WO2022184069A1 - 汽车总线故障分析方法、诊断设备及总线故障分析*** - Google Patents

汽车总线故障分析方法、诊断设备及总线故障分析*** Download PDF

Info

Publication number
WO2022184069A1
WO2022184069A1 PCT/CN2022/078689 CN2022078689W WO2022184069A1 WO 2022184069 A1 WO2022184069 A1 WO 2022184069A1 CN 2022078689 W CN2022078689 W CN 2022078689W WO 2022184069 A1 WO2022184069 A1 WO 2022184069A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
communication
automobile
fault analysis
type
Prior art date
Application number
PCT/CN2022/078689
Other languages
English (en)
French (fr)
Inventor
***
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022184069A1 publication Critical patent/WO2022184069A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of automobile bus, in particular to an automobile bus fault analysis method, diagnostic equipment and bus fault analysis system.
  • Bus communication plays a very important role in modern automobile electronic control system. Therefore, it is necessary to analyze and diagnose the automobile bus fault in time, and then deal with the faulty automobile bus in time to ensure smooth communication and prevent accidents.
  • the traditional method of automobile bus fault analysis uses a multimeter or an oscilloscope to collect bus data, analyze it manually, locate the fault cause and fault location, etc., with more manual intervention, low bus fault analysis efficiency, and inconvenient operation.
  • the present invention solves one of the above technical problems at least to a certain extent. Therefore, the present invention provides an automobile bus fault analysis method and an automobile bus fault analysis method, which can improve the efficiency of automobile bus fault analysis.
  • an embodiment of the present invention provides a method for analyzing a vehicle bus fault, the method comprising:
  • the bus type of the bus includes one of a diagnostic bus and an online bus
  • the diagnostic bus refers to a bus directly connected to the data connection interface
  • the online bus refers to other buses in the vehicle except the diagnostic bus
  • a failure analysis scheme for the bus is determined.
  • the obtaining the communication status of the car through the data connection interface of the car includes:
  • the communication state of the car is acquired according to the first communication data.
  • the communication status of the vehicle includes one of no response from some ECUs, feedback of communication fault codes, bus off, and inability to communicate.
  • the judging whether it is necessary to perform fault analysis on the bus of the automobile according to the communication state of the automobile includes:
  • the communication status of the bus is that some ECUs have no response or feedback communication fault codes
  • determine the number of the abnormal vehicle control units when the abnormal vehicle control unit When the number of units is greater than or equal to the preset threshold, it is necessary to perform fault analysis on the bus.
  • the determining the bus type of the bus includes:
  • the characteristic information of the bus includes at least one of a connection mode, a bus attribute, and a bus number.
  • the determining a fault analysis solution for the bus according to the bus type includes:
  • the failure type of the bus is determined according to the communication voltage and the standard communication information.
  • determining a fault analysis scheme for the bus according to the bus type includes:
  • the fault type of the bus is determined according to the waveform characteristics and the standard communication information.
  • the fault type of the bus includes at least one of a short to power supply, a short to ground, a short to each other, an open bus, a power abnormality, and a ground abnormality.
  • the method further includes:
  • an embodiment of the present invention provides a diagnostic device, which is applied to a bus of an automobile, wherein the bus is used to connect various automobile control units, and the diagnostic device includes: a controller and a communication interface;
  • the communication interface is used to communicate with the vehicle
  • the controller includes at least one processor and a memory, the memory and the interface device each being communicatively coupled to the at least one processor, the memory storing instructions executable by the at least one processor, the memory Instructions are executed by the at least one processor to enable the at least one processor to perform the method as described above.
  • the third aspect, the embodiment of the present invention provides a kind of automobile bus failure analysis system, is applied to the bus of automobile, and described bus is used for connecting each automobile control unit, and described automobile bus failure analysis system comprises:
  • the diagnostic device as described above, the diagnostic device is communicatively connected to the vehicle control unit.
  • the automobile bus fault analysis system further includes: an oscilloscope;
  • the oscilloscope is connected in communication with the diagnosis device, and is used for collecting the communication signal waveform on the bus, and transmitting the data of the communication signal waveform to the diagnosis device.
  • the method for analyzing the fault of the automobile bus in the present invention includes first obtaining the communication state of the automobile through the automobile data connection interface, and then judging whether the bus of the automobile needs to be checked according to the communication state of the automobile. Carry out fault analysis. If you need to analyze the fault of the bus of the car, determine the bus type of the bus, and finally determine the fault analysis scheme for the bus according to the bus type.
  • the fault analysis method of the automobile bus can automatically Determine whether it is necessary to perform fault analysis on the bus of the car, and when it is necessary to perform fault analysis on the bus, determine the corresponding fault analysis scheme according to the bus type of the bus, and determine different fault analysis schemes for different bus types, with strong pertinence , automatically complete fault analysis, improve analysis efficiency, and the analysis method reduces user intervention, is simple to operate, and is convenient to use, thereby improving user experience.
  • FIG. 1 is a schematic structural diagram of a vehicle bus fault analysis system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of one of the methods for analyzing a vehicle bus fault provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a bus topology structure according to an embodiment of the present invention.
  • Fig. 4 is one of the schematic flow charts of step S24 in Fig. 2;
  • FIG. 5 is a schematic diagram of an application scenario of a bus fault analysis system for a diagnostic bus provided by an embodiment of the present invention
  • Fig. 6 is one of the schematic flow charts of step S24 in Fig. 2;
  • FIG. 7 is a schematic diagram of an application scenario of a bus fault analysis system for a diagnostic bus provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an application scenario of a bus fault analysis system for an online bus provided by an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of one of the methods for analyzing a vehicle bus fault provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a topology structure of a bus analysis provided by an embodiment of the present invention.
  • ECU Automobile Control Unit
  • ECU Electronic Control Unit
  • ROM memory
  • I/O input/output interface
  • A/D analog-to-digital converter
  • large-scale integrated circuits such as shaping and driving. composition.
  • DLC refers to the data link connector (Data Link Connector).
  • PTCAN refers to the high-speed CAN bus of the automotive powertrain.
  • FLEXRAY It refers to an automobile bus communication protocol. FlexRay is a high-speed, deterministic, and fault-tolerant bus technology for automobiles. It combines event triggering and time triggering. , has the characteristics of efficient network utilization and system flexibility, and can be used as the backbone network of the new generation of automobile internal network.
  • VCI vehicle communication interface, this article refers to the interface device that communicates with the vehicle;
  • LIN refers to an automotive local area network protocol used to realize the control of distributed electronic systems in automobiles.
  • the goal of LIN is to provide auxiliary functions for existing automotive networks such as the CAN bus, so the LIN bus is an auxiliary bus network.
  • the LIN bus is an auxiliary bus network.
  • the LIN technical specification also defines development tools and application software interfaces.
  • LIN communication is based on SCI (UART) data format and adopts the mode of single master controller/multiple slave devices. Use only a 12V signal bus and a node sync clock line with no fixed time base.
  • PWM refers to a bus communication protocol.
  • K/L It refers to an automobile bus communication protocol.
  • the diagnostic device may be a mobile terminal or a personal computer (Personal Computer, PC).
  • the mobile terminal may be a smart phone, a tablet computer, a personal digital assistant, etc.
  • the hardware device of the operating system is implemented based on one or more processors of the diagnostic device itself.
  • FIG. 1 is a schematic structural diagram of an automobile bus fault analysis system provided by an embodiment of the present invention.
  • the automobile bus fault analysis system is applied to the bus of the automobile, and the bus of the automobile is used to connect various automobile control units, as shown in FIG. 1, the automobile bus fault analysis system 110 is communicatively connected to an automobile 120, wherein the automobile diagnostic system 110 includes a diagnostic device 111 and a communication interface 112, and the diagnostic device 111 communicates with the automobile 120 through the communication interface 112.
  • the diagnostic device can communicate with the car control unit in the car through a communication interface, the diagnostic device can obtain communication data on the bus, such as communication voltage, etc., and the diagnostic device can pass the communication data on the bus.
  • the bus of the car is analyzed for failure.
  • the automobile bus fault analysis system further includes an oscilloscope 113 , and the oscilloscope 113 is also communicatively connected to the automobile 120 through the communication interface 112 .
  • the oscilloscope 113 can communicate with the automobile control unit through the communication interface 112 .
  • the oscilloscope 113 can acquire the communication signal waveform on the bus, and transmit the data of the communication signal waveform to the diagnosis device 111 , and the diagnosis device 111 can perform fault analysis according to the communication signal waveform.
  • the diagnostic device 111 includes a main control CPU, a display screen, a touch screen, a memory, various communication interfaces, and a communication device for communicating with the vehicle (supporting various bus communication protocols).
  • the oscilloscope 113 supports measurement of voltage, current, resistance, frequency, etc., supports trigger function, and can store waveform data.
  • the application software of the diagnostic device 111 includes automobile diagnostic software, oscilloscope measurement software, automobile maintenance data or maintenance guide. During the running process of the automobile diagnostic software, the measurement function of the oscilloscope 113 can be invoked, data can be extracted from the application of the oscilloscope 113, and the next maintenance analysis can be carried out with the maintenance wizard.
  • the communication interface 112 includes a DLC interface.
  • the car 120 is connected to the diagnostic device 111 through the DLC interface (standard OBD interface, 16PIN), and the DLC interface supports SAE J1962/ ISO 15031-3 standard.
  • the diagnostic device 111 an interface is provided for oscilloscope probe contacts. For the case where the internal bus is not connected to the DLC interface, the oscilloscope probe needs to be connected to the connection point recommended by the diagnostic device 111 .
  • the oscilloscope 113 includes an oscilloscope probe, and the oscilloscope probe is used to measure the communication signal waveform on the automobile bus.
  • an embodiment of the present invention provides a method for analyzing a fault of an automobile bus, so as to improve the efficiency of analyzing a fault of an automobile bus.
  • FIG. 2 is a schematic flowchart of a method for analyzing a vehicle bus fault according to an embodiment of the present invention. As shown in FIG. 2, the method for analyzing a vehicle bus fault includes:
  • Step S21 obtaining the communication status of the bus of the car through the data connection interface of the car;
  • the communication scanning is performed on the vehicle control unit connected to the bus, the first communication data of the bus during the communication scanning is obtained through the data connection interface, and the communication state of the vehicle is obtained according to the first communication data.
  • the first communication data may be the communication voltage on the bus, and the corresponding communication state is determined according to the specific communication voltage.
  • the communication status includes no response from some ECUs, feedback of communication fault codes, bus shutdown and failure to communicate.
  • the response information of some ECUs can be received after the communication scan, but the response information is wrong, and the communication fault code is received, it is judged as a feedback communication fault code
  • each ECU unit is represented by a box. As shown in Figure 3, each ECU unit is connected to each other through the bus, and communicates with the vehicle's On Board Diagnostics (OBD) through the bus. ECUs with different communication states can be represented by boxes with different colors, for example, unscanned ECUs are represented by blue boxes, for example: ECU1-ECU4 units. The ECUs that feed back the communication fault codes are represented by orange boxes, for example: ECU8, ECU10, ECU14 and ECU16 units. Non-response ECUs are represented by gray boxes, such as: ECU5, ECU6, ECU7 and ECU9 units.
  • ECUs with normal communication are represented by green boxes, for example: ECU11-ECU13, ECU15, ECU17 and GateWay units.
  • Different types of buses can also be represented by lines of different colors.
  • PT-CAN is represented by orange lines
  • PT-CAN2 is represented by yellow lines
  • K-CAN is represented by gray lines
  • Chassis CAN is represented by purple lines
  • D-CAN is represented by blue lines.
  • the colored lines are indicated
  • the K-CAN2 is indicated by the green lines. Therefore, the communication status of each ECU unit can be directly observed through the bus topology structure diagram of FIG. 3 , and then the communication status of the bus connecting each ECU unit can be obtained.
  • Step S22 according to the communication state of the bus, determine whether it is necessary to perform fault analysis on the bus;
  • Buses in different communication states need to be analyzed by different schemes. Some buses in communication states do not need to be analyzed for faults. Some buses in communication states need to be analyzed for faults.
  • the fault analysis method is used for analysis, that is, different buses have different fault analysis methods. Specifically, if the communication state of the bus is that the bus is closed or cannot communicate, then a fault analysis needs to be performed on the bus; According to the first communication data, the number of abnormal vehicle control units is determined, and when the number of abnormal vehicle control units is greater than or equal to a preset threshold, it is necessary to perform fault analysis on the bus .
  • the preset threshold can be set as required.
  • the preset threshold can be two, that is, when the number of abnormal vehicle control units is greater than or equal to two, the bus of the vehicle needs to be faulted Analysis, when the number of abnormal car control units is one, that is, only a single ECU has an abnormality, there is no need to analyze the failure of the car's bus, but priority to repair the single ECU, including testing the ECU's communication circuit, power supply Line, software, configuration or hardware replacement, etc.
  • Step S23 If yes, determine the bus type of the bus, the bus type includes one of a diagnosis bus and an online bus, the diagnosis bus refers to a bus directly connected to the data connection interface, the online bus The bus refers to other buses in the vehicle except the diagnostic bus;
  • the bus type of the bus can be determined according to the characteristic information of the bus. Specifically, the characteristic information of the bus is obtained, and the bus type of the bus is determined according to the characteristic information.
  • the characteristic information includes at least one of connection mode, bus attribute, and bus number.
  • the connection method refers to the connection method between the bus and the data connection interface. If the bus is directly connected to the data connection interface, the bus is determined as a diagnostic bus. If the access needs to be relayed through the gateway, it is determined that the bus is an online bus.
  • the bus attribute refers to the special performance or characteristic of the bus itself. Through the analysis of the bus attribute, the type of the bus is determined.
  • the bus number means that the buses in the car have their own numbers. Different bus types can use different bus numbers. Therefore, the bus type of the bus can be confirmed by the bus number.
  • Step S24 Determine a fault analysis scheme for the bus according to the bus type.
  • the diagnostic bus can perform signal detection and analysis from the DLC interface.
  • the detection of the online bus is more complicated. Generally, it is necessary to find an appropriate measurement point on the bus and analyze it with the help of measurement tools. .
  • the communication data analyzed by different fault analysis schemes are also different. For example, if the bus type of the bus is a diagnostic bus, the communication voltage or communication signal waveform on the bus can be analyzed to determine the fault type of the bus. If the type is online bus, the communication signal waveform of the bus can be analyzed to determine the fault type of the bus.
  • the fault analysis method of the automobile bus can automatically judge whether the fault analysis of the bus needs to be carried out according to the communication state of the bus, and when the fault analysis of the bus is required, the corresponding fault analysis scheme is determined according to the bus type of the bus.
  • the bus type different fault analysis schemes are determined, which is highly targeted, automatically completes fault analysis, and improves analysis efficiency, and this analysis method reduces user intervention, is simple to operate, and is easy to use, thereby improving user experience.
  • step S24 includes:
  • Step S241 obtaining the communication voltage of the bus through the data connection interface of the car;
  • Step S242 Obtain the bus protocol of the bus, and obtain the standard communication information of the bus according to the bus type and the bus protocol;
  • Step S243 Determine the fault type of the bus according to the communication voltage and the standard communication information.
  • the diagnostic equipment can communicate with the data connection interface of the car through the connection interface, collect the communication voltage data on the bus for a period of time, and then obtain the bus protocol of the bus.
  • Different bus protocols have different standard communication information of the corresponding bus.
  • the standard communication information of the bus refers to the information such as communication voltage, communication data, communication connection mode, communication law, communication expected working data and communication working status during normal communication when the bus is not faulty.
  • the bus protocols include PWM protocol, K/L protocol, CAN protocol, LIN protocol and FLEXRAY protocol, etc.
  • the usage standards and application vehicles are shown in Table 1:
  • the standard communication information of the bus is obtained, the communication voltage data of the bus is compared with the standard communication information, the fault type of the bus is deduced, and the current working state of the bus can also be deduced.
  • the fault type of the bus includes at least one of short to power supply, short to ground, short to each other, bus open circuit, power abnormality, and ground abnormality. Determine the specific fault type of the bus according to the communication voltage data and standard communication information on the bus.
  • the communication interface of the diagnostic device and the DLC of the car can be connected by wireless (Bluetooth or WiFi) or wired cable, and the DLC adopts the ISO 15031/SAE J1962 standard.
  • the diagnostic device can also be connected to the car through a communication interface device (VCI) that communicates with the car, and the diagnostic device and the VCI are connected through a wireless (Bluetooth or WiFi) or wired cable.
  • VCI communication interface device
  • the diagnostic equipment obtains the communication voltage data on the bus for a period of time through the DLC of the car, and at the same time obtains the bus protocol of the bus, obtains the bus standard communication information corresponding to the bus according to the bus protocol, and analyzes whether the communication voltage data obtained in real time conforms to the bus standard.
  • Communication information such as whether it meets the communication expectations, or whether it meets the standard communication voltage data, or whether it conforms to the change rule of the voltage data, etc., to determine the working state of the bus, and determine the fault type of the bus.
  • the bus is in different working states, and the communication voltage data on the bus is different, the communication voltage data can be compared with the standard communication information to determine the current working state or fault type of the bus.
  • the characteristics of the static electrical signals in each state of the high-speed CAN bus are shown in Table 2:
  • the specific fault type of the bus can be determined by judging whether the communication voltage on the bus conforms to the communication variation law in the standard communication information.
  • part of the bus design is in sleep mode when there is no communication, and there is no voltage signal on the bus. At this time, the communication voltage detected on the bus is consistent with the communication signal detected in the short-to-ground state. These two states indistinguishable. Therefore, when detecting the communication signal on the bus, it is usually necessary to wake up the bus, and collect the communication voltage data on the bus while the bus is performing signal transmission, so as to ensure that the collected bus communication voltage data represents the bus state under real communication.
  • step S24 includes:
  • Step S244 obtaining the communication signal waveform of the bus through the data connection interface of the vehicle;
  • Step S245 obtaining the waveform characteristics of the communication signal waveform according to the communication signal waveform
  • Step S246 obtaining the bus protocol of the bus, and obtaining the standard communication information of the bus according to the bus type and the bus protocol;
  • Step S247 Determine the fault type of the bus according to the waveform characteristics and the standard communication information.
  • the diagnostic equipment communicates with the data connection interface of the car through the oscilloscope, the oscilloscope measures the communication signal waveform on the bus, and transmits the communication signal waveform to the diagnostic equipment for corresponding analysis by the diagnostic equipment.
  • the diagnostic device can obtain the waveform characteristics of the communication signal waveform according to the communication signal waveform, for example, the maximum value, minimum value and average value of the communication signal waveform amplitude, the shape graph or the waveform change trend of the communication signal waveform and other characteristics.
  • the standard communication information of the corresponding bus is different. Therefore, the bus protocol of the bus is obtained, and the standard communication information of the bus is obtained according to the bus type and bus protocol.
  • the standard data of the communication signal waveform on the bus such as the standard maximum value, the standard minimum value and the standard average value, etc.
  • the waveform characteristics obtained in real time are compared with the standard communication information to determine the fault type of the bus.
  • the standard communication information can be stored in the database, and the corresponding standard communication information in the database can be retrieved according to the bus type and bus protocol.
  • the database may also store the communication voltage data on the bus under each fault condition, or the communication signal waveform on the bus corresponding to each fault, and compare the communication signal waveform obtained in real time with the faults stored in the database. The corresponding communication signal waveforms are compared to determine the fault type of the bus.
  • the bus is a diagnostic bus
  • the schematic diagram of using an oscilloscope to obtain the communication signal waveform on the bus is shown in Figure 7.
  • One end of the three-pronged line is used to connect the car DLC, and the other end of the three-pronged line is connected to the VCI and the Scope oscilloscope respectively.
  • the three-pronged line is in an interconnected state.
  • the communication signal is shunted to the VCI and Scope.
  • the Scope measures the communication signal waveform on the bus, and the communication signal waveform is transmitted to the diagnostic equipment through WiFi.
  • the diagnostic equipment analyzes the communication signal waveform, obtains the waveform characteristics of the communication signal waveform, compares the waveform characteristics with the standard communication information, and then outputs the current Bus status, i.e.
  • the diagnostic equipment communicates with the car through the VCI at the same time, and the oscilloscope can capture the dynamic communication data.
  • the oscilloscope supports the simultaneous acquisition of multi-channel data. For some high-speed buses, such as CAN, the waveforms on multiple communication lines can be compared and analyzed.
  • the oscilloscope and the VCI can be integrated into one device, and the solution in FIG. 7 is completed with the integrated device.
  • the integrated device can simultaneously collect the communication voltage on the bus and perform parallel processing. .
  • the schematic diagram of using an oscilloscope to obtain the communication signal waveform on the bus is shown in Figure 8.
  • the diagnostic equipment sends data to the diagnosed car bus through the VCI (communication with the ECU on the diagnosed car bus),
  • the oscilloscope is connected to the measurement point on the bus under test, collects the communication waveform on the bus, and analyzes the working state of the bus according to the waveform.
  • searching for measurement points on the one hand, it is necessary to consider the convenience of connection, and on the other hand, it is necessary to consider the convenience of troubleshooting.
  • a suitable location can be selected according to the suggestions of maintenance materials or the guidance of part diagrams/circuit diagrams.
  • the diagnostic equipment When analyzing the online bus, first obtain the characteristics of the online bus, such as communication protocol, transmission rate, line characteristics, connection characteristics, measurement position, etc. While the diagnostic equipment communicates with the ECU on the bus, the oscilloscope is at the measurement position. Obtain the communication signal waveform on the bus, and transmit the collected communication signal waveform to the diagnostic device, and the diagnostic device compares the communication signal waveform with the standard communication information to determine the current communication status of the online bus, or the specific fault type, For example: no fault, short circuit to power supply, short circuit to ground, bus short circuit to each other or bus open circuit, etc.
  • the specific fault type For example: no fault, short circuit to power supply, short circuit to ground, bus short circuit to each other or bus open circuit, etc.
  • the fault analysis method of the automobile bus can automatically judge whether the fault analysis of the bus needs to be carried out according to the communication state of the bus, and when the fault analysis of the bus is required, the corresponding fault analysis scheme is determined according to the bus type of the bus.
  • the bus type different fault analysis schemes are determined, which is highly targeted, automatically completes fault analysis, and improves analysis efficiency, and this analysis method reduces user intervention, is simple to operate, and is easy to use, thereby improving user experience.
  • the current fault type of the bus can also be represented by a topology diagram, and for the vehicle control unit that cannot communicate, the duration of the inability to communicate is marked. Specifically, as shown in Figure 9, the method further includes:
  • Step S25 establishing a topology map according to the bus and the vehicle control unit;
  • Step S26 marking the bus type of the bus and the communication state of the vehicle control unit in the topology diagram
  • Step S27 if the vehicle control unit is unable to communicate, marking the duration of the vehicle unit unable to communicate;
  • Step S28 Display the fault analysis status of each of the buses.
  • buses of different bus types can be represented by different colors, and boxes of different colors can also be used to represent vehicle control units with different communication states, as shown in Figure 10.
  • the ECU in the communication state and the ECU in the non-communication state are filled with different colors, marking different states.
  • the time when the signal does not respond is also marked.
  • the ECU in the normal communication state is represented by a green box, for example: BCMii, ABS, PAM and TCM units.
  • a faulty ECU is indicated by an orange square, eg PCM unit.
  • ECUs that do not respond are represented by gray boxes, such as: AHCM, DDM, ACM, IPC, GPSM, HVAC, FCIM, TCU, and RCM units.
  • the non-response duration is also marked.
  • the non-response duration of the AHCM unit is 05:188
  • the non-response duration of the DDM unit is 8:188
  • the ACM unit non-response duration is 8:188. It is 2:000, so the user can directly observe the duration that the ECU cannot communicate, which is more intuitive, clearer and more convenient.
  • the detection status of each bus diagnosed by the diagnostic equipment and the corresponding fault type are displayed.
  • the detection status can be displayed as: current status: MS-CAN to power short circuit, previous status: I-CAN to ground Short circuit, previous state: HS-CAN traffic is normal.
  • the node method is generally used to locate the fault point. Find an ECU node in the bus to disconnect the bus, measure the bus signals on both sides of the disconnected node, determine which side of the disconnected node after the disconnection node is split, and gradually narrow the scope of analysis, and finally locate the fault point. After disconnecting some nodes, continue to check the communication, observe the change of the communication status from the topology map, whether the bus communication is restored, and gradually narrow the scope of analysis to locate the specific location of the fault.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本发明涉及一种汽车总线故障分析方法、诊断设备以及汽车总线故障分析***,该方法首先通过汽车数据连接接口获取汽车的通信状态,再根据汽车的通信状态,判断是否需要对汽车的总线进行故障分析,若需要对汽车的总线进行故障分析,则确定总线的总线类型,最后根据总线类型,确定针对该总线的故障分析方案,因此,该方法能够根据汽车的通信状态自动判断是否需要对汽车的总线进行故障分析,且当需要对总线进行故障分析时,根据总线的总线类型,确定对应的故障分析方案,针对不同的总线类型,确定不同的故障分析方案,针对性强,自动完成故障分析,提高分析效率,且该分析方法减少用户的介入,操作简单,使用方便,进而提升用户体验。

Description

汽车总线故障分析方法、诊断设备及总线故障分析***
本申请要求于2021年03月02日提交中国专利局、申请号为202110231941.6、申请名称为“汽车总线故障分析方法、诊断设备及总线故障分析***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车总线领域,特别是涉及一种汽车总线故障分析方法、诊断设备及总线故障分析***。
背景技术
总线通信在现代汽车电控***中扮演着非常重要的角色,因此,需要对汽车总线故障进行及时分析和诊断,进而及时对发生故障的汽车总线进行处理,保证通信顺畅,防止发生事故。而传统上的汽车总线故障分析方法采用万用表或者示波器采集总线数据,人工进行分析,定位故障原因和故障位置等,人工介入较多,总线故障分析效率较低,且操作不方便。
发明内容
本发明实施例至少在一定程度上解决上述技术问题之一,为此本发明提供一种汽车总线故障分析方法汽车总线故障分析方法及汽车总线故障分析***,其能够提高汽车总线故障分析的效率。
第一方面,本发明实施例提供一种汽车总线故障分析方法,所述方法包括:
通过汽车的数据连接接口获取所述汽车的总线的通信状态;
根据所述总线的所述通信状态,判断是否需要对所述总线进行故障分析;
若为是,确定所述总线的总线类型,所述总线类型包括诊断总线和在线总线中的一种,所述诊断总线是指直接与所述数据连接接口连接的总线,所述在线总线是指所述汽车中除所述诊断总线外的其它总线;
根据所述总线类型,确定针对所述总线的故障分析方案。
在一些实施例中,所述通过汽车的数据连接接口获取所述汽车的通信状 态,包括:
对与所述总线连接的汽车控制单元进行通讯扫描,通过所述数据连接接口获取通讯扫描时所述总线的第一通信数据;
根据所述第一通信数据获取所述汽车的所述通信状态。
在一些实施例中,所述汽车的所述通信状态包括部分ECU无应答、反馈通信故障码、总线关闭以及无法通信中的一种。
在一些实施例中,所述根据所述汽车的所述通信状态,判断是否需要对所述汽车的总线进行故障分析,包括:
若所述总线的所述通信状态为总线关闭或者无法通信,则需要对所述总线进行故障分析;
若所述总线的所述通信状态为部分ECU无应答或反馈通信故障码,则根据所述第一通信数据,确定发生异常的所述汽车控制单元的个数,当发生异常的所述汽车控制单元的个数大于或等于预设阈值时,则需要对所述总线进行故障分析。
在一些实施例中,所述确定所述总线的总线类型,包括:
获取所述总线的特征信息,根据所述特征信息确定所述总线的所述总线类型。
在一些实施例中,所述总线的特征信息包括连接方式、总线属性、总线编号中的至少一个。
在一些实施例中,若所述总线的所述总线类型为所述诊断总线,所述根据所述总线类型,确定针对所述总线的故障分析方案,包括:
通过所述汽车的数据连接接口获取所述总线的通信电压;
获取所述总线的总线协议,根据所述总线类型和所述总线协议,获取所述总线的标准通信信息;
根据所述通信电压和所述标准通信信息确定所述总线的故障类型。
在一些实施例中,若所述总线的所述总线类型为所述在线总线或所述诊断总线,所述根据所述总线类型,确定针对所述总线的故障分析方案,包括:
通过所述汽车的数据连接接口获取所述总线的通信信号波形;
根据所述通信信号波形获取所述通信信号波形的波形特征;
获取所述总线的总线协议,根据所述总线类型和所述总线协议,获取所述总线的标准通信信息;
根据所述波形特征和所述标准通信信息确定所述总线的故障类型。
在一些实施例中,所述总线的故障类型包括对电源短路、对地短路、互相短路、总线开路、电源异常以及接地异常中的至少一个。
在一些实施例中,在确定所述总线的故障类型之后,所述方法还包括:
根据所述总线和所述汽车控制单元,建立拓扑图;
在所述拓扑图中,对所述总线的总线类型和所述汽车控制单元的通讯状态进行标记;
若所述汽车控制单元无法通讯,标记所述汽车单元无法通讯的持续时长;
显示各所述总线的故障分析状态。
第二方面,本发明实施例提供一种诊断设备,应用于汽车的总线,其特征在于,所述总线用于连接各个汽车控制单元,所述诊断设备包括:控制器以及通信接口;
所述通信接口用于通信连接所述汽车;
所述控制器包括至少一个处理器以及存储器,所述存储器和所述接口设备均与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
第三方面,本发明实施例提供一种汽车总线故障分析***,应用于汽车的总线,所述总线用于连接各个汽车控制单元,所述汽车总线故障分析***包括:
如上所述的诊断设备,所述诊断设备通信连接所述汽车控制单元。
在一些实施例中,所述汽车总线故障分析***还包括:示波器;
所述示波器与所述诊断设备通信连接,用于采集所述总线上的通信信号波形,并将所述通信信号波形的数据传送至所述诊断设备。
本发明与现有技术相比至少具有以下有益效果:本发明中的汽车总线故障分析方法包括首先通过汽车数据连接接口获取汽车的通信状态,再根据汽车的通信状态,判断是否需要对汽车的总线进行故障分析,若需要对汽车的总线进行故障分析,则确定总线的总线类型,最后根据总线类型,确定针对该总线的 故障分析方案,因此,该汽车总线故障分析方法能够根据汽车的通信状态自动判断是否需要对汽车的总线进行故障分析,且当需要对总线进行故障分析时,根据总线的总线类型,确定对应的故障分析方案,针对不同的总线类型,确定不同的故障分析方案,针对性强,自动完成故障分析,提高分析效率,且该分析方法减少用户的介入,操作简单,使用方便,进而提升用户体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种汽车总线故障分析***的结构示意图;
图2是本发明实施例提供的其中一种汽车总线故障分析方法的流程示意图;
图3是本发明实施例提供的一种总线拓扑结构示意图;
图4是图2中步骤S24的其中一种流程示意图;
图5是本发明实施例提供的其中一种针对诊断总线的总线故障分析***的应用场景示意图;
图6是图2中步骤S24的其中一种流程示意图;;
图7是本发明实施例提供的其中一种针对诊断总线的总线故障分析***的应用场景示意图;
图8是本发明实施例提供的其中一种针对在线总线的总线故障分析***的应用场景示意图;
图9是本发明实施例提供的其中一种汽车总线故障分析方法的流程示意图;
图10是本发明实施例提供的一种总线分析拓扑结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。再者,本发明所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
对本发明进行详细说明之前,对本发明实施例中涉及的名词和术语进行说明,本发明实施例中涉及的名词和术语适用于如下的解释。
(1)ECU:汽车控制单元(Electronic Control Unit,ECU),又称“行车电脑”、“车载电脑”等,是一种汽车专用微机控制器,也叫汽车专用单片机。它和普通的单片机一样,由微处理器(CPU)、存储器(ROM或RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。
(2)DLC:指的是数据连接接头(Data Link Connector)。
(3)PTCAN:指的是汽车动力总成高速CAN总线。
(4)FLEXRAY:指的是一种汽车总线通信协议,FlexRay是一种用于汽车的高速、可确定性的,具备故障容错能力的总线技术,它将事件触发和时间触发两种方式相结合,具有高效的网络利用率和***灵活性特点,可以作为新一代汽车内部网络的主干网络。
(5)VCI:汽车通信接口,本文指与汽车通信的接口设备;
(6)LIN:指的是一种汽车局域网协议,用于实现汽车中的分布式电子***控制。LIN的目标是为现有汽车网络(例如CAN总线)提供辅助功能,因此LIN总线是一种辅助的总线网络。在不需要CAN总线的带宽和多功能的场合,比如智能传感器和制动装置之间的通讯使用LIN总线可大大节省成本。LIN技术规范中除定义了基本协议和物理层外还定义了开发工具和应用软件接口。LIN通讯是基于SCI(UART)数据格式,采用单主控制器/多从设备的模式。仅使用一根12V信号总线和一个无固定时间基准的节点同步时钟线。
(7)PWM:指的是一种总线通信协议。
(8)K/L:指的是一种汽车总线通信协议。
(9)Scope:指的是示波器。
首先介绍能够实现本申请实施例所描述的汽车总线故障分析方法的一些汽车总线故障分析***。
需要说明的是,在本发明的实施例中,诊断设备可以是移动终端,还可以是个人计算机(Personal Computer,PC),该移动终端可以是智能手机、平板电脑、个人数字助理等具有各种操作***的硬件设备。其中,本发明实施例的汽车总线的故障定位方法是基于诊断设备自身的一个或多个处理器实现的。
请参阅图1,图1是本发明实施例提供的一种汽车总线故障分析***的结构示意图,该汽车总线故障分析***应用于汽车的总线,汽车的总线用于连接各个汽车控制单元,如图1所示,该汽车总线故障分析***110通信连接一汽车120,其中,该汽车诊断***110包括诊断设备111和通信接口112,所述诊断设备111通过所述通信接口112通信连接所述汽车120,具体地,所述诊断设备可通过通信接口与汽车中的汽车控制单元进行通信连接,诊断设备可获取总线上的通信数据,例如通信电压等,并且,诊断设备可通过总线上的通信数据对汽车的总线进行故障分析。
在一些实施例中,该汽车总线故障分析***还包括示波器113,所述示波器113也通过所述通信接口112通信连接所述汽车120,具体地,可通过通信接口112与汽车控制单元进行通信连接,示波器113可获取总线上的通信信号波形,并将通信信号波形的数据传送至诊断设备111,由诊断设备111根据该通信信号波形进行故障分析。
在本发明实施例中,所述诊断设备111包括主控CPU、显示屏、触摸屏、存储器、各种通信接口、与汽车通信的通信装置(支持各种总线通信协议)。示波器113支持电压、电流、电阻、频率等测量,支持触发功能,能够存***形数据。诊断设备111的应用软件包括汽车诊断软件、示波器测量软件、汽车维修资料或者维修向导。在汽车诊断软件的运行过程中,可以调用示波器113测量功能,从示波器113应用中提取数据,配合维修向导进行下一步维修分析。
在本发明实施例中,所述通信接口112包括DLC接口,在故障分析过程中, 汽车120通过DLC接口(标准的OBD接口,16PIN),与诊断设备111连接,所述DLC接口支持SAE J1962/ISO 15031-3标准。在诊断设备111中,为示波器探针接触提供接口。对于内部总线没有连接到DLC接口的情况,示波器探针需要连接到诊断设备111推荐的连接点上。
在本发明实施例中,所述示波器113包括示波器探针,所述示波器探针用于测量汽车总线上的通信信号波形。
汽车总线在现代汽车电控***中扮演着非常重要的角色,当其发生故障时,会影响汽车的各个单元的通讯功能,因此,需要及时对总线的故障进行分析,进而排除相应的故障。针对目前的故障分析方案存在的分析效率低的技术问题,本发明实施例提供一种汽车总线故障分析方法,以提高汽车总线故障分析效率。
具体的,请参阅图2,图2是本发明实施例提供的一种汽车总线故障分析方法的流程示意图,如图2所示,该汽车总线故障分析方法包括:
步骤S21:通过汽车的数据连接接口获取所述汽车的总线的通信状态;
在对汽车的总线进行故障分析之前,需要首先确定汽车的总线的通信状态,有的通信状态需要启动对汽车总线进行故障分析的方案,有的通信状态则无需启动对汽车总线进行故障分析的方案,且不同的通信状态,针对的故障分析方案可不同。具体地,首先对与总线连接的汽车控制单元进行通讯扫描,通过数据连接接口获取通讯扫描时所述总线的第一通信数据,根据第一通信数据获取汽车的通信状态。
该第一通信数据可以为总线上的通信电压,根据具体的通信电压确定对应的通信状态。通信状态包括部分ECU无应答、反馈通信故障码、总线关闭以及无法通信。
若通讯扫描后,没有收到任何ECU的应答信息,则判定为部分ECU无应答;
若通讯扫描后,可以收到部分ECU的应答信息,但是应答信息错误,且收到通信故障码,则判定为反馈通信故障码;
若通讯扫描后,只可以收到小部分ECU的应答信息,大部分的ECU均发生故障或应答错误,则判定为总线关闭;
若通讯扫描后,所有的ECU均发生故障或应答错误,则判定为无法通信。
在总线拓扑结构图中,各个ECU单元用方框表示,如图3所示,各个ECU单元通过总线互相连接,且通过总线与汽车的车载自动诊断***(On Board Diagnostics,简称OBD)通信连接,不同通讯状态的ECU可通过不同颜色的方框进行表示,例如,未扫描ECU用蓝色方框表示,例如:ECU1-ECU4单元。反馈通信故障码的ECU用橙色方框表示,例如:ECU8、ECU10、ECU14以及ECU16单元。无应答ECU用灰色方框表示,例如:ECU5、ECU6、ECU7以及ECU9单元。通讯正常的ECU用绿色方框表示,例如:ECU11-ECU13、ECU15、ECU17以及GateWay单元。不同类别的总线也可用不同颜色的线条表示,例如,PT-CAN用橙色线条表示,PT-CAN2用黄色线条表示,K-CAN用灰色线条表示,Chassis CAN用紫色线条表示,D-CAN用蓝色线条表示,K-CAN2用绿色线条表示。因此,通过图3的总线拓扑结构图就可以直接观察到各个ECU单元的通讯状态,进而获取连接各个ECU单元的总线的通信状态。
步骤S22:根据所述总线的所述通信状态,判断是否需要对所述总线进行故障分析;
不同通信状态的总线,需要采用不同的方案进行分析,有些通信状态的总线,不需对其进行故障分析,有些通信状态的总线,需要对其进行故障分析,且不同的总线,还需要不同的故障分析方法进行分析,即不同的总线,针对的故障分析方法不同。具体地,若所述总线的所述通信状态为总线关闭或者无法通信,则需要对所述总线进行故障分析;若所述总线的所述通信状态为部分ECU无应答或反馈通信故障码,则根据所述第一通信数据,确定发生异常的所述汽车控制单元的个数,当发生异常的所述汽车控制单元的个数大于或等于预设阈值时,则需要对所述总线进行故障分析。该预设阈值可根据需要而设置,在本发明实施例中,该预设阈值可以为二,即当发生异常的汽车控制单元的个数大于或等于二时,则需要对汽车的总线进行故障分析,当发生异常的汽车控制单元的个数为一时,即只有单个ECU发生了异常,则不需要对汽车的总线进行故障分析,而是优先检修该单个ECU,包括检测ECU的通信电路、供电线路、软件、配置或者硬件更换等。
在一些实施例中,还可根据用户输入的指令,确定是否需要对汽车的总线进行故障分析。若用户输入检测请求指令,则需要对汽车的总线进行故障分析, 其中,检测请求指令可以通过多种人机交互软件或界面输入,检测请求指令的具体形式也可根据需要而设置。
步骤S23:若为是,确定所述总线的总线类型,所述总线类型包括诊断总线和在线总线中的一种,所述诊断总线是指直接与所述数据连接接口连接的总线,所述在线总线是指所述汽车中除所述诊断总线外的其它总线;
在确定总线的总线类型时,可以根据总线的特征信息确定总线的总线类型,具体地,获取所述总线的特征信息,根据所述特征信息确定所述总线的所述总线类型,所述总线的特征信息包括连接方式、总线属性、总线编号中的至少一个。连接方式是指总线与数据连接接口连接的连接方式,若总线与数据连接接口直接连接,则该总线确定为诊断总线,若总线与数据连接接口不直接连接,诊断设备对在线总线上的ECU的访问需要通过网关中转,则确定该总线为在线总线。总线属性是指总线本身具有的特殊性能或特征,通过对总线属性的分析,确定总线的类型。而总线编号是指汽车中的总线均具有自己的编号,不同的总线类型,可以使用不同的总线编号,因此,通过总线编号即可确认总线的总线类型。
步骤S24:根据所述总线类型,确定针对所述总线的故障分析方案。
不同的总线类型,针对该总线的故障分析方案不同,诊断总线可从DLC接口进行信号检测与分析,在线总线的检测要复杂一些,一般需要在总线上找到适当的测量点,借助测量工具进行分析。不同的故障分析方案分析的通信数据也不同,例如,若该总线的总线类型为诊断总线,则可对总线上的通信电压或通信信号波形进行分析,确定总线的故障类型,若该总线的总线类型为在线总线,则可对总线的通信信号波形进行分析,确定总线的故障类型。
综上,该汽车总线故障分析方法能够根据总线的通信状态自动判断是否需要对总线进行故障分析,且当需要对总线进行故障分析时,根据总线的总线类型,确定对应的故障分析方案,针对不同的总线类型,确定不同的故障分析方案,针对性强,自动完成故障分析,提高分析效率,且该分析方法减少用户的介入,操作简单,使用方便,进而提升用户体验。
不同的总线类型,针对总线的故障分析方案不同。在一些实施例中,若总线的总线类型为诊断总线,如图4所示,步骤S24包括:
步骤S241:通过所述汽车的数据连接接口获取所述总线的通信电压;
步骤S242:获取所述总线的总线协议,根据所述总线类型和所述总线协议,获取所述总线的标准通信信息;
步骤S243:根据所述通信电压和所述标准通信信息确定所述总线的故障类型。
诊断设备可通过连接接口与汽车的数据连接接口通信连接,采集一段时间内的总线上的通信电压数据,然后再获取该总线的总线协议,不同的总线协议,对应的总线的标准通信信息不同,总线的标准通信信息是指总线无故障情况下,正常通信时的通信电压、通信数据、通信连接方式、通信规律、通信预期工作数据以及通信工作状态等信息。总线协议包括PWM协议、K/L协议、CAN协议、LIN协议以及FLEXRAY协议等,其使用标准和应用车系如表1所示:
表1 常用诊断总线协议
Figure PCTCN2022078689-appb-000001
因此,根据总线的总线类型和总线协议,获取总线的标准通信信息,将总线的通信电压数据和标准通信信息进行比较,推导出总线的故障类型,还可以推导出总线目前的工作状态。
在一些实施例中,总线的故障类型包括对电源短路、对地短路、互相短路、总线开路、电源异常以及接地异常中的至少一个。根据总线上的通信电压数据以及标准通信信息,确定总线的具体故障类型。
如图5所示,诊断设备的通信接口与汽车的DLC可通过无线(蓝牙或WiFi)或者有线电缆进行通信连接,DLC采用ISO 15031/SAE J1962标准。诊断设备还可以通过与汽车通信的接口设备(VCI)通信连接汽车,诊断设备与VCI通过无线(蓝牙或WiFi)或者有线电缆连接。
诊断设备通过汽车的DLC获取一段时间内总线上的通信电压数据,同时获取该总线的总线协议,根据该总线协议获取该总线对应的总线标准通信信息, 分析实时获取的通信电压数据是否符合总线标准通信信息,例如是否符合通信预期,或者是否符合标准通信电压数据,或者是否符合电压数据的变化规律等,进而确定总线的工作状态,以及判别总线的故障类型。
若汽车工作***处于静态下,总线处于不同的工作状态下,总线上的通信电压数据不同,可以将该通信电压数据与标准通信信息进行比较,确定总线目前的工作状态或者故障类型。以CAN总线为例,高速CAN总线各状态下静态电信号特点如表2所示:
表2 高速CAN总线各状态下静态电信号特点
Figure PCTCN2022078689-appb-000002
若***在工作中,总线上有数据在传输,电压信号会波动变化,但总线在短路过后,总线上的通信电压不会随通信信号变化,但在总线开路状态下,靠近信号侧的总线通信电压会随信号变化,因此,可通过判断总线上的通信电压是否符合标准通信信息中的通信变化规律来确定总线的具体故障类型。
在一些实施例中,部分总线设计在无通信时处于休眠模式,总线上没有电压信号,这时候在总线上检测到的通信电压和对地短路状态下检测到的通信信号一致,这两种状态无法区分。因此,在检测总线上的通信信号时,通常需要唤醒总线,在总线进行信号传输的同时采集总线上的通信电压数据,保证采集到的总线通信电压数据代表真实通信下的总线状态。
在一些实施例中,若总线的总线类型为在线总线或诊断总线,如图6所示,步骤S24包括:
步骤S244:通过所述汽车的数据连接接口获取所述总线的通信信号波形;
步骤S245:根据所述通信信号波形获取所述通信信号波形的波形特征;
步骤S246:获取所述总线的总线协议,根据所述总线类型和所述总线协议,获取所述总线的标准通信信息;
步骤S247:根据所述波形特征和所述标准通信信息确定所述总线的故障类型。
诊断设备通过示波器与汽车的数据连接接口通信连接,示波器对总线上的通信信号波形进行测量,并将该通信信号波形传送至诊断设备,以供诊断设备进行相应的分析。诊断设备可根据通信信号波形获取通信信号波形的波形特征,例如,该通信信号波形幅值的最大值、最小值以及平均值等,该通信信号波形的形状图形或波形变化趋势等特征。同样地,不同的总线协议,对应的总线的标准通信信息不同,因此,再获取总线的总线协议,根据总线类型和总线协议,获取总线的标准通信信息,标准通信信息中包含有正常情况下,总线上通信信号波形的标准数据,例如标准最大值、标准最小值以及标准平均值等,最后,将实时获取的波形特征和标准通信信息进行比较,进而确定总线的故障类型。
标准通信信息可存储于数据库中,根据总线类型和总线协议调取数据库中对应的标准通信信息。在一些实施例中,数据库中还可以存储有各个故障情况下,总线上的通信电压数据,或者各个故障对应的总线上的通信信号波形,将实时获取的通信信号波形与数据库中存储的各个故障对应的通信信号波形进行比对,进而确定总线的故障类型。
若总线为诊断总线,采用示波器获取总线上的通信信号波形的示意图如图7所示,用三叉线的一端连接汽车DLC,三叉线的另一端分别连接VCI和Scope示波器,三叉线处于互通状态,通信信号会分流到VCI和Scope。Scope对总线上的通信信号波形进行测量,通信信号波形通过WiFi传输给诊断设备,诊断设备进行通信信号波形分析,获取通信信号波形的波形特征,将波形特征与标准通信信息进行比较,进而输出当前总线状态,即确定总线的故障类型。在示波器测量时候,诊断设备同时通过VCI对汽车进行通信,示波器可以抓捕动态的通信数据。示波器支持多路数据的同时采集,对于部分高速总线,比如CAN,可以对多条通信线上的波形进行对比分析。在一些实施例中,可以将示 波器和VCI集成到一个设备,图7中的方案用该集成设备完成,该集成设备在诊断设备与汽车通信时候,可同时采集总线上的通信电压,做并行处理。
若总线为在线总线,采用示波器获取总线上的通信信号波形的示意图如图8所示,诊断设备通过VCI向被诊断的汽车总线上发送数据(与被诊断的汽车总线上的ECU进行通信),示波器连接到被测试总线上的测量点上,采集总线上的通信波形,根据波形分析总线工作状态。测量点的查找,一方面需要考虑连接的方便性,另一方面需要考虑故障排查的便利性,通常可以根据维修资料的建议,或者部位图/电路图的指导,选择适合的位置。
对在线总线进行分析时,首先获取该在线总线的特点,如通信协议、传输速率、线路特点、连接特性、测量位置等,诊断设备在与该总线上的ECU通信的同时,示波器在测量位置处获取总线上的通信信号波形,并把采集到的通信信号波形传送至诊断设备,诊断设备将该通信信号波形与标准通信信息进行比较,确定该在线总线当前的通信状态,或者具体的故障类型,例如:无故障、对电源短路、对地短路、总线互相短路或者总线开路等。
综上,该汽车总线故障分析方法能够根据总线的通信状态自动判断是否需要对总线进行故障分析,且当需要对总线进行故障分析时,根据总线的总线类型,确定对应的故障分析方案,针对不同的总线类型,确定不同的故障分析方案,针对性强,自动完成故障分析,提高分析效率,且该分析方法减少用户的介入,操作简单,使用方便,进而提升用户体验。
在一些实施例中,在确定总线的故障类型之后,还可以通过拓扑图表示总线目前的故障类型,同时对于无法通讯的汽车控制单元,标记其无法通讯的持续时长。具体地,如图9所示,该方法还包括:
步骤S25:根据所述总线和所述汽车控制单元,建立拓扑图;
步骤S26:在所述拓扑图中,对所述总线的总线类型和所述汽车控制单元的通讯状态进行标记;
步骤S27:若所述汽车控制单元无法通讯,标记所述汽车单元无法通讯的持续时长;
步骤S28:显示各所述总线的故障分析状态。
在拓扑图中,不同的总线类型的总线可用不同的颜色进行表示,还可用不 同颜色的方框表示不同通讯状态的汽车控制单元,如图10所示,在该总线分析拓扑图中,对能够通信状态的ECU和不能通信状态的ECU填充不同的颜色,标注不同的状态,对不能通信的ECU,同时标注信号无响应的时间,具体地,正常通信状态的ECU用绿色方框表示,例如:BCMii、ABS、PAM以及TCM单元。有故障的ECU用橙色方框表示,例如:PCM单元。无应答的ECU用灰色方框表示,例如:AHCM、DDM、ACM、IPC、GPSM、HVAC、FCIM、TCU以及RCM单元等。同时,对于无应答的ECU,还标记出无应答的持续时长,例如:AHCM单元无应答的持续时长为05:188,DDM单元无应答的持续时长为8:188,ACM单元无应答的持续时长为2:000,因此,用户可直接观察到ECU无法通讯的持续时长,比较直观,更加清楚、方便。
在拓扑图的上部,显示诊断设备诊断出的各个总线的检测状态以及对应的故障类型,例如:检测状态可显示为:当前状态:MS-CAN对电源短路,前一次状态:I-CAN对地短路,前一次状态:HS-CAN通行正常。
在诊断设备完成通信扫描后,可以观察到部分总线发生故障,部分总线通信OK,部分总线通信恢复正常。在分析出总线故障类型后,一般采用节点法对故障点进行定位。在总线中找一个ECU节点断开总线,测量断开节点两侧的总线信号,判断故障发生在断开节点分割后的哪一侧,逐步缩小分析范围,最终定位故障点。在断开部分节点后,继续进行通信检查,从拓扑图上观察通信状态的变化,总线通信是否恢复,逐渐缩小分析范围,即可定位故障发生的具***置。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种汽车总线故障分析方法,其特征在于,所述方法包括:
    通过汽车的数据连接接口获取所述汽车的总线的通信状态;
    根据所述总线的所述通信状态,判断是否需要对所述总线进行故障分析;
    若为是,确定所述总线的总线类型,所述总线类型包括诊断总线和在线总线中的一种,所述诊断总线是指直接与所述数据连接接口连接的总线,所述在线总线是指所述汽车中除所述诊断总线外的其它总线;
    根据所述总线类型,确定针对所述总线的故障分析方案。
  2. 根据权利要求1所述的方法,其特征在于,所述通过汽车的数据连接接口获取所述汽车的通信状态,包括:
    对与所述总线连接的汽车控制单元进行通讯扫描,通过所述数据连接接口获取通讯扫描时所述总线的第一通信数据;
    根据所述第一通信数据获取所述汽车的所述通信状态。
  3. 根据权利要求2所述的方法,其特征在于,所述汽车的所述通信状态包括部分ECU无应答、反馈通信故障码、总线关闭以及无法通信中的一种。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述汽车的所述通信状态,判断是否需要对所述汽车的总线进行故障分析,包括:
    若所述总线的所述通信状态为总线关闭或者无法通信,则需要对所述总线进行故障分析;
    若所述总线的所述通信状态为部分ECU无应答或反馈通信故障码,则根据所述第一通信数据,确定发生异常的所述汽车控制单元的个数,当发生异常的所述汽车控制单元的个数大于或等于预设阈值时,则需要对所述总线进行故障分析。
  5. 根据权利要求1所述的方法,其特征在于,所述确定所述总线的总线类型,包括:
    获取所述总线的特征信息,根据所述特征信息确定所述总线的所述总线类型。
  6. 根据权利要求5所述的方法,其特征在于,所述总线的特征信息包括连接方式、总线属性、总线编号中的至少一个。
  7. 根据权利要求1所述的方法,其特征在于,若所述总线的所述总线类型为所述诊断总线,所述根据所述总线类型,确定针对所述总线的故障分析方案,包括:
    通过所述汽车的数据连接接口获取所述总线的通信电压;
    获取所述总线的总线协议,根据所述总线类型和所述总线协议,获取所述总线的标准通信信息;
    根据所述通信电压和所述标准通信信息确定所述总线的故障类型。
  8. 根据权利要求1所述的方法,其特征在于,若所述总线的所述总线类型为所述在线总线或所述诊断总线,所述根据所述总线类型,确定针对所述总线的故障分析方案,包括:
    通过所述汽车的数据连接接口获取所述总线的通信信号波形;
    根据所述通信信号波形获取所述通信信号波形的波形特征;
    获取所述总线的总线协议,根据所述总线类型和所述总线协议,获取所述总线的标准通信信息;
    根据所述波形特征和所述标准通信信息确定所述总线的故障类型。
  9. 根据权利要求7或8所述的方法,其特征在于,所述总线的故障类型包括对电源短路、对地短路、互相短路、总线开路、电源异常以及接地异常中的至少一个。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,在确定所述总线的故障类型之后,所述方法还包括:
    根据所述总线和所述汽车控制单元,建立拓扑图;
    在所述拓扑图中,对所述总线的总线类型和所述汽车控制单元的通讯状态进行标记;
    若所述汽车控制单元无法通讯,标记所述汽车单元无法通讯的持续时长;
    显示各所述总线的故障分析状态。
  11. 一种诊断设备,应用于汽车的总线,其特征在于,所述总线用于连接各个汽车控制单元,所述诊断设备包括:控制器以及通信接口;
    所述通信接口用于通信连接所述汽车;
    所述控制器包括至少一个处理器以及存储器,所述存储器和所述接口设备 均与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-10中任一项所述的方法。
  12. 一种汽车总线故障分析***,应用于汽车的总线,所述总线用于连接各个汽车控制单元,其特征在于,所述汽车总线故障分析***包括:
    如权利要求11所述的诊断设备,所述诊断设备通信连接所述汽车控制单元。
  13. 根据权利要求12所述的汽车总线故障分析***,其特征在于,所述汽车总线故障分析***还包括:示波器;
    所述示波器与所述诊断设备通信连接,用于采集所述总线上的通信信号波形,并将所述通信信号波形的数据传送至所述诊断设备。
PCT/CN2022/078689 2021-03-02 2022-03-01 汽车总线故障分析方法、诊断设备及总线故障分析*** WO2022184069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110231941.6 2021-03-02
CN202110231941.6A CN113067723A (zh) 2021-03-02 2021-03-02 汽车总线故障分析方法、诊断设备及总线故障分析***

Publications (1)

Publication Number Publication Date
WO2022184069A1 true WO2022184069A1 (zh) 2022-09-09

Family

ID=76559547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078689 WO2022184069A1 (zh) 2021-03-02 2022-03-01 汽车总线故障分析方法、诊断设备及总线故障分析***

Country Status (2)

Country Link
CN (1) CN113067723A (zh)
WO (1) WO2022184069A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067723A (zh) * 2021-03-02 2021-07-02 深圳市道通科技股份有限公司 汽车总线故障分析方法、诊断设备及总线故障分析***
CN114189463A (zh) * 2021-12-10 2022-03-15 深圳市元征软件开发有限公司 提醒方法、装置、电子设备及存储介质
CN114610004B (zh) * 2022-05-10 2022-08-12 深圳市星卡软件技术开发有限公司 一种汽车电路故障测试的方法、装置和计算机设备
CN116016105A (zh) * 2022-11-30 2023-04-25 重庆长安汽车股份有限公司 支持多通信类型的故障诊断方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073319A (zh) * 2011-01-25 2011-05-25 武汉理工大学 一种多功能综合型电控汽车故障诊断***
US20130136007A1 (en) * 2011-11-30 2013-05-30 GM Global Technology Operations LLC Integrated fault diagnosis and prognosis for in-vehicle communications
CN106444712A (zh) * 2016-10-19 2017-02-22 中国第汽车股份有限公司 一种can/lin网络干扰自动化测试***
CN111061250A (zh) * 2019-12-19 2020-04-24 中国汽车技术研究中心有限公司 一种汽车can总线信息安全测试方法
CN111147342A (zh) * 2020-04-03 2020-05-12 北京全路通信信号研究设计院集团有限公司 一种基于通信芯片的mvb总线故障诊断方法及***
CN113067723A (zh) * 2021-03-02 2021-07-02 深圳市道通科技股份有限公司 汽车总线故障分析方法、诊断设备及总线故障分析***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073319A (zh) * 2011-01-25 2011-05-25 武汉理工大学 一种多功能综合型电控汽车故障诊断***
US20130136007A1 (en) * 2011-11-30 2013-05-30 GM Global Technology Operations LLC Integrated fault diagnosis and prognosis for in-vehicle communications
CN106444712A (zh) * 2016-10-19 2017-02-22 中国第汽车股份有限公司 一种can/lin网络干扰自动化测试***
CN111061250A (zh) * 2019-12-19 2020-04-24 中国汽车技术研究中心有限公司 一种汽车can总线信息安全测试方法
CN111147342A (zh) * 2020-04-03 2020-05-12 北京全路通信信号研究设计院集团有限公司 一种基于通信芯片的mvb总线故障诊断方法及***
CN113067723A (zh) * 2021-03-02 2021-07-02 深圳市道通科技股份有限公司 汽车总线故障分析方法、诊断设备及总线故障分析***

Also Published As

Publication number Publication date
CN113067723A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022184069A1 (zh) 汽车总线故障分析方法、诊断设备及总线故障分析***
CN107222362B (zh) 一种整车can网络自动化测试平台及其优化方法
US11665018B2 (en) OBD interface bus type detection method and apparatus
CN109656172B (zh) 一种获取波特率的方法、装置
WO2019141114A1 (zh) 车辆诊断方法和装置
CN202974664U (zh) 一种汽车柴油发动机的故障诊断仪
CN101360036A (zh) Can总线网关控制器及can总线之间数据传输方法
WO2022111303A1 (zh) 汽车总线故障诊断方法、装置及计算设备
US20220075743A1 (en) Data transmission method and equipment based on single line
CN106254177A (zh) 一种基于独立网关的诊断路由方法及***
US20180367436A1 (en) Operation method of communication node for diagnosing vehicle network
WO2022237438A1 (zh) 车辆通信设备、WiFi连接方法及车辆诊断***
CN103017812B (zh) 汽车仪表网络化测试***及该***的测试方法
CN104202200A (zh) 一种基于FlexRay总线的网络在线诊断装置
CN111142504B (zh) 总线检测装置和方法
US10341170B2 (en) Method for diagnosing link status in network
CN112398672B (zh) 一种报文检测方法及装置
CN216956764U (zh) Obd接口的引脚切换电路及故障诊断装置
CN101888335A (zh) 一种can总线-蓝牙智能网桥
CN115129021B (zh) 一种测试车载以太网的方法及装置
CN115441896A (zh) 收发器装置
CN102426452A (zh) 具有远程诊断功能的车载***
CN201699700U (zh) 一种can总线-蓝牙智能网桥
CN207321272U (zh) 一种lin线故障检测装置
Xu et al. Design of vehicle gateway automatic test system based on CANoe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762533

Country of ref document: EP

Kind code of ref document: A1