of the soft magnetic metal powder can be measured using image analysis software after photographing with a scanning microscope (SEM) at a magnification of 2,000 to 10,000 times.
  • SEM scanning microscope
  • the content of B contained in the soft magnetic metal powder of the present invention is less than 5.0% by weight, but not 0% by weight.
  • B lowers the saturation magnetization, it is preferable that the amount is small. However, if the B-based reducing agent is not used, non-spherical fine particles may increase and the molding density may decrease.
  • the soft magnetic metal powder in the present invention may be coated with metal oxide. This is because an improvement in insulation effect can be expected.
  • Al, Si, Zr, Ti, Y, and P can be exemplified as metal elements contained in metal oxides.
  • the content of the metal element in the metal oxide is preferably 0.1% by weight to 3.0% by weight. This is because if the content exceeds 3.0% by weight, the saturation magnetization may decrease.
  • the soft magnetic metal powder has a saturation magnetization of 150 Wb ⁇ m/kg or more and a coercive force of 10 kA/m or less.
  • the present invention can be produced by a liquid phase reduction method in which an aqueous metal salt solution is reduced with a B-based reducing agent.
  • the metal salt is not limited, but iron salt is preferred.
  • iron salts include iron sulfate (II), iron chloride (II), iron acetate (II), iron oxalate (II), iron chloride (III), and iron sulfate (III).
  • a complexing agent or reducing agent may be added to the aqueous metal salt solution.
  • the complexing agent is not particularly limited, but glycine, alanine, ammonium sulfate, ammonium chloride, and sodium citrate III can be exemplified.
  • the reducing agent is not particularly limited, it is preferable to use a P-based reducing agent.
  • P-based reducing agents examples include sodium hypophosphite and calcium hypophosphite.
  • pH adjuster is not particularly limited, examples include sodium hydroxide, aqueous ammonia, and sodium hydrogen carbonate.
  • a dispersant, a catalyst, and an antifoaming agent may be added to the metal salt aqueous solution as appropriate.
  • a B-based reducing agent is used as the reducing agent for reducing the aqueous metal salt solution.
  • B-based reducing agents include sodium borohydride, potassium borohydride, and dimethylaminoborane.
  • B-free hydrazine may be used together with the B-based reducing agent.
  • the reduction temperature is preferably 10°C to 95°C.
  • Example 1 Iron (II) sulfate heptahydrate 0.2 mol/L, glycine 0.08 mol/L, sodium hypophosphite 0.1 mol/L.
  • a metal salt aqueous solution with a pH of 7.0 to 8.5 was prepared using sodium hydroxide while stirring at a rotation speed of 100 to 300 rpm.
  • a B-system reducing solution was prepared by mixing sodium borohydride with 300 ml of distilled water so that the concentration was 0.25 mol/L, and dissolving the mixture by stirring at room temperature at 100 to 300 rpm.
  • the prepared B-based reducing agent was gradually added dropwise to an aqueous metal salt solution at 45° C. in a nitrogen atmosphere while stirring at a rotational speed of 100 to 300 rpm.
  • the end point of the reduction reaction was defined as the point where foaming from the aqueous metal salt solution ceased.
  • Examples 2-5 and Comparative Examples 1-3 Production was carried out under the same conditions as in Example 1 except that the raw materials for Examples 2 to 5 and Comparative Examples 1 to 3 were as shown in Table 1.
  • Example 6 The soft magnetic metal powder obtained in Example 1 was weighed to a concentration of 0.30 mol/L, tetraethoxysilane (TEOS) 0.04 mol/L, and ammonia water 0.20 mol/L. The mixture was added together with 150 ml of alcohol and stirred at room temperature for 1 hour at a rotation speed of 100 to 300 rpm to hydrolyze the TEOS, thereby coating the surfaces of the fine particles of the soft magnetic metal powder with silica.
  • TEOS tetraethoxysilane
  • Example 2 The same B-based reducing solution as in Example 1 was gradually added dropwise to the aqueous metal salt solution being stirred at a rotation speed of 160 to 300 rpm, and it was confirmed that no bubbles were generated from the surface of the aqueous metal salt solution.
  • the precipitated powder was separated from the liquid, washed with water and alcohol, and then dried in an inert atmosphere of nitrogen gas to obtain an amorphous soft magnetic alloy powder.
  • Fe particles were synthesized by the polyol method. 100 ml of ethylene glycol was placed in a glass container equipped with a reflux device, nitrogen gas was blown in at a flow rate of 300 ml/min, and the liquid was stirred at a rotational speed of 100 rpm with a Teflon (registered trademark) stirring blade.
  • Ferrous chloride tetrahydrate FeCl 2 .4H 2 O was added to the stirred liquid so as to have a concentration of 0.1 mol/L.
  • cooling water was flowed into the reflux vessel, nitrogen gas was blown in, and heating was continued while mechanical stirring was continued, and the temperature was maintained at 170°C for 20 minutes while refluxing to carry out a reduction reaction.
  • the precipitated particles were allowed to cool until the solution reached room temperature, then transferred into ethanol, repeatedly washed by centrifugation, and dried in a nitrogen atmosphere to obtain Fe particle powder.
  • the ratio (a/b) of the longest diameter a to the shortest diameter b of the particles was calculated, and the shape was evaluated as shown below.
  • Spherical: a/b ⁇ 1.7 and 1.0 ⁇ a/b ⁇ 1.2 ratio is 90% or more Spherical/granular: a/b ⁇ 1.7 and 1.0 ⁇ a/b ⁇ 1.2 ratio of 50% or more and less than 90%
  • Crystal structure Measurement was performed using an X-ray diffractometer (D8 ADVANCE, manufactured by Bruker Japan Co., Ltd.), and the crystal phase in the sample was identified by Riedveld analysis.
  • composition analysis ⁇ Fe, P, Si> Using a fluorescent X-ray diffractometer (ZSX PrimusII/manufactured by Rigaku Corporation), measurement was carried out according to JIS K0119 "General Rules for Fluorescent X-ray Analysis”.
  • ICP inductively coupled plasma
  • VSM vibrating sample magnetometer
  • the prepared paste was applied to a PET film using a 3 milliliter applicator and dried at room temperature to prepare a thin layer of about 20 ⁇ m.
  • the maximum height (Rmax) of the thin layer was measured using a non-contact surface roughness meter (NewView600/manufactured by Canon Marketing Japan Inc.).
  • Tables 1 and 2 prove that the soft magnetic metal powder of the present invention has high saturation magnetization and coercive force, and can form a thin layer with excellent surface smoothness.
  • the soft magnetic metal powder in the present invention consists of fine particles, it is possible to produce a powder compact with a high compacting density, and since the B content is low, it is possible to produce a powder magnetic core with excellent magnetic properties. can. In addition, since it is an aggregate of fine particles with a narrow particle size distribution, a thin layer with excellent surface smoothness can be produced. Therefore, the present invention is an invention with high industrial applicability.

Abstract

【課題】 成形密度の高い圧粉成形体を作製できる微粒子からなる軟磁性金属粉末であり、飽和磁化を低下させるボロンの含有量が少ないので、磁気特性に優れる圧粉磁心を作製でき、また、粒度分布が狭い微粒子の集合体であるため表面平滑性に優れる薄層を形成できる軟磁性金属粉末を提供する。 【解決手段】 平均粒子径が0.05μm以上、かつ、1.5μm以下であり、下記(式)で表される変化係数が0.25以下であり、ボロンの含有量が5.0重量%未満(但し、0は含まない)である軟磁性金属粉末。 (式) 粒子径の標準偏差/平均粒子径

Description

軟磁性金属粉末
 本発明は軟磁性金属粉末に関する。詳しくは、該軟磁性金属粉末は微粒子からなるから高い成形密度の圧粉成形体を作製できるとともに、飽和磁化を低下させるボロンの含有量が少ないため、磁気特性に優れる圧粉磁心を作製でき、また、粒度分布が狭い微粒子の集合体だから表面平滑性に優れる薄層を形成できる軟磁性金属粉末に関する。
 各種電気機器の高機能化や小型・薄型化に伴い、電気機器に内蔵されるインダクタやトランスには磁気特性の向上に加え、薄層化も求められている。
 インダクタ等の磁気特性を向上させるため、圧粉磁心には高い成形密度が要求される。
 軟磁性金属粉末が微粒子からなる集合体であれば圧粉磁心の成形密度の向上が望める。
 微粒子の軟磁性金属粉末を作製する方法として、特許文献1に記載されるような金属塩水溶液に対して、ボロン(B)系還元剤を含む還元液を滴下する液相還元法がある。
 しかし、Bは飽和磁化を低下させるため、Bを多く含有する軟磁性金属粉末で作製した圧粉磁心は飽和磁化が低下するという問題がある。
 また、粒度分布の広い軟磁性金属粉末を使用し、大きい粒子の隙間を中・小の粒子で埋めることによっても圧粉磁心の成形密度の向上が望める。
 粒度分布の広い軟磁性金属粉末であれば、水アトマイズ法、ガスアトマイズ法、噴霧熱分解法のような一般的な方法で作製することができる。
 しかしながら、粒度分布の広い軟磁性金属粉末は薄層化した際に表面の良好な平滑性が得られ難いという問題がある。
 そこで、成形密度が高く、また、Bの含有量が少なくて磁気特性に優れる圧粉磁心を作製できる微粒子からなる軟磁性金属粉末であって、粒度分布が狭くて表面平滑性にも優れる薄層を形成できる軟磁性金属粉末の開発が望まれている。
特開2010-261065
 特許文献1には、鉄塩、錯化剤、分散剤、pH調整剤、P系還元剤を含む鉄塩水溶液にB系還元剤を含む還元液を滴下する液相還元法によって、従来よりも粒径の小さい軟磁性金属粉末を作製する方法が記載されている。
 しかし、特許文献1に記載される軟磁性金属粉末はBを多く含有するため、飽和磁化が低下するという問題がある。
 本発明者らは、前記諸問題を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、B系還元剤を多く添加しなくても、平均粒子径が0.05μm以上、かつ、1.5μm以下の微粒子であり、かつ、粒子径の標準偏差/平均粒子径で表される変化係数が0.25以下であって粒度分布が狭い軟磁性金属粉末を作製することに成功し、前記技術的課題を解決したものである。
 本発明に係る軟磁性金属粉末は、成形密度の高い圧粉成形体を作製できるので、高密度化による磁気特性が向上した圧粉磁心を作製でき、また、飽和磁化を低下させるBの含有量が低いため、さらに磁気特性に優れる圧粉磁心を作製することができる軟磁性金属粉末であり、しかも、表面平滑性に優れる薄層を形成することもできる。
 前記技術的課題は次のとおりの本発明によって解決できる。
 本発明は、平均粒子径が0.05μm以上、かつ、1.5μm以下であり、下記(式)で表される変化係数が0.25以下であり、ボロン(B)の含有量が5.0重量%未満(但し、0は含まない)である軟磁性金属粉末である。
(式) 粒子径の標準偏差/平均粒子径(σ/D)
 また、本発明は、鉄(Fe)の含有量が90重量%以上である前記軟磁性金属粉末である。
 また、本発明は、1種又は2種以上の金属酸化物で被覆された前記軟磁性金属粉末である。
 また、本発明は、前記金属酸化物の金属元素がアルミニウム(Al)、ケイ素(Si)、ジルコニウム(Zr)、チタニウム(Ti)、イットリウム(Y)又はリン(P)である前記軟磁性金属粉末である。
 また、本発明は、金属塩、錯化剤、pH調整剤、P系還元剤を含む金属塩水溶液にB系還元剤を含む還元液を滴下する液相還元法によって製造する前記軟磁性金属粉末の製造方法である。
 本発明は、平均粒子径が0.05μm~1.5μmの軟磁性金属粉末であって微粒子の集合体であるから、高い成形密度を実現できるため、磁気特性の高い圧粉磁心を作製することができる。
 また、「粒子径の標準偏差/平均粒子径」で表される変化係数が0.25以下という粒度分布の狭い微粒子の軟磁性金属粉末であるから、表面平滑性に優れる薄層を形成できる。
 また、飽和磁化を低下させるBの含有量が5.0重量%未満なので、さらに磁気特性に優れる圧粉磁心を作製できる。
 また、鉄(Fe)の含有量が90重量%以上であれば、飽和磁化の高い圧粉磁心を作製できる。
 また、軟磁性金属粉末を、金属酸化物で被覆すれば、各粒子間の電気的な絶縁性を確保できるため、エネルギー損失を抑制することができる。
本発明における軟磁性金属粉末(σ/D=0.180)のSEM写真(10000倍)である。 本発明における軟磁性金属粉末(σ/D=0.167)のSEM写真(10000倍)である。 本発明における軟磁性金属粉末(σ/D=0.113)のSEM写真(10000倍)である。
 本発明における軟磁性金属粉末は微粒子の集合体であり、かつ、粒度分布が狭いから、成形密度の高い圧粉成形体を作製できると共に、表面平滑性に優れる薄層を形成することができる。
 軟磁性金属粉末の平均粒子径は0.05μm~1.5μmが好ましく、さらに好ましくは、0.07μm~1.0μmである。
 平均粒子径が0.05μm未満であると、粒子表面の酸化被膜の比率が多くなるため飽和磁化が低下し、また、1.5μmを超えると薄層化した際に表面の最大高さ(Rmax)の値が高くなって薄層の表面平滑性が低下する虞があるからである。
 酸化被膜による飽和磁化の低下を抑制するために、軟磁性金属粉末における酸素(O)の含有量は8.0重量%未満が好ましく、さらに好ましくは5.0重量%以下である。
 軟磁性金属粉末微粒子の「粒子径の標準偏差/平均粒子径」で表される変化係数は0.25以下が好ましく、より好ましくは0.22以下である。
 変化係数が0.25を超えると、薄層化した場合のRmaxの値が高くなって薄層の表面平滑性が低下する虞があるからである。
 本発明によれば、10~30μmの薄層であっても、Rmaxを3.5μm未満にすることができる。
 軟磁性金属粉末の粒子径は走査型顕微鏡(SEM)を用いて2000倍~10000倍の倍率で撮影した後、画像解析ソフトを使用して計測することができる。
 本発明の軟磁性金属粉末が含有するBの含有量は5.0重量%未満であるが、0重量%ではない。
 Bは飽和磁化を低下させるから少ないほうが好ましいが、B系還元剤を使用しないと球状ではない微粒子が増加して成形密度が低下する虞があるからである。
 本発明における軟磁性金属粉末は金属酸化物で被覆されていてもよい。絶縁効果の向上が望めるからである。
 金属酸化物が含有する金属元素としては、Al、Si、Zr、Ti、Y、Pを例示することできる。
 金属酸化物における金属元素の含有量は0.1重量%~3.0重量%が好ましい。3.0重量%より多く含有すると飽和磁化が低下する虞があるからである。
 十分な磁気特性を備える圧粉磁心を作製するために、軟磁性金属粉末の飽和磁化は150Wb・m/kg以上、保磁力は10kA/m以下であることが好ましい。
 本発明は、金属塩水溶液をB系還元剤で還元して製造する液相還元法で製造することができる。
 金属塩は限定されないが鉄塩が好ましい。
 鉄塩としては、硫酸鉄(II)、塩化鉄(II)、酢酸鉄(II)、シュウ酸鉄(II)、塩化鉄(III)、硫酸鉄(III)を例示する。
 金属塩水溶液には錯化剤や還元剤を添加してもよい。
 錯化剤は特に限定されないが、グリシン、アラニン、硫酸アンモニウム、塩化アンモニウム、クエン酸IIIナトリウムを例示することができる。
 還元剤は特に限定されないが、P系還元剤を使用することが好ましい。
 P系還元剤として、次亜リン酸ナトリウム、次亜リン酸カルシウムを例示することができる。
 金属塩水溶液のpHは6.5~11.0に調整することが好ましい。
 pH調整剤は特に限定されないが、水酸化ナトリウム、アンモニア水、炭酸水素ナトリウムを例示する。
 金属塩水溶液には適宜、分散剤、触媒、消泡剤を添加してもよい。
 金属塩水溶液を還元する還元剤はB系還元剤を使用する。
 B系還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミノボランを例示することができる。
 B系還元剤と併せて、Bを含有しないヒドラジンを使用してもよい。
 還元温度は10℃~95℃で行うことが好ましい。
 本発明の実施例を示すが、本発明はこれらに限定されるものではない。
(実施例1)
 硫酸鉄(II)7水和物0.2mol/L、グリシン0.08mol/L、次亜リン酸ナトリウム0.1mol/Lの濃度となるようにガラスビーカー内に蒸留水1500mlと共に投入し、室温で、回転数100rpm~300rpmで攪拌しながら水酸化ナトリウムを用いてpH7.0~8.5の金属塩水溶液を作製した。
 作製した金属塩水溶液を回転数100rpm~300rpmで攪拌させながら、ビーカー内を窒素ガスで不活性雰囲気にした状態で45℃になるまで加熱した。
 水素化ホウ素ナトリウムを0.25mol/Lとなるように蒸留水300mlと混合し、室温にて100rpm~300rpmで攪拌して溶解させることでB系還元液を作製した。
 窒素雰囲気中で45℃の金属塩水溶液を回転数100rpm~300rpmで撹拌しながら作製したB系還元剤を徐々に滴下した。
 金属塩水溶液からの発泡がなくなったところを還元反応の終点とした。
 還元反応終了後、蒸留水で水洗し、アルコールで置換後、窒素ガスの不活性雰囲気で乾燥させることで実施例1の軟磁性金属粉末を得た。
(実施例2~5及び比較例1~3)
 実施例2~5及び比較例1~3の原料を表1に示す通りとした以外は実施例1と同じ条件で製造した。
(実施例6)
 実施例1で得られた軟磁性金属粉末0.30mol/L、テトラエトキシシラン(TEOS)0.04mol/L、アンモニア水0.20mol/Lの濃度となるように秤量してガラスビーカー内にイソプロピルアルコール150mlと共に投入し、室温で1時間、回転数100rpm~300rpmで攪拌してTEOSを加水分解させることにより軟磁性金属粉末の微粒子の表面をシリカで被覆する処理を行った。
 イソプロピルアルコールで洗浄後、窒素ガスの不活性雰囲気中で乾燥させてシリカ被覆処理軟磁性金属粉末を得た。
(比較例4)
 塩化鉄(II)水和物1.0mol/L、塩化アンモニウム1.5mol/L、クエン酸三ナトリウム水和物0.8mol/L、次亜リン酸ナトリウム水和物1.5mol/L、分散剤としてポリビニルピロリドン0.004mol/Lの濃度となるようにそれぞれ秤量し、ガラス製容器内に蒸留水200mlと共に投入し、室温において回転数160rpm~300rpmで60~120分間撹拌することで金属塩水溶液を作製した。
 作製した金属塩水溶液を室温において回転数160rpm~300rpmで撹拌させながら、水酸化ナトリウム水溶液を滴下してpH10にした。
 回転数160rpm~300rpmで撹拌している金属塩水溶液に対して、実施例1と同一のB系還元液を徐々に滴下し、金属塩水溶液表面からの泡の発生がなくなったことを確認してから、析出した粉末を液中から分離し、得た粉末を水洗及びアルコール洗浄した後、窒素ガスの不活性雰囲気中で乾燥することで非晶質軟磁性合金粉末を得た。
(比較例5)
 ポリオール法にてFe粒子を合成した。エチレングリコール100mlを還流器のついたガラス容器に入れ、窒素ガスを300ml/minの流量で吹き込み、テフロン(登録商標)攪拌羽根により100rpmの回転速度で液を攪拌した。
 攪拌している液の中に、塩化第一鉄4水和物FeCl・4HOを0.1mol/Lの濃度となるように投入した。
 次いで、[Fe]に対する[OH]濃度の比[OH]/[Fe]が40となるようにNaOHを投入した。
 更に、核生成のための白金前駆体としてヘキサクロリド白金(IV)酸を2.0×10-8mol/L投入した。
 投入後、還流器に冷却水を流し、窒素ガスの吹き込み、及び、機械攪拌を継続しながら加熱して、170℃の状態で還流しながら20min保持し、還元反応を行った。
 析出した粒子は、溶液が室温になるまで放冷してからエタノール中に移し、遠心分離により洗浄を繰り返し、窒素雰囲気中にて乾燥させることによりFe粒子粉末を得た。
(比較例6)
 カルボニル鉄粉(製品名:HQ BASF社製)を用いた。
(粒子形状)
 走査型電子顕微鏡(SEM)(S-4800形FE-SEM/株式会社日立ハイテク製)写真(10000倍)で目視により観察した。
 粒子の最長径aと最短径bの比(a/b)を算出して、以下に示すように形状を評価した。
球状:a/b≦1.7かつ1.0≦a/b≦1.2の比率が90%以上
球状/粒状:a/b≦1.7かつ1.0≦a/b≦1.2の比率が50%以上90%未満
粒状:a/b≦1.7かつ1.0≦a/b≦1.2の比率が50%未満
針状:a/b>1.7
(平均粒子径、標準偏差及び変化係数)
 走査型電子顕微鏡を用いて2000~10000倍の倍率で撮影し、撮影した視野内のすべての粒子の最長径を、画像解析ソフトA像君(旭化成エンジニアリング株式会社製)を用いて計測して平均粒子径を算出し、さらに標準偏差を計算した。また、それらの数値から変化係数を計算した。
(結晶構造)
 X線回折装置(D8 ADVANCE/ブルカー・ジャパン株式会社製)を使用して測定を行い、リードベルト解析によって試料中の結晶相の同定を行った。
(組成分析)
<Fe、P、Si>
 蛍光X線回折装置(ZSX PrimusII/株式会社リガク製)を使用してJIS K0119の「けい光X線分析通則」に従って測定を行った。
<B>
 誘導結合プラズマ(ICP)発光分光分析装置(iCAP6500/サーモフィッシャーサイエンティフィック株式会社製)を使用して測定を行った。
<O>
 酸素・窒素・水素分析装置(EMGA-930/株式会社堀場製作所製)を使用して測定を行った。
(磁気特性)
 振動試料型磁力計(VSM)(TM-VSM2130MRHL型/株式会社玉川製作所製)を使用して印加磁場797.7kA/mにて、飽和磁化(σs)及び保磁力(Hc)を測定した。
(薄層特性)
 実施例1の軟磁性金属粉末5.0gにヒマシ油0.5ml及び硝化綿クリヤーラッカー(P用クリヤー(標準試料)151-009/関西ペイント株式会社製)4.5gを加え、自転・公転ミキサー(あわとり練太郎 ARE-310/株式会社シンキー製)を用いて、回転数1500rpmで3分間攪拌してペーストを作製した。
 作製したペーストを3millのアプリケーターを用いてPETフィルムに塗布し、室温にて乾燥させることにより約20μmの薄層を作製した。
 薄層の最大高さ(Rmax)は、非接触表面粗さ計(NewView600/キヤノンマーケティングジャパン株式会社製)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、本発明における軟磁性金属粉末は飽和磁化及び保磁力が高く、また、表面平滑性に優れる薄層を作製できることが証明された。
 本発明における軟磁性金属粉末は微粒子からなるから、成形密度の高い圧粉成形体を作製することができ、また、Bの含有量が低いため、磁気特性に優れる圧粉磁心を作製することができる。
 また、粒度分布が狭い微粒子の集合体であるから表面平滑性に優れる薄層を作製することができる。
 したがって、本発明は産業上の利用可能性の高い発明である。

Claims (5)

  1. 平均粒子径が0.05μm以上、かつ、1.5μm以下であり、下記(式)で表される変化係数が0.25以下であり、ボロンの含有量が5.0重量%未満(但し、0は含まない)である軟磁性金属粉末。
    (式) 粒子径の標準偏差/平均粒子径
  2. 鉄の含有量が90重量%以上である請求項1記載の軟磁性金属粉末。
  3. 1種又は2種以上の金属酸化物で被覆された請求項1又は2記載の軟磁性金属粉末。
  4. 前記金属酸化物の金属元素がアルミニウム、ケイ素、ジルコニウム、チタニウム、イットリウム又はリンである請求項3記載の軟磁性金属粉末。
  5. 金属塩、錯化剤、pH調整剤、リン系還元剤を含む金属塩水溶液にボロン系還元剤を含有する還元液を滴下する液相還元法によって製造する請求項1又は2記載の軟磁性金属粉末の製造方法。
PCT/JP2022/008676 2021-03-03 2022-03-01 軟磁性金属粉末 WO2022186226A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237028794A KR20230150965A (ko) 2021-03-03 2022-03-01 연자성 금속 분말
CN202280017678.3A CN116917063A (zh) 2021-03-03 2022-03-01 软磁性金属粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033782 2021-03-03
JP2021033782A JP2022134575A (ja) 2021-03-03 2021-03-03 軟磁性金属粉末

Publications (1)

Publication Number Publication Date
WO2022186226A1 true WO2022186226A1 (ja) 2022-09-09

Family

ID=83154410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008676 WO2022186226A1 (ja) 2021-03-03 2022-03-01 軟磁性金属粉末

Country Status (5)

Country Link
JP (1) JP2022134575A (ja)
KR (1) KR20230150965A (ja)
CN (1) CN116917063A (ja)
TW (1) TW202235639A (ja)
WO (1) WO2022186226A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048499A1 (ja) * 2022-08-31 2024-03-07 戸田工業株式会社 軟磁性金属粉末及びその製造方法並びに樹脂組成物
WO2024048500A1 (ja) * 2022-09-01 2024-03-07 戸田工業株式会社 球形化率の高い軟磁性金属粉末及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036183A (ja) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp 磁性粒子の製造方法、磁性粒子、磁気記録媒体
JP2010261065A (ja) * 2009-04-30 2010-11-18 Nec Tokin Corp 非晶質軟磁性合金粉末及び圧粉磁心並びにインダクタ
JP2014074222A (ja) * 2012-09-12 2014-04-24 M Technique Co Ltd 金属微粒子の製造方法
US20190118265A1 (en) * 2016-05-13 2019-04-25 University Of Maryland, College Park Synthesis and Functionalization of Highly Monodispersed Iron and Core/Iron Oxide Shell Magnetic Particles With Broadly Tunable Diameter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036183A (ja) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp 磁性粒子の製造方法、磁性粒子、磁気記録媒体
JP2010261065A (ja) * 2009-04-30 2010-11-18 Nec Tokin Corp 非晶質軟磁性合金粉末及び圧粉磁心並びにインダクタ
JP2014074222A (ja) * 2012-09-12 2014-04-24 M Technique Co Ltd 金属微粒子の製造方法
US20190118265A1 (en) * 2016-05-13 2019-04-25 University Of Maryland, College Park Synthesis and Functionalization of Highly Monodispersed Iron and Core/Iron Oxide Shell Magnetic Particles With Broadly Tunable Diameter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONG XUAN, CHENG JING WEI, LIU YING, ZHAO XIU CHEN: "Synthesis, Magnetic and Electromagnetic Absorption Properties of Amorphous Core-Shell Fe-B@SiO<sub>2</sub> Submicrospheres", KEY ENGINEERING MATERIALS, vol. 727, 20 January 2017 (2017-01-20), pages 204 - 210, XP055964277, DOI: 10.4028/www.scientific.net/KEM.727.204 *

Also Published As

Publication number Publication date
CN116917063A (zh) 2023-10-20
KR20230150965A (ko) 2023-10-31
TW202235639A (zh) 2022-09-16
JP2022134575A (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2022186226A1 (ja) 軟磁性金属粉末
Yuan et al. Preparation and characterization of Fe/SiO2 core/shell nanocomposites
JP6427062B2 (ja) コア−シェル−コアナノ粒子系、コア−シェル−コアFeCo/SiO2/MnBiナノ粒子系を調製する方法、およびMnBiナノ粒子とのFeCo/SiO2ナノ粒子のコア−シェル−コアナノ凝集体
JP4837675B2 (ja) 高タップ密度超微細球形金属ニッケル粉及びその湿式製造方法
WO2015194647A1 (ja) 酸化鉄ナノ磁性粉およびその製造方法
JP6303366B2 (ja) 磁性粒子の製造方法、及び磁性粒子
JP2008081818A (ja) ニッケル―鉄合金ナノ粒子の前駆体粉末の製造方法およびニッケル―鉄合金ナノ粒子の前駆体粉末、ニッケル―鉄合金ナノ粒子の製造方法およびニッケル―鉄合金ナノ粒子
JP4860386B2 (ja) ニッケル−鉄合金ナノ粒子の製造方法
JP2018182301A (ja) 複合磁性材料、およびモータ
JP6427061B2 (ja) コア−シェル−シェルFeCo/SiO2/MnBiナノ粒子を調製する方法、およびコア−シェル−シェルFeCo/SiO2/MnBiナノ粒子
WO2024048500A1 (ja) 球形化率の高い軟磁性金属粉末及びその製造方法
JP4505633B2 (ja) hcp構造のニッケル粉の製法
WO2022080487A1 (ja) 鉄(Fe)-ニッケル(Ni)系合金粉の製造方法
JP2022119746A (ja) 金属粉末
JP2012036489A (ja) 金属ナノ粒子粉末の製造方法及び金属ナノ粒子粉末
JP2005281786A (ja) 磁性金属粒子およびその製造方法
TW202412971A (zh) 球形化率高的軟磁性金屬粉末及其製造方法
WO2024048499A1 (ja) 軟磁性金属粉末及びその製造方法並びに樹脂組成物
KR101972656B1 (ko) 금속, 및 금속-세라믹 분리상의 복합체 구조의 자성체 분말 제조방법
JP2018182302A (ja) 複合磁性材料、モータ、および複合磁性材料の製造方法
JPH05170425A (ja) 複合粒子の製造方法
JP4780856B2 (ja) 粒状マグネタイト粒子及びその製造方法
WO2018193900A1 (ja) 複合磁性材料、モータ、および複合磁性材料の製造方法
TW202414450A (zh) 軟磁性金屬粉末及其製造方法以及樹脂組合物
WO2020137741A1 (ja) 磁石、および磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017678.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763280

Country of ref document: EP

Kind code of ref document: A1