WO2022185607A1 - Laminate and engineering plastic film provided with protection film - Google Patents

Laminate and engineering plastic film provided with protection film Download PDF

Info

Publication number
WO2022185607A1
WO2022185607A1 PCT/JP2021/039802 JP2021039802W WO2022185607A1 WO 2022185607 A1 WO2022185607 A1 WO 2022185607A1 JP 2021039802 W JP2021039802 W JP 2021039802W WO 2022185607 A1 WO2022185607 A1 WO 2022185607A1
Authority
WO
WIPO (PCT)
Prior art keywords
engineering plastic
plastic film
adhesive layer
film
less
Prior art date
Application number
PCT/JP2021/039802
Other languages
French (fr)
Japanese (ja)
Inventor
桂也 ▲徳▼田
哲雄 奥山
郷司 前田
直樹 渡辺
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022535933A priority Critical patent/JPWO2022185607A1/ja
Publication of WO2022185607A1 publication Critical patent/WO2022185607A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a laminate and an engineering plastic film with a protective film.
  • engineering plastic films such as polyimide, aromatic polyamide, polyamideimide, polycarbonate, polyethylene naphthalate, and polyethylene terephthalate has been studied as a substrate material for manufacturing flexible electronic devices. It is Since engineering plastic film is continuously manufactured in a long length and wound up into a roll, it is generally accepted that a roll-to-roll production line is ideal for the production of flexible devices.
  • many conventional electronic devices such as display devices, sensor arrays, touch screens, and printed wiring boards use hard rigid substrates such as glass substrates, semiconductor wafers, and glass fiber reinforced epoxy substrates. is also configured on the premise of using such a rigid substrate.
  • the engineering plastic film is laminated to a rigid support (inorganic substrate such as a glass plate, ceramic plate, silicon wafer, metal plate, etc.), and then A process is used in which a desired element is formed on the substrate and then separated from the inorganic substrate.
  • a rigid support inorganic substrate such as a glass plate, ceramic plate, silicon wafer, metal plate, etc.
  • the laminate is often exposed to high temperatures.
  • formation of functional elements such as polysilicon and oxide semiconductors requires a process in a temperature range of about 200.degree. C. to 600.degree.
  • a temperature of about 200 to 300° C. may be applied to the film. Heating may be required. Therefore, the engineering plastic film forming the laminate is required to have heat resistance.
  • Polymer films used for the above applications should be covered with a protective film on either side or one side until just before use to prevent dust from entering between the inorganic substrate and the polymer film when they are attached to the inorganic substrate. is covered with (for example, see Patent Document 1).
  • the engineering plastic film described above is wound into a roll with protective films attached on both sides, and supplied in roll form.
  • the engineering plastic film is attached to the inorganic substrate, first, the engineering plastic film, with the protective film attached, is cut into a desired size and shape using a knife such as a Thomson type. After that, the protective film is peeled off, and the substrate is attached to the inorganic substrate.
  • Methods such as press and roll lamination are used to bond engineering plastic films to inorganic substrates, but roll lamination is preferable from the viewpoint of improving productivity and reducing costs brought about by high productivity.
  • Such air bubbles become noise during defect inspection in the post-process, and there is a risk that scratches on the engineering plastic film that should be detected and defects caused by adhered foreign matter may not be detected.
  • the process of forming the functional element is a high temperature process of 200° C. to 600° C., the air in the bubbles may expand due to heating, causing a floating between the engineering plastic film and the inorganic substrate.
  • the inventors of the present invention conducted a thorough study on the cause of these bubbles.
  • the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer constituting the protective film and the Martens hardness of the pressure-sensitive adhesive layer within a certain range, the adhesion between the inorganic substrate and the engineering plastic film was improved.
  • the inventors have found that air bubbles without nuclei between them can be suppressed, and have completed the present invention.
  • the laminate according to the present invention is a protective film having a substrate and an adhesive layer; an engineering plastic film provided on the adhesive layer; and an inorganic substrate provided on the engineering plastic film,
  • the inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated only via a silane coupling agent layer,
  • the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less
  • the number of air bubbles without nuclei between the inorganic substrate and the engineering plastic film is 1/cm 2 or less.
  • the adhesive layer of the protective film is not sufficiently soft, the shear force during lamination of the engineering plastic film to the inorganic substrate cannot be fully alleviated, resulting in the formation of air bubbles without foreign matter as nuclei between the inorganic substrate and the engineering plastic film. cause it to occur.
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less, and can be said to be sufficiently soft. Therefore, the shearing force during lamination can be sufficiently relieved, and the generation of air bubbles without foreign matter serving as nuclei between the inorganic substrate and the engineering plastic film can be suppressed.
  • the adhesive layer of the protective film is not sufficiently soft, even if there are no air bubbles at the interface between the engineering plastic film and the protective film, the adhesive layer cannot be deformed during lamination, and the inorganic substrate and the engineering plastic film cannot be separated. The pressure cannot be transmitted uniformly between the layers, resulting in the formation of voids without nuclei.
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less, and can be said to be sufficiently soft. Therefore, the pressure-sensitive adhesive layer can be sufficiently deformed during lamination, and pressure can be uniformly transmitted between the inorganic substrate and the engineering plastic film. As a result, it is possible to suppress the generation of air bubbles that do not contain foreign matter that serves as a nucleus.
  • the protective film can be easily peeled off from the engineering plastic film.
  • the number of air bubbles without nuclei between the inorganic substrate and the engineering plastic film is 1/cm 2 or less, it is possible to suppress noise during defect inspection. As a result, it is possible to suppress the impossibility of detecting scratches on the engineering plastic film that should be detected and defects due to adhered foreign matter.
  • the high temperature process of 200° C. to 600° C. for forming the functional element it is possible to suppress the expansion of the air in the bubbles due to heating and the occurrence of floating between the engineering plastic film and the inorganic substrate.
  • the "nucleus-free bubble" refers to a bubble without any foreign matter in the bubble.
  • the engineering plastic film is preferably a polyimide film.
  • the engineering plastic film is a polyimide film, it has excellent heat resistance.
  • the substrate is preferably a polyester film or a polyolefin film.
  • the substrate is a polyester film or a polyolefin film, it has excellent handleability.
  • the substrate is preferably a polyethylene terephthalate film.
  • the handleability is superior.
  • the pressure-sensitive adhesive layer contains a urethane-based resin, It is preferable that the adhesive layer has a gel fraction of 25% or more and 70% or less.
  • the pressure-sensitive adhesive layer contains a urethane-based resin and the gel fraction of the pressure-sensitive adhesive layer is 70% or less, it can be said that the crosslink density is low.
  • an acrylic resin with a low cross-linking density it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer contains a silicone-based resin, It is preferable that the adhesive layer has a gel fraction of 25% or more and 40% or less.
  • the pressure-sensitive adhesive layer contains a silicone-based resin and the gel fraction of the pressure-sensitive adhesive layer is 40% or less, it can be said that the crosslink density is low.
  • a silicone-based resin with a low cross-linking density it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer contains an acrylic resin, It is preferable that the adhesive layer has a gel fraction of 45% or more and 65% or less.
  • the pressure-sensitive adhesive layer contains an acrylic resin and the gel fraction of the pressure-sensitive adhesive layer is 65% or less, it can be said that the crosslink density is low.
  • an acrylic resin with a low cross-linking density it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
  • the engineering plastic film with a protective film according to the present invention is a protective film having a substrate and an adhesive layer; and an engineering plastic film provided on the adhesive layer,
  • the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less.
  • the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less and the Martens hardness of the adhesive layer is 30 N/mm 2 or less, air bubbles between the engineering plastic film and the protective film can be suppressed. can be done. Therefore, in the laminate obtained by laminating the engineering plastic film with the protective film on the inorganic substrate, generation of voids without nuclei between the inorganic substrate and the engineering plastic film is suppressed.
  • the number of non-nucleated cells between the engineering plastic film and the pressure-sensitive adhesive layer is preferably 50/cm 2 or less.
  • the laminate obtained by laminating the engineering plastic film with a protective film to an inorganic substrate is an inorganic
  • the generation of air bubbles without nuclei between the substrate and the engineering plastic film is greatly suppressed.
  • the present invention it is possible to provide a laminate in which air bubbles between the engineering plastic film and the protective film are suppressed. Moreover, it is possible to provide an engineering plastic film with a protective film capable of suppressing air bubbles between the engineering plastic film and the protective film.
  • FIG. 1 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to this embodiment
  • FIG. FIG. 3 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to another embodiment
  • It is a sectional view showing typically the layered product concerning this embodiment.
  • It is a figure which shows typically an example of the silane-coupling-agent processing apparatus used by a vapor-phase deposition method. It is a figure for demonstrating a shear peeling test.
  • the laminate according to the present embodiment comprises a protective film having a substrate and an adhesive layer, an engineering plastic film provided on the adhesive layer; and an inorganic substrate provided on the engineering plastic film,
  • the inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated only via a silane coupling agent layer,
  • the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less
  • the number of non-nucleated air bubbles between the inorganic substrate and the engineering plastic film is 1/cm 2 or less.
  • the protective film has a substrate and an adhesive layer.
  • the protective film is laminated on at least one side of the engineering plastic film, that is, the side that does not come into contact with the inorganic substrate when laminated with the inorganic substrate (the side that comes into contact with the lamination roll during lamination).
  • the substrate is not particularly limited, it is preferably a polyester film or a polyolefin film from the viewpoint of handleability.
  • the polyester film refers to a film formed with polyester resin as the main component.
  • the "main component” means that the polyester film contains 50% by mass or more, preferably 75% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and polymethylene terephthalate.
  • copolymer components include diol components such as ethylene glycol, terephthalic acid, diethylene glycol, neopentyl glycol, and polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • dicarboxylic acid components such as
  • the substrate is preferably a polyethylene terephthalate film.
  • the substrate is a polyethylene terephthalate film, it has appropriate hardness and flexibility for protecting an engineering plastic film, and is suitable as a substrate for a protective film.
  • polyethylene terephthalate film does not transmit ultraviolet rays (does not absorb them greatly), by combining it with a pressure-sensitive adhesive layer containing an ultraviolet absorber, it can be cut by an ultraviolet laser suitable for cutting engineering plastic films, including substrates. cutting is possible.
  • the base material is a material that does not transmit ultraviolet rays
  • the base material absorbs a large amount of the energy of the ultraviolet laser, and it takes a long time to cut the protective film and the engineering plastic film in a short time and economically. may not be able to cut
  • a polyethylene terephthalate film to which an ultraviolet absorber is added can be used as the base material of the protective film.
  • a polyolefin film specifically refers to a film formed with polyethylene resin and/or polypropylene resin as the main component.
  • the "main component” means that the polyolefin film contains 50% by mass or more, preferably 75% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • the base material may be a single layer, may be a laminate of a plurality of layers having the same composition, or may be a laminate of a plurality of layers having different compositions.
  • Each layer may be a layer having known functions such as antistatic and adhesion prevention.
  • the base material may contain various additives in the resin as necessary.
  • the additives include fillers, antioxidants, light stabilizers, anti-gelling agents, organic wetting agents, antistatic agents, surfactants, pigments, and dyes.
  • the base material satisfies the following numerical range in ultraviolet transmittance measurement.
  • the substrate preferably does not contain an ultraviolet absorber. Examples of the ultraviolet absorber include those described later.
  • the engineering plastic film is colorless and transparent, it is preferable to color the substrate of the protective film with a pigment or dye. If the base material of the protective film is colored, it becomes easy to perform positional alignment using a color difference sensor or the like in the step of laminating the inorganic substrate.
  • the protective film preferably has a transmittance of 3% or less at a wavelength of 355 nm in ultraviolet transmittance measurement (UV transmittance measurement) of a laminate of a substrate and an adhesive layer, and more preferably 2% or less. is preferred, and 1.5% or less is particularly preferred.
  • the protective film and the engineering plastic film can be more suitably cut with an ultraviolet laser.
  • the protective film may contain an ultraviolet absorber in the base material in order to control the ultraviolet transmittance of the laminate of the base material and the pressure-sensitive adhesive layer within the above preferred range.
  • the transmittance of the adhesive layer alone at a wavelength of 355 nm may be 3% or less, and the transmittance of the substrate alone at a wavelength of 355 nm may be 3% or less.
  • the transmittance at both wavelengths of 355 nm may be 3% or less.
  • the thickness of the base material is not particularly limited, it can be arbitrarily determined according to the standard used, for example, within the range of 12 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the base material is more preferably 25 ⁇ m or more and 350 ⁇ m or less.
  • the thickness of the base material is 500 ⁇ m or less, it is possible to suppress deterioration of productivity and handling properties.
  • the thickness of the base material is 12 ⁇ m or more, the lack of mechanical strength of the base material can be reduced, and breakage during peeling can be prevented.
  • the surface roughness Ra of the base material opposite to the inorganic substrate is preferably 0.02 ⁇ m or more, more preferably 0.025 ⁇ m or more, and still more preferably 0.03 ⁇ m or more.
  • the upper limit is preferably 1.2 ⁇ m or less, more preferably 0.6 ⁇ m or less, even more preferably 0.3 ⁇ m or less.
  • inorganic particles a predetermined amount of known inorganic particles such as silica, alumina, calcia, magnesia, calcium carbonate, magnesium carbonate, calcium phosphate, magnesium phosphate, barium sulfate, talc and kaolin may be added.
  • the amount added varies depending on the draw ratio during production of the base film, the final thickness of the base film, the particle size distribution of the added inorganic particles, etc., but it is generally 500 ppm in mass ratio with respect to the mass of the base film resin. Above, it is preferably 1000 ppm or more, more preferably 2000 ppm or more, and the upper limit is 10% by mass or less, preferably 3% by mass or less, more preferably 10000 ppm or less.
  • a method for controlling the surface roughness of the base material within a predetermined range a method of polishing or grinding the surface of the base material to obtain a predetermined surface roughness can be exemplified. Further, as a method for controlling the surface roughness of the base material within a predetermined range, a method of obtaining the base material by casting a film raw material onto a supporting base material prepared in advance so as to have a predetermined surface roughness can be exemplified. In addition, a method of pressing an embossed roller or the like processed into a predetermined surface shape to control the surface roughness of the base material can also be exemplified.
  • a method for controlling the surface roughness of the base material within a predetermined range a method of obtaining the base material by roughening treatment by chemical etching can be exemplified.
  • the protective film may be whitened by these roughening treatments, whitening of the film due to the roughening is preferably suppressed from the viewpoint of inspection through the protective film.
  • the substrate can be formed into a film by a conventionally known film forming method.
  • the film-forming method include a calendar film-forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, a dry lamination method, and the like.
  • Adhesive layer As the adhesive layer, known resins such as acrylic, silicone, rubber, polyester, and urethane can be used without particular limitation. Acrylic resins, silicone resins, and urethane resins are preferable from the viewpoint of handleability.
  • the acrylic resin is preferably obtained by polymerizing a monomer such as (meth)acrylic acid alkyl ester.
  • a monomer such as (meth)acrylic acid alkyl ester.
  • the monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, t-butyl (meth) acrylate, ) Alkyl ( meth)acrylate compounds. A plurality of these can also be copolymerized as needed.
  • the pressure-sensitive adhesive layer preferably has a gel fraction of 45% or more and 65% or less.
  • the gel fraction of the pressure-sensitive adhesive layer is more preferably 47% or higher, even more preferably 50% or higher.
  • the gel fraction of the pressure-sensitive adhesive layer is more preferably 63% or less, even more preferably 60% or less.
  • the crosslink density is low.
  • an acrylic resin with a low cross-linking density it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
  • the gel fraction of the pressure-sensitive adhesive layer is 45% or more, cohesive failure of the pressure-sensitive adhesive layer is less likely to occur when the pressure-sensitive adhesive layer and the engineering plastic film are separated.
  • the content of the acrylic resin in the pressure-sensitive adhesive layer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. is.
  • the urethane-based resin preferably contains a urethane resin and a cross-linking agent.
  • the urethane resin is a resin having multiple hydroxyl groups and can be synthesized by reacting a polyol and a polyisocyanate.
  • the polyol refers to an organic compound having a plurality (2 or 3 or more) of hydroxyl groups (preferably at least one of alcoholic hydroxyl groups and phenolic hydroxyl groups) in one molecule.
  • polyurethane polyol refers to a polyurethane prepolymer having a plurality of hydroxyl groups.
  • a urethane prepolymer is a polyurethane prepolymer that can be converted into a polyurethane that has undergone further polymerization or cross-linking by having a plurality of isocyanate groups (for example, at both ends of the molecule). A polymer.
  • the urethane resin may be the urethane prepolymer.
  • a urethane prepolymer is a polymer in which polymerization or cross-linking has progressed halfway, and which can be further polymerized or cross-linked.
  • the term "prepolymer of polyurethane” or “urethane prepolymer” refers to polyurethane in a state in which polymerization or cross-linking has progressed halfway, and which can be converted into polyurethane by further progressing polymerization or cross-linking.
  • the polyurethane prepolymer can be converted into a polyurethane that has undergone further polymerization or cross-linking, for example, by having a plurality of hydroxyl groups or isocyanate groups.
  • the polyol is not particularly limited.
  • the polyol may be bifunctional (bivalent, i.e., having two hydroxyl groups in one molecule) or trifunctional or higher (trivalent or higher, i.e., having three or more hydroxyl groups in the molecule). , preferably trifunctional or more, and particularly preferably trifunctional.
  • the polyol may be used alone or in combination of multiple types. Examples of the polyol include, but are not limited to, one or both of polyester polyol and polyether polyol.
  • the polyester polyol is not particularly limited, and examples thereof include known polyester polyols.
  • Examples of the acid component of the polyester polyol include terephthalic acid, adipic acid, azelaic acid, sebacic acid, phthalic anhydride, isophthalic acid, and trimellitic acid.
  • glycol component of the polyester polyol examples include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, 1,6-hexane glycol, 3-methyl-1,5-pentanediol, 3,3'-dimethylolheptane, poly oxyethylene glycol, polyoxypropylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol and the like.
  • polyol component of the polyester polyol examples include glycerin, trimethylolpropane, and pentaerythritol.
  • Other examples include polyester polyols obtained by ring-opening polymerization of lactones such as polycaprolactone, poly( ⁇ -methyl- ⁇ -valerolactone) and polyvalerolactone.
  • the molecular weight of the polyester polyol is not particularly limited, and can be used from low molecular weight to high molecular weight.
  • a polyester polyol having a number average molecular weight of 500 to 5,000 is preferably used. If the number average molecular weight is 500 or more, it is easy to prevent gelation due to too high reactivity. Moreover, if the number average molecular weight is 5,000 or less, it is easy to prevent a decrease in reactivity and a decrease in the cohesive strength of the polyurethane polyol itself.
  • the polyester polyol may or may not be used, but when used, the amount used is, for example, 10 to 90 mol % of the polyols constituting the polyurethane polyol.
  • the polyether polyol is not particularly limited, and examples thereof include known polyether polyols.
  • the polyether polyol is prepared by using a low-molecular-weight polyol such as water, propylene glycol, ethylene glycol, glycerin, and trimethylolpropane as an initiator, and an oxirane such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran.
  • a polyether polyol obtained by polymerizing a compound may be used. More specifically, the polyether polyol may have two or more functional groups, such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol.
  • the molecular weight of the polyether polyol is not particularly limited, and can be used from low molecular weight to high molecular weight.
  • Polyether polyols having a number average molecular weight of 1,000 to 15,000 are preferably used. If the number average molecular weight is 1,000 or more, it is easy to prevent gelation due to too high reactivity. Further, when the molecular weight is 15,000 or less, it is easy to prevent a decrease in reactivity and a decrease in the cohesive strength of the polyurethane polyol itself.
  • the polyether polyol may or may not be used, but when used, the amount used is, for example, 20 to 80 mol % of the polyols constituting the polyurethane polyol.
  • Part of the polyether polyol is ethylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol, glycerin, trimethylolpropane, glycols such as pentaerythritol, ethylenediamine, N - Polyvalent amines such as aminoethylethanolamine, isophoronediamine and xylylenediamine may be substituted and used together.
  • the polyol may be a bifunctional (having two hydroxyl groups in one molecule) polyether polyol, it is preferably trifunctional or more (having three or more hydroxyl groups in one molecule).
  • a polyol having a number average molecular weight of 1,000 to 15,000 and having a functionality of 3 or more, in whole or in part it becomes easier to balance adhesive strength and removability. If the number average molecular weight is 1,000 or more, it is easy to prevent the tri- or more functional polyol from being too reactive and gelling.
  • the number average molecular weight is 15,000 or less, it is easy to prevent a decrease in the reactivity of the tri- or more functional polyol and a decrease in the cohesive strength of the polyurethane polyol itself. More preferably, a polyol having a number average molecular weight of 2,500 to 3,500 and a tri- or higher functionality is used partially or wholly.
  • the polyisocyanate (organic polyisocyanate compound) is not particularly limited, but includes, for example, known aromatic polyisocyanates, aliphatic polyisocyanates, araliphatic polyisocyanates, and alicyclic polyisocyanates.
  • one type of polyisocyanate may be used alone, or a plurality of types may be used in combination.
  • aromatic polyisocyanate examples include 1,3-phenylene diisocyanate, 4,4'-diphenyldiisocyanate, 1,4-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2, 6-tolylene diisocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanatotoluene, 1,3,5-triisocyanatobenzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4' , 4′′-triphenylmethane triisocyanate and the like.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, and dodecamethylene diisocyanate. , 2,4,4-trimethylhexamethylene diisocyanate and the like.
  • Examples of the araliphatic polyisocyanate include ⁇ , ⁇ '-diisocyanate-1,3-dimethylbenzene, ⁇ , ⁇ '-diisocyanate-1,4-dimethylbenzene, ⁇ , ⁇ '-diisocyanate-1,4- diethylbenzene, 1,4-tetramethylxylylene diisocyanate, 1,3-tetramethylxylylene diisocyanate and the like.
  • Examples of the alicyclic polyisocyanate include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl- 2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4′-methylenebis(cyclohexyl isocyanate), 1,4-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, etc. mentioned.
  • a trimethylolpropane adduct form of the above polyisocyanate, a biuret form reacted with water, a trimer having an isocyanurate ring, and the like can also be used in combination.
  • polyisocyanate 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) and the like are preferable.
  • the reaction catalyst is not particularly limited, and for example, a known catalyst can be used.
  • the catalyst include tertiary amine compounds and organometallic compounds.
  • tertiary amine-based compound examples include triethylamine, triethylenediamine, 1,8-diazabicyclo(5,4,0)-undecene-7 (DBU), and the like.
  • organometallic compounds include tin-based compounds and non-tin-based compounds.
  • examples of the tin-based compound include dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin dilaurate (DBTDL), dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, tributyltin acetate, triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, tin 2-ethylhexanoate and the like.
  • non-tin compounds examples include titanium compounds such as dibutyl titanium dichloride, tetrabutyl titanate and butoxy titanium trichloride; lead compounds such as lead oleate, lead 2-ethylhexanoate, lead benzoate and lead naphthenate; Iron-based such as iron 2-ethylhexanoate and iron acetylacetonate, cobalt-based such as cobalt benzoate and cobalt 2-ethylhexanoate, zinc-based such as zinc naphthenate and zinc 2-ethylhexanoate, zirconium naphthenate, etc. is mentioned.
  • titanium compounds such as dibutyl titanium dichloride, tetrabutyl titanate and butoxy titanium trichloride
  • lead compounds such as lead oleate, lead 2-ethylhexanoate, lead benzoate and lead naphthenate
  • Iron-based such as iron 2-ethylhexanoate and
  • the combination examples include tertiary amine/organometallic, tin/non-tin, tin/tin, etc., preferably tin/tin, more preferably dibutyltin dilaurate and 2- It is a combination of tin ethylhexanoate.
  • the compounding ratio is not particularly limited, but for example, the weight of tin 2-ethylhexanoate/dibutyltin dilaurate is less than 1, preferably 0.2 to 0.6. If the compounding ratio is less than 1, it is easy to prevent gelation due to the balance of catalytic activity.
  • the amount of these catalysts used is not particularly limited, but is, for example, 0.01 to 1.0% by weight based on the total amount of polyol and organic polyisocyanate.
  • the reaction temperature for synthesizing the polyurethane polyol is preferably less than 100°C, more preferably 40°C to 60°C. If the temperature is less than 100°C, it is easy to control the reaction rate and the crosslinked structure, and it is easy to obtain a polyurethane polyol having a predetermined molecular weight.
  • the reaction temperature for synthesizing the polyurethane polyol is preferably 100°C or higher, preferably 110°C or higher.
  • the reaction time for synthesizing the polyurethane polyol is 3 hours or more in the absence of a catalyst.
  • the solvent used for synthesizing the polyurethane polyol is not particularly limited, and for example, known solvents can be used.
  • the solvent include ketones such as methyl ethyl ketone, acetone and methyl isobutyl ketone, esters such as ethyl acetate, n-butyl acetate and isobutyl acetate, and hydrocarbons such as toluene and xylene.
  • Toluene is particularly preferred in view of the solubility of polyurethane polyol, the boiling point of the solvent, and the like.
  • the pressure-sensitive adhesive layer preferably has a gel fraction of 25% or more and 70% or less.
  • the gel fraction of the pressure-sensitive adhesive layer is more preferably 28% or higher, even more preferably 30% or higher.
  • the gel fraction of the adhesive layer is more preferably 68% or less, even more preferably 65% or less.
  • the crosslink density is low.
  • a urethane-based resin with a low cross-linking density it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
  • the gel fraction of the pressure-sensitive adhesive layer is 25% or more, cohesive failure of the pressure-sensitive adhesive layer is less likely to occur when the pressure-sensitive adhesive layer and the engineering plastic film are separated.
  • the content of the urethane-based resin in the pressure-sensitive adhesive layer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. is.
  • the pressure-sensitive adhesive layer contains a silicone resin
  • the pressure-sensitive adhesive layer preferably has a gel fraction of 25% or more and 40% or less, and the gel fraction of the pressure-sensitive adhesive layer is more preferably 25% or more, 28% or more is more preferable.
  • the gel fraction of the pressure-sensitive adhesive layer is more preferably 38% or less, even more preferably 35% or less.
  • the crosslink density is low.
  • a silicone-based resin with a low cross-linking density it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
  • the gel fraction of the silicone-based resin is 25% or more, cohesive failure of the pressure-sensitive adhesive layer is less likely to occur when the pressure-sensitive adhesive layer and the engineering plastic film are separated.
  • the content of the silicone-based resin in the pressure-sensitive adhesive layer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. is.
  • the adhesive layer may or may not contain other components as appropriate.
  • other components include solvents, antioxidants, cross-linking inhibitors (cross-linking retarders), fillers, colorants, antifoaming agents, light stabilizers, and the like.
  • antioxidant include, but are not particularly limited to, phenol-based and sulfur-based antioxidants.
  • antifoaming agent include, but are not particularly limited to, silicone antifoaming agents and mineral oil antifoaming agents.
  • the light stabilizer is not particularly limited, but includes, for example, hindered amine-based light stabilizers.
  • the said adhesive layer may contain the plasticizer as said other component, for example, and does not need to contain it.
  • the plasticizer for example, an effect of suppressing an increase in adhesive strength over time can be obtained.
  • the "increase in adhesive strength over time” refers to a phenomenon in which, when an adhesive (for example, in the form of an adhesive sheet) is applied to the surface of an adherend, the adhesive strength to the surface of the adherend increases over time after application. Say. By suppressing this increase in adhesive strength over time, for example, the removability of the pressure-sensitive adhesive or pressure-sensitive adhesive sheet is further improved, and the contamination resistance to the surface of the adherend is further improved.
  • the adhesive layer may contain an ultraviolet absorber.
  • a known ultraviolet absorber can be used as the ultraviolet absorber.
  • Examples of the ultraviolet absorber include organic ultraviolet absorbers and inorganic ultraviolet absorbers, and organic ultraviolet absorbers are preferable from the viewpoint of transparency.
  • organic UV absorbers examples include benzotriazole-based, benzophenone-based, cyclic iminoester-based, and combinations thereof. Among them, benzotriazole-based and cyclic iminoester-based are particularly preferable from the viewpoint of durability.
  • benzotriazole-based ultraviolet absorbers examples include 2-[2′-hydroxy-5′-(methacryloyloxymethyl)phenyl]-2H-benzotriazole and 2-[2′-hydroxy-5′-(methacryloyloxyethyl).
  • benzophenone-based UV absorbers examples include 2,2',4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-acetoxyethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'- dimethoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone disodium salt and the like.
  • Examples of the cyclic iminoester-based UV absorber include 2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazin-4-one), 2-methyl-3,1-benzoxazine- 4-one, 2-butyl-3,1-benzoxazin-4-one, 2-phenyl-3,1-benzoxazin-4-one, 2-(1- or 2-naphthyl)-3,1-benzo Oxazin-4-one, 2-(4-biphenyl)-3,1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl- 3,1-benzoxazin-4-one, 2-p-benzoylphenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o -methoxyphenyl-3,1-benzoxazin-4-one,
  • 1,3,5-tri(3,1-benzoxazin-4-one-2-yl)naphthalene, and 2,4,6-tri(3,1-benzoxazin-4-one-2-yl ) naphthalene 2,8-dimethyl-4H,6H-benzo(1,2-d;5,4-d′)bis-(1,3)-oxazine-4,6-dione, 2,7-dimethyl- 4H,9H-benzo(1,2-d;5,4-d′)bis-(1,3)-oxazine-4,9-dione, 2,8-diphenyl-4H,8H-benzo(1,2 -d;5,4-d')bis-(1,3)-oxazine-4,6-dione,2,7-diphenyl-4H,9H-benzo(1,2-d;5,4-d' ) bis-(1,3)-oxazine-4,6-dione, 6,6′-bis(2-methyl-4H,3,
  • the content of the ultraviolet absorber is not particularly limited, it is preferable that the measured value is within the following numerical range in the ultraviolet transmittance measurement (UV transmittance measurement) of the first protective film.
  • the content of the ultraviolet absorber is preferably 0.1 to 10% by weight, and 0.3 to 3% by weight, when the entire first pressure-sensitive adhesive layer is 100% by weight. is more preferred.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is usually 3 to 200 ⁇ m, preferably 5 to 30 ⁇ m.
  • the adhesive layer is obtained by applying an adhesive composition solution on the substrate to form a coating film, and then drying the coating film under predetermined conditions.
  • the coating method is not particularly limited, and examples thereof include roll coating, screen coating, gravure coating, and the like.
  • the drying conditions are, for example, a drying temperature of 80 to 150° C. and a drying time of 0.5 to 5 minutes.
  • the coating film may be dried under the drying conditions described above to form the pressure-sensitive adhesive layer. After that, the pressure-sensitive adhesive layer is pasted together with the separator onto the substrate.
  • a protective film is obtained by the above.
  • the pressure-sensitive adhesive layer may undergo a filtration process before being applied to the substrate.
  • the filtration accuracy (filter diameter) is preferably 0.2 ⁇ m to 10 ⁇ m, more preferably 0.2 ⁇ m to 5 ⁇ m.
  • the filtration accuracy is 0.2 ⁇ m or more, a long time or high pressure is not required to filter the adhesive. Therefore, it is suitable for industrial processes.
  • the filtration accuracy is 10 ⁇ m or less, it is possible to suitably remove foreign matter (such as gelled matter) in the pressure-sensitive adhesive that may become transfer foreign matter to the engineering plastic film, and reduce the number of transfer foreign matter to the engineering plastic film.
  • the engineering plastic film is a polymer compound film that retains a tensile strength of 49 MPa or more and a flexural modulus of 2.5 GPa or more even when exposed to an environment of 100° C. or higher for a long time, preferably 168 hours. preferable.
  • the engineering plastic film preferably has a glass transition temperature of 115° C. or higher, more preferably 130° C. or higher, and still more preferably 145° C. or higher.
  • Examples of the engineering plastic film include amorphous polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyamideimide, polyetherimide, polybenzoxazole, polyethylenenaphthalate, silicone resin, fluororesin, and liquid crystal.
  • Examples include films such as polymers.
  • As the engineering plastic film it is particularly preferable to use a polymer film having an imide bond.
  • Examples of polymer films having imide bonds include films of polyimide, polyamideimide, polyetherimide, polyimidebenzoxazole, bismaleimidetriazine, and the like.
  • a polyimide resin film is prepared by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for producing a polyimide film and drying it to form a green film (hereinafter referred to as (also referred to as "polyamic acid film”), and further subjecting the green film to a high-temperature heat treatment on a polyimide film-producing support or in a state in which the green film is peeled off from the support to cause a dehydration ring-closing reaction.
  • a polyamic acid polyimide precursor
  • polyamic acid (polyimide precursor) solution includes, for example, spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, slit die coating, etc.
  • spin coating doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, slit die coating, etc.
  • application of conventionally known solutions. means can be used as appropriate.
  • the diamines that make up the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines, etc. that are commonly used in polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferred. Diamines may be used alone or in combination of two or more.
  • the diamines are not particularly limited, and examples thereof include oxydianiline (bis(4-aminophenyl) ether) and paraphenylenediamine (1,4-phenylenediamine).
  • the tetracarboxylic acids constituting the polyamic acid include aromatic tetracarboxylic acids (including their acid anhydrides), aliphatic tetracarboxylic acids (including their acid anhydrides), and alicyclic tetracarboxylic acids, which are commonly used in polyimide synthesis. Acids (including anhydrides thereof) can be used. When these are acid anhydrides, one or two anhydride structures may be present in the molecule, but preferably those having two anhydride structures (dianhydrides) are good. Tetracarboxylic acids may be used alone, or two or more of them may be used in combination.
  • the tetracarboxylic acid is not particularly limited and includes, for example, pyrrolimethic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride.
  • the polyimide film may be a transparent polyimide film.
  • a colorless transparent polyimide which is an example of the engineering plastic film, will be described. In order to avoid complication, it is simply referred to as transparent polyimide.
  • the transparency of the transparent polyimide it is preferable that the total light transmittance is 75% or more. It is more preferably 80% or more, still more preferably 85% or more, even more preferably 87% or more, and particularly preferably 88% or more.
  • the upper limit of the total light transmittance of the transparent polyimide is not particularly limited, it is preferably 98% or less, more preferably 97% or less for use as a flexible electronic device.
  • the colorless transparent polyimide in the present invention is preferably polyimide having a total light transmittance of 75% or more.
  • Aromatic tetracarboxylic acids for obtaining highly colorless and transparent polyimide include 4,4′-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4′-oxydiphthalic acid, bis(1,3- dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)benzene-1,4 -dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene- 1,2-dicarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 4,4′-[(3-oxo-1,3-dihydro-2-benzo
  • Aromatic tetracarboxylic acids may be used alone, or two or more of them may be used in combination.
  • the amount of aromatic tetracarboxylic acids to be copolymerized is, for example, preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass of the total tetracarboxylic acids when heat resistance is emphasized. More preferably, it is 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • Alicyclic tetracarboxylic acids include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, 1 , 2,4,5-cyclohexanetetracarboxylic acid, 3,3′,4,4′-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3,5,6-tetracarboxylic acid, Bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene-2,3,
  • dianhydrides having two acid anhydride structures are preferred, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic acid Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic An acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. In addition, these may be used independently and may use 2 or more types together.
  • the amount of alicyclic tetracarboxylic acids to be copolymerized is, for example, preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass of the total tetracarboxylic acids when importance is placed on transparency. % or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • Tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalenetricarboxylic acid, diphenylether-3,3′,4′-tricarboxylic acid, and diphenylsulfone-3,3′,4′-tricarboxylic acid.
  • acids or hydrogenated products of the above aromatic tricarboxylic acids such as hexahydrotrimellitic acid; Glycol bistrimellitate, and their monoanhydrides and esters.
  • monoanhydrides having one acid anhydride structure are preferred, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferred. In addition, these may be used individually and may be used in combination.
  • Dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, or the above aromatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acids and hydrogenated products thereof are preferred, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferred.
  • dicarboxylic acids may be used alone or in combination.
  • Diamines or isocyanates for obtaining highly colorless and transparent polyimides are not particularly limited, and polyimide synthesis, polyamideimide synthesis, aromatic diamines, aliphatic diamines, and alicyclic diamines commonly used in polyamide synthesis. , aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. In addition, the use of aromatic diamines having a benzoxazole structure makes it possible to exhibit high heat resistance, high elastic modulus, low thermal shrinkage, and low coefficient of linear expansion. Diamines and isocyanates may be used alone or in combination of two or more.
  • aromatic diamines examples include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy)benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′- Bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone , 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,
  • some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl or alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and Some or all of the hydrogen atoms in the alkyl or alkoxyl groups of 1 to 3 may be substituted with halogen atoms.
  • aromatic diamines having a benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, oxazole, 5-amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2′-p-phenylenebis(5-aminobenzoxazole), 2 , 2′-p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-aminobenzoxazolo)benzene, 2,6-(4,4′-diamino diphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl)benzo
  • aromatic diamines may be used singly or in combination.
  • Alicyclic diamines include, for example, 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 4,4'-methylenebis(2,6-dimethylcyclohexylamine) and the like.
  • 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferred, and 1,4-diaminocyclohexane is more preferred.
  • the alicyclic diamines may be used alone or in combination.
  • Diisocyanates include, for example, diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3' - or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2 '- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4, 3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate,
  • Diisocyanates may be used alone or in combination.
  • the engineering plastic film is preferably a polyimide film.
  • the engineering plastic film is a polyimide film, it has excellent heat resistance. Further, when the engineering plastic film is a polyimide film, it can be suitably cut with an ultraviolet laser.
  • the thickness of the engineering plastic film is preferably 3 ⁇ m or more, more preferably 7 ⁇ m or more, still more preferably 14 ⁇ m or more, and still more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the engineering plastic film is not particularly limited, it is preferably 250 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less for use as a flexible electronic device.
  • the average coefficient of linear expansion (CTE) of the engineering plastic film between 30°C and 250°C is preferably 50 ppm/K or less. It is more preferably 45 ppm/K or less, still more preferably 40 ppm/K or less, even more preferably 30 ppm/K or less, and particularly preferably 20 ppm/K or less. Moreover, it is preferably -5 ppm/K or more, more preferably -3 ppm/K or more, and still more preferably 1 ppm/K or more.
  • CTE is a factor representing reversible expansion and contraction with respect to temperature.
  • the CTE of the engineering plastic film refers to the average value of the CTE in the coating direction (MD direction) and the CTE in the width direction (TD direction) of the polyamic acid.
  • the method for measuring the CTE of the engineering plastic film is according to the method described in Examples.
  • the engineering plastic film is a transparent polyimide film
  • its yellowness index (hereinafter also referred to as "yellow index” or “YI”) is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less. and more preferably 3 or less.
  • the lower limit of the yellowness index of the transparent polyimide is not particularly limited, it is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more for use as a flexible electronic device. is.
  • the haze is preferably 1.0 or less, more preferably 0.8 or less, even more preferably 0.5 or less, and still more preferably 0.3 or less.
  • the lower limit is not particularly limited, industrially, there is no problem if it is 0.01 or more, and it may be 0.05 or more.
  • the thermal shrinkage rate of the engineering plastic film between 30°C and 500°C is preferably ⁇ 0.9% or less, more preferably ⁇ 0.6% or less. Thermal shrinkage is a factor representing irreversible expansion and contraction with respect to temperature.
  • the tensile strength at break of the engineering plastic film is preferably 60 MPa or more, more preferably 80 MPa or more, and still more preferably 100 MPa or more. Although the upper limit of the tensile strength at break is not particularly limited, it is practically less than about 1000 MPa. When the tensile strength at break is 60 MPa or more, it is possible to prevent the engineering plastic film from being broken when peeled from the inorganic substrate.
  • the tensile strength at break of the engineering plastic film refers to the average value of the tensile strength at break in the machine direction (MD direction) and the tensile strength at break in the width direction (TD direction) of the engineering plastic film.
  • the method for measuring the tensile strength at break of the engineering plastic film is according to the method described in Examples.
  • the tensile elongation at break of the engineering plastic film is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more. When the tensile elongation at break is 1% or more, the handleability is excellent.
  • the tensile elongation at break of the engineering plastic film refers to the average value of the tensile elongation at break in the machine direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the engineering plastic film.
  • MD direction machine direction
  • TD direction width direction
  • the method for measuring the tensile elongation at break of the engineering plastic film is according to the method described in Examples.
  • the tensile modulus of the engineering plastic film is preferably 2.5 GPa or more, more preferably 3 GPa or more, and still more preferably 4 GPa or more.
  • the tensile modulus is preferably 20 GPa or less, more preferably 15 GPa or less, and even more preferably 12 GPa or less.
  • the engineering plastic film can be used as a flexible film.
  • the tensile elastic modulus of the engineering plastic film refers to the average value of the tensile elastic modulus in the machine direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the engineering plastic film.
  • the method for measuring the tensile modulus of the engineering plastic film is according to the method described in Examples.
  • the thickness unevenness of the engineering plastic film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. If the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow areas.
  • the engineering plastic film is preferably obtained in the form of being wound as a long engineering plastic film with a width of 300 mm or more and a length of 10 m or more at the time of production. Morphology is more preferred.
  • the engineering plastic film is wound into a roll, transportation in the form of a heat-resistant engineering plastic film wound into a roll is facilitated.
  • a lubricant particles having a particle diameter of about 10 to 1000 nm is added and contained in the engineering plastic film in an amount of about 0.03 to 3% by mass. It is preferable to provide the surface of the engineering plastic film with fine irregularities to ensure slipperiness.
  • a glass plate, a semiconductor wafer, a metal plate, a ceramic plate, or the like can be used as the inorganic substrate.
  • the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (no alkali), Borosilicate glass (microsheet), aluminosilicate glass, etc. are included. Among these, those having a coefficient of linear expansion of 5 ppm/K or less are desirable.
  • EAGLE "AN100” manufactured by Asahi Glass Co., Ltd., “OA10” manufactured by Nippon Electric Glass Co., Ltd., “AF32” manufactured by SCHOTT Co., Ltd., and the like are desirable.
  • the semiconductor wafer include silicon wafers, germanium, silicon-germanium, gallium-arsenide, aluminum-gallium-indium, nitrogen-phosphorus-arsenic-antimony, SiC, InP (indium phosphide), InGaAs, GaInNAs, LT, LN, and ZnO. (zinc oxide), CdTe (cadmium telluride), ZnSe (zinc selenide), and the like.
  • the metal plate examples include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni system Invar alloys, Super Invar alloys, and various stainless steels. included. In addition to these metals, multi-layer metal plates obtained by adding other metal layers and ceramic layers are also included.
  • the ceramic plate a single or composite sintered body of alumina, magnesia, calcia, silicon nitride, boron nitride, aluminum nitride, beryllium oxide, or the like can be used. When a ceramic substrate is used in the present invention, it is preferable to use a ceramic substrate whose surface is smoothed by glass glaze treatment.
  • the surface roughness of the inorganic substrate is preferably in the range of 0.01 to 2 nm. At least, when the inorganic substrate is laminated with the engineering plastic, the surface roughness of the surface opposite to the engineering plastic film is preferably in the range of 0.01 to 2 nm. Furthermore, the preferred range of surface roughness is 0.01 to 0.8 nm, more preferably 0.01 to 0.3 nm. By controlling the surface roughness of the inorganic substrate within this range, adhesion with the engineering plastic film, which has a smooth surface, which is suitable for forming functional elements, is improved, and peeling of the engineering plastic film during the process can be suppressed. can.
  • the thickness of the inorganic substrate is not particularly limited, the thickness is preferably 10 mm or less, more preferably 3 mm or less, and still more preferably 1.3 mm or less from the viewpoint of handleability.
  • the lower limit of the thickness is not particularly limited, it is preferably 0.07 mm or more, more preferably 0.15 mm or more, and still more preferably 0.3 mm or more.
  • the inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated via only the silane coupling agent layer.
  • the silane coupling agent refers to a compound containing 10% by mass or more of Si (silicon) component.
  • the silane coupling agent preferably further has an alkoxy group in its structure. Moreover, it is desirable that the silane coupling agent does not contain a methyl group.
  • the silane coupling agent layer By using the silane coupling agent layer, the thickness of the layer between the engineering plastic film and the inorganic substrate can be reduced. As a result, the amount of degassed components during heating is small, the elution is less likely to occur even in a wet process, and even if elution does occur, the amount of elution is minimal.
  • the silane coupling agent improves heat resistance, it preferably contains a large amount of a silicon oxide component, and particularly preferably has heat resistance at a temperature of about 400°C.
  • the thickness of the silane coupling agent layer is preferably less than 0.2 ⁇ m.
  • the range for use as a flexible electronic device is preferably 100 nm or less (0.1 ⁇ m or less), more preferably 50 nm or less, and even more preferably 10 nm. When normally produced, the thickness is about 0.10 ⁇ m or less. Also, in a process that requires as little silane coupling agent as possible, a thickness of 5 nm or less can be used. If the thickness is less than 1 nm, the peel strength may be lowered or there may be a portion where the adhesive is not adhered, so the thickness is preferably 1 nm or more.
  • the silane coupling agent is not particularly limited, but preferably has an amino group or an epoxy group.
  • Specific examples of silane coupling agents include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(amino ethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 2- (3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane
  • the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, preferably 500 MPa or less. Since the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, the engineering plastic film can absorb the shear force generated when the engineering plastic film and the protective film (the adhesive layer) are laminated. and the protective film (the pressure-sensitive adhesive layer). In addition, since the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, the shearing force generated during lamination can be absorbed when the engineering plastic film with the protective film is attached to the inorganic substrate. Therefore, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film.
  • the method for measuring the shear peel strength is according to the method described in Examples. The shear peel strength can be controlled by the composition of the pressure-sensitive adhesive layer.
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less, preferably 21 N/mm 2 or less. Since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, wettability between the engineering plastic film and the pressure-sensitive adhesive layer is good. In addition, since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, it is sufficiently soft, and unevenness, wrinkles, and air bubbles are less likely to occur during lamination of the engineering plastic film and the protective film, and processing is easy.
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less, it is possible to alleviate the shearing force generated during lamination of the engineering plastic film and the inorganic substrate. As a result, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film.
  • the method for measuring the Martens hardness is according to the method described in Examples.
  • the Martens hardness can be controlled by the composition of the pressure-sensitive adhesive layer and the hardness and crosslink density of the resin used in the pressure-sensitive adhesive layer.
  • a low hardness urethane resin with a low crosslink density a low hardness silicone resin with a low crosslink density
  • a low hardness acrylic resin with a low crosslink density are used as the resin constituting the adhesive layer. use.
  • the number of non-nucleated air bubbles between the inorganic substrate and the engineering plastic film is 1/cm 2 or less.
  • the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, and the Martens hardness of the adhesive layer is 30 N/mm 2 or less. It becomes possible to achieve the number of non-nucleated bubbles between 1/cm 2 or less.
  • the lower limit of the number of bubbles is preferably small, and the number of bubbles is, for example, 0/cm 2 or more.
  • the method for measuring the number of voids without nuclei between the inorganic substrate and the engineering plastic film is according to the method described in Examples.
  • the peel strength between the engineering plastic film and the inorganic substrate is preferably 0.3 N/cm or less. This makes it very easy to separate the engineering plastic film from the inorganic substrate after the device is formed on the engineering plastic film. Therefore, it is possible to manufacture a device connection body that can be mass-produced, thereby facilitating the manufacture of flexible electronic devices.
  • the peel strength is preferably 0.25 N/cm or less, more preferably 0.2 N/cm or less, still more preferably 0.15 N/cm or less, and particularly preferably 0.12 N/cm or less. is. Moreover, the peel strength is preferably 0.03 N/cm or more.
  • the peel strength is the value of the laminate (initial peel strength) after bonding the engineering plastic film and the inorganic substrate together and heat-treating the laminate at 100° C. for 10 minutes in an air atmosphere. Further, it is preferable that the peel strength of the laminate obtained after the initial peel strength measurement is further heat treated at 300° C. for 1 hour in a nitrogen atmosphere is within the above range (peel strength after heat treatment at 300° C.).
  • the adhesive strength between the protective film and the engineering plastic film is preferably in the range of 0.001 to 0.3 N/cm.
  • the adhesion strength between the engineering plastic film and the inorganic substrate is preferably 0.3 N/cm or less for easy separation in the post-process. It is possible to remove the protective film without
  • the peeling speed when peeling the protective film and the engineering plastic film is preferably 50 mm/min or less, more preferably 100 mm/min or less.
  • peeling the protective film and the engineering plastic film if a speed-dependent pressure-sensitive adhesive layer is used, the adhesive strength (peel strength) between the protective film and the engineering plastic film is reduced by high-speed peeling. may exceed the peel strength (adhesive strength) between the engineering plastic film and the inorganic substrate. In this case, by appropriately selecting the peeling speed within the range of the peeling speed, the interface to be peeled can be selected.
  • the engineering plastic film with a protective film is a protective film having a substrate and an adhesive layer; and an engineering plastic film provided on the adhesive layer,
  • the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less.
  • the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, preferably 500 MPa or less. Since the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, the engineering plastic film can absorb the shear force generated when the engineering plastic film and the protective film (the adhesive layer) are laminated. and the protective film (the pressure-sensitive adhesive layer). In addition, since the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, the shearing force generated during lamination can be absorbed when the engineering plastic film with the protective film is attached to the inorganic substrate. Therefore, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film.
  • the method for measuring the shear peel strength is according to the method described in Examples. The shear peel strength can be controlled by the composition of the pressure-sensitive adhesive layer.
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less, preferably 21 N/mm 2 or less. Since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, wettability between the engineering plastic film and the pressure-sensitive adhesive layer is good. In addition, since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, it is sufficiently soft, and unevenness, wrinkles, and air bubbles are less likely to occur during lamination of the engineering plastic film and the protective film, and processing is easy.
  • the adhesive layer has a Martens hardness of 30 N/mm 2 or less, it is possible to alleviate the shearing force generated during lamination of the engineering plastic film and the inorganic substrate. As a result, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film.
  • the method for measuring the Martens hardness is according to the method described in Examples.
  • the Martens hardness can be controlled by the composition of the pressure-sensitive adhesive layer and the hardness and crosslink density of the resin used in the pressure-sensitive adhesive layer.
  • the resin constituting the pressure-sensitive adhesive layer use a low hardness urethane resin with a low cross-linking density, a low hardness silicone resin with a low cross-linking density, or a low hardness acrylic resin with a low cross-linking density. and the like.
  • the number of air bubbles without nuclei between the engineering plastic film and the pressure-sensitive adhesive layer is preferably 50/cm 2 or less, and 45/cm 2 or less. more preferably 40/cm 2 or less.
  • the lower limit of the number of bubbles is preferably small, but the number of bubbles is, for example, 0/cm 2 or more, and industrially may be 1/cm 2 or more.
  • the laminate obtained by laminating the engineering plastic film with a protective film to an inorganic substrate is an inorganic
  • the generation of air bubbles without nuclei between the substrate and the engineering plastic film is greatly suppressed.
  • FIG. 1 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to this embodiment.
  • the engineering plastic film 10 with a protective film is a protective film 12 having a substrate 14 and an adhesive layer 16; and an engineering plastic film 18 provided on the adhesive layer 16 .
  • the manufacturing method of the engineering plastic film 10 with a protective film is not particularly limited, and a known method can be adopted.
  • the protective film 12 and the engineering plastic film 18 are prepared separately, and the protective film 12 is attached to one surface of the engineering plastic film 18 to obtain the engineering plastic film 10 with the protective film.
  • An engineering plastic film with a protective film only needs to have a protective film laminated on one side of the engineering plastic film, and another protective film may be laminated on the other side.
  • FIG. 2 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to another embodiment.
  • the engineering plastic film 11 with a protective film is a protective film 12 having a substrate 14 and an adhesive layer 16; an engineering plastic film 18; A protective film 20 having a substrate 22 and an adhesive layer 24,
  • the protective film 12 is laminated on one side of the engineering plastic film 18,
  • a protective film 20 is laminated on the other surface of the engineering plastic film 18 .
  • the adhesive layer 16 is laminated facing one surface of the engineering plastic film 18
  • the adhesive layer 24 is laminated facing the other surface of the engineering plastic film 18 .
  • a method for manufacturing the engineering plastic film 11 with a protective film is not particularly limited, and a known method can be adopted.
  • the protective film 12, the engineering plastic film 18, and the protective film 20 are separately produced, the protective film 12 is attached to one surface of the engineering plastic film 18, and the protective film 20 is attached to the other surface of the engineering plastic film 18.
  • the engineering plastic film 11 with a protective film can be obtained by laminating them together.
  • FIG. 3 is a cross-sectional view schematically showing a laminate according to this embodiment.
  • the laminate 40 is a protective film 12 having a substrate 14 and an adhesive layer 16; an engineering plastic film 18 provided on the adhesive layer 16; and an inorganic substrate 42 provided on the engineering plastic film 18,
  • the inorganic substrate 42 and the engineering plastic film 18 are laminated in contact with each other, or laminated via only a silane coupling agent layer (not shown).
  • the laminate 40 can be produced, for example, by the following procedure. First, an engineering plastic film 10 with a protective film and an inorganic substrate 42 are prepared. When using the engineering plastic film 11 with a protective film in which protective films are provided on both sides of the engineering plastic film 18, the protective film 20 provided on the other side of the engineering plastic film 11 with a protective film is peeled off. Thus, the engineering plastic film 10 with a protective film can be obtained. When providing the layered product 40 with a silane coupling agent layer, at least one surface of the inorganic substrate 42 is treated with a silane coupling agent.
  • one surface of the inorganic substrate 42 (when a silane coupling agent layer is provided, the surface treated with the silane coupling agent) and the engineering plastic film 18 of the engineering plastic film 10 with a protective film are superimposed.
  • the laminate 40 can also be obtained by lamination.
  • the silane coupling agent treatment method known methods such as spin coating, spray coating, and dip coating can be used, and the silane coupling agent vapor generated by heating the silane coupling agent is deposited on the inorganic substrate. However, processing is possible (vapor deposition method).
  • FIG. 4 is a diagram schematically showing an example of a silane coupling agent treatment apparatus used in vapor deposition.
  • the silane coupling agent processing apparatus includes a processing chamber (chamber) 36 connected to a gas inlet 32, an exhaust port 38, and a chemical liquid tank (silane coupling agent tank) 33.
  • a chemical liquid tank (silane coupling agent tank) 33 is filled with a silane coupling agent, and the temperature is controlled by a hot water tank (hot water bath) 34 having a heater 35 .
  • a gas introduction port 39 is connected to the chemical liquid tank (silane coupling agent tank) 33 so that gas can be introduced from the outside. The gas flow rate is adjusted by a flow meter 31 connected to the gas inlet 39 .
  • the vaporized silane coupling agent in the chemical liquid tank 33 is pushed out into the processing chamber 36, and the substrate 37 (inorganic substrate, engineering plastic film, etc.) placed in the processing chamber 36 is pushed out. It is deposited as a silane coupling agent layer on top.
  • Examples of the method of pressurization include ordinary pressing or laminating in the air or pressing or laminating in a vacuum. For example, above 200 mm), lamination in air is desirable. On the other hand, in the case of a laminate having a small size of about 200 mm or less, pressing in a vacuum is preferable.
  • the degree of vacuum is sufficient with a normal oil rotary pump, and about 10 Torr or less is sufficient.
  • a preferable pressure is 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is high, the substrate may be damaged, and if the pressure is low, some parts may not adhere.
  • the preferred temperature is 90° C. to 300° C., more preferably 100° C. to 250° C. If the temperature is high, the film may be damaged, and if the temperature is low, adhesion may be weak.
  • the laminate 40 according to the present embodiment is obtained.
  • F1 and F2 Commercially available films were used as the engineering plastic films F1 and F2.
  • F1 Upilex (registered trademark) 25S (polyimide film manufactured by Ube Industries, Ltd., thickness 25 ⁇ m)
  • F2 Xenomax (registered trademark)
  • F15LR2 polyimide film manufactured by Toyobo Co., Ltd., thickness 15 ⁇ m
  • the dispersion (“Snowtex (registered trademark) DMAC-ST” manufactured by Nissan Chemical Industries, Ltd.) in which colloidal silica is dispersed in dimethylacetamide has silica in the polyamic acid solution with a total polymer solid content of 0.14 mass. %.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic anhydride
  • BPDA 3,3′,4,4′-biphenyltetracarboxylic acid
  • ODPA 4.85 parts by mass of
  • Polyamic acid solution 1 was applied to the non-lubricating surface of polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) using a comma coater so that the final film thickness was 25 ⁇ m. It was dried at 110° C. for 10 minutes. After drying, the polyamic acid film that has acquired self-supporting properties is separated from the A4100 film used as the support, passed through a pin tenter having a pin sheet with pins arranged thereon, and gripped by inserting the ends of the film into the pins so that the film does not break.
  • Test pieces were obtained by cutting the engineering plastic films F1 to F3 into strips of 100 mm ⁇ 10 mm in the machine direction (MD direction) and the width direction (TD direction). A test piece was cut from the center portion in the width direction. Using a tensile tester (manufactured by Shimadzu Corporation, Autograph (R), model name AG-5000A), the temperature is 25 ° C., the tensile speed is 50 mm / min, and the distance between chucks is 40 mm. Elastic modulus, tensile strength at break and tensile elongation at break were measured. Table 1 shows the results.
  • CTE Linear expansion coefficient of engineering plastic film>
  • MD direction machine direction
  • TD direction width direction
  • the expansion ratio is measured under the following conditions, and the intervals are 2 ° C. such as 30 ° C. to 32 ° C. and 32 ° C. to 34 ° C. This measurement was performed up to 300° C., and the average value of all measured values was calculated as CTE.
  • Table 1 shows the results.
  • Protective films P1, 2 and 4 were commercially available.
  • P1 Industrial FIXFILM (registered trademark) HG2 manufactured by Fujicopian Co., Ltd.
  • P2 Industrial FIXFILM (registered trademark) HG3 manufactured by Fujicopian Co., Ltd.
  • P4 Sun A Kaken Co., Ltd. SUNYTECT (registered trademark) SAT type
  • PET film manufactured by Toyobo Co., Ltd., A4100, 25 ⁇ m, 50 ⁇ m (polyethylene terephthalate film)
  • PET film Cosmo Shine SRF (registered trademark) manufactured by Toyobo Co., Ltd., 80 ⁇ m PP film: manufactured by Toray Industries, Inc., Torayfan (registered trademark), one-sided corona treatment, 26 ⁇ m (polypropylene film)
  • ⁇ Preparation of adhesive composition 1> In a separable flask, 55.3 parts by mass of polyol (trifunctional, polyol obtained by addition polymerization of propylene oxide and ethylene oxide to glycerin, SANNIX (registered trademark) GL3000 manufactured by Sanyo Chemical Industries, Ltd.), 4.7 parts by mass of Duranate D101 (polyisocyanate manufactured by Asahi Kasei Chemicals Co., Ltd.), 39.7 parts by mass of toluene, and 0.02 parts by mass of dibutyltin dilaurate (DBTDL) are added and heated at 45 ° C. to 55 ° C. for 2 hours with stirring to react.
  • polyol trifunctional, polyol obtained by addition polymerization of propylene oxide and ethylene oxide to glycerin, SANNIX (registered trademark) GL3000 manufactured by Sanyo Chemical Industries, Ltd.
  • Duranate D101 polyisocyanate manufactured by Asahi Kas
  • polyurethane polyol-containing composition 1 To 100 parts by mass of polyurethane polyol-containing composition 1, 7.7 parts by mass of Duranate D101, 2 parts by mass of an ultraviolet absorber (Cyasorb UV-3638 (manufactured by CYTEC)), and 50 parts by mass of ethyl acetate are blended. Stir well.
  • the adhesive composition 1 was obtained by filtering the obtained adhesive composition with a PTFE cartridge filter (0.45 ⁇ m).
  • the pressure-sensitive adhesive composition 1 was applied to a substrate (PP) so that the thickness of the pressure-sensitive adhesive when dried was 10 to 15 ⁇ m. After that, it was dried by heating at 130° C. for 2 minutes, and left still for 3 days in a constant temperature bath at 40° C. (aging step) to cure (crosslink) the adhesive to prepare a protective film P3.
  • Addition of adhesive composition 2 Coronate HX (Tosoh 1.5 parts by weight of polyisocyanate for coatings manufactured by Co., Ltd.) and 0.3 parts by weight of KP-341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., polyether-modified organosiloxane) as modified organosiloxane are added and mixed by stirring. Thus, an adhesive composition 2 was obtained.
  • Coronate HX Tosoh 1.5 parts by weight of polyisocyanate for coatings manufactured by Co., Ltd.
  • KP-341 trade name, manufactured by Shin-Etsu Chemical Co., Ltd., polyether-modified organosiloxane
  • ⁇ Production of protective film P6> While stirring 100 parts by mass of urethane-based solvent-based adhesive US-902-50 (manufactured by Lion Specialty Chemicals, ethyl acetate solvent, solid content 50%), 5.4 parts by mass of cross-linking agent N (manufactured by Lion Specialty Chemicals) , and 2 parts by mass of an ultraviolet absorber (Cyasorb UV-3638 (manufactured by CYTEC)) were added and reacted at 40° C. for 20 minutes. After filtering the obtained solution with a PTFE cartridge filter (0.45 ⁇ m), it is coated on a PET film that has been previously corona-treated so that the final film thickness is 10 ⁇ m, and heated at 100° C. for 2 minutes. to obtain a protective film P6.
  • urethane-based solvent-based adhesive US-902-50 manufactured by Lion Specialty Chemicals, ethyl acetate solvent, solid content 50%
  • cross-linking agent N manufactured by Lion Specialt
  • PF8 ⁇ Preparation of protective film P8> PF8 was obtained in the same manner as P7 except that a PET film having a thickness of 50 ⁇ m was used as the base material.
  • ⁇ Preparation of adhesive composition 4> In a separable flask equipped with a stirrer, a reflux condenser, and a thermometer, 100 parts by mass of glycerin PO EO (trade name: Sannix GL-3000), 4.5 parts by mass of hexamethylene diisocyanate, and 56.5 parts by mass Parts of toluene and 0.03 parts by mass of dibutyltin dilaurate were charged, and the temperature was gradually raised while stirring, and the reaction was carried out at 60° C. for 3 hours. When the NCO groups in the content after the reaction were measured using an infrared spectrophotometer (IR), no residual NCO groups could be confirmed.
  • IR infrared spectrophotometer
  • the pressure-sensitive adhesive composition 4 was applied to a PET film having a thickness of 25 ⁇ m and allowed to stand for 2 minutes in a hot air circulating dryer set at 100° C. to evaporate the solvent. This pressure-sensitive adhesive sheet was allowed to stand in an environment of 40° C. for 3 days to complete the curing reaction of the pressure-sensitive adhesive and the polyisocyanate cross-linking agent, thereby obtaining a protective film P9.
  • An adhesive composition 5 was obtained by mixing the following.
  • Linear polyorganosiloxane having vinyl groups only at both ends (solvent-free type, Mw: 80,000): 68.30 parts
  • Organohydrogenpolysiloxane (solvent-free type, Mw: 2,000): 0.41 Part platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., PL-56): 1.00 parts reaction control agent (3-methyl-1-butyn-3-ol): 0.10 parts toluene: 30.19 parts
  • the pressure-sensitive adhesive composition 5 was applied to a COSMOSHINE SRF having a thickness of 80 ⁇ m, and allowed to stand for 2 minutes in a hot air circulating dryer set at 100° C. to evaporate the solvent.
  • This pressure-sensitive adhesive sheet was allowed to stand in an environment of 40° C. for 3 days to complete the curing reaction of the pressure-sensitive adhesive and the polyisocyanate cross-linking agent, thereby obtaining protective film P10.
  • Table 2 shows the combinations of protective film substrates and adhesives used in Examples and Comparative Examples.
  • the hardness of the pressure-sensitive adhesive layer of the protective film was measured using a dynamic ultra-micro hardness tester (manufactured by Shimadzu Corporation, DUH-211S).
  • the substrate side of the protective film was fixed to a slide glass using Aron Alpha (registered trademark), and the measurement was performed with a 50-fold objective lens, a load speed of 0.2926 mN/s, and a pushing depth of 1 ⁇ m.
  • Triangular 115 was used as an indenter. Table 3 shows the measurement results.
  • Laminated film 1 in Example 1 was obtained by bonding P1 to one side (the side to be bonded to the inorganic substrate) of engineering plastic film F2 and P1 to the other side.
  • the bonding was specifically performed by lamination in a clean environment. Lamination was performed between a metal roll and a rubber roll, and the temperature during lamination was normal temperature of 22° C. and 52% RH, and the sheets were successively attached one by one.
  • the unwinding tension at this time was 120N for the polyimide film and 160N for the protective film. Almost the same tension was applied to the winding side.
  • Protective film-attached engineering plastic films 2 to 11 were obtained in the same manner as the protective film-attached engineering plastic film 1, except that the combination of the protective film and the engineering plastic film used was changed to the combination shown in Table 3. P1 was laminated on the surface of the engineering plastic film to be bonded to the inorganic substrate from the viewpoint of preventing scratches on the surface and adhesion of foreign substances.
  • FIG. 5 is a diagram for explaining the shear peel test.
  • a laminated film in which an engineering plastic film 18 and a protective film 12 are bonded together was prepared.
  • the protective film 18 is composed of the adhesive layer 16 and the base material 14 .
  • the width of the laminated film was 10 mm, and the adhesive layer 16 and the engineering plastic film 18 were laminated and cut so that the contact area was 10 mm ⁇ 25 mm.
  • a support film 41 (made of polystyrene, thickness 0.8 mm) is applied to the surfaces of the base material 14 and the engineering plastic film 18 that do not come into contact with the adhesive layer 16.
  • the protective film 12 and the engineering plastic film 18 are each held with a chuck together with the support film 41, and a tensile tester (manufactured by Shimadzu Corporation, Autograph (R), model name AG-5000A) is used at 25 ° C. and 100 mm / min. A shear peel test was performed. Table 3 shows the results.
  • ⁇ Number of bubbles between engineering plastic film/protective film> For engineering plastic films 1 to 12 with a protective film, 30 points were observed at 100 times using a digital microscope VH-Z100R manufactured by Keyence (the range visible with the microscope is counted as 1 point), and the core foreign matter. No air bubble counts were performed. Specifically, three sheets of the protective film were cut out to a size of 10 cm ⁇ 10 cm, and measurements were taken at 10 points on each of the four corners, between them, and at two points near the center. That is, a total of 30 points were measured with three sheets. Note that the range of one visual field when observed with a digital microscope VH-Z100R at a magnification of 100 is 8.6 ⁇ 10 6 ⁇ m 2 . Table 3 shows the results. Observation was performed from the surface of the protective film that was not attached to the inorganic substrate.
  • a glass substrate was prepared.
  • the glass substrate is OA10G glass (manufactured by NEG Co., Ltd.) having a thickness of 0.7 mm cut into a size of 100 mm ⁇ 100 mm.
  • the glass substrate used was washed with pure water, dried, irradiated with a UV/O 3 irradiation device (SKR1102N-03 manufactured by LAN Technical Co., Ltd.) for 1 minute, and then washed.
  • a silane coupling agent (SCA) was applied onto the glass substrate by a vapor phase coating method to form a silane coupling agent layer, thereby obtaining a first laminate (step A).
  • the application of the silane coupling agent to the glass substrate was performed using the silane coupling agent treatment apparatus shown in FIG. 130 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-903) was placed in a 1 L chemical solution tank, and the water bath outside was heated to 42°C. The emerging vapors were then sent into the chamber along with clean dry air. The gas flow rate was 22 L/min, and the substrate temperature was 21.degree. The temperature of clean dry air was 23° C. and 1.2% RH. Since the exhaust was connected to the negative pressure exhaust port, it was confirmed by a differential pressure gauge that the chamber had a negative pressure of about 2 Pa.
  • the engineering plastic film with a protective film was cut into 70 mm x 70 mm pieces, and the protective film on the surface to be attached to the inorganic substrate was peeled off.
  • the silane coupling agent layer of the glass treated with the silane coupling agent and the engineering plastic film with the protective film were laminated together, and the glass substrate, the silane coupling agent layer, the engineering plastic film, and the protective film were laminated in this order.
  • a laminate was obtained.
  • a laminator (MRK-1000 manufactured by MCK Co.) was used for lamination, and the lamination conditions were air source pressure: 0.7 MPa, temperature: 22° C., humidity: 55% RH, and lamination speed: 50 mm/sec.
  • Examples 2-9, Comparative Examples 1-3 A laminate was produced in the same manner as in Example 1, except that the engineering plastic film with a protective film used was changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A laminate comprising: a protection film having a base material and an adhesive layer; an engineering plastic film provided on the adhesive layer; and an inorganic substrate provided on the engineering plastic film, wherein the inorganic substrate and the engineering plastic film are laminated in contact with each other or are laminated with a silane coupling agent solely existing therebetween, the shear detachment strength between the engineering plastic film and the adhesive layer is 700 MPa or less, the Martens hardness of the adhesive layer is 30 N/mm2 or less, the number of air bubbles that are located between the inorganic substrate and the engineering plastic film and that do not have a nucleus is not more than one bubble/cm2.

Description

積層体、及び、保護フィルム付きエンジニアリングプラスチックフィルムLaminates and engineering plastic films with protective films
 本発明は、積層体、及び、保護フィルム付きエンジニアリングプラスチックフィルムに関する。 The present invention relates to a laminate and an engineering plastic film with a protective film.
 近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムが基板として用いられている。 In recent years, with the aim of reducing the weight, size, thickness, and flexibility of functional elements such as semiconductor elements, MEMS elements, and display elements, the development of technology for forming these elements on polymer films has been actively carried out. That is, conventionally, as a material for the base material of electronic parts such as information communication equipment (broadcasting equipment, mobile radio, portable communication equipment, etc.), radar, high-speed information processing equipment, etc., it has heat resistance and the signal of information communication equipment Ceramics have been used to support higher frequencies (up to the GHz band), but ceramics are not flexible and are difficult to thin. uses a polymer film as the substrate.
 近年、フレキシブル電子デバイスを製造するための基板材料として、ポリイミド、芳香族ポリアミド、ポリアミドイミド、ポリカーボネート、ポリエチレンナフタレート、ポリエチレンテレフタレート等のエンジニアリングプラスチックフィルム(以下、「エンプラフィルム」ともいう)の使用が検討されている。エンプラフィルムは連続的に長尺に製造され、巻き取られてロール状とされるため、一般に、フレキシブルデバイスの製造においては、ロール・トゥ・ロール方式による製造ラインが理想的であると受け止められている。
 一方、従来のディスプレイデバイス、センサーアレイ、タッチスクリーン、プリント配線基板などの電子デバイスの多くは、ガラス基板、半導体ウエハ、ガラス繊維補強エポキシ基板などの硬質なリジッド基板が使われており、製造装置についても、このようなリジッドな基板を使用することを前提に構成されている。そこで、既存インフラを利用して機能素子をエンプラフィルム上に形成するために、エンプラフィルムをリジッドな支持体(ガラス板、セラミック板、シリコンウエハ、金属板などの無機基板)に貼り合わせ、その上に所望の素子を形成した後に無機基板から剥離するというプロセスが用いられている。
In recent years, the use of engineering plastic films (hereinafter also referred to as "engineering plastic films") such as polyimide, aromatic polyamide, polyamideimide, polycarbonate, polyethylene naphthalate, and polyethylene terephthalate has been studied as a substrate material for manufacturing flexible electronic devices. It is Since engineering plastic film is continuously manufactured in a long length and wound up into a roll, it is generally accepted that a roll-to-roll production line is ideal for the production of flexible devices. there is
On the other hand, many conventional electronic devices such as display devices, sensor arrays, touch screens, and printed wiring boards use hard rigid substrates such as glass substrates, semiconductor wafers, and glass fiber reinforced epoxy substrates. is also configured on the premise of using such a rigid substrate. Therefore, in order to form a functional element on an engineering plastic film using existing infrastructure, the engineering plastic film is laminated to a rigid support (inorganic substrate such as a glass plate, ceramic plate, silicon wafer, metal plate, etc.), and then A process is used in which a desired element is formed on the substrate and then separated from the inorganic substrate.
 ところで、エンプラフィルムと無機基板とを貼り合わせた積層体に所望の機能素子を形成するプロセスにおいては、該積層体は高温に曝されることが多い。例えば、ポリシリコンや酸化物半導体などの機能素子の形成においては200℃~600℃程度の温度域での工程が必要である。また、水素化アモルファスシリコン薄膜の作製においては200~300℃程度の温度がフィルムに加わる場合あり、さらにアモルファスシリコンを加熱、脱水素化して低温ポリシリコンとするためには450℃~600℃程度の加熱が必要になる場合がある。したがって、積層体を構成するエンプラフィルムには耐熱性が求められる。 By the way, in the process of forming a desired functional element in a laminate obtained by laminating an engineering plastic film and an inorganic substrate, the laminate is often exposed to high temperatures. For example, formation of functional elements such as polysilicon and oxide semiconductors requires a process in a temperature range of about 200.degree. C. to 600.degree. In the production of a hydrogenated amorphous silicon thin film, a temperature of about 200 to 300° C. may be applied to the film. Heating may be required. Therefore, the engineering plastic film forming the laminate is required to have heat resistance.
 上記の用途で使用される高分子フィルムは、無機基板に貼り合わせる際に無機基板と高分子フィルムとの間にゴミ等が入り込まないようにするために、使用する直前まで両面又は片面が保護フィルムで覆われている(例えば、特許文献1参照)。 Polymer films used for the above applications should be covered with a protective film on either side or one side until just before use to prevent dust from entering between the inorganic substrate and the polymer film when they are attached to the inorganic substrate. is covered with (for example, see Patent Document 1).
国際公開第2016/031746号WO2016/031746
 上述したエンプラフィルムは、両面に保護フィルムが貼り付けられた状態でロール状に巻き取られ、ロール状で供給される。このエンプラフィルムを無機基板に貼り合わせる際には、まず、エンプラフィルムを保護フィルムが貼り付けられた状態のまま、トムソン型等の刃物を用いて、所望の大きさ、形状に切断する。その後、保護フィルムを剥離し、無機基板に貼り合わせる。 The engineering plastic film described above is wound into a roll with protective films attached on both sides, and supplied in roll form. When the engineering plastic film is attached to the inorganic substrate, first, the engineering plastic film, with the protective film attached, is cut into a desired size and shape using a knife such as a Thomson type. After that, the protective film is peeled off, and the substrate is attached to the inorganic substrate.
 エンプラフィルムの無機基板への貼り合わせでは、プレス、ロールラミネート等の方法が用いられるが、生産性の向上や、高い生産性によりもたらされる低コスト化の観点からはロールラミネートが好ましい。 Methods such as press and roll lamination are used to bond engineering plastic films to inorganic substrates, but roll lamination is preferable from the viewpoint of improving productivity and reducing costs brought about by high productivity.
 両面が保護フィルムで保護されているエンプラフィルムを無機基板へ貼り合わる際には、エンプラフィルム表面へのキズ防止などの観点から、無機基板と貼り合わせる側の保護フィルムのみを剥離してラミネートを実施する。 When attaching an engineering plastic film that is protected by protective films on both sides to an inorganic substrate, from the perspective of preventing scratches on the engineering plastic film surface, peel off only the protective film on the side that is attached to the inorganic substrate before laminating. implement.
 しかしながら、エンプラフィルムと無機基板との間に核となる異物のない気泡が生じる場合があった。 However, there were cases where air bubbles with no foreign matter acting as cores were generated between the engineering plastic film and the inorganic substrate.
 こうした気泡は後工程の欠点検査時のノイズになり、本来検出すべきエンプラフィルムのキズや、付着異物由来の欠点が検出できなくなる恐れがある。また、機能素子を形成する工程は200℃~600℃の高温プロセスであるため、気泡内の空気が加熱により膨張し、エンプラフィルムと無機基板との間に浮きを生じさせてしまう恐れがある。 Such air bubbles become noise during defect inspection in the post-process, and there is a risk that scratches on the engineering plastic film that should be detected and defects caused by adhered foreign matter may not be detected. In addition, since the process of forming the functional element is a high temperature process of 200° C. to 600° C., the air in the bubbles may expand due to heating, causing a floating between the engineering plastic film and the inorganic substrate.
 本発明者らは、この気泡の原因について鋭意検討を行った。その結果、驚くべきことに、エンプラフィルムと保護フィルムを構成する粘着剤層とのせん断剥離強度と、粘着剤層のマルテンス硬度とを一定の範囲内とすることにより、無機基板とエンプラフィルムとの間の核のない気泡が抑制されることを見出し、本発明を完成するに至った。 The inventors of the present invention conducted a thorough study on the cause of these bubbles. As a result, surprisingly, by setting the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer constituting the protective film and the Martens hardness of the pressure-sensitive adhesive layer within a certain range, the adhesion between the inorganic substrate and the engineering plastic film was improved. The inventors have found that air bubbles without nuclei between them can be suppressed, and have completed the present invention.
 すなわち、本発明に係る積層体は、
 基材と粘着剤層とを有する保護フィルムと、
 前記粘着剤層上に設けられたエンジニアリングプラスチックフィルムと、
 前記エンジニアリングプラスチックフィルム上に設けられた無機基板と
を備え、
 前記無機基板と前記エンジニアリングプラスチックフィルムとは、接して積層されているか、又は、シランカップリング剤層のみを介して積層されており、
 前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、
 前記粘着剤層のマルテンス硬度が30N/mm以下であり、
 前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数が1個/cm以下であることを特徴する。
That is, the laminate according to the present invention is
a protective film having a substrate and an adhesive layer;
an engineering plastic film provided on the adhesive layer;
and an inorganic substrate provided on the engineering plastic film,
The inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated only via a silane coupling agent layer,
The shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
The adhesive layer has a Martens hardness of 30 N/mm 2 or less,
The number of air bubbles without nuclei between the inorganic substrate and the engineering plastic film is 1/cm 2 or less.
 エンプラフィルムを無機基板にラミネートする際には、ラミネートロールと接触する側の保護フィルムの粘着剤層にはせん断力がかかる。
 せん断剥離強度が高く、硬い粘着剤層を有する保護フィルムを使用した場合には、エンプラフィルムに保護フィルムを貼り合わせた際にエンプラフィルムと保護フィルムとの間に気泡が生じる。そして、エンプラフィルムと保護フィルムとの間に気泡が存在する保護フィルム付きエンジニアリングプラスチックフィルムを用い、当該エンプラフィルムを無機基板にラミネートすると、気泡がある場所ではラミネート工程で均一に圧力がかからず、無機基板とエンプラフィルムとの間に核となる異物のない気泡を生じさせてしまう。
 一方、本発明では、前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、粘着剤層のマルテンス硬度が30N/mm以下であるため、エンプラフィルムと保護フィルムとの間の気泡を抑制することができる。
When an engineering plastic film is laminated on an inorganic substrate, a shearing force is applied to the adhesive layer of the protective film on the side that comes into contact with the lamination roll.
When a protective film having a high shear peel strength and a hard adhesive layer is used, air bubbles are generated between the engineering plastic film and the protective film when the protective film is laminated to the engineering plastic film. Then, when an engineering plastic film with a protective film in which air bubbles exist between the engineering plastic film and the protective film is used and the engineering plastic film is laminated on an inorganic substrate, pressure is not applied uniformly during the lamination process where there are air bubbles. Air bubbles with no foreign matter acting as nuclei are generated between the inorganic substrate and the engineering plastic film.
On the other hand, in the present invention, the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, and the Martens hardness of the adhesive layer is 30 N/mm 2 or less. bubbles can be suppressed.
 また、保護フィルムの粘着剤層が十分に柔らかくない場合には、エンプラフィルムを無機基板にラミネートする際のせん断力を緩和しきれずに無機基板とエンプラフィルムの間に核となる異物のない気泡を生じさせてしまう。
 一方、本発明では、粘着剤層のマルテンス硬度が30N/mm以下であり、十分に柔らかいといえる。従って、ラミネート時のせん断力を充分に緩和することができ、無機基板とエンプラフィルムとの間に核となる異物のない気泡が生じることを抑制することができる。
In addition, if the adhesive layer of the protective film is not sufficiently soft, the shear force during lamination of the engineering plastic film to the inorganic substrate cannot be fully alleviated, resulting in the formation of air bubbles without foreign matter as nuclei between the inorganic substrate and the engineering plastic film. cause it to occur.
On the other hand, in the present invention, the adhesive layer has a Martens hardness of 30 N/mm 2 or less, and can be said to be sufficiently soft. Therefore, the shearing force during lamination can be sufficiently relieved, and the generation of air bubbles without foreign matter serving as nuclei between the inorganic substrate and the engineering plastic film can be suppressed.
 さらに、保護フィルムの粘着剤層が十分に柔らかくない場合には、エンプラフィルムと保護フィルムとの界面に気泡が存在しなくても、ラミネート時に粘着剤層が変形できず、無機基板とエンプラフィルムとの間に均一に圧力を伝えることができず、核となる異物のない気泡を生じさせてしまう。
 一方、本発明では、粘着剤層のマルテンス硬度が30N/mm以下であり、十分に柔らかいといえる。従って、ラミネート時に粘着剤層が充分に変形することができ、無機基板とエンプラフィルムとの間に均一に圧力を伝えることが可能となる。その結果、核となる異物のない気泡が生じることを抑制することができる。
Furthermore, if the adhesive layer of the protective film is not sufficiently soft, even if there are no air bubbles at the interface between the engineering plastic film and the protective film, the adhesive layer cannot be deformed during lamination, and the inorganic substrate and the engineering plastic film cannot be separated. The pressure cannot be transmitted uniformly between the layers, resulting in the formation of voids without nuclei.
On the other hand, in the present invention, the adhesive layer has a Martens hardness of 30 N/mm 2 or less, and can be said to be sufficiently soft. Therefore, the pressure-sensitive adhesive layer can be sufficiently deformed during lamination, and pressure can be uniformly transmitted between the inorganic substrate and the engineering plastic film. As a result, it is possible to suppress the generation of air bubbles that do not contain foreign matter that serves as a nucleus.
 また、本発明では、前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であるため、保護フィルムをエンジニアリングプラスチックフィルムから剥離する際に、容易に剥離することができる。 In addition, in the present invention, since the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, the protective film can be easily peeled off from the engineering plastic film.
 また、本発明では、前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数が1個/cm以下であるため、欠点検査時のノイズになることを抑制できる。その結果、本来検出すべきエンプラフィルムのキズや、付着異物由来の欠点が検出できなくなることを抑制できる。また、機能素子を形成する200℃~600℃の高温プロセスにおいて、気泡内の空気が加熱により膨張し、エンプラフィルムと無機基板との間に浮きを生じさせてしまうことを抑制できる。
 なお、「核のない気泡」とは、気泡の中に異物の存在しない、気泡のみのものをいう。
Further, in the present invention, since the number of air bubbles without nuclei between the inorganic substrate and the engineering plastic film is 1/cm 2 or less, it is possible to suppress noise during defect inspection. As a result, it is possible to suppress the impossibility of detecting scratches on the engineering plastic film that should be detected and defects due to adhered foreign matter. In addition, in the high temperature process of 200° C. to 600° C. for forming the functional element, it is possible to suppress the expansion of the air in the bubbles due to heating and the occurrence of floating between the engineering plastic film and the inorganic substrate.
In addition, the "nucleus-free bubble" refers to a bubble without any foreign matter in the bubble.
 前記構成において、前記エンジニアリングプラスチックフィルムが、ポリイミドフィルムであることが好ましい。 In the configuration, the engineering plastic film is preferably a polyimide film.
 前記エンジニアリングプラスチックフィルムがポリイミドフィルムであると、耐熱性に優れる。 When the engineering plastic film is a polyimide film, it has excellent heat resistance.
 前記構成において、前記基材が、ポリエステルフィルム、又は、ポリオレフィンフィルムであることが好ましい。 In the above configuration, the substrate is preferably a polyester film or a polyolefin film.
 前記基材が、ポリエステルフィルム、又は、ポリオレフィンフィルムであると、ハンドリング性に優れる。 When the substrate is a polyester film or a polyolefin film, it has excellent handleability.
 前記構成においては、前記基材が、ポリエチレンテレフタレートフィルムであることが好ましい。 In the above configuration, the substrate is preferably a polyethylene terephthalate film.
 前記基材が、ポリエチレンテレフタレートフィルムであると、ハンドリング性により優れる。 When the base material is a polyethylene terephthalate film, the handleability is superior.
 前記構成においては、前記粘着剤層は、ウレタン系樹脂を含み、
 前記粘着剤層のゲル分率が、25%以上70%以下であることが好ましい。
In the configuration, the pressure-sensitive adhesive layer contains a urethane-based resin,
It is preferable that the adhesive layer has a gel fraction of 25% or more and 70% or less.
 前記粘着剤層が、ウレタン系樹脂を含み、前記粘着剤層のゲル分率が、70%以下であると、架橋密度が低いといえる。架橋密度の低いアクリル系樹脂を用いることにより、前記粘着剤層のマルテンス硬度30N/mm以下を達成することができる。 When the pressure-sensitive adhesive layer contains a urethane-based resin and the gel fraction of the pressure-sensitive adhesive layer is 70% or less, it can be said that the crosslink density is low. By using an acrylic resin with a low cross-linking density, it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
 前記構成においては、前記粘着剤層は、シリコーン系樹脂を含み、
 前記粘着剤層のゲル分率が、25%以上40%以下であることが好ましい。
In the configuration, the pressure-sensitive adhesive layer contains a silicone-based resin,
It is preferable that the adhesive layer has a gel fraction of 25% or more and 40% or less.
 前記粘着剤層が、シリコーン系樹脂を含み、前記粘着剤層のゲル分率が、40%以下であると、架橋密度が低いといえる。架橋密度の低いシリコーン系樹脂を用いることにより、前記粘着剤層のマルテンス硬度30N/mm以下を達成することができる。 When the pressure-sensitive adhesive layer contains a silicone-based resin and the gel fraction of the pressure-sensitive adhesive layer is 40% or less, it can be said that the crosslink density is low. By using a silicone-based resin with a low cross-linking density, it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
 前記構成においては、前記粘着剤層は、アクリル系樹脂を含み、
 前記粘着剤層のゲル分率が、45%以上65%以下であることが好ましい。
In the configuration, the pressure-sensitive adhesive layer contains an acrylic resin,
It is preferable that the adhesive layer has a gel fraction of 45% or more and 65% or less.
 前記粘着剤層が、アクリル系樹脂を含み、前記粘着剤層のゲル分率が、65%以下であると、架橋密度が低いといえる。架橋密度の低いアクリル系樹脂を用いることにより、前記粘着剤層のマルテンス硬度30N/mm以下を達成することができる。 When the pressure-sensitive adhesive layer contains an acrylic resin and the gel fraction of the pressure-sensitive adhesive layer is 65% or less, it can be said that the crosslink density is low. By using an acrylic resin with a low cross-linking density, it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer.
 また、本発明に係る保護フィルム付きエンジニアリングプラスチックフィルムは、
 基材と粘着剤層とを有する保護フィルムと、
 前記粘着剤層上に設けられたエンジニアリングプラスチックフィルムと
を備え、
 前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、
 前記粘着剤層のマルテンス硬度が30N/mm以下であることを特徴する。
Further, the engineering plastic film with a protective film according to the present invention is
a protective film having a substrate and an adhesive layer;
and an engineering plastic film provided on the adhesive layer,
The shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
The adhesive layer has a Martens hardness of 30 N/mm 2 or less.
 前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、粘着剤層のマルテンス硬度が30N/mm以下であるため、エンプラフィルムと保護フィルムとの間の気泡を抑制することができる。従って、前記保護フィルム付きエンジニアリングプラスチックフィルムを無機基板にラミネートして得られる積層体は、無機基板とエンプラフィルムとの間の、核のない気泡の発生が抑制されることとなる。 Since the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less and the Martens hardness of the adhesive layer is 30 N/mm 2 or less, air bubbles between the engineering plastic film and the protective film can be suppressed. can be done. Therefore, in the laminate obtained by laminating the engineering plastic film with the protective film on the inorganic substrate, generation of voids without nuclei between the inorganic substrate and the engineering plastic film is suppressed.
 前記構成においては、前記エンジニアリングプラスチックフィルムと前記粘着剤層との間の核のない気泡数が50個/cm以下であることが好ましい。 In the above structure, the number of non-nucleated cells between the engineering plastic film and the pressure-sensitive adhesive layer is preferably 50/cm 2 or less.
 前記エンジニアリングプラスチックフィルムと前記粘着剤層との間の核のない気泡数が50個/cm以下であると、前記保護フィルム付きエンジニアリングプラスチックフィルムを無機基板にラミネートして得られる積層体は、無機基板とエンプラフィルムとの間の、核のない気泡の発生がより大きく抑制されることとなる。 When the number of air bubbles without nuclei between the engineering plastic film and the pressure-sensitive adhesive layer is 50/cm 2 or less, the laminate obtained by laminating the engineering plastic film with a protective film to an inorganic substrate is an inorganic The generation of air bubbles without nuclei between the substrate and the engineering plastic film is greatly suppressed.
 本発明によれば、エンジニアリングプラスチックフィルムと保護フィルムとの間の気泡が抑制された積層体を提供することができる。また、エンジニアリングプラスチックフィルムと保護フィルムとの間の気泡を抑制することが可能な保護フィルム付きエンジニアリングプラスチックフィルムを提供することができる。 According to the present invention, it is possible to provide a laminate in which air bubbles between the engineering plastic film and the protective film are suppressed. Moreover, it is possible to provide an engineering plastic film with a protective film capable of suppressing air bubbles between the engineering plastic film and the protective film.
本実施形態に係る保護フィルム付きエンジニアリングプラスチックフィルムを模式的に示す断面図である。1 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to this embodiment; FIG. 他の実施形態に係る保護フィルム付きエンジニアリングプラスチックフィルムを模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to another embodiment; 本実施形態に係る積層体を模式的に示す断面図である。It is a sectional view showing typically the layered product concerning this embodiment. 気相蒸着法にて使用するシランカップリング剤処理装置の一例を模式的に示す図である。It is a figure which shows typically an example of the silane-coupling-agent processing apparatus used by a vapor-phase deposition method. せん断剥離試験を説明するための図である。It is a figure for demonstrating a shear peeling test.
 以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.
<積層体>
 本実施形態に係る積層体は
 基材と粘着剤層とを有する保護フィルムと、
 前記粘着剤層上に設けられたエンジニアリングプラスチックフィルムと、
 前記エンジニアリングプラスチックフィルム上に設けられた無機基板と
を備え、
 前記無機基板と前記エンジニアリングプラスチックフィルムとは、接して積層されているか、又は、シランカップリング剤層のみを介して積層されており、
 前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、
 前記粘着剤層のマルテンス硬度が30N/mm以下であり、
 前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数が1個/cm以下である。
<Laminate>
The laminate according to the present embodiment comprises a protective film having a substrate and an adhesive layer,
an engineering plastic film provided on the adhesive layer;
and an inorganic substrate provided on the engineering plastic film,
The inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated only via a silane coupling agent layer,
The shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
The adhesive layer has a Martens hardness of 30 N/mm 2 or less,
The number of non-nucleated air bubbles between the inorganic substrate and the engineering plastic film is 1/cm 2 or less.
<保護フィルム>
 前記保護フィルムは、基材と粘着剤層とを有する。前記保護フィルムは、エンプラフィルムの少なくとも片面、つまり無機基板と積層した際に無機基板と接しない側の面(ラミネート時にラミロールと接触する面)に積層される。
<Protective film>
The protective film has a substrate and an adhesive layer. The protective film is laminated on at least one side of the engineering plastic film, that is, the side that does not come into contact with the inorganic substrate when laminated with the inorganic substrate (the side that comes into contact with the lamination roll during lamination).
<基材>
 前記基材としては、特に限定されないが、ハンドリング性の観点から、ポリエステルフィルム、ポリオレフィンフィルムであることが好ましい。
<Base material>
Although the substrate is not particularly limited, it is preferably a polyester film or a polyolefin film from the viewpoint of handleability.
 本明細書において、ポリエステルフィルムとは、ポリエステル樹脂を主たる成分として形成されたフィルムをいう。「主たる成分」とは、ポリエステルフィルム中に、50質量%以上含むことをいい、好ましくは75質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%含むことをいう。 In this specification, the polyester film refers to a film formed with polyester resin as the main component. The "main component" means that the polyester film contains 50% by mass or more, preferably 75% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.
 前記ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート等が挙げられる。また、共重合成分としては、例えば、エチレングリコール、テレフタル酸、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分等が挙げられる。 Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and polymethylene terephthalate. Examples of copolymer components include diol components such as ethylene glycol, terephthalic acid, diethylene glycol, neopentyl glycol, and polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid. dicarboxylic acid components such as
 前記ポリエステル樹脂の中でも、ポリエチレンテレフタレートが好ましい。つまり、前記基材は、ポリエチレンテレフタレートフィルムであることが好ましい。前記基材が、ポリエチレンテレフタレートフィルムであると、エンプラフィルムを保護するための適度な硬さと可撓性とを有し、保護フィルムの基材として好適である。また、ポリエチレンテレフタレートフィルムは、紫外線を透過する(大きく吸収しない)のではあるが、紫外線吸収剤入りの粘着剤層と組み合わせることにより、エンプラフィルムの切断に好適な紫外線レーザーによって基材も含めて良好な切断ができる。前記基材が、紫外線透過しない材質であると、紫外線レーザーのエネルギーを前記基材が多く吸収することになり、切断により多くの時間を要し、保護フィルムとエンプラフィルムとを短時間で経済的に切断できない場合がある。保護フィルムとエンプラフィルムとを良好に切断するため、保護フィルムの基材として紫外線吸収剤を添加したポリエチレンテレフタレートフィルムを用いることもできる。 Among the above polyester resins, polyethylene terephthalate is preferable. That is, the substrate is preferably a polyethylene terephthalate film. When the substrate is a polyethylene terephthalate film, it has appropriate hardness and flexibility for protecting an engineering plastic film, and is suitable as a substrate for a protective film. In addition, although polyethylene terephthalate film does not transmit ultraviolet rays (does not absorb them greatly), by combining it with a pressure-sensitive adhesive layer containing an ultraviolet absorber, it can be cut by an ultraviolet laser suitable for cutting engineering plastic films, including substrates. cutting is possible. If the base material is a material that does not transmit ultraviolet rays, the base material absorbs a large amount of the energy of the ultraviolet laser, and it takes a long time to cut the protective film and the engineering plastic film in a short time and economically. may not be able to cut In order to cut the protective film and the engineering plastic film well, a polyethylene terephthalate film to which an ultraviolet absorber is added can be used as the base material of the protective film.
 本明細書において、ポリオレフィンフィルムとは、具体的にはポリエチレン樹脂、及び/又は、ポリプロピレン樹脂を主たる成分として形成されたフィルムをいう。「主たる成分」とは、ポリオレフィンフィルム中に、50質量%以上含むことをいい、好ましくは75質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%含むことをいう。 In this specification, a polyolefin film specifically refers to a film formed with polyethylene resin and/or polypropylene resin as the main component. The "main component" means that the polyolefin film contains 50% by mass or more, preferably 75% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.
 前記基材は、単層であってもよく、組成が同一である複数の層が積層されたものであってもよく、組成が異なる複数の層が積層されたものであってもよい。それぞれの層は帯電防止、密着防止など公知の各機能を持つ層であってよい。 The base material may be a single layer, may be a laminate of a plurality of layers having the same composition, or may be a laminate of a plurality of layers having different compositions. Each layer may be a layer having known functions such as antistatic and adhesion prevention.
 前記基材は、必要に応じて、樹脂中に各種添加剤を含有させてもよい。前記添加剤としては、例えば、充填材、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、界面活性剤、顔料、染料などが挙げられる。ただし、前記基材が紫外線透過率測定において、下記数値範囲を満たす範囲内とすることが好ましい。前記基材は、紫外線吸収剤を含有しないことが好ましい。紫外線吸収剤としては、後述するものが挙げられる。 The base material may contain various additives in the resin as necessary. Examples of the additives include fillers, antioxidants, light stabilizers, anti-gelling agents, organic wetting agents, antistatic agents, surfactants, pigments, and dyes. However, it is preferable that the base material satisfies the following numerical range in ultraviolet transmittance measurement. The substrate preferably does not contain an ultraviolet absorber. Examples of the ultraviolet absorber include those described later.
 前記エンプラフィルムが無色透明である場合、保護フィルムの基材に顔料あるいは染料によって着色を行うことが好ましい。保護フィルムの基材が着色されていると、無機基板との積層を行う工程で、色差センサーなどによって位置アライメントを行うことが容易となる。 When the engineering plastic film is colorless and transparent, it is preferable to color the substrate of the protective film with a pigment or dye. If the base material of the protective film is colored, it becomes easy to perform positional alignment using a color difference sensor or the like in the step of laminating the inorganic substrate.
 前記保護フィルムは、基材と粘着剤層の積層体の紫外線透過率測定(UV透過率測定)において、波長355nmにおける透過率が、3%以下であることが好ましく、2%以下であることよりが好ましく、1.5%以下であることが特に好ましい。前記保護フィルムの波長355nmにおける透過率が、3%以下であると、保護フィルムとエンプラフィルムとを紫外線レーザーにより、より好適に切断できる。 The protective film preferably has a transmittance of 3% or less at a wavelength of 355 nm in ultraviolet transmittance measurement (UV transmittance measurement) of a laminate of a substrate and an adhesive layer, and more preferably 2% or less. is preferred, and 1.5% or less is particularly preferred. When the transmittance of the protective film at a wavelength of 355 nm is 3% or less, the protective film and the engineering plastic film can be more suitably cut with an ultraviolet laser.
 前記保護フィルムは、基材と粘着剤層との積層体の紫外線透過率を上記好ましい範囲にコントロールするために、基材に紫外線吸収剤を含有していても良い。 The protective film may contain an ultraviolet absorber in the base material in order to control the ultraviolet transmittance of the laminate of the base material and the pressure-sensitive adhesive layer within the above preferred range.
 前記保護フィルムは、粘着層のみの波長355nmにおける透過率が3%以下であってもよく、基材のみの波長355nmにおける透過率が3%以下であってもよく、基材と粘着層との両方の波長355nmにおける透過率が3%以下であってもよい。 In the protective film, the transmittance of the adhesive layer alone at a wavelength of 355 nm may be 3% or less, and the transmittance of the substrate alone at a wavelength of 355 nm may be 3% or less. The transmittance at both wavelengths of 355 nm may be 3% or less.
 前記基材の厚さは、特に限定されないが、例えば、12μm以上500μm以下の範囲で使用する規格に応じて任意に決めることができる。前記基材の厚さは、25μm以上350μm以下がより好ましい。前記基材の厚さが500μm以下であれば、生産性やハンドリング性の低下を抑制できる。また、前記基材の厚さが12μm以上であれば、前記基材の機械的なん強度不足を低減でき、剥離時に破断することを防止することができる。 Although the thickness of the base material is not particularly limited, it can be arbitrarily determined according to the standard used, for example, within the range of 12 μm or more and 500 μm or less. The thickness of the base material is more preferably 25 μm or more and 350 μm or less. When the thickness of the base material is 500 μm or less, it is possible to suppress deterioration of productivity and handling properties. Moreover, if the thickness of the base material is 12 μm or more, the lack of mechanical strength of the base material can be reduced, and breakage during peeling can be prevented.
 前記基材の無機基板とは反対側の面の表面粗さRaは、0.02μm以上であることが好ましく、より好ましくは0.025μm以上であり、さらに好ましくは0.03μm以上である。上限については1.2μm以下であることが好ましく、より好ましくは0.6μm以下、さらに好ましくは0.3μm以下の範囲がさらに好ましい。
 保護フィルム基材の表面粗さを所定範囲に制御する方法として、前記基材のフィルム製造時に原料樹脂に無機粒子を添加して表面粗さを制御する方法を例示することができる。無機粒子としては、シリカ、アルミナ、カルシア、マグネシア、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、リン酸マグネシウム、硫酸バリウム、タルク、カオリンなどの公知の無機粒子を所定量添加すればよい。添加量は基材フィルム作製時の延伸倍率、最終的な基材フィルム厚さ、添加無機粒子の粒度分布などにより一様ではないが、一般に基材フィルム樹脂の質量に対して質量比にて500ppm以上、好ましくは1000ppm以上、さらに好ましくは2000ppm以上であり、上限については10質量%以下、好ましくは3質量%以下、さらに好ましくは10000ppm以下の範囲である。
 前記基材の表面粗さを所定範囲に制御する方法として、前記基材の表面を研磨ないし研削して所定の表面粗さとする方法を例示できる。
 さらに、前記基材の表面粗さを所定範囲に制御する方法として、あらかじめ所定の表面粗度となるように作製した支持基材にフィルム原料をキャストして前記基材を得る方法を例示できる。ほかに、所定の表面形状に加工したエンボスローラーなどを押し当てて、前記基材の表面粗度を制御する方法も例示することができる。
 前記基材の表面粗さを所定範囲に制御する方法としてケミカルエッチングによる粗面化処理によって前記基材を得る方法を例示できる。これらの粗面化処理によって保護フィルムは白化する場合があるが、保護フィルム越しに検査できるという観点から、粗面化によるフィルムの白化は抑制されていることが好ましい。
The surface roughness Ra of the base material opposite to the inorganic substrate is preferably 0.02 μm or more, more preferably 0.025 μm or more, and still more preferably 0.03 μm or more. The upper limit is preferably 1.2 μm or less, more preferably 0.6 μm or less, even more preferably 0.3 μm or less.
As a method of controlling the surface roughness of the protective film base material within a predetermined range, a method of adding inorganic particles to the raw material resin at the time of manufacturing the film of the base material to control the surface roughness can be exemplified. As inorganic particles, a predetermined amount of known inorganic particles such as silica, alumina, calcia, magnesia, calcium carbonate, magnesium carbonate, calcium phosphate, magnesium phosphate, barium sulfate, talc and kaolin may be added. The amount added varies depending on the draw ratio during production of the base film, the final thickness of the base film, the particle size distribution of the added inorganic particles, etc., but it is generally 500 ppm in mass ratio with respect to the mass of the base film resin. Above, it is preferably 1000 ppm or more, more preferably 2000 ppm or more, and the upper limit is 10% by mass or less, preferably 3% by mass or less, more preferably 10000 ppm or less.
As a method for controlling the surface roughness of the base material within a predetermined range, a method of polishing or grinding the surface of the base material to obtain a predetermined surface roughness can be exemplified.
Further, as a method for controlling the surface roughness of the base material within a predetermined range, a method of obtaining the base material by casting a film raw material onto a supporting base material prepared in advance so as to have a predetermined surface roughness can be exemplified. In addition, a method of pressing an embossed roller or the like processed into a predetermined surface shape to control the surface roughness of the base material can also be exemplified.
As a method for controlling the surface roughness of the base material within a predetermined range, a method of obtaining the base material by roughening treatment by chemical etching can be exemplified. Although the protective film may be whitened by these roughening treatments, whitening of the film due to the roughening is preferably suppressed from the viewpoint of inspection through the protective film.
 前記基材は、従来公知の製膜方法により製膜することができる。前記製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。 The substrate can be formed into a film by a conventionally known film forming method. Examples of the film-forming method include a calendar film-forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, a dry lamination method, and the like.
<粘着剤層>
 前記粘着剤層としては、アクリル系、シリコーン系、ゴム系、ポリエステル系、ウレタン系などの、特に制限されるものではなく公知の樹脂を用いることができる。取り扱い性の観点で好ましくはアクリル系樹脂、シリコーン系樹脂、ウレタン系樹脂である。
<Adhesive layer>
As the adhesive layer, known resins such as acrylic, silicone, rubber, polyester, and urethane can be used without particular limitation. Acrylic resins, silicone resins, and urethane resins are preferable from the viewpoint of handleability.
 前記アクリル系樹脂は、(メタ)アクリル酸アルキルエステル等の単量体を重合することにより得られるものであることが好ましい。前記単量体の具体的な例として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、iso-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物が挙げられる。これらは、必要に応じて複数を共重合することもできる。 The acrylic resin is preferably obtained by polymerizing a monomer such as (meth)acrylic acid alkyl ester. Specific examples of the monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, t-butyl (meth) acrylate, ) Alkyl ( meth)acrylate compounds. A plurality of these can also be copolymerized as needed.
 前記粘着剤層がアクリル系樹脂を含む場合、前記粘着剤層は、ゲル分率が45%以上65%以下であることが好ましい。前記粘着剤層のゲル分率は、47%以上がより好ましく、50%以上がさらに好ましい。前記粘着剤層のゲル分率は、63%以下がより好ましく、60%以下がさらに好ましい。前記粘着剤層のゲル分率が、65%以下であると、架橋密度が低いといえる。架橋密度の低いアクリル系樹脂を用いることにより、前記粘着剤層のマルテンス硬度30N/mm以下を達成することができる。一方、前記粘着剤層のゲル分率は、45%以上であると、粘着剤層とエンプラフィルムを剥離した際に粘着剤層の凝集破壊が起きにくい。 When the pressure-sensitive adhesive layer contains an acrylic resin, the pressure-sensitive adhesive layer preferably has a gel fraction of 45% or more and 65% or less. The gel fraction of the pressure-sensitive adhesive layer is more preferably 47% or higher, even more preferably 50% or higher. The gel fraction of the pressure-sensitive adhesive layer is more preferably 63% or less, even more preferably 60% or less. When the gel fraction of the adhesive layer is 65% or less, it can be said that the crosslink density is low. By using an acrylic resin with a low cross-linking density, it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer. On the other hand, when the gel fraction of the pressure-sensitive adhesive layer is 45% or more, cohesive failure of the pressure-sensitive adhesive layer is less likely to occur when the pressure-sensitive adhesive layer and the engineering plastic film are separated.
 前記粘着剤層がアクリル系樹脂を含む場合、前記粘着剤層中の前記アクリル系樹脂の含有量は、好ましくは、10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上である。 When the pressure-sensitive adhesive layer contains an acrylic resin, the content of the acrylic resin in the pressure-sensitive adhesive layer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. is.
 前記ウレタン系樹脂は、ウレタン樹脂と架橋剤を含むことが好ましい。 The urethane-based resin preferably contains a urethane resin and a cross-linking agent.
 前記ウレタン樹脂は、水酸基を複数有する樹脂であり、ポリオールとポリイソシアネートとを反応させて合成できる。 The urethane resin is a resin having multiple hydroxyl groups and can be synthesized by reacting a polyol and a polyisocyanate.
 前記ポリオールは1分子中に水酸基(好ましくはアルコール性水酸基及びフェノール性水酸基の少なくとも一方)を複数(2または3以上)有する有機化合物をいう。また、前記ポリイソシアネートは1分子中にイソシアネート基(イソシアナト基ともいう)すなわち(―N=C=O)を複数(2または3以上)有する有機化合物(多官能イソシアネート)をいう。 The polyol refers to an organic compound having a plurality (2 or 3 or more) of hydroxyl groups (preferably at least one of alcoholic hydroxyl groups and phenolic hydroxyl groups) in one molecule. The polyisocyanate refers to an organic compound (polyfunctional isocyanate) having a plurality (2 or 3 or more) of isocyanate groups (also referred to as isocyanato groups), that is, (-N=C=O) in one molecule.
 本明細書において、ポリウレタンポリオールは、ポリウレタンのプレポリマーであって、水酸基を複数有するプレポリマーをいう。
 また、本明細書において、ウレタンプレポリマーは、特に断らない限り、イソシアネート基を複数(例えば、分子の両末端に)有することにより、さらに重合または架橋を進行させたポリウレタンに変換可能なポリウレタンのプレポリマーをいう。
As used herein, polyurethane polyol refers to a polyurethane prepolymer having a plurality of hydroxyl groups.
In this specification, unless otherwise specified, a urethane prepolymer is a polyurethane prepolymer that can be converted into a polyurethane that has undergone further polymerization or cross-linking by having a plurality of isocyanate groups (for example, at both ends of the molecule). A polymer.
 前記ウレタン樹脂は、前記ウレタンプレポリマーであっても良い。ウレタンプレポリマーは、重合または架橋が途中まで進行した状態のポリマーであって、さらに重合または架橋が可能なポリマーを言う。前記ポリウレタンのプレポリマー、又は、前記ウレタンプレポリマーは、重合または架橋が途中まで進行した状態のポリウレタンであって、さらに重合または架橋を進行させたポリウレタンに変換可能なポリウレタンをいう。前記ポリウレタンのプレポリマーは、例えば水酸基またはイソシアネート基を複数有することにより、さらに重合または架橋を進行させたポリウレタンに変換可能である。 The urethane resin may be the urethane prepolymer. A urethane prepolymer is a polymer in which polymerization or cross-linking has progressed halfway, and which can be further polymerized or cross-linked. The term "prepolymer of polyurethane" or "urethane prepolymer" refers to polyurethane in a state in which polymerization or cross-linking has progressed halfway, and which can be converted into polyurethane by further progressing polymerization or cross-linking. The polyurethane prepolymer can be converted into a polyurethane that has undergone further polymerization or cross-linking, for example, by having a plurality of hydroxyl groups or isocyanate groups.
 前記ポリオールは、特に限定されない。例えば、前記ポリオールは、前述のとおり、2官能(2価、すなわち1分子中に水酸基を2個有する)でも3官能以上(3価以上、すなわち分子中に水酸基を3個以上有する)でも良いが、3官能以上であることが好ましく、3官能であることが特に好ましい。また、前記ポリオールは、1種類のみ用いても複数種類併用しても良い。前記ポリオールは、特に限定されないが、例えば、ポリエステルポリオールおよびポリエーテルポリオールの一方または両方が挙げられる。 The polyol is not particularly limited. For example, as described above, the polyol may be bifunctional (bivalent, i.e., having two hydroxyl groups in one molecule) or trifunctional or higher (trivalent or higher, i.e., having three or more hydroxyl groups in the molecule). , preferably trifunctional or more, and particularly preferably trifunctional. Further, the polyol may be used alone or in combination of multiple types. Examples of the polyol include, but are not limited to, one or both of polyester polyol and polyether polyol.
 前記ポリエステルポリオールとしては、特に限定されず、例えば、公知のポリエステルポリオール挙げられる。前記ポリエステルポリオールの酸成分としては、例えば、テレフタル酸、アジピン酸、アゼライン酸、セバチン酸、無水フタル酸、イソフタル酸、トリメリット酸等が挙げられる。前記ポリエステルポリオールのグリコール成分としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、1,6-ヘキサングリコール、3-メチル-1,5-ペンタンジオール、3,3’-ジメチロールヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ブチルエチルペンタンジオール等が挙げられる。前記ポリエステルポリオールのポリオール成分としては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。その他、ポリカプロラクトン、ポリ(β-メチル-γ-バレロラクトン)、ポリバレロラクトン等のラクトン類を開環重合して得られるポリエステルポリオール等も挙げられる。 The polyester polyol is not particularly limited, and examples thereof include known polyester polyols. Examples of the acid component of the polyester polyol include terephthalic acid, adipic acid, azelaic acid, sebacic acid, phthalic anhydride, isophthalic acid, and trimellitic acid. Examples of the glycol component of the polyester polyol include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, 1,6-hexane glycol, 3-methyl-1,5-pentanediol, 3,3'-dimethylolheptane, poly oxyethylene glycol, polyoxypropylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol and the like. Examples of the polyol component of the polyester polyol include glycerin, trimethylolpropane, and pentaerythritol. Other examples include polyester polyols obtained by ring-opening polymerization of lactones such as polycaprolactone, poly(β-methyl-γ-valerolactone) and polyvalerolactone.
 前記ポリエステルポリオールの分子量は、特に限定されず、低分子量から高分子量まで使用可能である。好ましくは数平均分子量が500~5,000のポリエステルポリオールを用いる。数平均分子量が500以上であれば、反応性が高過ぎてゲル化することを防止しやすい。また、数平均分子量が5,000以下であれば、反応性の低下、および、ポリウレタンポリオール自体の凝集力の低下を防止しやすい。前記ポリエステルポリオールは、使用しても使用しなくても良いが、使用する場合の使用量は、例えば、前記ポリウレタンポリオールを構成するポリオール中10~90モル%である。 The molecular weight of the polyester polyol is not particularly limited, and can be used from low molecular weight to high molecular weight. A polyester polyol having a number average molecular weight of 500 to 5,000 is preferably used. If the number average molecular weight is 500 or more, it is easy to prevent gelation due to too high reactivity. Moreover, if the number average molecular weight is 5,000 or less, it is easy to prevent a decrease in reactivity and a decrease in the cohesive strength of the polyurethane polyol itself. The polyester polyol may or may not be used, but when used, the amount used is, for example, 10 to 90 mol % of the polyols constituting the polyurethane polyol.
 前記ポリエーテルポリオールとしては、特に限定されず、例えば、公知のポリエーテルポリオールが挙げられる。具体的には、前記ポリエーテルポリオールは、例えば、水、プロピレングリコール、エチレングリコール、グリセリン、トリメチロールプロパン等の低分子量ポリオールを開始剤として用いて、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフラン等のオキシラン化合物を重合させることにより得られるポリエーテルポリオールであっても良い。さらに具体的には、前記ポリエーテルポリオールは、例えば、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等の官能基数が2以上のものであっても良い。前記ポリエーテルポリオールの分子量は特に限定されず、低分子量から高分子量まで使用可能である。好ましくは数平均分子量が1,000~15,000のポリエーテルポリオールを用いる。数平均分子量が1,000以上であれば、反応性が高過ぎてゲル化することを防止しやすい。また、分子量が15,000以下であれば、反応性の低下、および、ポリウレタンポリオール自体の凝集力の低下を防止しやすい。前記ポリエーテルポリオールは、使用しても使用しなくても良いが、使用する場合の使用量は、例えば、前記ポリウレタンポリオールを構成するポリオール中20~80モル%である。 The polyether polyol is not particularly limited, and examples thereof include known polyether polyols. Specifically, the polyether polyol is prepared by using a low-molecular-weight polyol such as water, propylene glycol, ethylene glycol, glycerin, and trimethylolpropane as an initiator, and an oxirane such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran. A polyether polyol obtained by polymerizing a compound may be used. More specifically, the polyether polyol may have two or more functional groups, such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol. The molecular weight of the polyether polyol is not particularly limited, and can be used from low molecular weight to high molecular weight. Polyether polyols having a number average molecular weight of 1,000 to 15,000 are preferably used. If the number average molecular weight is 1,000 or more, it is easy to prevent gelation due to too high reactivity. Further, when the molecular weight is 15,000 or less, it is easy to prevent a decrease in reactivity and a decrease in the cohesive strength of the polyurethane polyol itself. The polyether polyol may or may not be used, but when used, the amount used is, for example, 20 to 80 mol % of the polyols constituting the polyurethane polyol.
 前記ポリエーテルポリオールは、必要に応じ、その一部を、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ブチルエチルペンタンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等のグリコール類、エチレンジアミン、N-アミノエチルエタノールアミン、イソホロンジアミン、キシリレンジアミン等の多価アミン類に置き換えて併用しても良い。 Part of the polyether polyol, if necessary, is ethylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol, glycerin, trimethylolpropane, glycols such as pentaerythritol, ethylenediamine, N - Polyvalent amines such as aminoethylethanolamine, isophoronediamine and xylylenediamine may be substituted and used together.
 前記ポリオールは、2官能(1分子中に水酸基を二個有する)のポリエーテルポリオールでも良いが、3官能以上(1分子中に水酸基を3個以上有する)であることが好ましい。特に、数平均分子量が1,000~15,000であり、かつ3官能以上のポリオールを一部もしくは全部用いることにより、更に粘着力と再剥離性のバランスがとりやすくなる。数平均分子量が1,000以上であれば、3官能以上のポリオールの反応性が高過ぎてゲル化することを防止しやすい。また、数平均分子量が15,000以下であれば、3官能以上のポリオールの反応性の低下、および、ポリウレタンポリオール自体の凝集力の低下を防止しやすい。より好ましくは、数平均分子量2,500~3,500で3官能以上のポリオールを一部もしくは全部用いる。 Although the polyol may be a bifunctional (having two hydroxyl groups in one molecule) polyether polyol, it is preferably trifunctional or more (having three or more hydroxyl groups in one molecule). In particular, by using a polyol having a number average molecular weight of 1,000 to 15,000 and having a functionality of 3 or more, in whole or in part, it becomes easier to balance adhesive strength and removability. If the number average molecular weight is 1,000 or more, it is easy to prevent the tri- or more functional polyol from being too reactive and gelling. Further, when the number average molecular weight is 15,000 or less, it is easy to prevent a decrease in the reactivity of the tri- or more functional polyol and a decrease in the cohesive strength of the polyurethane polyol itself. More preferably, a polyol having a number average molecular weight of 2,500 to 3,500 and a tri- or higher functionality is used partially or wholly.
 前記ポリイソシアネート(有機ポリイソシアネート化合物)としては、特に限定されないが、例えば、公知の芳香族ポリイソシアネート、脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられる。また、ポリイソシアネートは、一種類のみ用いても複数種類併用しても良い。 The polyisocyanate (organic polyisocyanate compound) is not particularly limited, but includes, for example, known aromatic polyisocyanates, aliphatic polyisocyanates, araliphatic polyisocyanates, and alicyclic polyisocyanates. In addition, one type of polyisocyanate may be used alone, or a plurality of types may be used in combination.
 前記芳香族ポリイソシアネートとしては、例えば、1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、2,4,6-トリイソシアネートトルエン、1,3,5-トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート等が挙げられる。 Examples of the aromatic polyisocyanate include 1,3-phenylene diisocyanate, 4,4'-diphenyldiisocyanate, 1,4-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2, 6-tolylene diisocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanatotoluene, 1,3,5-triisocyanatobenzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4' , 4″-triphenylmethane triisocyanate and the like.
 前記脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等が挙げられる。 Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, and dodecamethylene diisocyanate. , 2,4,4-trimethylhexamethylene diisocyanate and the like.
 前記芳香脂肪族ポリイソシアネートとしては、例えば、ω,ω’-ジイソシアネート-1,3-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、1,4-テトラメチルキシリレンジイソシアネート、1,3-テトラメチルキシリレンジイソシアネート等が挙げられる。 Examples of the araliphatic polyisocyanate include ω,ω'-diisocyanate-1,3-dimethylbenzene, ω,ω'-diisocyanate-1,4-dimethylbenzene, ω,ω'-diisocyanate-1,4- diethylbenzene, 1,4-tetramethylxylylene diisocyanate, 1,3-tetramethylxylylene diisocyanate and the like.
 前記脂環族ポリイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン等が挙げられる。 Examples of the alicyclic polyisocyanate include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl- 2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4′-methylenebis(cyclohexyl isocyanate), 1,4-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, etc. mentioned.
 また、一部上記ポリイソシアネートのトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する三量体等も併用することができる。 In addition, a trimethylolpropane adduct form of the above polyisocyanate, a biuret form reacted with water, a trimer having an isocyanurate ring, and the like can also be used in combination.
 前記ポリイソシアネートとしては、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)等が好ましい。 As the polyisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) and the like are preferable.
 反応触媒としては、特に限定されず、例えば、公知の触媒を使用することができる。前記触媒としては、例えば、3級アミン系化合物、有機金属系化合物等が挙げられる。 The reaction catalyst is not particularly limited, and for example, a known catalyst can be used. Examples of the catalyst include tertiary amine compounds and organometallic compounds.
 前記3級アミン系化合物としては、例えば、トリエチルアミン、トリエチレンジアミン、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7(DBU)等が挙げられる。 Examples of the tertiary amine-based compound include triethylamine, triethylenediamine, 1,8-diazabicyclo(5,4,0)-undecene-7 (DBU), and the like.
 前記有機金属系化合物としては、錫系化合物、非錫系化合物を挙げることができる。前記錫系化合物としては、例えば、ジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジラウレート(DBTDL)、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキサイド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキサイド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2-エチルヘキサン酸錫等が挙げられる。前記非錫系化合物としては、例えば、ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライドなどのチタン系、オレイン酸鉛、2-エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛などの鉛系、2-エチルヘキサン酸鉄、鉄アセチルアセトネートなどの鉄系、安息香酸コバルト、2-エチルヘキサン酸コバルトなどのコバルト系、ナフテン酸亜鉛、2-エチルヘキサン酸亜鉛などの亜鉛系、ナフテン酸ジルコニウム等が挙げられる。 Examples of the organometallic compounds include tin-based compounds and non-tin-based compounds. Examples of the tin-based compound include dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin dilaurate (DBTDL), dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, tributyltin acetate, triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, tin 2-ethylhexanoate and the like. Examples of the non-tin compounds include titanium compounds such as dibutyl titanium dichloride, tetrabutyl titanate and butoxy titanium trichloride; lead compounds such as lead oleate, lead 2-ethylhexanoate, lead benzoate and lead naphthenate; Iron-based such as iron 2-ethylhexanoate and iron acetylacetonate, cobalt-based such as cobalt benzoate and cobalt 2-ethylhexanoate, zinc-based such as zinc naphthenate and zinc 2-ethylhexanoate, zirconium naphthenate, etc. is mentioned.
 これらの触媒を使用する場合、例えば、ポリエステルポリオールとポリエーテルポリオールの2種類のポリオールが存在する系では、その反応性の相違により、単独の触媒の系ではゲル化したり、反応溶液が濁るという問題が生じやすい。そのような場合は、例えば、二種類以上の触媒を併用することにより、反応速度、触媒の選択性等が制御可能となり、これらの問題を解決することができる。その組み合わせとしては、例えば、3級アミン/有機金属系、錫系/非錫系、錫系/錫系等が用いられるが、好ましくは錫系/錫系、更に好ましくはジブチル錫ジラウレートと2-エチルヘキサン酸錫の組み合わせである。その配合比は、特に限定されないが、例えば、重量で2-エチルヘキサン酸錫/ジブチル錫ジラウレートが1未満であり、好ましくは0.2~0.6である。配合比が1未満であれば、触媒活性のバランスによるゲル化を防止しやすい。これらの触媒使用量は、特に限定されないが、例えば、ポリオールと有機ポリイソシアネートの総量に対して0.01~1.0重量%である。 When these catalysts are used, for example, in a system in which two kinds of polyols, polyester polyol and polyether polyol, exist, the difference in reactivity causes gelation or turbidity of the reaction solution in a single catalyst system. is likely to occur. In such a case, for example, by using two or more kinds of catalysts together, the reaction rate, the selectivity of the catalyst, etc. can be controlled, and these problems can be solved. Examples of the combination include tertiary amine/organometallic, tin/non-tin, tin/tin, etc., preferably tin/tin, more preferably dibutyltin dilaurate and 2- It is a combination of tin ethylhexanoate. The compounding ratio is not particularly limited, but for example, the weight of tin 2-ethylhexanoate/dibutyltin dilaurate is less than 1, preferably 0.2 to 0.6. If the compounding ratio is less than 1, it is easy to prevent gelation due to the balance of catalytic activity. The amount of these catalysts used is not particularly limited, but is, for example, 0.01 to 1.0% by weight based on the total amount of polyol and organic polyisocyanate.
 前記触媒を使用する場合、前記ポリウレタンポリオール合成の反応温度は100℃未満が好ましく、より好ましくは40℃~60℃である。100℃未満であれば、反応速度および架橋構造の制御がしやすく、所定の分子量を有するポリウレタンポリオールが得やすい。 When the catalyst is used, the reaction temperature for synthesizing the polyurethane polyol is preferably less than 100°C, more preferably 40°C to 60°C. If the temperature is less than 100°C, it is easy to control the reaction rate and the crosslinked structure, and it is easy to obtain a polyurethane polyol having a predetermined molecular weight.
 また、前記触媒を使用しない(無触媒)場合、前記ポリウレタンポリオール合成の反応温度は、100℃以上が好ましく、好ましくは110℃以上である。また、無触媒下では、前記ポリウレタンポリオール合成の反応時間は、3時間以上であることが好ましい。 In addition, when the catalyst is not used (no catalyst), the reaction temperature for synthesizing the polyurethane polyol is preferably 100°C or higher, preferably 110°C or higher. Moreover, it is preferable that the reaction time for synthesizing the polyurethane polyol is 3 hours or more in the absence of a catalyst.
 前記ポリウレタンポリオール合成に用いる前記溶媒は、特に限定されず、例えば、公知の溶媒を使用できる。前記溶媒としては、例えば、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン、酢酸エチル、酢酸n-ブチル、酢酸イソブチル等のエステル、トルエン、キシレン等の炭化水素等が挙げられる。ポリウレタンポリオールの溶解性、溶媒の沸点等の点から、トルエンが特に好ましい。 The solvent used for synthesizing the polyurethane polyol is not particularly limited, and for example, known solvents can be used. Examples of the solvent include ketones such as methyl ethyl ketone, acetone and methyl isobutyl ketone, esters such as ethyl acetate, n-butyl acetate and isobutyl acetate, and hydrocarbons such as toluene and xylene. Toluene is particularly preferred in view of the solubility of polyurethane polyol, the boiling point of the solvent, and the like.
 前記粘着剤層がウレタン系樹脂を含む場合、前記粘着剤層は、ゲル分率が25%以上70%以下であることが好ましい。前記粘着剤層のゲル分率は、28%以上がより好ましく、30%以上がさらに好ましい。前記粘着剤層のゲル分率は、68%以下がより好ましく、65%以下がさらに好ましい。前記粘着剤層のゲル分率が、70%以下であると、架橋密度が低いといえる。架橋密度の低いウレタン系樹脂を用いることにより、前記粘着剤層のマルテンス硬度30N/mm以下を達成することができる。一方、前記粘着剤層のゲル分率が、25%以上であると、粘着剤層とエンプラフィルムを剥離した際に粘着剤層の凝集破壊が起きにくい。 When the pressure-sensitive adhesive layer contains a urethane-based resin, the pressure-sensitive adhesive layer preferably has a gel fraction of 25% or more and 70% or less. The gel fraction of the pressure-sensitive adhesive layer is more preferably 28% or higher, even more preferably 30% or higher. The gel fraction of the adhesive layer is more preferably 68% or less, even more preferably 65% or less. When the gel fraction of the pressure-sensitive adhesive layer is 70% or less, it can be said that the crosslink density is low. By using a urethane-based resin with a low cross-linking density, it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer. On the other hand, when the gel fraction of the pressure-sensitive adhesive layer is 25% or more, cohesive failure of the pressure-sensitive adhesive layer is less likely to occur when the pressure-sensitive adhesive layer and the engineering plastic film are separated.
 前記粘着剤層がウレタン系樹脂を含む場合、前記粘着剤層中の前記ウレタン系樹脂の含有量は、好ましくは、10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上である。 When the pressure-sensitive adhesive layer contains a urethane-based resin, the content of the urethane-based resin in the pressure-sensitive adhesive layer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. is.
 前記粘着剤層がシリコーン系樹脂を含む場合、前記粘着剤層は、ゲル分率が25%以上40%以下であることが好ましい前記粘着剤層のゲル分率は、25%以上がより好ましく、28%以上がさらに好ましい。前記粘着剤層のゲル分率は、38%以下がより好ましく、35%以下がさらに好ましい。前記粘着剤層のゲル分率が、40%以下であると、架橋密度が低いといえる。架橋密度の低いシリコーン系樹脂を用いることにより、前記粘着剤層のマルテンス硬度30N/mm以下を達成することができる。一方、前記シリコーン系樹脂のゲル分率が25%以上であると、粘着剤層とエンプラフィルムを剥離した際に粘着剤層の凝集破壊が起きにくい。 When the pressure-sensitive adhesive layer contains a silicone resin, the pressure-sensitive adhesive layer preferably has a gel fraction of 25% or more and 40% or less, and the gel fraction of the pressure-sensitive adhesive layer is more preferably 25% or more, 28% or more is more preferable. The gel fraction of the pressure-sensitive adhesive layer is more preferably 38% or less, even more preferably 35% or less. When the gel fraction of the pressure-sensitive adhesive layer is 40% or less, it can be said that the crosslink density is low. By using a silicone-based resin with a low cross-linking density, it is possible to achieve a Martens hardness of 30 N/mm 2 or less for the pressure-sensitive adhesive layer. On the other hand, when the gel fraction of the silicone-based resin is 25% or more, cohesive failure of the pressure-sensitive adhesive layer is less likely to occur when the pressure-sensitive adhesive layer and the engineering plastic film are separated.
 前記粘着剤層がシリコーン系樹脂を含む場合、前記粘着剤層中の前記シリコーン系樹脂の含有量は、好ましくは、10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上である。 When the pressure-sensitive adhesive layer contains a silicone-based resin, the content of the silicone-based resin in the pressure-sensitive adhesive layer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. is.
 前記粘着剤層は、他の成分を適宜含んでいても良いし、含んでいなくても良い。前記他の成分としては、溶媒、酸化防止剤、架橋防止剤(架橋遅延剤)、充填剤、着色剤、消泡剤、光安定剤等が挙げられる。前記酸化防止剤としては、特に限定されないが、例えば、フェノール系、イオウ系等の酸化防止剤が挙げられる。前記消泡剤としては、特に限定されないが、例えば、シリコーン系、鉱物油系等の消泡剤が挙げられる。前記光安定剤としては、特に限定されないが、例えば、ヒンダードアミン系等の光安定剤が挙げられる。また、前記粘着剤層は、前記他の成分として、例えば、可塑剤を含んでいても良いし、含んでいなくても良い。前記可塑剤を含むことにより、例えば、経時接着力上昇の抑制効果が得られる。前記「経時接着力上昇」は、粘着剤を(例えば、粘着シートの形態で)被着体表面に貼付した場合、貼付後の時間経過とともに、前記被着体表面に対する接着力が上昇する現象をいう。この経時接着力上昇を抑制することにより、例えば、粘着剤または粘着シートの再剥離性が一層向上し、前記被着体表面に対する耐汚染性もいっそう向上する。 The adhesive layer may or may not contain other components as appropriate. Examples of other components include solvents, antioxidants, cross-linking inhibitors (cross-linking retarders), fillers, colorants, antifoaming agents, light stabilizers, and the like. Examples of the antioxidant include, but are not particularly limited to, phenol-based and sulfur-based antioxidants. Examples of the antifoaming agent include, but are not particularly limited to, silicone antifoaming agents and mineral oil antifoaming agents. The light stabilizer is not particularly limited, but includes, for example, hindered amine-based light stabilizers. Moreover, the said adhesive layer may contain the plasticizer as said other component, for example, and does not need to contain it. By including the plasticizer, for example, an effect of suppressing an increase in adhesive strength over time can be obtained. The "increase in adhesive strength over time" refers to a phenomenon in which, when an adhesive (for example, in the form of an adhesive sheet) is applied to the surface of an adherend, the adhesive strength to the surface of the adherend increases over time after application. Say. By suppressing this increase in adhesive strength over time, for example, the removability of the pressure-sensitive adhesive or pressure-sensitive adhesive sheet is further improved, and the contamination resistance to the surface of the adherend is further improved.
 前記粘着剤層は、紫外線吸収剤を含有してもよい。前記紫外線吸収剤としては、公知の紫外線吸収剤を使用することができる。前記紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。 The adhesive layer may contain an ultraviolet absorber. A known ultraviolet absorber can be used as the ultraviolet absorber. Examples of the ultraviolet absorber include organic ultraviolet absorbers and inorganic ultraviolet absorbers, and organic ultraviolet absorbers are preferable from the viewpoint of transparency.
 前記有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系等、及びその組み合わせが挙げられる。なかでも、耐久性の観点からはベンゾトリアゾール系、環状イミノエステル系が特に好ましい。 Examples of the organic UV absorbers include benzotriazole-based, benzophenone-based, cyclic iminoester-based, and combinations thereof. Among them, benzotriazole-based and cyclic iminoester-based are particularly preferable from the viewpoint of durability.
 前記ベンゾトリアゾール系紫外線吸収剤としては、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシヘキシル)フェニル]-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-3′-tert-ブチル-5′-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-tert-ブチル-3′-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシエチル)フェニル]-5-tert-ブチル-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-5′-(メタクリロイルオキシエチルフェニル]-5-ニトロ-2H-ベンゾトリアゾールなどが挙げられる。 Examples of the benzotriazole-based ultraviolet absorbers include 2-[2′-hydroxy-5′-(methacryloyloxymethyl)phenyl]-2H-benzotriazole and 2-[2′-hydroxy-5′-(methacryloyloxyethyl). Phenyl]-2H-benzotriazole, 2-[2′-hydroxy-5′-(methacryloyloxypropyl)phenyl]-2H-benzotriazole, 2-[2′-hydroxy-5′-(methacryloyloxyhexyl)phenyl] -2H-benzotriazole, 2-[2'-hydroxy-3'-tert-butyl-5'-(methacryloyloxyethyl)phenyl]-2H-benzotriazole, 2-[2'-hydroxy-5'-tert- Butyl-3′-(methacryloyloxyethyl)phenyl]-2H-benzotriazole, 2-[2′-hydroxy-5′-(methacryloyloxyethyl)phenyl]-5-chloro-2H-benzotriazole, 2-[2 '-hydroxy-5'-(methacryloyloxyethyl)phenyl]-5-methoxy-2H-benzotriazole, 2-[2'-hydroxy-5'-(methacryloyloxyethyl)phenyl]-5-cyano-2H-benzo triazole, 2-[2′-hydroxy-5′-(methacryloyloxyethyl)phenyl]-5-tert-butyl-2H-benzotriazole, 2-[2′-hydroxy-5′-(methacryloyloxyethylphenyl]- 5-nitro-2H-benzotriazole and the like.
 前記ベンゾフェノン系紫外線吸収剤としては、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-アセトキシエトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-5,5′-ジスルホベンゾフェノン・2ナトリウム塩などが挙げられる。 Examples of the benzophenone-based UV absorbers include 2,2',4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-acetoxyethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'- dimethoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone disodium salt and the like.
 前記環状イミノエステル系紫外線吸収剤としては、2,2′-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン)、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オン、2-(1-又は2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2-(4-ビフェニル)-3,1-ベンゾオキサジン-4-オン、2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-m-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-p-ベンゾイルフェニル-3,1-ベンゾオキサジン-4-オン、2-p-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-o-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-シクロヘキシル-3,1-ベンゾオキサジン-4-オン、2-p-(又はm-)フタルイミドフェニル-3,1-ベンゾオキサジン-4-オン、2,2′-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)2,2′-ビス(3,1-ベンゾオキサジン-4-オン)、2,2′-エチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2′-テトラメチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2′-デカメチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2′-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2′-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(4,4′-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(2,6-又は1,5-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(1,4-シクロヘキシレン)ビス(3,1-ベンゾオキサジン-4-オン)、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ベンゼン等が挙げられる。 Examples of the cyclic iminoester-based UV absorber include 2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazin-4-one), 2-methyl-3,1-benzoxazine- 4-one, 2-butyl-3,1-benzoxazin-4-one, 2-phenyl-3,1-benzoxazin-4-one, 2-(1- or 2-naphthyl)-3,1-benzo Oxazin-4-one, 2-(4-biphenyl)-3,1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl- 3,1-benzoxazin-4-one, 2-p-benzoylphenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o -methoxyphenyl-3,1-benzoxazin-4-one, 2-cyclohexyl-3,1-benzoxazin-4-one, 2-p-(or m-)phthalimidophenyl-3,1-benzoxazin-4 -one, 2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazinone-4-one) 2,2′-bis(3,1-benzoxazin-4-one), 2,2′-ethylenebis(3,1-benzoxazin-4-one), 2,2′-tetramethylenebis(3,1-benzoxazin-4-one), 2,2′-decamethylenebis ( 3,1-benzoxazin-4-one), 2,2′-p-phenylenebis(3,1-benzoxazin-4-one), 2,2′-m-phenylenebis(3,1-benzoxazin-4-one) -4-one), 2,2′-(4,4′-diphenylene)bis(3,1-benzoxazin-4-one), 2,2′-(2,6- or 1,5-naphthalene) Bis(3,1-benzoxazin-4-one), 2,2′-(2-methyl-p-phenylene)bis(3,1-benzoxazin-4-one), 2,2′-(2- nitro-p-phenylene)bis(3,1-benzoxazin-4-one), 2,2′-(2-chloro-p-phenylene)bis(3,1-benzoxazin-4-one), 2, 2'-(1,4-cyclohexylene)bis(3,1-benzoxazin-4-one), 1,3,5-tri(3,1-benzoxazin-4-one-2-yl)benzene, etc. is mentioned.
 また、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、および2,4,6-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,8-ジメチル-4H,6H-ベンゾ(1,2-d;5,4-d′)ビス-(1,3)-オキサジン-4,6-ジオン、2,7-ジメチル-4H,9H-ベンゾ(1,2-d;5,4-d′)ビス-(1,3)-オキサジン-4,9-ジオン、2,8-ジフェニル-4H,8H-ベンゾ(1,2-d;5,4-d′)ビス-(1,3)-オキサジン-4,6-ジオン、2,7-ジフェニル-4H,9H-ベンゾ(1,2-d;5,4-d′)ビス-(1,3)-オキサジン-4,6-ジオン、6,6′-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-ビス(2-エチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-エチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-ブチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-ブチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-オキシビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-スルホニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6′-カルボニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7′-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7′-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7′-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,7′-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7′-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)なども、環状イミノエステル系紫外線吸収剤として使用可能である。 Also, 1,3,5-tri(3,1-benzoxazin-4-one-2-yl)naphthalene, and 2,4,6-tri(3,1-benzoxazin-4-one-2-yl ) naphthalene, 2,8-dimethyl-4H,6H-benzo(1,2-d;5,4-d′)bis-(1,3)-oxazine-4,6-dione, 2,7-dimethyl- 4H,9H-benzo(1,2-d;5,4-d′)bis-(1,3)-oxazine-4,9-dione, 2,8-diphenyl-4H,8H-benzo(1,2 -d;5,4-d')bis-(1,3)-oxazine-4,6-dione,2,7-diphenyl-4H,9H-benzo(1,2-d;5,4-d' ) bis-(1,3)-oxazine-4,6-dione, 6,6′-bis(2-methyl-4H,3,1-benzoxazin-4-one), 6,6′-bis(2 -ethyl-4H,3,1-benzoxazin-4-one), 6,6′-bis(2-phenyl-4H,3,1-benzoxazin-4-one), 6,6′-methylenebis(2 -methyl-4H,3,1-benzoxazin-4-one), 6,6′-methylenebis(2-phenyl-4H,3,1-benzoxazin-4-one), 6,6′-ethylenebis( 2-methyl-4H,3,1-benzoxazin-4-one), 6,6′-ethylenebis(2-phenyl-4H,3,1-benzoxazin-4-one), 6,6′-butylenebis (2-methyl-4H,3,1-benzoxazin-4-one), 6,6'-butylenebis(2-phenyl-4H,3,1-benzoxazin-4-one), 6,6'-oxybis (2-methyl-4H,3,1-benzoxazin-4-one), 6,6′-oxybis(2-phenyl-4H,3,1-benzoxazin-4-one), 6,6′-sulfonyl Bis(2-methyl-4H,3,1-benzoxazin-4-one), 6,6'-sulfonylbis(2-phenyl-4H,3,1-benzoxazin-4-one), 6,6' -carbonylbis(2-methyl-4H,3,1-benzoxazin-4-one), 6,6'-carbonylbis(2-phenyl-4H,3,1-benzoxazin-4-one), 7, 7'-methylenebis(2-methyl-4H,3,1-benzoxazin-4-one), 7,7'-methylenebis(2-phenyl-4H,3,1-benzoxazin-4-one), 7, 7′-bis(2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-ethylenebis(2-methyl-4H,3,1-benzoxazin-4-one), 7,7′-oxybis(2-methyl-4H ,3,1-benzoxazin-4-one), 7,7′-sulfonylbis(2-methyl-4H,3,1-benzoxazin-4-one), 7,7′-carbonylbis(2-methyl -4H,3,1-benzoxazin-4-one), 6,7′-bis(2-methyl-4H,3,1-benzoxazin-4-one), 6,7′-bis(2-phenyl -4H,3,1-benzoxazin-4-one), 6,7′-methylenebis(2-methyl-4H,3,1-benzoxazin-4-one), 6,7′-methylenebis(2-phenyl -4H,3,1-benzoxazin-4-one) can also be used as a cyclic imino ester UV absorber.
 前記紫外線吸収剤の含有量は、特に限定されないが、前記第1保護フィルムの紫外線透過率測定(UV透過率測定)において、測定値が下記数値範囲内となる程度であることが好ましい。例えば、前記紫外線吸収剤の含有量は、前記第1粘着剤層全体を100重量%としたときに、0.1~10重量%であることが好ましく、0.3~3重量%であることがより好ましい。 Although the content of the ultraviolet absorber is not particularly limited, it is preferable that the measured value is within the following numerical range in the ultraviolet transmittance measurement (UV transmittance measurement) of the first protective film. For example, the content of the ultraviolet absorber is preferably 0.1 to 10% by weight, and 0.3 to 3% by weight, when the entire first pressure-sensitive adhesive layer is 100% by weight. is more preferred.
 前記粘着剤層の厚みは、特に限定されないが、通常3~200μmであればよく、好ましくは5~30μmである。 Although the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is usually 3 to 200 μm, preferably 5 to 30 μm.
 前記粘着剤層は、前記基材上に粘着剤組成物溶液を塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させることにより得られる。前記塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層を形成してもよい。その後、前記基材上に前記粘着剤層をセパレータと共に貼り合わせる。以上により、保護フィルムが得られる。 The adhesive layer is obtained by applying an adhesive composition solution on the substrate to form a coating film, and then drying the coating film under predetermined conditions. The coating method is not particularly limited, and examples thereof include roll coating, screen coating, gravure coating, and the like. The drying conditions are, for example, a drying temperature of 80 to 150° C. and a drying time of 0.5 to 5 minutes. Moreover, after coating the pressure-sensitive adhesive composition on the separator to form a coating film, the coating film may be dried under the drying conditions described above to form the pressure-sensitive adhesive layer. After that, the pressure-sensitive adhesive layer is pasted together with the separator onto the substrate. A protective film is obtained by the above.
 前記粘着剤層は基材への塗工前にろ過工程を経ても良い。ろ過精度(フィルター径)は0.2μm~10μmが好ましく、さらに0.2μm~5μmが好ましい。ろ過精度が0.2μml以上であると、粘着剤をろ過するために長時間もしくは高圧力を要しない。そのため、工業的なプロセスに好適である。ろ過精度が10μm以下であると、エンプラフィルムへの転写異物となり得る粘着剤内の異物(ゲル化物など)を好適に除去でき、エンプラフィルムへの転写異物数を少なくとすることができる。 The pressure-sensitive adhesive layer may undergo a filtration process before being applied to the substrate. The filtration accuracy (filter diameter) is preferably 0.2 μm to 10 μm, more preferably 0.2 μm to 5 μm. When the filtration accuracy is 0.2 μm or more, a long time or high pressure is not required to filter the adhesive. Therefore, it is suitable for industrial processes. When the filtration accuracy is 10 μm or less, it is possible to suitably remove foreign matter (such as gelled matter) in the pressure-sensitive adhesive that may become transfer foreign matter to the engineering plastic film, and reduce the number of transfer foreign matter to the engineering plastic film.
<エンジニアリングプラスチックフィルム(エンプラフィルム)>
 前記エンプラフィルムは、100℃以上の環境に長時間、好ましくは168時間、曝されても、49MPa以上の引っ張り強度と2.5GPa以上の曲げ弾性率を保持する高分子化合物のフィルムであることが好ましい。
 前記エンプラフィルムは、ガラス転移温度が115℃以上であることが好ましく、より好ましくは130℃以上、さらに好ましくは145℃以上である。
 前記エンプラフィルムとしては、非晶ポリアリレート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンゾオキサゾール、ポリエチレンナフタレート、シリコーン樹脂、フッ素樹脂、液晶ポリマーなどのフィルムが挙げられる。
 前記エンプラフィルムとしては、特に、イミド結合を有する高分子フィルムを用いることが好ましい。イミド結合を有する高分子フィルムとしては、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリイミドベンゾオキサゾール、ビスマレイミドトリアジンなどのフィルムを例示することができる。
<Engineering plastic film (engineering plastic film)>
The engineering plastic film is a polymer compound film that retains a tensile strength of 49 MPa or more and a flexural modulus of 2.5 GPa or more even when exposed to an environment of 100° C. or higher for a long time, preferably 168 hours. preferable.
The engineering plastic film preferably has a glass transition temperature of 115° C. or higher, more preferably 130° C. or higher, and still more preferably 145° C. or higher.
Examples of the engineering plastic film include amorphous polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyamideimide, polyetherimide, polybenzoxazole, polyethylenenaphthalate, silicone resin, fluororesin, and liquid crystal. Examples include films such as polymers.
As the engineering plastic film, it is particularly preferable to use a polymer film having an imide bond. Examples of polymer films having imide bonds include films of polyimide, polyamideimide, polyetherimide, polyimidebenzoxazole, bismaleimidetriazine, and the like.
 以下に前記エンプラフィルムの一例であるポリイミド系樹脂フィルム(ポリイミドフィルムと称する場合もある)についての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。 The details of the polyimide resin film (sometimes referred to as polyimide film), which is an example of the engineering plastic film, will be described below. In general, a polyimide resin film is prepared by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for producing a polyimide film and drying it to form a green film (hereinafter referred to as (also referred to as "polyamic acid film"), and further subjecting the green film to a high-temperature heat treatment on a polyimide film-producing support or in a state in which the green film is peeled off from the support to cause a dehydration ring-closing reaction.
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。 Application of the polyamic acid (polyimide precursor) solution includes, for example, spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, slit die coating, etc. Application of conventionally known solutions. means can be used as appropriate.
 ポリアミック酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましい。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。 The diamines that make up the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines, etc. that are commonly used in polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferred. Diamines may be used alone or in combination of two or more.
 ジアミン類としては特に限定はなく、例えばオキシジアニリン(ビス(4-アミノフェニル)エーテル)、パラフェニレンジアミン(1,4-フェニレンジアミン)等が挙げられる。 The diamines are not particularly limited, and examples thereof include oxydianiline (bis(4-aminophenyl) ether) and paraphenylenediamine (1,4-phenylenediamine).
 ポリアミック酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 The tetracarboxylic acids constituting the polyamic acid include aromatic tetracarboxylic acids (including their acid anhydrides), aliphatic tetracarboxylic acids (including their acid anhydrides), and alicyclic tetracarboxylic acids, which are commonly used in polyimide synthesis. Acids (including anhydrides thereof) can be used. When these are acid anhydrides, one or two anhydride structures may be present in the molecule, but preferably those having two anhydride structures (dianhydrides) are good. Tetracarboxylic acids may be used alone, or two or more of them may be used in combination.
 テトラカルボン酸としては、特に限定はなく、例えばピロリメット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。 The tetracarboxylic acid is not particularly limited and includes, for example, pyrrolimethic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride.
 前記ポリイミドフィルムは、透明ポリイミドフィルムであっても良い。 The polyimide film may be a transparent polyimide film.
 前記エンプラフィルムの一例である無色透明ポリイミドについて説明する。以下煩雑さを避けるために、単に透明ポリイミドとも記す。透明ポリイミドの透明性としては、全光線透過率が75%以上のものであることが好ましい。より好ましくは80%以上であり、さらに好ましくは85%以上であり、より一層好ましくは87%以上であり、特に好ましくは88%以上である。前記透明ポリイミドの全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには98%以下であることが好ましく、より好ましくは97%以下である。本発明における無色透明ポリイミドとは、全光線透過率75%以上のポリイミドが好ましい。 A colorless transparent polyimide, which is an example of the engineering plastic film, will be described. In order to avoid complication, it is simply referred to as transparent polyimide. As for the transparency of the transparent polyimide, it is preferable that the total light transmittance is 75% or more. It is more preferably 80% or more, still more preferably 85% or more, even more preferably 87% or more, and particularly preferably 88% or more. Although the upper limit of the total light transmittance of the transparent polyimide is not particularly limited, it is preferably 98% or less, more preferably 97% or less for use as a flexible electronic device. The colorless transparent polyimide in the present invention is preferably polyimide having a total light transmittance of 75% or more.
 無色透明性の高いポリイミドを得るための芳香族テトラカルボン酸類としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物が好ましい。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。芳香族テトラカルボン酸類の共重合量は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、100質量%であっても差し支えない。 Aromatic tetracarboxylic acids for obtaining highly colorless and transparent polyimide include 4,4′-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4′-oxydiphthalic acid, bis(1,3- dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)benzene-1,4 -dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene- 1,2-dicarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 4,4′-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis (toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(1, 4-xylene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3-oxo-1,3-dihydro-2-benzofuran-1,1- diyl)bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3-oxo-1,3-dihydro-2- benzofuran-1,1-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3H-2,1-benzoxathiol- 1,1-dioxido-3,3-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-benzophenonetetracarboxylic acid, 4,4′-[(3H -2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[(3H- 2,1-Benzoxathiol-1,1-dioxide-3,3-diyl)bis(1,4-xylene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[ 4,4′-(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3H-2 ,1-Benzoxathiol-1,1-dioxide-3,3-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 3,3′,4,4′-benzophenone tetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 3,3′,4,4′-diphenylsulfonetetracarboxylic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, pyromellitic acid, 4,4′-[spiro(xanthene-9,9′-fluorene)-2,6-diylbis(oxycarbonyl)]diphthalic acid, Tetracarboxylic acids such as 4,4'-[spiro(xanthene-9,9'-fluorene)-3,6-diylbis(oxycarbonyl)]diphthalic acid and acid anhydrides thereof can be mentioned. Among these, dianhydrides having two acid anhydride structures are preferred, particularly 4,4′-(2,2-hexafluoroisopropylidene)diphthalic dianhydride, 4,4′-oxydiphthalic Acid dianhydrides are preferred. Aromatic tetracarboxylic acids may be used alone, or two or more of them may be used in combination. The amount of aromatic tetracarboxylic acids to be copolymerized is, for example, preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass of the total tetracarboxylic acids when heat resistance is emphasized. More preferably, it is 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
 脂環式テトラカルボン酸類としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。脂環式テトラカルボン酸類の共重合量は、透明性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、100質量%であっても差し支えない。 Alicyclic tetracarboxylic acids include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, 1 , 2,4,5-cyclohexanetetracarboxylic acid, 3,3′,4,4′-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3,5,6-tetracarboxylic acid, Bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, decahydronaphthalene-2 ,3,6,7-tetracarboxylic acid, decahydro-1,4:5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid, decahydro-1,4-ethano-5,8-methano naphthalene-2,3,6,7-tetracarboxylic acid, norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetra Carboxylic acid (also known as "norbornane-2-spiro-2'-cyclopentanone-5'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid"), methylnorbornane- 2-spiro-α-cyclopentanone-α'-spiro-2''-(methylnorbornane)-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclohexanone- α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid (aka "norbornane-2-spiro-2'-cyclohexanone-6'-spiro-2''-norbornane -5,5″,6,6″-tetracarboxylic acid”), methylnorbornane-2-spiro-α-cyclohexanone-α′-spiro-2″-(methylnorbornane)-5,5″, 6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclopropanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane -2-spiro-α-cyclobutanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cycloheptanone-α' -Spiro-2 ''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclooctanone-α'-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclononanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2 -spiro-α-cyclodecanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro-α-cycloundecanone-α′-spiro -2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro-α-cyclododecanone-α′-spiro-2″-norbornane-5,5′ ',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclotridecanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid , norbornane-2-spiro-α-cyclotetradecanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro-α-cyclo Pentadecanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-(methylcyclopentanone)-α'-spiro -2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro-α-(methylcyclohexanone)-α′-spiro-2″-norbornane-5,5 Tetracarboxylic acids such as '',6,6''-tetracarboxylic acid and acid anhydrides thereof can be mentioned. Among these, dianhydrides having two acid anhydride structures are preferred, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic acid Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic An acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. In addition, these may be used independently and may use 2 or more types together. The amount of alicyclic tetracarboxylic acids to be copolymerized is, for example, preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass of the total tetracarboxylic acids when importance is placed on transparency. % or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。 Tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalenetricarboxylic acid, diphenylether-3,3′,4′-tricarboxylic acid, and diphenylsulfone-3,3′,4′-tricarboxylic acid. acids or hydrogenated products of the above aromatic tricarboxylic acids such as hexahydrotrimellitic acid; Glycol bistrimellitate, and their monoanhydrides and esters. Among these, monoanhydrides having one acid anhydride structure are preferred, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferred. In addition, these may be used individually and may be used in combination.
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, or the above aromatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid. Hydrogenates of oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, undecadeic acid, dodecanedioic acid, 2-methylsuccinic acid, and their acid chlorides Alternatively, an esterified product and the like can be mentioned. Among these, aromatic dicarboxylic acids and hydrogenated products thereof are preferred, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferred. In addition, dicarboxylic acids may be used alone or in combination.
 無色透明性の高いポリイミドを得るためのジアミン類或いはイソシアネート類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミン類が好ましい。また、ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類及びイソシアネート類は、単独で用いてもよいし二種以上を併用してもよい。 Diamines or isocyanates for obtaining highly colorless and transparent polyimides are not particularly limited, and polyimide synthesis, polyamideimide synthesis, aromatic diamines, aliphatic diamines, and alicyclic diamines commonly used in polyamide synthesis. , aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. In addition, the use of aromatic diamines having a benzoxazole structure makes it possible to exhibit high heat resistance, high elastic modulus, low thermal shrinkage, and low coefficient of linear expansion. Diamines and isocyanates may be used alone or in combination of two or more.
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン等が挙げられる。また、上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されても良い。また、前記ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。これらの中で、特に、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノンが好ましい。尚、芳香族ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of aromatic diamines include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy)benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′- Bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone , 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoro Propane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4-amino-N-(4-aminophenyl)benzamide, 3,3'-diaminodiphenyl ether , 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2′-trifluoromethyl-4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4 '-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4 '-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis[4-(4-aminophenoxy)phenyl]methane, 1,1-bis[4-(4-aminophenoxy)phenyl]ethane, 1,2-bis [4-(4-aminophenoxy)phenyl]ethane, 1,1-bis[4-(4-aminophenoxy)phenyl]propane, 1,2-bis[4-(4-aminophenoxy)phenyl]propane, 1 , 3-bis[4-(4-aminophenoxy)phenyl]propane, 2, 2-bis[4-(4-aminophenoxy)phenyl]propane, 1,1-bis[4-(4-aminophenoxy)phenyl]butane, 1,3-bis[4-(4-aminophenoxy)phenyl] Butane, 1,4-bis[4-(4-aminophenoxy)phenyl]butane, 2,2-bis[4-(4-aminophenoxy)phenyl]butane, 2,3-bis[4-(4-amino phenoxy)phenyl]butane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3-methylphenyl]propane, 2,2-bis[4-(4- aminophenoxy)-3-methylphenyl]propane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2- Bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexa Fluoropropane, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4'-bis(4 -aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ketone, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfoxide, bis[ 4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ether, 1,3-bis[4-(4 -aminophenoxy)benzoyl]benzene, 1,3-bis[4-(3-aminophenoxy)benzoyl]benzene, 1,4-bis[4-(3-aminophenoxy)benzoyl]benzene, 4,4'-bis [(3-aminophenoxy)benzoyl]benzene, 1,1-bis[4-(3-aminophenoxy)phenyl]propane, 1,3-bis[4-(3-aminophenoxy)phenyl]propane, 3,4 '-diaminodiphenyl sulfide, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, bis[4-(3-aminophenoxy)phenyl ]methane, 1,1-bis[4-(3-aminophenoxy)phenyl]ethane, 1,2- bis[4-(3-aminophenoxy)phenyl]ethane, bis[4-(3-aminophenoxy)phenyl]sulfoxide, 4,4′-bis[3-(4-aminophenoxy)benzoyl]diphenyl ether, 4,4 '-bis[3-(3-aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzophenone, 4,4'-bis[4- (4-amino-α,α-dimethylbenzyl)phenoxy]diphenylsulfone, bis[4-{4-(4-aminophenoxy)phenoxy}phenyl]sulfone, 1,4-bis[4-(4-aminophenoxy) Phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6 -trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-fluorophenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[ 4-(4-amino-6-methylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-cyanophenoxy)-α,α-dimethylbenzyl]benzene, 3,3′-diamino-4,4′-diphenoxybenzophenone, 4,4′-diamino-5,5′-diphenoxybenzophenone, 3,4′-diamino-4,5′-diphenoxybenzophenone, 3, 3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3 '-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5'-dibiphenoxybenzophenone, 3,3'- diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1, 3-bis(3-amino-4-phenoxybenzoyl)benzene, 1,4-bis(3-amino-4-phenoxybenzoyl)benzene, 1,3-bis(4-amino-5-phenoxybenzoyl) noxybenzoyl)benzene, 1,4-bis(4-amino-5-phenoxybenzoyl)benzene, 1,3-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,4-bis(3-amino -4-biphenoxybenzoyl)benzene, 1,3-bis(4-amino-5-biphenoxybenzoyl)benzene, 1,4-bis(4-amino-5-biphenoxybenzoyl)benzene, 2,6-bis [4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzonitrile, 4,4′-[9H-fluorene-9,9-diyl]bisaniline (also known as “9,9-bis(4-aminophenyl ) fluorene”), spiro(xanthene-9,9′-fluorene)-2,6-diylbis(oxycarbonyl)]bisaniline, 4,4′-[spiro(xanthene-9,9′-fluorene)-2,6 -diylbis(oxycarbonyl)]bisaniline, 4,4′-[spiro(xanthene-9,9′-fluorene)-3,6-diylbis(oxycarbonyl)]bisaniline and the like. In addition, some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl or alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and Some or all of the hydrogen atoms in the alkyl or alkoxyl groups of 1 to 3 may be substituted with halogen atoms. Further, the aromatic diamines having a benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, oxazole, 5-amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2′-p-phenylenebis(5-aminobenzoxazole), 2 , 2′-p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-aminobenzoxazolo)benzene, 2,6-(4,4′-diamino diphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole , 2,6-(3,4′-diaminodiphenyl)benzo[1,2-d:5,4-d′]bisoxazole, 2,6-(3,4′-diaminodiphenyl)benzo[1,2 -d: 4,5-d']bisoxazole, 2,6-(3,3'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(3 ,3′-diaminodiphenyl)benzo[1,2-d:4,5-d′]bisoxazole and the like. Among these, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4-amino-N-(4-aminophenyl)benzamide, 4,4′-diaminodiphenylsulfone, 3,3 '-Diaminobenzophenone is preferred. Incidentally, the aromatic diamines may be used singly or in combination.
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。これらの中で、特に、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサンが好ましく、1,4-ジアミノシクロヘキサンがより好ましい。尚、脂環式ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Alicyclic diamines include, for example, 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 4,4'-methylenebis(2,6-dimethylcyclohexylamine) and the like. Among these, 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferred, and 1,4-diaminocyclohexane is more preferred. Incidentally, the alicyclic diamines may be used alone or in combination.
 ジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’ -ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-(2,2ビス(4-フェノキシフェニル)プロパン)ジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート類、及びこれらのいずれかを水素添加したジイソシアネート(例えば、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート)などが挙げられる。これらの中では、低吸湿性、寸法安定性、価格及び重合性の点からジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートやナフタレン-2,6-ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネートが好ましい。尚、ジイソシアネート類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Diisocyanates include, for example, diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3' - or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2 '- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4, 3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, naphthalene-2,6-diisocyanate, 4,4′-(2,2 bis(4-phenoxyphenyl)propane) diisocyanate, 3, 3'- or 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'- or 2,2'-diethylbiphenyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4, Aromatic diisocyanates such as 4'-diisocyanate and 3,3'-diethoxybiphenyl-4,4'-diisocyanate, and diisocyanates obtained by hydrogenating any of these (e.g., isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate) and the like. Among them, diphenylmethane-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, 3,3'- Dimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate and 1,4-cyclohexane diisocyanate are preferred. Diisocyanates may be used alone or in combination.
 本実施形態においては、前記エンプラフィルムが、ポリイミドフィルムであることが好ましい。前記エンプラフィルムが、ポリイミドフィルムであると、耐熱性に優れる。また、前記エンプラフィルムが、ポリイミドフィルムであると、好適に紫外線レーザーに切断することができる。 In this embodiment, the engineering plastic film is preferably a polyimide film. When the engineering plastic film is a polyimide film, it has excellent heat resistance. Further, when the engineering plastic film is a polyimide film, it can be suitably cut with an ultraviolet laser.
 前記エンプラフィルムの厚さは3μm以上が好ましく、より好ましくは7μm以上であり、さらに好ましくは14μm以上であり、より一層好ましくは20μm以上である。前記エンプラフィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは100μm以下であり、さらに好ましくは50μm以下である。 The thickness of the engineering plastic film is preferably 3 µm or more, more preferably 7 µm or more, still more preferably 14 µm or more, and still more preferably 20 µm or more. Although the upper limit of the thickness of the engineering plastic film is not particularly limited, it is preferably 250 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less for use as a flexible electronic device.
 前記エンプラフィルムの30℃から250℃の間の平均の線膨張係数(CTE)は、50ppm/K以下であることが好ましい。より好ましくは45ppm/K以下であり、さらに好ましくは40ppm/K以下であり、よりさらに好ましくは30ppm/K以下であり、特に好ましくは20ppm/K以下である。また-5ppm/K以上であることが好ましく、より好ましくは-3ppm/K以上であり、さらに好ましくは1ppm/K以上である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供してもエンプラフィルムと無機基板とが剥がれるあるいは、支持体ごと反ることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記エンプラフィルムのCTEとは、ポリアミック酸の塗工方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。前記エンプラフィルムのCTEの測定方法は、実施例に記載の方法による。 The average coefficient of linear expansion (CTE) of the engineering plastic film between 30°C and 250°C is preferably 50 ppm/K or less. It is more preferably 45 ppm/K or less, still more preferably 40 ppm/K or less, even more preferably 30 ppm/K or less, and particularly preferably 20 ppm/K or less. Moreover, it is preferably -5 ppm/K or more, more preferably -3 ppm/K or more, and still more preferably 1 ppm/K or more. When the CTE is within the above range, the difference in coefficient of linear expansion with a general support (inorganic substrate) can be kept small, and the engineering plastic film and the inorganic substrate are peeled off even when subjected to a process of applying heat, or the support is not supported. You can avoid warping the whole body. Here, CTE is a factor representing reversible expansion and contraction with respect to temperature. The CTE of the engineering plastic film refers to the average value of the CTE in the coating direction (MD direction) and the CTE in the width direction (TD direction) of the polyamic acid. The method for measuring the CTE of the engineering plastic film is according to the method described in Examples.
 前記エンプラフィルムが、透明ポリイミドフィルムである場合、その黄色度指数(以下、「イエローインデックス」または「YI」ともいう。)は10以下が好ましく、より好ましくは7以下であり、さらに好ましくは5以下であり、より一層好ましくは3以下である。前記透明ポリイミドの黄色度指数の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。 When the engineering plastic film is a transparent polyimide film, its yellowness index (hereinafter also referred to as "yellow index" or "YI") is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less. and more preferably 3 or less. Although the lower limit of the yellowness index of the transparent polyimide is not particularly limited, it is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more for use as a flexible electronic device. is.
 前記エンプラフィルムが透明ポリイミドフィルムの場合、ヘイズは1.0以下が好ましく、より好ましくは0.8以下であり、さらに好ましくは0.5以下であり、より一層好ましくは0.3以下である。下限は特に限定されないが、工業的には、0.01以上であれば問題なく、0.05以上であっても差し支えない。 When the engineering plastic film is a transparent polyimide film, the haze is preferably 1.0 or less, more preferably 0.8 or less, even more preferably 0.5 or less, and still more preferably 0.3 or less. Although the lower limit is not particularly limited, industrially, there is no problem if it is 0.01 or more, and it may be 0.05 or more.
 前記エンプラフィルムの30℃から500℃の間の熱収縮率は、±0.9%以下であることが好ましく、さらに好ましくは±0.6以下%である。熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。 The thermal shrinkage rate of the engineering plastic film between 30°C and 500°C is preferably ±0.9% or less, more preferably ±0.6% or less. Thermal shrinkage is a factor representing irreversible expansion and contraction with respect to temperature.
 前記エンプラフィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは80MP以上であり、さらに好ましくは100MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。前記引張破断強度が60MPa以上であると、無機基板から剥離する際に前記エンプラフィルムが破断してしまうことを防止することができる。なお、前記エンプラフィルムの引張破断強度とは、エンプラフィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。前記エンプラフィルムの引張破断強度の測定方法は、実施例に記載の方法による。 The tensile strength at break of the engineering plastic film is preferably 60 MPa or more, more preferably 80 MPa or more, and still more preferably 100 MPa or more. Although the upper limit of the tensile strength at break is not particularly limited, it is practically less than about 1000 MPa. When the tensile strength at break is 60 MPa or more, it is possible to prevent the engineering plastic film from being broken when peeled from the inorganic substrate. The tensile strength at break of the engineering plastic film refers to the average value of the tensile strength at break in the machine direction (MD direction) and the tensile strength at break in the width direction (TD direction) of the engineering plastic film. The method for measuring the tensile strength at break of the engineering plastic film is according to the method described in Examples.
 前記エンプラフィルムの引張破断伸度は、1%以上が好ましく、より好ましくは5%以上であり、さらに好ましくは10%以上である。前記引張破断伸度が、1%以上であると、取り扱い性に優れる。なお、前記エンプラフィルムの引張破断伸度とは、エンプラフィルムの流れ方向(MD方向)の引張破断伸度及び幅方向(TD方向)の引張破断伸度の平均値を指す。前記エンプラフィルムの引張破断伸度の測定方法は、実施例に記載の方法による。 The tensile elongation at break of the engineering plastic film is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more. When the tensile elongation at break is 1% or more, the handleability is excellent. The tensile elongation at break of the engineering plastic film refers to the average value of the tensile elongation at break in the machine direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the engineering plastic film. The method for measuring the tensile elongation at break of the engineering plastic film is according to the method described in Examples.
 前記エンプラフィルムの引張弾性率は、2.5GPa以上が好ましく、より好ましくは3GPa以上であり、さらに好ましくは4GPa以上である。前記引張弾性率が、2.5GPa以上であると、無機基板から剥離する際の前記エンプラフィルムの伸び変形が少なく、取り扱い性に優れる。前記引張弾性率は、20GPa以下が好ましく、より好ましくは15GPa以下であり、さらに好ましくは12GPa以下である。前記引張弾性率が、20GPa以下であると、前記エンプラフィルムをフレキシブルなフィルムとして使用できる。なお、前記エンプラフィルムの引張弾性率とは、エンプラフィルムの流れ方向(MD方向)の引張弾性率及び幅方向(TD方向)の引張弾性率の平均値を指す。前記エンプラフィルムの引張弾性率の測定方法は、実施例に記載の方法による。 The tensile modulus of the engineering plastic film is preferably 2.5 GPa or more, more preferably 3 GPa or more, and still more preferably 4 GPa or more. When the tensile elastic modulus is 2.5 GPa or more, the engineering plastic film undergoes little elongation deformation when peeled from the inorganic substrate, and is excellent in handleability. The tensile modulus is preferably 20 GPa or less, more preferably 15 GPa or less, and even more preferably 12 GPa or less. When the tensile modulus is 20 GPa or less, the engineering plastic film can be used as a flexible film. The tensile elastic modulus of the engineering plastic film refers to the average value of the tensile elastic modulus in the machine direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the engineering plastic film. The method for measuring the tensile modulus of the engineering plastic film is according to the method described in Examples.
 前記エンプラフィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
The thickness unevenness of the engineering plastic film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. If the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow areas. The uneven thickness of the film can be obtained by measuring the thickness of the film by randomly extracting about 10 positions from the film to be measured using, for example, a contact-type film thickness meter, and calculating the thickness according to the following formula.
Film thickness unevenness (%)
= 100 x (maximum film thickness - minimum film thickness) / average film thickness
 前記エンプラフィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺エンプラフィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状エンプラフィルムの形態のものがより好ましい。前記エンプラフィルムがロール状に巻かれていると、ロール状に巻かれた耐熱エンプラフィルムという形態での輸送が容易となる。 The engineering plastic film is preferably obtained in the form of being wound as a long engineering plastic film with a width of 300 mm or more and a length of 10 m or more at the time of production. Morphology is more preferred. When the engineering plastic film is wound into a roll, transportation in the form of a heat-resistant engineering plastic film wound into a roll is facilitated.
 前記エンプラフィルムにおいては、ハンドリング性および生産性を確保する為、エンプラフィルム中に粒子径が10~1000nm程度の滑材(粒子)を、0.03~3質量%程度、添加・含有させて、エンプラフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。 In the engineering plastic film, in order to ensure handleability and productivity, a lubricant (particles) having a particle diameter of about 10 to 1000 nm is added and contained in the engineering plastic film in an amount of about 0.03 to 3% by mass. It is preferable to provide the surface of the engineering plastic film with fine irregularities to ensure slipperiness.
<無機基板>
 前記無機基板としては、ガラス板、半導体ウエハ、金属板、セラミック板などを用いることができる。前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。前記半導体ウエハとしては、シリコンウエハ、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。前記金属板としてはW、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、各種ステンレス鋼といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。前記セラミック板としてはアルミナ、マグネシア、カルシア、窒化ケイ素、窒化ホウ素、窒化アルミニウム、酸化ベリリウムなどの単一または複合焼結体を用いることができる。本発明においてセラミック基板を用いる場合には表面をガラスグレーズ処理して平滑化したセラミック基板を用いることが好ましい。
<Inorganic substrate>
A glass plate, a semiconductor wafer, a metal plate, a ceramic plate, or the like can be used as the inorganic substrate. Examples of the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (no alkali), Borosilicate glass (microsheet), aluminosilicate glass, etc. are included. Among these, those having a coefficient of linear expansion of 5 ppm/K or less are desirable. "EAGLE", "AN100" manufactured by Asahi Glass Co., Ltd., "OA10" manufactured by Nippon Electric Glass Co., Ltd., "AF32" manufactured by SCHOTT Co., Ltd., and the like are desirable. Examples of the semiconductor wafer include silicon wafers, germanium, silicon-germanium, gallium-arsenide, aluminum-gallium-indium, nitrogen-phosphorus-arsenic-antimony, SiC, InP (indium phosphide), InGaAs, GaInNAs, LT, LN, and ZnO. (zinc oxide), CdTe (cadmium telluride), ZnSe (zinc selenide), and the like. Examples of the metal plate include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni system Invar alloys, Super Invar alloys, and various stainless steels. included. In addition to these metals, multi-layer metal plates obtained by adding other metal layers and ceramic layers are also included. As the ceramic plate, a single or composite sintered body of alumina, magnesia, calcia, silicon nitride, boron nitride, aluminum nitride, beryllium oxide, or the like can be used. When a ceramic substrate is used in the present invention, it is preferable to use a ceramic substrate whose surface is smoothed by glass glaze treatment.
 前記無機基板の表面粗さは0.01~2nmの範囲であることが好ましい。少なくとも、無機基板がエンジニアリングプラスチックと積層された場合に、エンプラフィルムとは反対側の面の表面粗さが0.01~2nmの範囲であることが好ましい。さらに表面粗さの好ましい範囲は0.01~0.8nmの範囲であり、さらに好ましくは0.01~0.3nmの範囲である。無機基板の表面粗さをこの範囲に制御することで、表面が平滑な、つまり機能素子の形成に適したエンプラフィルムとの密着性が上がり、工程中でのエンプラフィルムの剥離を抑制することができる。 The surface roughness of the inorganic substrate is preferably in the range of 0.01 to 2 nm. At least, when the inorganic substrate is laminated with the engineering plastic, the surface roughness of the surface opposite to the engineering plastic film is preferably in the range of 0.01 to 2 nm. Furthermore, the preferred range of surface roughness is 0.01 to 0.8 nm, more preferably 0.01 to 0.3 nm. By controlling the surface roughness of the inorganic substrate within this range, adhesion with the engineering plastic film, which has a smooth surface, which is suitable for forming functional elements, is improved, and peeling of the engineering plastic film during the process can be suppressed. can.
 前記無機基板の厚さは特に制限されないが、取扱性の観点より10mm以下の厚さが好ましく、3mm如何より好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.07mm以上、より好ましくは0.15mm以上、さらに好ましくは0.3mm以上である。 Although the thickness of the inorganic substrate is not particularly limited, the thickness is preferably 10 mm or less, more preferably 3 mm or less, and still more preferably 1.3 mm or less from the viewpoint of handleability. Although the lower limit of the thickness is not particularly limited, it is preferably 0.07 mm or more, more preferably 0.15 mm or more, and still more preferably 0.3 mm or more.
 前記無機基板と前記エンジニアリングプラスチックフィルムとは、接して積層されているか、又は、シランカップリング剤層のみを介して積層されている。 The inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated via only the silane coupling agent layer.
 <シランカップリング剤層>
 本明細書において、シランカップリング剤とは、Si(ケイ素)の成分を10質量%以上含有する化合物をいう。前記シランカップリング剤は、さらに構造中にアルコキシ基を有することが好ましい。また、前記シランカップリング剤は、メチル基が入っていないことが望ましい。前記シランカップリング剤層を用いることで、エンプラフィルムと無機基板との間にある層を薄くできる。その結果、加熱中の脱ガス成分が少なく、ウェットプロセスにおいても溶出しにくく、仮に溶出が起きても微量にとどまるという効果がある。シランカップリング剤は、耐熱性が向上するため、酸化ケイ素成分を多く含むもの好ましく、特に400℃程度の温度での耐熱性を有するものであることが好ましい。
<Silane coupling agent layer>
As used herein, the silane coupling agent refers to a compound containing 10% by mass or more of Si (silicon) component. The silane coupling agent preferably further has an alkoxy group in its structure. Moreover, it is desirable that the silane coupling agent does not contain a methyl group. By using the silane coupling agent layer, the thickness of the layer between the engineering plastic film and the inorganic substrate can be reduced. As a result, the amount of degassed components during heating is small, the elution is less likely to occur even in a wet process, and even if elution does occur, the amount of elution is minimal. Since the silane coupling agent improves heat resistance, it preferably contains a large amount of a silicon oxide component, and particularly preferably has heat resistance at a temperature of about 400°C.
 前記シランカップリング剤層の厚さは0.2μm未満であることが好ましい。フレキシブル電子デバイスとして使用する範囲としては、100nm以下(0.1μm以下)が好ましく、より望ましくは50nm以下であり、更に望ましくは10nmである。通常に作製すると、0.10μm以下程度となる。また、極力シランカップリング剤が少ないことを望むプロセスでは、5nm以下でも使用可能である。1nm以下では、剥離強度が低下或は、部分的に付かない部分が出るおそれがあるため、1nm以上であることが望ましい。 The thickness of the silane coupling agent layer is preferably less than 0.2 μm. The range for use as a flexible electronic device is preferably 100 nm or less (0.1 μm or less), more preferably 50 nm or less, and even more preferably 10 nm. When normally produced, the thickness is about 0.10 μm or less. Also, in a process that requires as little silane coupling agent as possible, a thickness of 5 nm or less can be used. If the thickness is less than 1 nm, the peel strength may be lowered or there may be a portion where the adhesive is not adhered, so the thickness is preferably 1 nm or more.
 前記シランカップリング剤は、特に限定されるものではないが、アミノ基或はエポキシ基を持ったものが、好ましい。シランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシランなどが挙げられる。このうち好ましいものとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで耐熱性を要求する場合、Siとアミノ基などの間を芳香族でつないだものが望ましい。 The silane coupling agent is not particularly limited, but preferably has an amino group or an epoxy group. Specific examples of silane coupling agents include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(amino ethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 2- (3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane vinyltrichlorosilane, vinyl trimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxysilane propyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 - acryloxypropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, tris-(3-trimethoxysilyl propyl)isocyanurate, chloromethylphenethyltrimethoxysilane, chloromethyltrimethoxysilane, and the like. Preferred among these are N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)- 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 2-(3, 4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyltrimethoxysilane, amino phenethyltrimethoxysilane, aminophenylaminomethylphenethyltrimethoxysilane and the like. When heat resistance is required in the process, it is preferable to use an aromatic link between Si and an amino group.
 上述の通り、本実施形態の積層体は、前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、好ましくは500MPa以下である。前記エンプラフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であるため、前記エンプラフィルムと前記保護フィルム(前記粘着剤層)とのラミネート時に生じるせん断力を吸収することができ、前記エンプラフィルムと前記保護フィルム(前記粘着剤層)との間に気泡が生じることを抑制できる。また、前記エンプラフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であるため、保護フィルム付きのエンプラフィルムを無機基板に貼り合わせる際、ラミネート時に生じるせん断力を吸収することができる。従って、無機基板とエンプラフィルムの間に気泡が生じることを抑制することができる。前記せん断剥離強度の測定方法は、実施例に記載の方法による。
 前記せん断剥離強度は、前記粘着剤層の組成等によりコントロールすることができる。
As described above, in the laminate of the present embodiment, the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, preferably 500 MPa or less. Since the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, the engineering plastic film can absorb the shear force generated when the engineering plastic film and the protective film (the adhesive layer) are laminated. and the protective film (the pressure-sensitive adhesive layer). In addition, since the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, the shearing force generated during lamination can be absorbed when the engineering plastic film with the protective film is attached to the inorganic substrate. Therefore, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film. The method for measuring the shear peel strength is according to the method described in Examples.
The shear peel strength can be controlled by the composition of the pressure-sensitive adhesive layer.
 本実施形態の積層体において、前記粘着剤層は、マルテンス硬度が30N/mm以下であり、好ましくは21N/mm以下である。前記粘着剤層のマルテンス硬度が30N/mm以下であるため、前記エンプラフィルムと前記粘着剤層との濡れ性が良い。また、前記粘着剤層のマルテンス硬度が30N/mm以下であるため、十分に柔らかく、前記エンプラフィルムと前記保護フィルムとのラミネート時にムラやシワ、気泡が生じにくく、加工が容易である。また、粘着剤層のマルテンス硬度が30N/mm以下であるため、エンプラフィルムと無機基板のラミネート時に生じるせん断力を緩和することができる。その結果、無機基板とエンプラフィルムとの間の気泡の発生を抑制することができる。前記マルテンス硬度の測定方法は、実施例に記載の方法による。
 前記マルテンス硬度は、前記粘着剤層の組成や、前記粘着剤層に使用する樹脂の硬度や架橋密度によりコントロールすることができる。例えば、粘着剤層を構成する樹脂として、架橋密度の低い低硬度のウレタン系樹脂を使用すること、架橋密度の低い低硬度のシリコーン系樹脂すること、架橋密度の低い低硬度のアクリル系樹脂を使用すること等が挙げられる。
In the laminate of the present embodiment, the adhesive layer has a Martens hardness of 30 N/mm 2 or less, preferably 21 N/mm 2 or less. Since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, wettability between the engineering plastic film and the pressure-sensitive adhesive layer is good. In addition, since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, it is sufficiently soft, and unevenness, wrinkles, and air bubbles are less likely to occur during lamination of the engineering plastic film and the protective film, and processing is easy. Further, since the adhesive layer has a Martens hardness of 30 N/mm 2 or less, it is possible to alleviate the shearing force generated during lamination of the engineering plastic film and the inorganic substrate. As a result, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film. The method for measuring the Martens hardness is according to the method described in Examples.
The Martens hardness can be controlled by the composition of the pressure-sensitive adhesive layer and the hardness and crosslink density of the resin used in the pressure-sensitive adhesive layer. For example, as the resin constituting the adhesive layer, a low hardness urethane resin with a low crosslink density, a low hardness silicone resin with a low crosslink density, and a low hardness acrylic resin with a low crosslink density are used. use.
 本実施形態の積層体において、前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数が1個/cm以下である。上述の通り、前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、前記粘着剤層のマルテンス硬度が30N/mm以下であるため、前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数が1個/cm以下を達成することが可能となる。前記気泡数の下限値は、小さいことが好ましいが、前記気泡数は、例えば、0個/cm以上である。
 前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数の測定方法は、実施例に記載の方法による。
In the laminate of this embodiment, the number of non-nucleated air bubbles between the inorganic substrate and the engineering plastic film is 1/cm 2 or less. As described above, the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, and the Martens hardness of the adhesive layer is 30 N/mm 2 or less. It becomes possible to achieve the number of non-nucleated bubbles between 1/cm 2 or less. The lower limit of the number of bubbles is preferably small, and the number of bubbles is, for example, 0/cm 2 or more.
The method for measuring the number of voids without nuclei between the inorganic substrate and the engineering plastic film is according to the method described in Examples.
 本実施形態の積層体において、前記エンプラフィルムと前記無機基板との剥離強度は0.3N/cm以下であることが好ましい。これにより、エンプラフィルム上にデバイスを形成した後、当該エンプラフィルムと無機基板との剥離が非常に容易となる。そのため、大量生産が可能なデバイス連結体を製造することができ、フレキシブル電子デバイスの製造が容易となる。前記剥離強度は、0.25N/cm以下であることが好ましく、より好ましくは0.2N/cm以下であり、さらに好ましくは0.15N/cm以下であり、特に好ましくは0.12N/cm以下である。また、前記剥離強度は、0.03N/cm以上であることが好ましい。エンプラフィルム上にデバイスを形成する際に積層体が剥離しなくなることから、より好ましくは0.06N/cm以上であり、さらに好ましくは0.08N/cm以上であり、特に好ましくは0.1N/cm以上である。前記剥離強度は、エンプラフィルムと前記無機基板を貼り合わせた後、大気雰囲気下で100℃10分間熱処理した後の積層体の値である(初期剥離強度)。また、前記初期剥離強度測定時の積層体をさらに窒素雰囲気下で300℃1時間熱処理した後の積層体でも剥離強度が前記範囲内であることが好ましい(300℃加熱処理後剥離強度)。 In the laminate of this embodiment, the peel strength between the engineering plastic film and the inorganic substrate is preferably 0.3 N/cm or less. This makes it very easy to separate the engineering plastic film from the inorganic substrate after the device is formed on the engineering plastic film. Therefore, it is possible to manufacture a device connection body that can be mass-produced, thereby facilitating the manufacture of flexible electronic devices. The peel strength is preferably 0.25 N/cm or less, more preferably 0.2 N/cm or less, still more preferably 0.15 N/cm or less, and particularly preferably 0.12 N/cm or less. is. Moreover, the peel strength is preferably 0.03 N/cm or more. It is more preferably 0.06 N/cm or more, still more preferably 0.08 N/cm or more, and particularly preferably 0.1 N/cm because the laminate does not peel off when forming a device on the engineering plastic film. cm or more. The peel strength is the value of the laminate (initial peel strength) after bonding the engineering plastic film and the inorganic substrate together and heat-treating the laminate at 100° C. for 10 minutes in an air atmosphere. Further, it is preferable that the peel strength of the laminate obtained after the initial peel strength measurement is further heat treated at 300° C. for 1 hour in a nitrogen atmosphere is within the above range (peel strength after heat treatment at 300° C.).
 本実施形態の積層体において、前記保護フィルムと前記エンプラフィルムとの接着強度は0.001~0.3N/cmの範囲であることが好ましい。エンプラフィルムと無機基板の接着強度は後工程で容易に剥離するために0.3N/cm以下が好ましく、エンプラフィルムと保護フィルムの接着強度が上記範囲であれば無機基板をからエンプラフィルムを剥離させることなく保護フィルムを除去することが可能である。 In the laminate of the present embodiment, the adhesive strength between the protective film and the engineering plastic film is preferably in the range of 0.001 to 0.3 N/cm. The adhesion strength between the engineering plastic film and the inorganic substrate is preferably 0.3 N/cm or less for easy separation in the post-process. It is possible to remove the protective film without
 前記保護フィルムと前記エンプラフィルムとを剥離する際の剥離速度は、50mm/min以下が好ましく、100mm/min以下がより好ましい。
 ここで、前記保護フィルムと前記エンプラフィルムとを剥離する際、速度依存性のある粘着剤層を使用した場合には、高速剥離を行うと、保護フィルム/エンプラフィルム間の接着強度(剥離強度)がエンプラフィルム/無機基板間の剥離強度(接着強度)を上回る場合がある。この場合、前記剥離速度の範囲内で、剥離速度を適切に選択することにより、剥がしたい界面を選ぶことができる。
The peeling speed when peeling the protective film and the engineering plastic film is preferably 50 mm/min or less, more preferably 100 mm/min or less.
Here, when peeling the protective film and the engineering plastic film, if a speed-dependent pressure-sensitive adhesive layer is used, the adhesive strength (peel strength) between the protective film and the engineering plastic film is reduced by high-speed peeling. may exceed the peel strength (adhesive strength) between the engineering plastic film and the inorganic substrate. In this case, by appropriately selecting the peeling speed within the range of the peeling speed, the interface to be peeled can be selected.
<保護フィルム付きエンジニアリングプラスチックフィルム>
 本実施形態に係る保護フィルム付きエンジニアリングプラスチックフィルムは、
 基材と粘着剤層とを有する保護フィルムと、
 前記粘着剤層上に設けられたエンジニアリングプラスチックフィルムと
を備え、
 前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、
 前記粘着剤層のマルテンス硬度が30N/mm以下である。
<Engineering plastic film with protective film>
The engineering plastic film with a protective film according to this embodiment is
a protective film having a substrate and an adhesive layer;
and an engineering plastic film provided on the adhesive layer,
The shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
The adhesive layer has a Martens hardness of 30 N/mm 2 or less.
 前記保護フィルム、前記エンジニアリングプラスチックフィルムについては、積層体の説明の箇所にてすでに説明したので、ここでの説明は省略する。 Since the protective film and the engineering plastic film have already been explained in the explanation of the laminate, explanations thereof will be omitted here.
 上述の通り、本実施形態の保護フィルム付きエンジニアリングプラスチックフィルムは、前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、好ましくは500MPa以下である。前記エンプラフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であるため、前記エンプラフィルムと前記保護フィルム(前記粘着剤層)とのラミネート時に生じるせん断力を吸収することができ、前記エンプラフィルムと前記保護フィルム(前記粘着剤層)との間に気泡が生じることを抑制できる。また、前記エンプラフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であるため、保護フィルム付きのエンプラフィルムを無機基板に貼り合わせる際、ラミネート時に生じるせん断力を吸収することができる。従って、無機基板とエンプラフィルムの間に気泡が生じることを抑制することができる。前記せん断剥離強度の測定方法は、実施例に記載の方法による。
 前記せん断剥離強度は、前記粘着剤層の組成等によりコントロールすることができる。
As described above, in the engineering plastic film with protective film of the present embodiment, the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, preferably 500 MPa or less. Since the shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less, the engineering plastic film can absorb the shear force generated when the engineering plastic film and the protective film (the adhesive layer) are laminated. and the protective film (the pressure-sensitive adhesive layer). In addition, since the shear peel strength between the engineering plastic film and the pressure-sensitive adhesive layer is 700 MPa or less, the shearing force generated during lamination can be absorbed when the engineering plastic film with the protective film is attached to the inorganic substrate. Therefore, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film. The method for measuring the shear peel strength is according to the method described in Examples.
The shear peel strength can be controlled by the composition of the pressure-sensitive adhesive layer.
 本実施形態の保護フィルム付きエンジニアリングプラスチックフィルムにおいて、前記粘着剤層は、マルテンス硬度が30N/mm以下であり、好ましくは21N/mm以下である。前記粘着剤層のマルテンス硬度が30N/mm以下であるため、前記エンプラフィルムと前記粘着剤層との濡れ性が良い。また、前記粘着剤層のマルテンス硬度が30N/mm以下であるため、十分に柔らかく、前記エンプラフィルムと前記保護フィルムとのラミネート時にムラやシワ、気泡が生じにくく、加工が容易である。また、粘着剤層のマルテンス硬度が30N/mm以下であるため、エンプラフィルムと無機基板のラミネート時に生じるせん断力を緩和することができる。その結果、無機基板とエンプラフィルムとの間の気泡の発生を抑制することができる。前記マルテンス硬度の測定方法は、実施例に記載の方法による。
 前記マルテンス硬度は、前記粘着剤層の組成や、前記粘着剤層に使用する樹脂の硬度や架橋密度によりコントロールすることができる。例えば、粘着剤層を構成する樹脂として、、架橋密度の低い低硬度のウレタン系樹脂を使用すること、架橋密度の低い低硬度のシリコーン系樹脂すること、架橋密度の低い低硬度のアクリル系樹脂をしようすること等が挙げられる。
In the engineering plastic film with protective film of the present embodiment, the adhesive layer has a Martens hardness of 30 N/mm 2 or less, preferably 21 N/mm 2 or less. Since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, wettability between the engineering plastic film and the pressure-sensitive adhesive layer is good. In addition, since the Martens hardness of the pressure-sensitive adhesive layer is 30 N/mm 2 or less, it is sufficiently soft, and unevenness, wrinkles, and air bubbles are less likely to occur during lamination of the engineering plastic film and the protective film, and processing is easy. Further, since the adhesive layer has a Martens hardness of 30 N/mm 2 or less, it is possible to alleviate the shearing force generated during lamination of the engineering plastic film and the inorganic substrate. As a result, it is possible to suppress the generation of air bubbles between the inorganic substrate and the engineering plastic film. The method for measuring the Martens hardness is according to the method described in Examples.
The Martens hardness can be controlled by the composition of the pressure-sensitive adhesive layer and the hardness and crosslink density of the resin used in the pressure-sensitive adhesive layer. For example, as the resin constituting the pressure-sensitive adhesive layer, use a low hardness urethane resin with a low cross-linking density, a low hardness silicone resin with a low cross-linking density, or a low hardness acrylic resin with a low cross-linking density. and the like.
 本実施形態の保護フィルム付きエンジニアリングプラスチックフィルムにおいて、前記エンジニアリングプラスチックフィルムと前記粘着剤層との間の核のない気泡数が50個/cm以下であることが好ましく、45個/cm以下であることがより好ましく、40個/cm以下であることがさらに好ましい。前記気泡数の下限値は、小さいことが好ましいが、前記気泡数は、例えば、0個/cm以上であり、工業的には1個/cm以上でも構わない。
 前記エンジニアリングプラスチックフィルムと前記粘着剤層との間の核のない気泡数が50個/cm以下であると、前記保護フィルム付きエンジニアリングプラスチックフィルムを無機基板にラミネートして得られる積層体は、無機基板とエンプラフィルムとの間の、核のない気泡の発生がより大きく抑制されることとなる。
In the engineering plastic film with a protective film of the present embodiment, the number of air bubbles without nuclei between the engineering plastic film and the pressure-sensitive adhesive layer is preferably 50/cm 2 or less, and 45/cm 2 or less. more preferably 40/cm 2 or less. The lower limit of the number of bubbles is preferably small, but the number of bubbles is, for example, 0/cm 2 or more, and industrially may be 1/cm 2 or more.
When the number of air bubbles without nuclei between the engineering plastic film and the pressure-sensitive adhesive layer is 50/cm 2 or less, the laminate obtained by laminating the engineering plastic film with a protective film to an inorganic substrate is an inorganic The generation of air bubbles without nuclei between the substrate and the engineering plastic film is greatly suppressed.
<保護フィルム付きエンジニアリングプラスチックフィルムの製造方法>
 図1は、本実施形態に係る保護フィルム付きエンジニアリングプラスチックフィルムを模式的に示す断面図である。
<Method for producing engineering plastic film with protective film>
FIG. 1 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to this embodiment.
 図1に示すように、保護フィルム付きエンジニアリングプラスチックフィルム10は、
 基材14と粘着剤層16とを有する保護フィルム12と、
 粘着剤層16上に設けられたエンジニアリングプラスチックフィルム18と
を備える。
As shown in FIG. 1, the engineering plastic film 10 with a protective film is
a protective film 12 having a substrate 14 and an adhesive layer 16;
and an engineering plastic film 18 provided on the adhesive layer 16 .
 保護フィルム付きエンジニアリングプラスチックフィルム10の製造方法は、特に限定されず、公知の方法を採用することができる。例えば、保護フィルム12、エンジニアリングプラスチックフィルム18をそれぞれ別々に作製し、エンジニアリングプラスチックフィルム18の一方の面に保護フィルム12を貼り合わせることにより保護フィルム付きエンジニアリングプラスチックフィルム10を得ることができる。 The manufacturing method of the engineering plastic film 10 with a protective film is not particularly limited, and a known method can be adopted. For example, the protective film 12 and the engineering plastic film 18 are prepared separately, and the protective film 12 is attached to one surface of the engineering plastic film 18 to obtain the engineering plastic film 10 with the protective film.
 保護フィルム付きエンジニアリングプラスチックフィルムは、エンジニアリングプラスチックフィルムの一方の面に保護フィルムが貼り合わせられていればよく、他方の面にも他の保護フィルムが貼り合わせられていてもよい。 An engineering plastic film with a protective film only needs to have a protective film laminated on one side of the engineering plastic film, and another protective film may be laminated on the other side.
 図2は、他の実施形態に係る保護フィルム付きエンジニアリングプラスチックフィルムを模式的に示す断面図である。
 図2に示すように、保護フィルム付きエンジニアリングプラスチックフィルム11は、
 基材14と粘着剤層16とを有する保護フィルム12と、
 エンジニアリングプラスチックフィルム18と、
 基材22と粘着剤層24とを有する保護フィルム20と
を備え、
 保護フィルム12は、エンジニアリングプラスチックフィルム18の一方の面に積層され、
 保護フィルム20は、エンジニアリングプラスチックフィルム18の他方の面に積層されている。
 粘着剤層16は、エンジニアリングプラスチックフィルム18の一方の面に対向して積層され、粘着剤層24は、エンジニアリングプラスチックフィルム18の他方の面に対向して積層されている。
FIG. 2 is a cross-sectional view schematically showing an engineering plastic film with a protective film according to another embodiment.
As shown in FIG. 2, the engineering plastic film 11 with a protective film is
a protective film 12 having a substrate 14 and an adhesive layer 16;
an engineering plastic film 18;
A protective film 20 having a substrate 22 and an adhesive layer 24,
The protective film 12 is laminated on one side of the engineering plastic film 18,
A protective film 20 is laminated on the other surface of the engineering plastic film 18 .
The adhesive layer 16 is laminated facing one surface of the engineering plastic film 18 , and the adhesive layer 24 is laminated facing the other surface of the engineering plastic film 18 .
 保護フィルム付きエンジニアリングプラスチックフィルム11の製造方法は、特に限定されず、公知の方法を採用することができる。例えば、保護フィルム12、エンジニアリングプラスチックフィルム18、保護フィルム20をそれぞれ別々に作製し、エンジニアリングプラスチックフィルム18の一方の面に保護フィルム12を貼り合わせ、エンジニアリングプラスチックフィルム18の他方の面に保護フィルム20を貼り合わせることにより保護フィルム付きエンジニアリングプラスチックフィルム11を得ることができる。 A method for manufacturing the engineering plastic film 11 with a protective film is not particularly limited, and a known method can be adopted. For example, the protective film 12, the engineering plastic film 18, and the protective film 20 are separately produced, the protective film 12 is attached to one surface of the engineering plastic film 18, and the protective film 20 is attached to the other surface of the engineering plastic film 18. The engineering plastic film 11 with a protective film can be obtained by laminating them together.
<積層体の製造方法>
 図3は、本実施形態に係る積層体を模式的に示す断面図である。
<Method for manufacturing laminate>
FIG. 3 is a cross-sectional view schematically showing a laminate according to this embodiment.
 図3に示すように、本実施形態に係る積層体40は、
 基材14と粘着剤層16とを有する保護フィルム12と、
 粘着剤層16上に設けられたエンジニアリングプラスチックフィルム18と、
 エンジニアリングプラスチックフィルム18上に設けられた無機基板42と
を備え、
 無機基板42とエンジニアリングプラスチックフィルム18とは、接して積層されているか、又は、シランカップリング剤層(図示せず)のみを介して積層されている。
As shown in FIG. 3, the laminate 40 according to this embodiment is
a protective film 12 having a substrate 14 and an adhesive layer 16;
an engineering plastic film 18 provided on the adhesive layer 16;
and an inorganic substrate 42 provided on the engineering plastic film 18,
The inorganic substrate 42 and the engineering plastic film 18 are laminated in contact with each other, or laminated via only a silane coupling agent layer (not shown).
 積層体40は、例えば、以下の手順で作製することができる。
 まず、保護フィルム付きエンジニアリングプラスチックフィルム10と、無機基板42とを準備する。エンジニアリングプラスチックフィルム18の両面に保護フィルムが設けられている保護フィルム付きエンジニアリングプラスチックフィルム11を用いる場合には、保護フィルム付きエンジニアリングプラスチックフィルム11の他方の面に設けられている保護フィルム20を剥離することにより、保護フィルム付きエンジニアリングプラスチックフィルム10を得ることができる。積層体40にシランカップリング剤層を設ける場合には、無機基板42の少なくとも一方の面に、シランカップリング剤処理をしておく。
The laminate 40 can be produced, for example, by the following procedure.
First, an engineering plastic film 10 with a protective film and an inorganic substrate 42 are prepared. When using the engineering plastic film 11 with a protective film in which protective films are provided on both sides of the engineering plastic film 18, the protective film 20 provided on the other side of the engineering plastic film 11 with a protective film is peeled off. Thus, the engineering plastic film 10 with a protective film can be obtained. When providing the layered product 40 with a silane coupling agent layer, at least one surface of the inorganic substrate 42 is treated with a silane coupling agent.
 次に、無機基板42の一方の面(シランカップリング剤層を設けた場合は、シランカップリング剤処理された面)と、保護フィルム付きエンジニアリングプラスチックフィルム10のエンプラフィルム18とを重ね合わせ、両者を加圧によって積層体40を得ることができる。なお、あらかじめエンプラフィルム18の保護フィルム12が設けられていない側の面をシランカップリング剤処理し、当該シランカップリング剤処理された面と、無機基板42とを重ね合わせ、両者を加圧によって積層しても積層体40を得ることができる。
 シランカップリング剤処理方法としては、スピンコート、スプレーコート、ディップコートなど既知の方法を用いることができ、シランカップリング剤を加熱することで発生するシランカップリング剤蒸気を無機基板に蒸着することでも処理が可能である(気相蒸着法)。
Next, one surface of the inorganic substrate 42 (when a silane coupling agent layer is provided, the surface treated with the silane coupling agent) and the engineering plastic film 18 of the engineering plastic film 10 with a protective film are superimposed. can be obtained by pressing the laminated body 40 . The surface of the engineering plastic film 18 on which the protective film 12 is not provided is treated with a silane coupling agent in advance. The laminate 40 can also be obtained by lamination.
As the silane coupling agent treatment method, known methods such as spin coating, spray coating, and dip coating can be used, and the silane coupling agent vapor generated by heating the silane coupling agent is deposited on the inorganic substrate. However, processing is possible (vapor deposition method).
 図4は、気相蒸着法にて使用するシランカップリング剤処理装置の一例を模式的に示す図である。
 図4に示すように、シランカップリング剤処理装置は、ガス導入口32と排気口38と薬液タンク(シランカップリング剤槽)33とに接続された処理室(チャンバー)36を備える。薬液タンク(シランカップリング剤槽)33には、シランカップリング剤が充填されており、ヒーター35を備える温水槽(湯煎)34により調温されている。薬液タンク(シランカップリング剤槽)33には、ガス導入口39が接続されており、外部からガスを導入することかできる。ガスの流量は、ガス導入口39に接続されたフローメーター31により調整されている。ガス導入口39からガスが導入されると、薬液タンク33内の気化されたシランカップリング剤が処理室36に押し出され、処理室36内に配置された基板37(無機基板、エンプラフィルム等)上にシランカップリング剤層として付着する。
FIG. 4 is a diagram schematically showing an example of a silane coupling agent treatment apparatus used in vapor deposition.
As shown in FIG. 4, the silane coupling agent processing apparatus includes a processing chamber (chamber) 36 connected to a gas inlet 32, an exhaust port 38, and a chemical liquid tank (silane coupling agent tank) 33. As shown in FIG. A chemical liquid tank (silane coupling agent tank) 33 is filled with a silane coupling agent, and the temperature is controlled by a hot water tank (hot water bath) 34 having a heater 35 . A gas introduction port 39 is connected to the chemical liquid tank (silane coupling agent tank) 33 so that gas can be introduced from the outside. The gas flow rate is adjusted by a flow meter 31 connected to the gas inlet 39 . When the gas is introduced from the gas inlet 39, the vaporized silane coupling agent in the chemical liquid tank 33 is pushed out into the processing chamber 36, and the substrate 37 (inorganic substrate, engineering plastic film, etc.) placed in the processing chamber 36 is pushed out. It is deposited as a silane coupling agent layer on top.
 前記加圧の方法としては、大気中での通常のプレス或はラミネートあるいは真空中でのプレス或はラミネートが挙げられるが、全面の安定した剥離強度を得る為には、大きなサイズの積層体(例えば、200mm超)では大気中でのラミネートが望ましい。これに対して200mm以下程度の小サイズの積層体であれば真空中でのプレスが好ましい。真空度は通常の油回転ポンプによる真空で充分であり、10Torr以下程度あれば充分である。好ましい圧力としては、1MPaから20MPaであり、更に好ましくは3MPaから10MPaである。圧力が高いと、基板を破損するおそれがあり、圧力が低いと、密着しない部分が出る場合がある。好ましい温度としては90℃から300℃、更に好ましくは100℃から250℃で温度が高いと、フィルムにダメージを与え、温度が低いと、密着力が弱いことがある。 Examples of the method of pressurization include ordinary pressing or laminating in the air or pressing or laminating in a vacuum. For example, above 200 mm), lamination in air is desirable. On the other hand, in the case of a laminate having a small size of about 200 mm or less, pressing in a vacuum is preferable. The degree of vacuum is sufficient with a normal oil rotary pump, and about 10 Torr or less is sufficient. A preferable pressure is 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is high, the substrate may be damaged, and if the pressure is low, some parts may not adhere. The preferred temperature is 90° C. to 300° C., more preferably 100° C. to 250° C. If the temperature is high, the film may be damaged, and if the temperature is low, adhesion may be weak.
 以上により、本実施形態に係る積層体40が得られる。 As described above, the laminate 40 according to the present embodiment is obtained.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the following examples as long as it does not exceed the gist thereof.
 エンプラフィルムF1、F2は市販されているフィルムを用いた。
F1:ユーピレックス(登録商標)25S(宇部興産株式会社製ポリイミドフィルム、厚さ25μm)
F2:ゼノマックス(登録商標)F15LR2(東洋紡株式会社製ポリイミドフィルム、厚さ15μm)
Commercially available films were used as the engineering plastic films F1 and F2.
F1: Upilex (registered trademark) 25S (polyimide film manufactured by Ube Industries, Ltd., thickness 25 μm)
F2: Xenomax (registered trademark) F15LR2 (polyimide film manufactured by Toyobo Co., Ltd., thickness 15 μm)
<エンプラフィルムF3の作製:ポリアミック酸溶液の合成>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、33.36質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)と、270.37質量部のN-メチル-2-ピロリドン(NMP)と、コロイダルシリカをジメチルアセトアミドに分散させた分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST」)とを溶解させた。このとき、コロイダルシリカをジメチルアセトアミドに分散させた分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST」)は、シリカがポリアミド酸溶液中のポリマー固形分総量にて0.14質量%になるように加えた。次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)、11.34質量部の3,3’,4,4’-ビフェニルテトラカルボン酸(BPDA)、4.85質量部の(ODPA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、165.7質量部のDMAc(N,N-ジメチルアセトアミド)を加え希釈し、固形分18質量%、還元粘度2.7dl/gのポリアミド酸溶液1(TFMB//CBDA/BPDA/ODPAのモル比=1.00//0.48/0.37/0.15)を得た。
<Preparation of Engineering Plastic Film F3: Synthesis of Polyamic Acid Solution>
After replacing the inside of the reaction vessel equipped with a nitrogen inlet tube, a reflux tube, and a stirring rod with nitrogen, 33.36 parts by mass of 2,2'-bis(trifluoromethyl)benzidine (TFMB) and 270.37 parts by mass of N-methyl-2-pyrrolidone (NMP) and a dispersion of colloidal silica in dimethylacetamide ("Snowtex (registered trademark) DMAC-ST" manufactured by Nissan Chemical Industries) were dissolved. At this time, the dispersion (“Snowtex (registered trademark) DMAC-ST” manufactured by Nissan Chemical Industries, Ltd.) in which colloidal silica is dispersed in dimethylacetamide has silica in the polyamic acid solution with a total polymer solid content of 0.14 mass. %. Then, 9.81 parts by weight of 1,2,3,4-cyclobutanetetracarboxylic anhydride (CBDA), 11.34 parts by weight of 3,3′,4,4′-biphenyltetracarboxylic acid (BPDA) ), and 4.85 parts by mass of (ODPA) as a solid were added portionwise, followed by stirring at room temperature for 24 hours. After that, 165.7 parts by mass of DMAc (N,N-dimethylacetamide) was added to dilute, and polyamic acid solution 1 (TFMB//CBDA/BPDA/ODPA with a solid content of 18% by mass and a reduced viscosity of 2.7 dl/g) was added. molar ratio=1.00//0.48/0.37/0.15).
<エンプラフィルムF3の作製>
 ポリアミド酸溶液1を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が25μmとなるよう塗布した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100フィルムから剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、250℃で3分、300℃で3分、350℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのエンプラフィルムF3を500m得た。
<Production of engineering plastic film F3>
Polyamic acid solution 1 was applied to the non-lubricating surface of polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) using a comma coater so that the final film thickness was 25 μm. It was dried at 110° C. for 10 minutes. After drying, the polyamic acid film that has acquired self-supporting properties is separated from the A4100 film used as the support, passed through a pin tenter having a pin sheet with pins arranged thereon, and gripped by inserting the ends of the film into the pins so that the film does not break. and conveyed by adjusting the interval between the pin sheets so that unnecessary slack does not occur, and heated under the conditions of 250° C. for 3 minutes, 300° C. for 3 minutes, and 350° C. for 6 minutes to initiate the imidization reaction. proceeded. After that, the film was cooled to room temperature for 2 minutes, and portions of the film with poor flatness at both ends were cut off with a slitter and rolled up into a roll to obtain 500 m of engineering plastic film F3 with a width of 450 mm.
<エンプラフィルムの引張弾性率、引張破断強度、及び、引張破断伸度>
 エンプラフィルムF1~F3を、流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。試験片は、幅方向中央部分から切り出した。引張試験機(島津製作所製、オートグラフ(R)、機種名AG-5000A)を用い、温度25℃、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張破断強度及び引張破断伸度を測定した。結果を表1に示す。
<Tensile elastic modulus, tensile strength at break, and tensile elongation at break of engineering plastic film>
Test pieces were obtained by cutting the engineering plastic films F1 to F3 into strips of 100 mm×10 mm in the machine direction (MD direction) and the width direction (TD direction). A test piece was cut from the center portion in the width direction. Using a tensile tester (manufactured by Shimadzu Corporation, Autograph (R), model name AG-5000A), the temperature is 25 ° C., the tensile speed is 50 mm / min, and the distance between chucks is 40 mm. Elastic modulus, tensile strength at break and tensile elongation at break were measured. Table 1 shows the results.
<エンプラフィルムの線膨張係数(CTE)>
 エンプラフィルムF1~F3を、流れ方向(MD方向)および幅方向(TD方向)において、下記条件にて伸縮率を測定し、30℃~32℃、32℃~34℃のように2℃の間隔での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値をCTEとして算出した。結果を表1に示す。
  機器名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
<Linear expansion coefficient (CTE) of engineering plastic film>
For the engineering plastic films F1 to F3, in the machine direction (MD direction) and the width direction (TD direction), the expansion ratio is measured under the following conditions, and the intervals are 2 ° C. such as 30 ° C. to 32 ° C. and 32 ° C. to 34 ° C. This measurement was performed up to 300° C., and the average value of all measured values was calculated as CTE. Table 1 shows the results.
Equipment name; TMA4000S manufactured by MAC Science
Sample length; 20 mm
Sample width; 2 mm
Heating start temperature; 25°C
Heating end temperature; 400°C
Temperature rise rate; 5°C/min
atmosphere; argon
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<市販の保護フィルム>
保護フィルムP1,2,4は市販のものを使用した。
P1:フジコピアン株式会社製工業用FIXFILM(登録商標)HG2
P2:フジコピアン株式会社製工業用FIXFILM(登録商標)HG3
P4:株式会社サンエー化研SUNYTECT(登録商標)SATタイプ
<Commercial protection film>
Protective films P1, 2 and 4 were commercially available.
P1: Industrial FIXFILM (registered trademark) HG2 manufactured by Fujicopian Co., Ltd.
P2: Industrial FIXFILM (registered trademark) HG3 manufactured by Fujicopian Co., Ltd.
P4: Sun A Kaken Co., Ltd. SUNYTECT (registered trademark) SAT type
<保護フィルムの作製>
以下の基材を準備した。
PETフィルム:東洋紡株式会社製、A4100、25μm、50μm(ポリエチレンテレフタレートフィルム)
PETフィルム:東洋紡株式会社製、コスモシャインSRF(登録商標)、80μm
PPフィルム:東レ株式会社製、トレファン(登録商標)、片面コロナ処理、26μm(ポリプロピレンフィルム)
<Production of protective film>
The following substrates were prepared.
PET film: manufactured by Toyobo Co., Ltd., A4100, 25 μm, 50 μm (polyethylene terephthalate film)
PET film: Cosmo Shine SRF (registered trademark) manufactured by Toyobo Co., Ltd., 80 μm
PP film: manufactured by Toray Industries, Inc., Torayfan (registered trademark), one-sided corona treatment, 26 μm (polypropylene film)
<粘着剤組成物1の作製>
 セパラブルフラスコに55.3質量部のポリオール(3官能、グリセリンにプロピレンオキシド及びエチレンオキシドを付加重合させたポリオール、三洋化成工業株式会社製サンニックス(登録商標)GL3000)、4.7質量部のデュラネートD101(旭化成ケミカルズ株式会社製ポリイソシアネート)、39.7質量部のトルエン、および、0.02質量部のジブチルスズジラウレート(DBTDL)を入れ、撹拌しながら45℃~55℃で2時間加熱し、反応させた。加熱開始から2時間後、40℃以下まで冷却した。冷却後、0.28質量部の酸化防止剤を加え、均一になるまで撹拌し、ポリウレタンポリオール含有組成物1を得た。100質量部のポリウレタンポリオール含有組成物1に対し、デュラネートD101を7.7質量部、紫外線吸収剤(Cyasorb UV-3638(CYTEC社製))2質量部、および酢酸エチル50質量部を配合し、よく攪拌した。得られた粘着剤組成物をPTFEカートリッジフィルター(0.45μm)で濾過することで粘着剤組成物1を得た。
<Preparation of adhesive composition 1>
In a separable flask, 55.3 parts by mass of polyol (trifunctional, polyol obtained by addition polymerization of propylene oxide and ethylene oxide to glycerin, SANNIX (registered trademark) GL3000 manufactured by Sanyo Chemical Industries, Ltd.), 4.7 parts by mass of Duranate D101 (polyisocyanate manufactured by Asahi Kasei Chemicals Co., Ltd.), 39.7 parts by mass of toluene, and 0.02 parts by mass of dibutyltin dilaurate (DBTDL) are added and heated at 45 ° C. to 55 ° C. for 2 hours with stirring to react. let me After 2 hours from the start of heating, the mixture was cooled to 40°C or lower. After cooling, 0.28 parts by mass of an antioxidant was added and stirred until uniform to obtain a polyurethane polyol-containing composition 1. To 100 parts by mass of polyurethane polyol-containing composition 1, 7.7 parts by mass of Duranate D101, 2 parts by mass of an ultraviolet absorber (Cyasorb UV-3638 (manufactured by CYTEC)), and 50 parts by mass of ethyl acetate are blended. Stir well. The adhesive composition 1 was obtained by filtering the obtained adhesive composition with a PTFE cartridge filter (0.45 μm).
<保護フィルムP3の作製>
 粘着剤組成物1を、基材(PP)に乾燥時の粘着剤膜厚が10~15μmとなるように塗工した。その後、130℃で2分間加熱乾燥し、さらに40℃の恒温槽内に3日間静置し(エージング工程)、粘着剤を硬化(架橋)させ、保護フィルムP3を作製した。
<Production of protective film P3>
The pressure-sensitive adhesive composition 1 was applied to a substrate (PP) so that the thickness of the pressure-sensitive adhesive when dried was 10 to 15 μm. After that, it was dried by heating at 130° C. for 2 minutes, and left still for 3 days in a constant temperature bath at 40° C. (aging step) to cure (crosslink) the adhesive to prepare a protective film P3.
<粘着剤組成物2の作製>
 アクリル系ポリマー(2-エチルヘキシルアクリレートと4-ヒドロキシブチルアクリレートの共重合体(共重合比率100:8)、重量平均分子量:20万)100重量部に対して、多官能イソシアネートとしてのコロネートHX(東ソー株式会社製、塗料用ポリイソシアネート)1.5重量部と、変性オルガノシロキサンとしてのKP-341(商品名、信越化学工業製、ポリエーテル変性オルガノシロキサン)0.3重量部を加え、撹拌混合することで、粘着剤組成物2を得た。
<Preparation of adhesive composition 2>
Coronate HX (Tosoh 1.5 parts by weight of polyisocyanate for coatings manufactured by Co., Ltd.) and 0.3 parts by weight of KP-341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., polyether-modified organosiloxane) as modified organosiloxane are added and mixed by stirring. Thus, an adhesive composition 2 was obtained.
<保護フィルムP5の作製>
 得られた粘着剤組成物2を、厚さ25μmのPETフィルムの上に塗布し、100℃で乾燥して溶剤を除去することで、PETフィルム上に粘着剤層が形成された表面保護フィルムP5を得た。
<Production of protective film P5>
The obtained adhesive composition 2 was applied on a PET film having a thickness of 25 μm and dried at 100° C. to remove the solvent, thereby forming a surface protective film P5 having an adhesive layer formed on the PET film. got
<保護フィルムP6の作製>
 ウレタン系の溶剤型粘着剤US-902-50(ライオン・スペシャリティケミカルズ製、酢酸エチル溶媒、固形分50%)100質量部を攪拌しながら架橋剤N(ライオン・スペシャリティケミカルズ製)5.4質量部、紫外線吸収剤(Cyasorb UV-3638(CYTEC社製))2質量部を添加し、40℃で20分間反応させた。得られた溶液をPTFEカートリッジフィルター(0.45μm)で濾過した後、最終膜厚が10μmとなるようにあらかじめコロナ処理を行ったPETフィルムの上に塗工し、100℃で2分間加熱することで保護フィルムP6を得た。
<Production of protective film P6>
While stirring 100 parts by mass of urethane-based solvent-based adhesive US-902-50 (manufactured by Lion Specialty Chemicals, ethyl acetate solvent, solid content 50%), 5.4 parts by mass of cross-linking agent N (manufactured by Lion Specialty Chemicals) , and 2 parts by mass of an ultraviolet absorber (Cyasorb UV-3638 (manufactured by CYTEC)) were added and reacted at 40° C. for 20 minutes. After filtering the obtained solution with a PTFE cartridge filter (0.45 μm), it is coated on a PET film that has been previously corona-treated so that the final film thickness is 10 μm, and heated at 100° C. for 2 minutes. to obtain a protective film P6.
<保護フィルムP7の作製>
 2―エチルヘキシルアクリレート/メチルメタアクリレート/アクリル酸の各モノマーを重量で85/15/3比で配合し、2,2´―アゾビス―イソブチロニトリルを触媒とし、窒素気流下、酢酸エチル中で重合して重合度Mw=70-80万、固形分30%の再剥離型アクリル系粘着剤を得た。前記再剥離型アクリル系粘着剤とコロネートL(東ソー株式会社製、塗料用ポリイソシアネート)とを重量比で100:3で配合し、粘着剤組成物3を得た。厚さ25μmのPETフィルムの片面に、得られた粘着剤組成物3を塗工、100℃、3分間乾燥して保護フィルムP7を得た。
<Preparation of protective film P7>
2-Ethylhexyl acrylate/methyl methacrylate/acrylic acid monomers were blended in a weight ratio of 85/15/3, and 2,2'-azobis-isobutyronitrile was used as a catalyst in ethyl acetate under a nitrogen stream. Polymerization yielded a removable acrylic pressure-sensitive adhesive having a degree of polymerization Mw of 700,000 to 800,000 and a solid content of 30%. The removable acrylic pressure-sensitive adhesive and Coronate L (manufactured by Tosoh Corporation, polyisocyanate for paint) were blended at a weight ratio of 100:3 to obtain a pressure-sensitive adhesive composition 3. The pressure-sensitive adhesive composition 3 obtained was coated on one side of a PET film having a thickness of 25 μm and dried at 100° C. for 3 minutes to obtain a protective film P7.
<保護フィルムP8の作製>
 基材として厚さ50μmのPETフィルムを用いた以外はP7の作製と同様にしてPF8を得た。
<Preparation of protective film P8>
PF8 was obtained in the same manner as P7 except that a PET film having a thickness of 50 μm was used as the base material.
<粘着剤組成物4の作製>
 撹拌機、還流冷却管、温度計を備えたセパラブルフラスコに、100質量部のグリセリンPO・EO(商品名:サンニックスGL-3000)、4.5質量部のヘキサメチレンジイソシアネート、56.5質量部のトルエン、0.03質量部のジブチルスズジラウレートを仕込み、撹拌しながら緩やかに昇温し、60℃で3時間反応を行った。反応後の内容物のNCO基を、赤外分光光度計(IR)を用いて測定したところ、NCO基の残留は確認できなかった。これにより、水酸基を有するウレタンプレポリマーの合成が完了していることが確認できた。そして、この内容物を40℃以下まで冷却し、0.26質量部の酸化防止剤および13.4質量部の酢酸エチルを加え、水酸基を有するウレタンプレポリマー溶液とした。このウレタンプレポリマー溶液100質量部(固形分として60質量部)に、18質量部のパインクリスタルD-6011と18質量部のトルエンとの混合溶液計36質量部および10質量部のコロネートL-45Eを添加し、よく撹拌することで粘着剤組成物4を得た。
<Preparation of adhesive composition 4>
In a separable flask equipped with a stirrer, a reflux condenser, and a thermometer, 100 parts by mass of glycerin PO EO (trade name: Sannix GL-3000), 4.5 parts by mass of hexamethylene diisocyanate, and 56.5 parts by mass Parts of toluene and 0.03 parts by mass of dibutyltin dilaurate were charged, and the temperature was gradually raised while stirring, and the reaction was carried out at 60° C. for 3 hours. When the NCO groups in the content after the reaction were measured using an infrared spectrophotometer (IR), no residual NCO groups could be confirmed. This confirmed that the synthesis of the urethane prepolymer having hydroxyl groups was completed. Then, this content was cooled to 40° C. or less, and 0.26 parts by mass of an antioxidant and 13.4 parts by mass of ethyl acetate were added to obtain a urethane prepolymer solution having hydroxyl groups. To 100 parts by mass of this urethane prepolymer solution (60 parts by mass as a solid content), a mixed solution of 18 parts by mass of Pine Crystal D-6011 and 18 parts by mass of toluene, totaling 36 parts by mass and 10 parts by mass of Coronate L-45E was added, and the adhesive composition 4 was obtained by stirring well.
<保護フィルムP9の作製>
 粘着剤組成物4を厚さ25μmのPETフィルムに塗工し、100℃に設定した熱風循環式乾燥機内に2分間静置して溶媒を蒸発させた。この粘着シートを40℃環境で3日間静置し、粘着剤とポリイソシアネート架橋剤の硬化反応を完結させることで保護フィルムP9を得た。
<Preparation of protective film P9>
The pressure-sensitive adhesive composition 4 was applied to a PET film having a thickness of 25 μm and allowed to stand for 2 minutes in a hot air circulating dryer set at 100° C. to evaporate the solvent. This pressure-sensitive adhesive sheet was allowed to stand in an environment of 40° C. for 3 days to complete the curing reaction of the pressure-sensitive adhesive and the polyisocyanate cross-linking agent, thereby obtaining a protective film P9.
<粘着剤組成物5の作製>
 下記を混合し、粘着剤組成物5を得た。
  両末端にのみビニル基を有する直鎖状ポリオルガノシロキサン(無溶剤型、Mw:80,000):68.30部
  オルガノハイドロジェンポリシロキサン(無溶剤型、Mw:2,000):0.41部
  白金触媒(信越化学工業製、PL-56):1.00部
  反応制御剤(3-メチル-1-ブチン-3-オール):0.10部
  トルエン:30.19部
<Preparation of adhesive composition 5>
An adhesive composition 5 was obtained by mixing the following.
Linear polyorganosiloxane having vinyl groups only at both ends (solvent-free type, Mw: 80,000): 68.30 parts Organohydrogenpolysiloxane (solvent-free type, Mw: 2,000): 0.41 Part platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., PL-56): 1.00 parts reaction control agent (3-methyl-1-butyn-3-ol): 0.10 parts toluene: 30.19 parts
<保護フィルムP10の作製>
 粘着剤組成物5を厚さ80μmのコスモシャインSRFに塗工し、100℃に設定した熱風循環式乾燥機内に2分間静置して溶媒を蒸発させた。この粘着シートを40℃環境で3日間静置し、粘着剤とポリイソシアネート架橋剤の硬化反応を完結させることで保護フィルムP10を得た。
<Preparation of protective film P10>
The pressure-sensitive adhesive composition 5 was applied to a COSMOSHINE SRF having a thickness of 80 μm, and allowed to stand for 2 minutes in a hot air circulating dryer set at 100° C. to evaporate the solvent. This pressure-sensitive adhesive sheet was allowed to stand in an environment of 40° C. for 3 days to complete the curing reaction of the pressure-sensitive adhesive and the polyisocyanate cross-linking agent, thereby obtaining protective film P10.
 実施例および比較例に使用した保護フィルムの基材と粘着剤の組み合わせを表2に示す。 Table 2 shows the combinations of protective film substrates and adhesives used in Examples and Comparative Examples.
<粘着剤層のゲル分率の測定>
 作製した保護フィルムについて、粘着剤層のみをカッターナイフで削り取り、粘着剤の重量Aを測定した。次に、同一試験片を25℃のTHF(テトラヒドロフラン)中に24時間浸漬後、ゲル物を取り出し、100℃で2時間乾燥し、重量Bを測定した。
 ゲル分率は下記計算式から算出した。結果を表2に示す。
 ゲル分率(%)=(B/A)×100
<Measurement of gel fraction of adhesive layer>
About the produced protective film, only the adhesive layer was scraped off with a cutter knife, and the weight A of the adhesive was measured. Next, after the same test piece was immersed in THF (tetrahydrofuran) at 25°C for 24 hours, the gel was taken out and dried at 100°C for 2 hours, and the weight B was measured.
The gel fraction was calculated from the following formula. Table 2 shows the results.
Gel fraction (%) = (B/A) x 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<粘着剤層のマルテンス硬度測定>
 ダイナミック超微小硬度計(島津製作所製、DUH-211S)を用いて保護フィルムの粘着剤層の硬度の測定を実施した。アロンアルファ(登録商標)を用いてスライドガラスに保護フィルムの基材側を固定し、対物レンズ50倍、負荷速度0.2926mN/s、押し込み量1μmで測定を実施した。圧子はTriangular115を使用した。測定結果を表3に示す。
<Measurement of Martens hardness of adhesive layer>
The hardness of the pressure-sensitive adhesive layer of the protective film was measured using a dynamic ultra-micro hardness tester (manufactured by Shimadzu Corporation, DUH-211S). The substrate side of the protective film was fixed to a slide glass using Aron Alpha (registered trademark), and the measurement was performed with a 50-fold objective lens, a load speed of 0.2926 mN/s, and a pushing depth of 1 μm. Triangular 115 was used as an indenter. Table 3 shows the measurement results.
<保護フィルム付きエンプラフィルム1の作製>
 エンプラフィルムF2の片面(無機基板と貼り合わせる面)にP1を、もう片方の面にP1を貼り合わせ、実施例1に積層フィルム1を得た。貼り合わせは、具体的には、クリーン環境中でのラミネートによって実施した。ラミネートは、金属ロールとゴムロールの間でラミネートを行い、ラミネート時の温度は常温22℃、52%RHであり、1枚ずつ逐次に貼り合わせた。また、この時の巻出し張力は、ポリイミドフィルムが120N、保護フィルムが160Nとした。巻き取り側もほぼ同一張力とした。
<Preparation of engineering plastic film 1 with protective film>
Laminated film 1 in Example 1 was obtained by bonding P1 to one side (the side to be bonded to the inorganic substrate) of engineering plastic film F2 and P1 to the other side. The bonding was specifically performed by lamination in a clean environment. Lamination was performed between a metal roll and a rubber roll, and the temperature during lamination was normal temperature of 22° C. and 52% RH, and the sheets were successively attached one by one. The unwinding tension at this time was 120N for the polyimide film and 160N for the protective film. Almost the same tension was applied to the winding side.
<保護フィルム付きエンプラフィルム2~12の作製>
 使用する保護フィルム、及び、エンプラフィルムの組み合わせを、表3に示す組み合わせに変更したこと以外は、保護フィルム付きエンプラフィルム1の作製と同様にして保護フィルム付きエンプラフィルム2~11を得た。エンプラフィルムの無機基板に貼り合わせる面には、表面のキズ防止、異物付着の点から、P1をラミネートした。
<Production of engineering plastic films 2 to 12 with protective film>
Protective film-attached engineering plastic films 2 to 11 were obtained in the same manner as the protective film-attached engineering plastic film 1, except that the combination of the protective film and the engineering plastic film used was changed to the combination shown in Table 3. P1 was laminated on the surface of the engineering plastic film to be bonded to the inorganic substrate from the viewpoint of preventing scratches on the surface and adhesion of foreign substances.
<せん断剥離試験>
 図5は、せん断剥離試験を説明するための図である。まず、図5に示すような、エンプラフィルム18と保護フィルム12が貼り合された積層フィルムを準備した。保護フィルム18は、粘着剤層16と基材14とによって構成されている。積層フィルムの幅は10mmであり、粘着剤層16とエンプラフィルム18の接触する面積が10mm×25mmとなるように貼り合わせ、カットを行った。せん断剥離時に基材14あるいはエンプラフィルム18が破断することを避けるために基材14およびエンプラフィルム18の粘着剤層16と接触しない面に支持体フィルム41(ポリスチレン製、厚さ0.8mm)を両面テープで貼り合わせた。支持体フィルム41ごとそれぞれ保護フィルム12とエンプラフィルム18をチャックで掴み、引張試験機(島津製作所製、オートグラフ(R)、機種名AG-5000A)を用いて25℃、100mm/minの条件でせん断剥離試験を実施した。結果を表3に示す。
<Shear peeling test>
FIG. 5 is a diagram for explaining the shear peel test. First, as shown in FIG. 5, a laminated film in which an engineering plastic film 18 and a protective film 12 are bonded together was prepared. The protective film 18 is composed of the adhesive layer 16 and the base material 14 . The width of the laminated film was 10 mm, and the adhesive layer 16 and the engineering plastic film 18 were laminated and cut so that the contact area was 10 mm×25 mm. In order to prevent the base material 14 or the engineering plastic film 18 from breaking during shear peeling, a support film 41 (made of polystyrene, thickness 0.8 mm) is applied to the surfaces of the base material 14 and the engineering plastic film 18 that do not come into contact with the adhesive layer 16. It was attached with double-sided tape. The protective film 12 and the engineering plastic film 18 are each held with a chuck together with the support film 41, and a tensile tester (manufactured by Shimadzu Corporation, Autograph (R), model name AG-5000A) is used at 25 ° C. and 100 mm / min. A shear peel test was performed. Table 3 shows the results.
<エンプラフィルム/保護フィルム間の気泡数>
 保護フィルム付きエンプラフィルム1~12について、キーエンス製のデジタルマイクロスコープVH-Z100Rを用いて100倍にて30箇所の観察を行い(マイクロスコープで見える範囲を1箇所と数える)、核となる異物のない気泡の計数を実施した。具体的には、保護フィルムを10cm×10cmサイズに3枚切り出し、それぞれについて、4隅、その間、及び、中央付近2点の10箇所を測定した。つまり、3枚で合計30箇所を測定した。なお、デジタルマイクロスコープVH-Z100Rで100倍に観察した際の1視野範囲は、8.6×10μmである。結果を表3に示す。観察は、無機基板に貼り合わせない面の保護フィルム上から行った。
<Number of bubbles between engineering plastic film/protective film>
For engineering plastic films 1 to 12 with a protective film, 30 points were observed at 100 times using a digital microscope VH-Z100R manufactured by Keyence (the range visible with the microscope is counted as 1 point), and the core foreign matter. No air bubble counts were performed. Specifically, three sheets of the protective film were cut out to a size of 10 cm×10 cm, and measurements were taken at 10 points on each of the four corners, between them, and at two points near the center. That is, a total of 30 points were measured with three sheets. Note that the range of one visual field when observed with a digital microscope VH-Z100R at a magnification of 100 is 8.6×10 6 μm 2 . Table 3 shows the results. Observation was performed from the surface of the protective film that was not attached to the inorganic substrate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<無機基板との積層体の作製>
(実施例1)
 まず、ガラス基板を準備した。前記ガラス基板は、100mm×100mmサイズに切断した厚さ0.7mmのOA10Gガラス(NEG社製)である。前記ガラス基板は、純水洗浄、乾燥後にUV/O照射器(LANテクニカル製SKR1102N-03)で1分間照射して洗浄したものを用いた。次に、前記ガラス基板上に、シランカップリング剤(SCA)を気相塗布法により塗布してシランカップリング剤層を形成し、第1積層体を得た(工程A)。具体的に、ガラス基板へのシランカップリング剤の塗布は、図4に示すシランカップリング剤処理装置を用いて行った。容量1Lの薬液タンクの中に、3-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-903)を130g入れて、この外側の湯煎を42℃に温めた。そして出てくる蒸気をクリーンドライエアとともにチャンバーに送った。ガス流量は22L/min、基板温度は21℃とした。クリーンドライエアの温度は23℃、1.2%RHであった。排気は負圧の排気口に接続したため、チャンバーは2Pa程度の負圧となっていることを差圧計によって確認している。
<Preparation of laminate with inorganic substrate>
(Example 1)
First, a glass substrate was prepared. The glass substrate is OA10G glass (manufactured by NEG Co., Ltd.) having a thickness of 0.7 mm cut into a size of 100 mm×100 mm. The glass substrate used was washed with pure water, dried, irradiated with a UV/O 3 irradiation device (SKR1102N-03 manufactured by LAN Technical Co., Ltd.) for 1 minute, and then washed. Next, a silane coupling agent (SCA) was applied onto the glass substrate by a vapor phase coating method to form a silane coupling agent layer, thereby obtaining a first laminate (step A). Specifically, the application of the silane coupling agent to the glass substrate was performed using the silane coupling agent treatment apparatus shown in FIG. 130 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-903) was placed in a 1 L chemical solution tank, and the water bath outside was heated to 42°C. The emerging vapors were then sent into the chamber along with clean dry air. The gas flow rate was 22 L/min, and the substrate temperature was 21.degree. The temperature of clean dry air was 23° C. and 1.2% RH. Since the exhaust was connected to the negative pressure exhaust port, it was confirmed by a differential pressure gauge that the chamber had a negative pressure of about 2 Pa.
 保護フィルム付きエンプラフィルムを70mm×70mmに切断し、無機基板と貼り合わせる面の保護フィルムを剥離した。前記シランカプリング剤処理したガラスのシランカップリング剤層と保護フィルム付きエンプラフィルムとを貼り合わせて、ガラス基板と、シランカップリング剤層と、エンプラフィルムと、保護フィルムとがこの順で積層された積層体を得た。貼り合わせには、ラミネーター(MCK社製MRK-1000)を用い、貼合条件は、エアー元圧力:0.7MPa、温度:22℃、湿度:55%RH、ラミネート速度:50mm/秒とした。 The engineering plastic film with a protective film was cut into 70 mm x 70 mm pieces, and the protective film on the surface to be attached to the inorganic substrate was peeled off. The silane coupling agent layer of the glass treated with the silane coupling agent and the engineering plastic film with the protective film were laminated together, and the glass substrate, the silane coupling agent layer, the engineering plastic film, and the protective film were laminated in this order. A laminate was obtained. A laminator (MRK-1000 manufactured by MCK Co.) was used for lamination, and the lamination conditions were air source pressure: 0.7 MPa, temperature: 22° C., humidity: 55% RH, and lamination speed: 50 mm/sec.
(実施例2~9、比較例1~3)
 使用する保護フィルム付きエンプラフィルムを変更した以外は実施例1と同様にして積層体を作製した。
(Examples 2-9, Comparative Examples 1-3)
A laminate was produced in the same manner as in Example 1, except that the engineering plastic film with a protective film used was changed.
<ガラス基板/エンプラフィルム間の気泡数>
 実施例、比較例の積層体について、110℃にて10分間加熱した後、ガラス面側からキーエンス製のデジタルマイクロスコープVH-Z100Rを用いて100倍にて30箇所の観察を行い(マイクロスコープで見える範囲を1箇所と数える)、核となる異物のない気泡の計数を実施した。なお、デジタルマイクロスコープVH-Z100Rで100倍に観察した際の1視野範囲は、8.6×10μmである。結果を表4に示す。
<Number of bubbles between glass substrate/engineering plastic film>
The laminates of Examples and Comparative Examples were heated at 110 ° C. for 10 minutes, and then observed at 30 locations at 100 times using a digital microscope VH-Z100R manufactured by Keyence from the glass surface side (with a microscope The visible area is counted as one point), and the number of bubbles without nuclei and foreign matter was counted. Note that the range of one visual field when observed with a digital microscope VH-Z100R at a magnification of 100 is 8.6×10 6 μm 2 . Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <結果>
 エンプラフィルムと保護フィルムのせん断剥離強度が700MPa以下かつ粘着剤層のマルテンス硬度が30N/mm以下の保護フィルムを用いた保護フィルム付きエンプラフィルム1~8、12においてはエンプラフィルム/保護フィルム間の核のない気泡が40個/cm以下と少なく、かつ無機基板と貼り合わせた際にはガラス基板/エンプラフィルム間の核のない気泡が5個/cm以下に抑えられていることが確認できた。
<Results>
In engineering plastic films 1 to 8 and 12 with a protective film using a protective film with a shear peel strength of 700 MPa or less between the engineering plastic film and the protective film and a Martens hardness of the adhesive layer of 30 N/mm 2 or less, the engineering plastic film/protective film It was confirmed that the number of air bubbles without nuclei was as small as 40/cm 2 or less, and that the number of air bubbles without nuclei between the glass substrate/engineering plastic film was suppressed to 5/cm 2 or less when bonded to the inorganic substrate. did it.
 10、11 保護フィルム付きエンジニアリングプラスチックフィルム
 12 保護フィルム
 14 基材
 16 粘着剤層
 18 エンジニアリングプラスチックフィルム(エンプラフィルム)
 20 保護フィルム
 22 基材
 24 粘着剤層
 40 積層体
 42 無機基板
 41 支持体フィルム
REFERENCE SIGNS LIST 10, 11 Engineering plastic film with protective film 12 Protective film 14 Base material 16 Adhesive layer 18 Engineering plastic film (engineering plastic film)
20 Protective film 22 Base material 24 Adhesive layer 40 Laminate 42 Inorganic substrate 41 Support film

Claims (9)

  1.  基材と粘着剤層とを有する保護フィルムと、
     前記粘着剤層上に設けられたエンジニアリングプラスチックフィルムと、
     前記エンジニアリングプラスチックフィルム上に設けられた無機基板と
    を備え、
     前記無機基板と前記エンジニアリングプラスチックフィルムとは、接して積層されているか、又は、シランカップリング剤層のみを介して積層されており、
     前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、
     前記粘着剤層のマルテンス硬度が30N/mm以下であり、
     前記無機基板と前記エンジニアリングプラスチックフィルムとの間の核のない気泡数が1個/cm以下であることを特徴する積層体。
    a protective film having a substrate and an adhesive layer;
    an engineering plastic film provided on the adhesive layer;
    and an inorganic substrate provided on the engineering plastic film,
    The inorganic substrate and the engineering plastic film are laminated in contact with each other, or laminated only via a silane coupling agent layer,
    The shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
    The adhesive layer has a Martens hardness of 30 N/mm 2 or less,
    A laminate, wherein the number of non-nucleated air bubbles between the inorganic substrate and the engineering plastic film is 1/cm 2 or less.
  2.  前記エンジニアリングプラスチックフィルムが、ポリイミドフィルムであることを特徴とする積層体。 A laminate characterized in that the engineering plastic film is a polyimide film.
  3.  前記基材が、ポリエステルフィルム、又は、ポリオレフィンフィルムであることを特徴とする請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the base material is a polyester film or a polyolefin film.
  4.  前記基材が、ポリエチレンテレフタレートフィルムであることを特徴とする請求項1~3のいずれか1に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the base material is a polyethylene terephthalate film.
  5.  前記粘着剤層は、ウレタン系樹脂を含み、
     前記粘着剤層のゲル分率が、25%以上70%以下であることを特徴とする請求項1~4のいずれか1に記載の積層体。
    The adhesive layer contains a urethane-based resin,
    5. The laminate according to any one of claims 1 to 4, wherein the adhesive layer has a gel fraction of 25% or more and 70% or less.
  6.  前記粘着剤層は、シリコーン系樹脂を含み、
     前記粘着剤層のゲル分率が、25%以上40%以下であることを特徴とする請求項1~4のいずれか1に記載の積層体。
    The pressure-sensitive adhesive layer contains a silicone resin,
    5. The laminate according to any one of claims 1 to 4, wherein the adhesive layer has a gel fraction of 25% or more and 40% or less.
  7.  前記粘着剤層は、アクリル系樹脂を含み、
     前記粘着剤層のゲル分率が、45%以上65%以下であることを特徴とする請求項1~4のいずれか1に記載の積層体。
    The pressure-sensitive adhesive layer contains an acrylic resin,
    5. The laminate according to any one of claims 1 to 4, wherein the adhesive layer has a gel fraction of 45% or more and 65% or less.
  8.  基材と粘着剤層とを有する保護フィルムと、
     前記粘着剤層上に設けられたエンジニアリングプラスチックフィルムと
    を備え、
     前記エンジニアリングプラスチックフィルムと前記粘着剤層とのせん断剥離強度が700MPa以下であり、
     前記粘着剤層のマルテンス硬度が30N/mm以下であることを特徴する保護フィルム付きエンジニアリングプラスチックフィルム。
    a protective film having a substrate and an adhesive layer;
    and an engineering plastic film provided on the adhesive layer,
    The shear peel strength between the engineering plastic film and the adhesive layer is 700 MPa or less,
    An engineering plastic film with a protective film, wherein the adhesive layer has a Martens hardness of 30 N/mm 2 or less.
  9.  前記エンジニアリングプラスチックフィルムと前記粘着剤層との間の核のない気泡数が50個/cm以下であることを特徴する請求項8に記載の保護フィルム付きエンジニアリングプラスチックフィルム。 9. The engineering plastic film with a protective film according to claim 8, wherein the number of non-nucleated air bubbles between the engineering plastic film and the pressure-sensitive adhesive layer is 50/cm 2 or less.
PCT/JP2021/039802 2021-03-03 2021-10-28 Laminate and engineering plastic film provided with protection film WO2022185607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022535933A JPWO2022185607A1 (en) 2021-03-03 2021-10-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033650 2021-03-03
JP2021033650 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022185607A1 true WO2022185607A1 (en) 2022-09-09

Family

ID=83154229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039802 WO2022185607A1 (en) 2021-03-03 2021-10-28 Laminate and engineering plastic film provided with protection film

Country Status (3)

Country Link
JP (1) JPWO2022185607A1 (en)
TW (1) TW202243900A (en)
WO (1) WO2022185607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243693A1 (en) * 2022-06-16 2023-12-21 東洋紡株式会社 Laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036782A (en) * 1996-07-23 1998-02-10 Sekisui Chem Co Ltd Decorative adhesive sheet
JP2010064346A (en) * 2008-09-10 2010-03-25 Asahi Kasei E-Materials Corp Method of storing laminated body
JP2020083998A (en) * 2018-11-22 2020-06-04 三菱ケミカル株式会社 Adhesive layer, adhesive sheet and laminate
JP2020100026A (en) * 2018-12-20 2020-07-02 東洋紡株式会社 Laminate film, laminate, and manufacturing method of laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036782A (en) * 1996-07-23 1998-02-10 Sekisui Chem Co Ltd Decorative adhesive sheet
JP2010064346A (en) * 2008-09-10 2010-03-25 Asahi Kasei E-Materials Corp Method of storing laminated body
JP2020083998A (en) * 2018-11-22 2020-06-04 三菱ケミカル株式会社 Adhesive layer, adhesive sheet and laminate
JP2020100026A (en) * 2018-12-20 2020-07-02 東洋紡株式会社 Laminate film, laminate, and manufacturing method of laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243693A1 (en) * 2022-06-16 2023-12-21 東洋紡株式会社 Laminate

Also Published As

Publication number Publication date
TW202243900A (en) 2022-11-16
JPWO2022185607A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP7167693B2 (en) LAMINATED FILM, LAMINATE, AND LAMINATE MANUFACTURING METHOD
WO2022185607A1 (en) Laminate and engineering plastic film provided with protection film
WO2022185606A1 (en) Laminated film, laminated film manufacturing method, laminate, and laminate manufacturing method
EP4223521A1 (en) Layered body including inorganic substrate and polyamic acid cured product
WO2022270325A1 (en) Laminate
WO2023058408A1 (en) Laminate equipped with protective-film-release-assisting tape
WO2023074536A1 (en) Protective film-equipped laminate of inorganic substrate and heat-resistant polymer film
JPWO2021124865A1 (en) Laminate
EP4302990A1 (en) Laminate of inorganic substrate/polymer film layer with attached protective film, laminate stack, laminate storage method, and laminate transport method
WO2023286685A1 (en) Laminate of inorganic substrate and heat-resistant polymer film
EP4371767A1 (en) Multilayer body of inorganic substrate and transparent heat-resistant polymer film
WO2023021899A1 (en) Transparent heat-resistant laminated film
JP7432126B2 (en) Laminated body and flexible device manufacturing method
WO2021241574A1 (en) Laminate including transparent film with high heat resistance
EP4159440A1 (en) Layered product including high temperature-resistant transparent film
WO2021241570A1 (en) Multilayer body comprising highly heat-resistant transparent film
CN118119507A (en) Laminate of inorganic substrate with protective film and heat-resistant polymer film
WO2023189719A1 (en) Laminate and method for producing laminate
KR20240035388A (en) Method for manufacturing a circuit board, circuit board precursor with release film, and circuit board precursor with inorganic substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535933

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/11/2023).