WO2022183849A1 - 冷藏冷冻装置及其控制方法 - Google Patents

冷藏冷冻装置及其控制方法 Download PDF

Info

Publication number
WO2022183849A1
WO2022183849A1 PCT/CN2022/071765 CN2022071765W WO2022183849A1 WO 2022183849 A1 WO2022183849 A1 WO 2022183849A1 CN 2022071765 W CN2022071765 W CN 2022071765W WO 2022183849 A1 WO2022183849 A1 WO 2022183849A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigeration system
compartment
heat exchanger
semiconductor refrigeration
Prior art date
Application number
PCT/CN2022/071765
Other languages
English (en)
French (fr)
Inventor
姬立胜
陈建全
王凯
崔展鹏
刘山山
Original Assignee
青岛海尔特种电冰箱有限公司
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰箱有限公司, 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰箱有限公司
Publication of WO2022183849A1 publication Critical patent/WO2022183849A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/04Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with more than one refrigeration unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments

Definitions

  • the present invention relates to the technical field of refrigeration and freezing storage, in particular to a refrigeration and freezing device and a control method thereof.
  • the semiconductor refrigeration method has a long history, and its characteristic is that when the forward voltage is turned on, the cold end is cooled and the hot end is heated.
  • a forward voltage is generally applied to the semiconductor refrigeration device to reduce the temperature of the compartment, so that the temperature of the compartment is maintained at a lower temperature, and the wide temperature change of the compartment cannot be realized.
  • An object of the present invention is to provide a refrigerating and freezing apparatus and a control method thereof which solve at least the above-mentioned problems.
  • a further object of the present invention is to reduce energy consumption and improve refrigeration efficiency.
  • the present invention first provides a control method for a refrigerating and freezing device, the refrigerating and freezing device includes a box body defining a temperature-changing compartment, a temperature-adjusting device for adjusting the temperature of the temperature-changing compartment A semiconductor refrigeration system, wherein the control method includes:
  • the semiconductor refrigeration system is controlled according to the temperature setting range and the actual temperature.
  • the step of controlling the semiconductor refrigeration system according to the temperature setting range and the actual temperature includes:
  • the temperature setting range is greater than a first temperature preset value, and the first temperature preset value is greater than or equal to 0°C, determine whether the actual temperature is less than or equal to a first shutdown temperature;
  • the step of controlling the semiconductor refrigeration system according to the temperature setting range and the actual temperature further includes:
  • the temperature setting range is less than a second preset temperature value, and the second preset temperature value is less than 0°C, determine whether the actual temperature is greater than the second startup temperature;
  • the semiconductor refrigeration system includes a hot heat exchanger, a cold heat exchanger, and a semiconductor chip between the hot heat exchanger and the cold heat exchanger, the semiconductor chip having the hot end and the cold heat exchanger. a cold end, the hot heat exchanger partially adhered to the hot end, the cold heat exchanger partially adhered to the cold end, the cold heat exchanger configured to apply a forward direction to the semiconductor chip When the voltage is applied, cooling is provided to the temperature changing compartment, and when a reverse voltage is applied to the semiconductor chip, heat is provided to the temperature changing compartment;
  • the refrigerating and freezing device further includes a compression refrigeration system, the compression refrigeration system includes a compressor and a capillary tube, and the heat exchanger is arranged between the outlet of the capillary tube and the inlet of the compressor; so that the compression The refrigerant of the refrigeration system flows through the heat exchanger and exchanges heat with the hot end;
  • the step of controlling the semiconductor refrigeration system according to the temperature setting range and the actual temperature further includes:
  • the temperature setting range is greater than or equal to the second temperature preset value and less than or equal to the first temperature preset value, stop power supply to the semiconductor refrigeration system or maintain the power-off state of the semiconductor refrigeration system;
  • the semiconductor refrigeration system is controlled according to the actual temperature change of the temperature-changing compartment within a preset time.
  • the step of controlling the semiconductor refrigeration system according to the actual temperature change of the temperature-changing compartment within a preset time includes:
  • the step of controlling the semiconductor refrigeration system according to the actual temperature change of the temperature-changing compartment within a preset time further includes:
  • the compressor when the semiconductor refrigeration system is controlled according to the temperature setting range and the actual temperature, the compressor is in an on state, and the refrigerant flows through the capillary tube, the heat heat exchanger, the compressor.
  • the method further includes:
  • the first preset temperature value and the second preset temperature value are updated according to the ambient temperature. The higher the ambient temperature is, the higher the preset first temperature value and the second preset temperature value are. high.
  • the present invention also provides a refrigeration and freezing device, comprising:
  • the box is limited to a variable temperature compartment
  • a semiconductor refrigeration system for regulating the temperature of the temperature-changing compartment
  • a temperature sensor configured to detect the actual temperature of the temperature-changing compartment
  • a controller has a memory and a processor, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the computer program is used to implement any one of the control methods for the refrigeration and freezing apparatus described above.
  • the semiconductor refrigeration system includes a hot heat exchanger, a cold heat exchanger, and a semiconductor chip between the hot heat exchanger and the cold heat exchanger, the semiconductor chip having the hot end and the cold heat exchanger. a cold end, the hot heat exchanger partially adhered to the hot end, the cold heat exchanger partially adhered to the cold end, the cold heat exchanger configured to apply a forward direction to the semiconductor chip When the voltage is applied, cooling is provided to the temperature changing compartment, and when a reverse voltage is applied to the semiconductor chip, heat is provided to the temperature changing compartment;
  • the refrigerating and freezing device further includes a compression refrigeration system, the compression refrigeration system includes a compressor and a capillary tube, and the heat exchanger is arranged between the outlet of the capillary tube and the inlet of the compressor; so that the compression The refrigerant of the refrigeration system flows through the heat exchanger and exchanges heat with the hot end.
  • the refrigeration and freezing device and the control method thereof of the present invention specify different temperature setting ranges for the temperature-changing compartment, and control the semiconductor refrigeration system according to the actual temperature of the temperature-changing compartment and the temperature setting range in which the set temperature is located, thereby realizing a wide range of Amplitude variable temperature, can meet the different storage needs of users.
  • the refrigerating and freezing device of the present invention and the control method thereof utilize the compression refrigeration system to reduce the temperature of the hot end of the semiconductor refrigeration system, and promote the further reduction of the temperature of the cold end, so that the temperature-changing compartment reaches a lower cryogenic temperature;
  • the combination of the compression refrigeration system and the semiconductor refrigeration system controls the semiconductor refrigeration system based on the actual temperature of the variable temperature chamber and the temperature setting range of the set temperature, which avoids excessive energy consumption and improves the user experience.
  • each temperature setting range of the temperature-changing compartment is determined according to the ambient temperature, and the temperature setting range in which the current setting temperature of the temperature-changing compartment is located and the current temperature setting range of the temperature-changing compartment are determined.
  • the actual temperature control semiconductor refrigeration system improves the temperature control accuracy of the variable temperature room, improves the refrigeration efficiency, and saves energy consumption.
  • FIG. 1 is a schematic structural diagram of a refrigerating and freezing device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a refrigeration system of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a semiconductor refrigeration system of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a control method of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 5 is a detailed schematic flowchart of a control method of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the connection of components of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • This embodiment provides a refrigerating and freezing apparatus 10 and a control method thereof.
  • the "upper”, “lower”, “front”, “rear”, “top”, “bottom”, “ The orientations such as “transverse” are all defined according to the spatial positional relationship of the refrigerating and freezing apparatus 10 in the normal working state.
  • the refrigerating and freezing apparatus 10 of this embodiment and the control method thereof will be described in detail below with reference to FIGS. 1 to 6 .
  • the refrigerating and freezing device 10 in this embodiment may be a refrigerator, a freezer, or other device with a refrigerating and freezing function, which may include a box defining a temperature-changing compartment 110 and a semiconductor refrigeration system 150 for adjusting the temperature of the temperature-changing compartment 110 .
  • the refrigeration of the temperature-changing compartment 110 can be completely dependent on the semiconductor refrigeration system 150 . In other embodiments, the refrigeration of the variable temperature compartment 110 may rely on the semiconductor refrigeration system 150 and the compression refrigeration system.
  • the semiconductor refrigeration system 150 may include a hot heat exchanger 151 , a cold heat exchanger 152 , and a semiconductor chip 155 between the hot heat exchanger 151 and the cold heat exchanger 152 , the semiconductor chip 155 Having a hot end 153 and a cold end 154, the hot heat exchanger 151 is partially adhered to the hot end 153, the cold heat exchanger 152 is partially adhered to the cold end 154, and the cold heat exchanger 152 is configured to be applied when the semiconductor chip 155 is positive When voltage is applied, cooling is supplied to the temperature changing compartment 110 , and when a reverse voltage is applied to the semiconductor chip 155 , heat is supplied to the temperature changing compartment 110 .
  • the semiconductor refrigeration system 150 mainly utilizes the Peltier effect.
  • a current passes through a galvanic couple formed by two different semiconductor materials in series, heat can be absorbed and released at both ends of the galvanic couple, thereby achieving the purpose of cooling.
  • the semiconductor chip 155 is powered on, a temperature difference occurs between the hot end 153 and the cold end 154 .
  • the temperature of the hot end 153 decreases, the temperature of the cold end 154 also decreases.
  • the hot end 153 of the semiconductor refrigeration system 150 can dissipate heat by means of a compression refrigeration system.
  • the refrigerant gas in the high temperature and high pressure state discharged from the outlet of the machine 101 enters the condenser 102, and is condensed into the refrigerant liquid of high pressure and normal temperature by the condenser 102.
  • the low-pressure refrigerant enters the heat exchanger 151 and exchanges heat with the hot end 153 .
  • the refrigerant evaporates and absorbs heat in the heat exchanger 151 to quickly take away the heat of the hot end 153, and maintain the hot end 153 in a low temperature environment.
  • the heat exchange between the cold end 154 and the temperature-changing compartment 110 is carried out by contact heat exchange or forced convection, so as to realize the deep cooling of the temperature-changing compartment 110 and meet the cryogenic demand.
  • the hot end 153 When a reverse voltage is applied to the semiconductor refrigeration system 150, the hot end 153 generates cold energy, the cold end 154 generates heat, and the cold energy generated by the hot end 153 is taken away by the refrigerant in the heat exchanger 151, and the cold end 154 generates heat.
  • the heat is transferred to the temperature-changing compartment 110 , thereby increasing the temperature of the temperature-changing compartment 110 , so as to meet the wider temperature changing requirements of the temperature-changing compartment 110 .
  • the temperature of the cold heat exchanger 152 can be lowered by the heat conduction of the heat exchanger 151, so that the temperature of the cold heat exchanger 152 can be lowered.
  • the temperature of the variable temperature compartment 110 can still be adjusted, thus further increasing the temperature change range of the variable temperature compartment 110 .
  • the refrigerating and freezing apparatus 10 of this embodiment further includes a blower, and the heat or cooling capacity around the cold heat exchanger 152 is driven by the blower 156 to rapidly enter the temperature-changing device.
  • the compartment 110 is used to speed up the temperature adjustment of the variable temperature compartment 110 .
  • the refrigerating and freezing apparatus 10 of this embodiment may further include a refrigerating chamber 120, a freezing chamber 130, a refrigerating evaporator 103, a freezing evaporator 104, a refrigerating capillary 107 and a solenoid valve 105.
  • a refrigerating chamber 120 a freezing chamber 130
  • a refrigerating evaporator 103 a freezing evaporator 104
  • a refrigerating capillary 107 and a solenoid valve 105.
  • the aforementioned capillary 106 is referred to as a variable temperature capillary.
  • the inlet end of the solenoid valve 105 is communicated with the outlet end of the condenser 102, the solenoid valve 105 has a first outlet end and a second outlet end, the first outlet end of the solenoid valve 105 is linked with the inlet end of the refrigerating capillary 107, and the The outlet end is linked with the inlet end of the refrigerating evaporator 103, the second outlet end of the solenoid valve 105 is connected with the inlet end of the variable temperature capillary tube, the outlet end of the variable temperature capillary tube is connected with the inlet end of the heat exchanger 151, the The outlet end is connected to the inlet end of the refrigerating evaporator 104 , so that through the switching of the solenoid valve 105 , the refrigeration of the refrigerating, freezing, and temperature-changing compartments 110 is realized.
  • the refrigerating and freezing apparatus 10 supplies air to the refrigerating chamber 120 and the freezing chamber 130 respectively by means of air cooling,
  • the refrigerating and freezing apparatus 10 of this embodiment may further include an ice-making chamber 140, and the freezing evaporator 104 may provide cooling capacity for the ice-making chamber 140.
  • One of the distribution modes of the various compartments of the refrigerating and freezing apparatus 10 may be: the ice making compartment 140 and the temperature changing compartment 110 may be distributed in a lateral direction, the freezing compartment 130 is located below the ice making compartment 140 and the temperature changing compartment 110, and the refrigerating compartment 120 is located at Above the ice making compartment 140 and the temperature changing compartment 110 .
  • the present embodiment also provides a control method, comprising:
  • S408 control the semiconductor refrigeration system 150 according to the temperature setting range and the actual temperature.
  • different temperature setting ranges are specified for the temperature-changing compartment 110, and the semiconductor refrigeration system 150 is controlled according to the actual temperature of the temperature-changing compartment 110 and the temperature setting range in which the set temperature is located. Wide range of temperature changes can meet the different storage needs of users.
  • the compressor 101 While controlling the semiconductor refrigeration system 150 according to the temperature setting range and the actual temperature, the compressor 101 can be in an on state, and the refrigerant flows through the capillary tube, the heat exchanger 151 and the compressor 101 in sequence, so as to be taken away during the semiconductor refrigeration.
  • the heat or cooling capacity of the hot end 153 of the semiconductor refrigeration system 150, or when the semiconductor is not cooling, provides cooling capacity for the temperature-changing compartment 110.
  • the steps of controlling the semiconductor refrigeration system 150 according to the temperature setting range and the actual temperature may include:
  • the temperature setting range is greater than the first temperature preset value, and the first temperature preset value is greater than or equal to 0°C, determine whether the actual temperature is less than or equal to the first shutdown temperature;
  • the temperature setting range of the set temperature is greater than the first temperature preset value, it means that the set temperature of the variable temperature compartment 110 is in a higher temperature setting range.
  • the actual temperature of the variable temperature compartment 110 is less than is equal to the first shutdown temperature, indicating that the temperature of the variable temperature compartment 110 may be further reduced.
  • a reverse voltage can be applied to the semiconductor refrigeration system 150 to make the cold end 154 of the semiconductor refrigeration system 150 . Heat is released to increase the temperature of the variable temperature compartment 110 , and when the actual temperature of the variable temperature compartment 110 is greater than the first startup temperature, power supply to the semiconductor refrigeration system 150 is stopped to maintain the variable temperature compartment 110 at the set temperature.
  • the compression refrigeration system is in operation, that is to say, the compressor 101 is in an on state, and after the power supply to the semiconductor refrigeration system 150 is stopped, the cooling capacity of the heat exchanger 151 can be conducted to the cold heat exchanger 152 , thereby reducing the temperature of the temperature-changing compartment 110 . Therefore, in the aforementioned control process, during the operation of the semiconductor refrigeration system 150, when the actual temperature of the temperature-changing compartment 110 is less than or equal to the first shutdown temperature, it is avoided that the semiconductor refrigeration system 150 is directly powered off at this time, and the temperature of the temperature-changing compartment 110 is not affected.
  • a reverse voltage needs to be applied to the semiconductor refrigeration system 150 to raise the temperature of the variable temperature compartment 110 to maintain the set temperature of the variable temperature compartment 110 .
  • the actual temperature of the temperature-changing compartment 110 is greater than the first start-up temperature, the actual temperature of the temperature-changing compartment 110 can be adjusted to the set temperature only by the heat conduction of the heat exchanger 151 .
  • the semiconductor refrigeration system 150 is powered. In this way, the energy consumption of the refrigerating and freezing apparatus 10 is reduced while ensuring that the temperature-changing compartment 110 is at the set temperature.
  • control process provides a control method for the higher set temperature of the variable temperature compartment 110 , and the control methods for other set temperatures of the variable temperature compartment 110 will be described in detail below.
  • step of controlling the semiconductor refrigeration system 150 according to the temperature setting range and the actual temperature further includes:
  • the temperature setting range is less than the second temperature preset value, and the second temperature preset value is less than 0°C, determine whether the actual temperature is greater than the second startup temperature;
  • the temperature setting range in which the set temperature is located is less than the second temperature preset value, it means that the set temperature of the variable temperature compartment 110 is in a lower temperature setting range.
  • the second startup temperature indicates that the temperature-changing compartment 110 has reached the startup condition.
  • a forward voltage should be applied to the semiconductor refrigeration system 150 so that the semiconductor refrigeration system 150 provides cooling capacity for the temperature-changing compartment 110 .
  • the temperature-changing compartment 110 has reached the shutdown condition. Adjust to the set temperature in a short time.
  • the compression refrigeration system maintains the hot end 153 of the semiconductor refrigeration system 150 in a low temperature environment, so as to further reduce the temperature of the cold end 154 and realize the deep cooling of the temperature-changing room 110 .
  • step of controlling the semiconductor refrigeration system 150 according to the temperature setting range and the actual temperature further includes:
  • the temperature setting range is greater than or equal to the second preset temperature value and less than or equal to the first preset temperature value, stop power supply to the semiconductor refrigeration system 150 or maintain the power-off state of the semiconductor refrigeration system 150;
  • the semiconductor refrigeration system 150 is controlled according to the actual temperature change of the temperature-changing compartment 110 within a preset time.
  • the semiconductor refrigeration system 150 does not need to work.
  • the cooling capacity of the heat exchanger 151 can reduce the temperature of the cold heat exchanger 152 of the semiconductor refrigeration system 150 to achieve the purpose of cooling the temperature changing compartment 110 .
  • the semiconductor refrigeration system 150 needs to be controlled according to the actual temperature change of the variable temperature compartment 110 within a certain period of time, so as to keep the actual temperature of the variable temperature compartment 110 within the set temperature. fixed temperature.
  • the steps of controlling the semiconductor refrigeration system 150 according to the actual temperature change of the temperature-changing compartment 110 within a preset time may include:
  • the actual temperature of the temperature-changing compartment 110 reaches the third shutdown temperature within a certain period of time, it means that the temperature of the temperature-changing compartment 110 can be lowered to the set temperature by means of the heat conduction of the heat exchanger 151 , the semiconductor refrigeration system 150 does not need to be turned on.
  • the actual temperature of the temperature-changing compartment 110 has not reached the third shutdown temperature within a certain period of time, and the actual temperature is always higher than the third startup temperature, it means that the cooling capacity of the heat exchanger 151 cannot be transferred in time.
  • the refrigerating and freezing apparatus 10 first stops the operation of the semiconductor refrigeration system 150, and then adjusts the semiconductor refrigeration system according to the change of the actual temperature of the temperature-changing compartment 110 within a certain period of time. 150 is controlled to ensure that the temperature-changing room 110 is always kept at the set temperature, so as to meet the user's demand for the set temperature, avoid excessive energy consumption, and improve the user experience.
  • the reverse voltage is applied to the semiconductor chip 155, when it is detected that the actual temperature is greater than the third startup temperature, the power supply to the semiconductor chip 155 is stopped.
  • the actual temperature of the variable temperature room 110 reaches the aforementioned conditions, the actual temperature of the variable temperature room 110 reaches the set temperature, and the power supply to the semiconductor chip 155 needs to be stopped at this time to avoid further reduction or increase of the actual temperature of the variable temperature room 110 high and save energy.
  • the refrigerating and freezing apparatus 10 of the present embodiment controls the semiconductor refrigeration system 150 according to the different temperature setting ranges in which the set temperature of the variable temperature compartment 110 is located.
  • the thermal load of the chamber 110 is different, and the critical temperature of the semiconductor refrigeration system 150 with forward voltage, reverse voltage, or no voltage is also different. That is to say, when the external ambient temperature is different, the first preset temperature value and the second preset temperature value are also different.
  • the control method of this embodiment before the step of judging the temperature setting range in which the set temperature is located, further includes:
  • the first preset temperature value and the second preset temperature value are updated according to the ambient temperature, and the higher the ambient temperature is, the higher the first preset temperature value and the second preset temperature value are.
  • each temperature setting range is first determined according to the ambient temperature.
  • the semiconductor refrigeration system 150 can be precisely controlled, which improves the accuracy of the temperature control of the variable temperature compartment 110 and ensures undesired waste of energy.
  • this embodiment exemplarily provides a correspondence between the ambient temperature and the first temperature preset value Tc1 and the second temperature preset value Tc2.
  • Table 1 is only an example, and the present invention does not specifically limit the corresponding relationship between the ambient temperature and the first temperature preset value and the second temperature preset value.
  • the present embodiment provides a kind of process of the control method of the refrigerating and freezing apparatus 10, specifically, the control method comprises:
  • step S508 if the set temperature is greater than the first temperature preset value, go to step S510, if the set temperature is less than the second temperature preset value, go to step S512, if the set temperature is greater than or equal to the second temperature preset value and less than or equal to the first temperature a temperature preset value, go to step S514;
  • step S516 judging whether the actual temperature of the temperature-changing compartment 110 has reached the third shutdown temperature within the preset time, if yes, go to step S518, if not, go to step S520;
  • step S520 judging whether the actual temperature of the temperature-changing compartment 110 is always greater than the third startup temperature within the preset time, if yes, go to step S522, if not, go to step S526;
  • first power-on temperature, first power-off temperature, second power-on temperature, second power-off temperature, third power-on temperature, and third power-off temperature can be determined according to the respective set temperatures of the variable temperature compartment 110, which are not made in this embodiment. Specific restrictions.
  • the refrigerating and freezing apparatus 10 of this embodiment further includes a temperature sensor, the temperature sensor is configured to detect the actual temperature of the temperature-changing compartment 110, and the controller 160 has a memory 161 and The processor 162, and a computer program 1611 is stored in the memory 161. When the computer program 1611 is executed by the processor 162, the computer program 1611 is used to implement any one of the aforementioned control methods.
  • the refrigerator-freezer 10 may further include another temperature sensor configured to detect the temperature of the environment in which the refrigerator-freezer 10 is located.
  • the aforementioned temperature sensor and another temperature sensor may be denoted as a first temperature sensor 170 and a second temperature sensor 180, respectively.
  • the processor 162 may be a central processing unit (central processing unit, CPU for short), or a digital processing unit or the like.
  • the processor 162 transmits and receives data through the communication interface.
  • the memory 161 is used to store programs executed by the processor 162 .
  • Memory 161 is any medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, and may also be a combination of multiple memories 161 .
  • the computer program 1611 described above can be downloaded from a computer-readable storage medium to a corresponding computing/processing device or downloaded to a computer or external storage device via a network (eg, the Internet, a local area network, a wide area network, and/or a wireless network).
  • a network eg, the Internet, a local area network, a wide area network, and/or a wireless network.
  • Computer program 1611 may execute entirely on a local computing device, as a stand-alone software package, partly on a local computing device and partly on a remote computing device, or entirely on a remote computing device or server (including cloud devices).
  • the refrigerating and freezing apparatus 10 and the control method thereof in this embodiment combined with the compression refrigeration system and the semiconductor refrigeration system 150, determine each temperature setting range of the temperature-changing compartment 110 according to the ambient temperature, and determine the temperature setting range of the temperature-changing compartment 110 according to the current set temperature of the temperature-changing compartment 110.
  • the temperature setting range and the current actual temperature of the variable temperature compartment 110 control the semiconductor refrigeration system 150, which realizes wide temperature adjustment of the variable temperature compartment 110, improves the temperature control accuracy of the variable temperature compartment 110, and saves energy consumption. Improved cooling efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冷藏冷冻装置及其控制方法,冷藏冷冻装置包括限定有变温间室的箱体、用于调节变温间室的温度的半导体制冷***,控制方法包括:检测变温间室的实际温度,获取变温间室的设定温度,判断设定温度所处的温度设定范围,根据温度设定范围和实际温度控制半导体制冷***。本发明的冷藏冷冻装置及其控制方法,为变温间室规定了不同的温度设定范围,根据变温间室的实际温度和设定温度所处的温度设定范围控制半导体制冷***,实现了宽幅变温,可满足用户的不同存储需求。

Description

冷藏冷冻装置及其控制方法 技术领域
本发明涉及冷藏冷冻存储技术领域,特别是涉及一种冷藏冷冻装置及其控制方法。
背景技术
随着人民生活水平提高,食材多样化需求越来越大,一些特殊食材如深海鱼等,需要低于-35℃及以下的低温储藏条件才能满足长期储存要求,有些食材如热带水果等需要10℃左右的储存温度。因此,开发具有宽幅变温间室(20~-45℃)的冷藏冷冻装置,可以满足不同用户的需求。
半导体制冷方式由来已久,其特点是在接通正向电压时冷端制冷,热端发热。现有的冷藏冷冻装置中一般对半导体制冷装置通正向电压,降低间室的温度,使得间室维持在较低的温度,而不能实现间室的宽幅变温。
发明内容
本发明的一个目的是要提供一种至少解决上述问题的冷藏冷冻装置及其控制方法。
本发明一个进一步的目的是减少能耗和提高制冷效率。
特别地,根据本发明的一个方面,本发明首先提供了一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括限定有变温间室的箱体、用于调节所述变温间室的温度的半导体制冷***,其中,所述控制方法包括:
检测所述变温间室的实际温度;
获取所述变温间室的设定温度;
判断所述设定温度所处的温度设定范围;
根据所述温度设定范围和所述实际温度控制所述半导体制冷***。
可选地,所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的步骤包括:
若所述温度设定范围为大于第一温度预设值,所述第一温度预设值大于等于0℃,判断所述实际温度是否小于等于第一关机温度;
若是,向所述半导体制冷***施加反向电压,使得所述半导体制冷***为所述变温间室提供热量;
判断所述实际温度是否大于第一开机温度;
若是,停止向所述半导体制冷***供电。
可选地,所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的步骤还包括:
若所述温度设定范围为小于第二温度预设值,所述第二温度预设值小于0℃,判断所述实际温度是否大于第二开机温度;
若是,向所述半导体制冷***施加正向电压,使得所述半导体制冷***为所述变温间室提供冷量;
判断所述实际温度是否小于等于第二关机温度;
若是,停止向所述半导体制冷***供电。
可选地,所述半导体制冷***包括热换热器、冷换热器和处于所述热换热器与所述冷换热器之间的半导体芯片,所述半导体芯片具有所述热端和冷端,所述热换热器部分地与所述热端粘连,所述冷换热器部分地与所述冷端粘连,所述冷换热器配置为在所述半导体芯片被施加正向电压时,向所述变温间室提供冷量,在所述半导体芯片被施加反向电压时,向所述变温间室提供热量;
所述冷藏冷冻装置还包括压缩制冷***,所述压缩制冷***包括压缩机和毛细管,所述热换热器设置于所述毛细管的出口与所述压缩机的进口之间;以使得所述压缩制冷***的制冷剂流经所述热换热器,与所述热端进行热交换;
所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的步骤还包括:
若所述温度设定范围为大于等于第二温度预设值且小于等于第一温度预设值,停止向所述半导体制冷***供电或保持所述半导体制冷***的断电状态;
根据所述变温间室在预设时间内的实际温度变化情况控制所述半导体制冷***。
可选地,所述根据所述变温间室在预设时间内的实际温度变化情况控制所述半导体制冷***的步骤包括:
判断所述变温间室在所述预设时间内的实际温度是否达到过第三关机温度;
若是,保持所述半导体制冷***的断电状态;
若否,判断所述变温间室在所述预设时间内的实际温度是否一直大于所述第三开机温度,若是,向所述半导体芯片施加正向电压;判断所述变温间室在所述预设时间内的实际温度是否一直小于所述第三关机温度,若是,向所述半导体芯片施加反向电压。
可选地,所述根据所述变温间室在预设时间内的实际温度变化情况控制所述半导体制冷***的步骤还包括:
在向所述半导体芯片施加正向电压之后,当检测到所述实际温度小于等于所述第三关机温度时,停止向所述半导体芯片供电;
在向所述半导体芯片施加反向电压之后,当检测到所述实际温度大于所述第三开机温度时,停止向所述半导体芯片供电。
可选地,在所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的同时,所述压缩机处于开启状态,所述制冷剂依次流经所述毛细管、所述热换热器、所述压缩机。
可选地,在所述判断所述设定温度所处的温度设定范围的步骤之前,还包括:
检测所述冷藏冷冻装置的环境温度;
根据所述环境温度更新所述第一温度预设值和所述第二温度预设值,所述环境温度越高,所述第一温度预设值、所述第二温度预设值均越高。
根据本发明的另一方面,本发明还提供了一种冷藏冷冻装置,包括:
箱体,限定有变温间室;
半导体制冷***,用于调节所述变温间室的温度;
温度传感器,配置为检测所述变温间室的实际温度;
控制器,其具有存储器以及处理器,并且所述存储器内存储有计算机程序,所述计算机程序被所述处理器执行时用于实现上述任一项所述冷藏冷冻装置的控制方法。
可选地,所述半导体制冷***包括热换热器、冷换热器和处于所述热换热器与所述冷换热器之间的半导体芯片,所述半导体芯片具有所述热端和冷端,所述热换热器部分地与所述热端粘连,所述冷换热器部分地与所述冷端粘连,所述冷换热器配置为在所述半导体芯片被施加正向电压时,向所述变温间室提供冷量,在所述半导体芯片被施加反向电压时,向所述变温间室提 供热量;
所述冷藏冷冻装置还包括压缩制冷***,所述压缩制冷***包括压缩机和毛细管,所述热换热器设置于所述毛细管的出口与所述压缩机的进口之间;以使得所述压缩制冷***的制冷剂流经所述热换热器,与所述热端进行热交换。
本发明的冷藏冷冻装置及其控制方法,为变温间室规定了不同的温度设定范围,根据变温间室的实际温度和设定温度所处的温度设定范围控制半导体制冷***,实现了宽幅变温,可满足用户的不同存储需求。
进一步地,本发明的冷藏冷冻装置及其控制方法,利用压缩制冷***降低半导体制冷***的热端的温度,促进冷端的温度进一步降低,使得变温间室达到更低的深冷温度;并且,通过将压缩制冷***与半导体制冷***的结合,基于变温间室的实际温度和设定温度所处的温度设定范围控制半导体制冷***,避免了过多的能耗,提高了用户使用体验。
更进一步地,本发明的冷藏冷冻装置及其控制方法,根据环境温度确定变温间室的各个温度设定范围,根据变温间室的当前设定温度所处的温度设定范围和变温间室当前的实际温度控制半导体制冷***,提高了变温间室的温度控制的精确性,提高了制冷效率,节省了能耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的结构示意图;
图2是根据本发明一个实施例的冷藏冷冻装置的制冷***的示意图;
图3是根据本发明一个实施例的冷藏冷冻装置的半导体制冷***的示意图;
图4是根据本发明一个实施例的冷藏冷冻装置的控制方法的示意图;
图5是根据本发明一个实施例的冷藏冷冻装置的控制方法的详细流程示意图;以及
图6是根据本发明一个实施例的冷藏冷冻装置的部件连接示意图。
具体实施方式
本实施例提供了一种冷藏冷冻装置10及其控制方法,为了便于描述,说明书中提及的“上”、“下”、“前”、“后”、“顶”、“底”、“横向”等方位均按照冷藏冷冻装置10正常工作状态下的空间位置关系进行限定。
以下参照图1至图6对本实施例的冷藏冷冻装置10及其控制方法进行具体描述。
本实施例的冷藏冷冻装置10可以为冰箱、冷柜等具有冷藏冷冻功能的装置,其可包括限定有变温间室110的箱体和用于调节变温间室110的温度的半导体制冷***150。
本一些实施例中,变温间室110的制冷可完全依靠半导体制冷***150。在另一些实施例中,变温间室110的制冷可依靠半导体制冷***150和压缩制冷***。
具体地,参照图1至图3,半导体制冷***150可包括热换热器151、冷换热器152和处于热换热器151与冷换热器152之间的半导体芯片155,半导体芯片155具有热端153和冷端154,热换热器151部分地与热端153粘连,冷换热器152部分地与冷端154粘连,冷换热器152配置为在半导体芯片155被施加正向电压时,向变温间室110提供冷量,在半导体芯片155被施加反向电压时,向变温间室110提供热量。
半导体制冷***150主要是利用了珀耳帖效应,当电流通过两种不同半导体材料串联成的电偶时,在电偶的两端即可分别吸收热量和放出热量,可以实现制冷的目的。半导体芯片155在通电之后热端153和冷端154会产生温差,当热端153的温度降低时,冷端154的温度也会随之降低。
本实施例中,半导体制冷***150的热端153可借助压缩制冷***进行散热,具体地,热换热器151可设置于压缩制冷***的毛细管106的出口与压缩机101的进口之间,压缩机101出口排出的高温高压状态的制冷剂气体进入冷凝器102,由冷凝器102冷凝成高压常温的制冷剂液体,制冷剂液体进入毛细管106经过毛细管106的节流变为低温低压制冷剂,低温低压制冷剂进入热换热器151,与热端153进行热交换。
当半导体制冷***150被施加正向电压时,制冷剂在热换热器151中蒸 发吸热快速带走热端153的热量,将热端153维持在低温环境,借助半导体本身的制冷温差,实现冷端154温度的进一步下降,通过冷端154与变温间室110间接触换热或强制对流的方式换热,实现变温间室110的深度制冷,满足深冷需求。
当半导体制冷***150被施加反向电压时,热端153产生冷量,冷端154产生热量,热端153产生的冷量被热换热器151内的制冷剂带走,冷端154产生的热量传递到变温间室110,从而升高变温间室110的温度,满足变温间室110更宽幅度的变温需求。
当半导体制冷***150停止工作时,若压缩制冷***仍在运行,制冷剂仍然流经热换热器151,通过热换热器151的导热可将冷换热器152的温度降下来,达到给变温间室110降温的目的,此时,仍可对变温间室110的温度进行调节,如此,进一步加大了变温间室110的温度变化幅度。
如附图所示,为加速变温间室110的温度调节速率,本实施例的冷藏冷冻装置10还包括送风机,冷换热器152周围的热量或冷量在送风机156的驱动下,快速进入变温间室110,加速变温间室110的温度调节。
如附图所示,本实施例的冷藏冷冻装置10还可包括冷藏室120、冷冻室130、冷藏蒸发器103、冷冻蒸发器104、冷藏毛细管107及电磁阀105,为避免前述的毛细管106与冷藏毛细管107混淆,前述的毛细管106记为变温毛细管。电磁阀105的进端与冷凝器102的出端连通,电磁阀105具有第一出端和第二出端,电磁阀105的第一出端与冷藏毛细管107的进端链接,冷藏毛细管107的出端与冷藏蒸发器103的进端链接,电磁阀105的第二出端与变温毛细管的进端连接,变温毛细管的出端与热换热器151的进端连接,热换热器151的出端与冷冻蒸发器104的进端连接,如此通过电磁阀105的切换,实现冷藏、冷冻、变温间室110的制冷。
冷藏冷冻装置10通过风冷的方式分别向冷藏室120和冷冻室130送风,
如附图所示,本实施例的冷藏冷冻装置10还可包括制冰室140,冷冻蒸发器104可为制冰室140提供冷量。冷藏冷冻装置10的各间室的其中一个分布方式可以为:制冰室140、变温间室110可沿横向分布,冷冻室130位于制冰室140和变温间室110的下方,冷藏室120位于制冰室140和变温间室110的上方。
基于前述任一实施例的冷藏冷冻装置10,如图3所示,本实施例还提供 了一种控制方法,包括:
S402,检测变温间室110的实际温度;
S404,获取变温间室110的设定温度;
S406,判断设定温度所处的温度设定范围;
S408,根据温度设定范围和实际温度控制半导体制冷***150。
本实施例的冷藏冷冻装置10,为变温间室110规定了不同的温度设定范围,根据变温间室110的实际温度和设定温度所处的温度设定范围控制半导体制冷***150,实现了宽幅变温,可满足用户的不同存储需求。
在根据温度设定范围和实际温度控制半导体制冷***150的同时,压缩机101可处于开启状态,制冷剂依次流经毛细管、热换热器151、压缩机101,以在半导体制冷时,带走半导体制冷***150的热端153的热量或冷量,或者在半导体不制冷时,为变温间室110提供冷量。
根据温度设定范围和实际温度控制半导体制冷***150的步骤可包括:
若温度设定范围为大于第一温度预设值,第一温度预设值大于等于0℃,判断实际温度是否小于等于第一关机温度;
若是,向半导体制冷***150施加反向电压,使得半导体制冷***150为变温间室110提供热量;
判断实际温度是否大于第一开机温度;
若是,停止向半导体制冷***150供电。
当设定温度所处的温度设定范围为大于第一温度预设值,说明变温间室110的设定温度处于较高的温度设定范围,此实,若变温间室110的实际温度小于等于第一关机温度,说明变温间室110的温度可能会被进一步降低,为避免变温间室110的温度过低,可向半导体制冷***150施加反向电压,使得半导体制冷***150的冷端154释放热量,提高变温间室110的温度,并当变温间室110的实际温度大于第一开机温度时,停止向半导体制冷***150供电,以将变温间室110维持在设定温度。
如前所述,在前述控制过程中,压缩制冷***处于运行中,也即是说,压缩机101处于开启状态,当停止向半导体制冷***150供电后,热换热器151的冷量可传导至冷换热器152,进而降低变温间室110的温度。因此,在前述控制过程中,在半导体制冷***150运行过程中,当变温间室110的实际温度小于等于第一关机温度,避免此时直接断电半导体制冷***150, 变温间室110的温度的进一步下降,需对半导体制冷***150施加反向电压,拉升变温间室110的温度,以维持变温间室110的设定温度。同样地,当变温间室110的实际温度大于第一开机温度时,仅利用热换热器151的热传导即可将变温间室110的实际温度调节的设定温度,因此,此时可停止向半导体制冷***150供电。如此在保证变温间室110处于设定温度的同时,降低了冷藏冷冻装置10的能耗。
前述控过程给出了变温间室110的设定温度较高的控制方式,如下再对变温间室110的其他设定温度的控制方式进行具体阐述。
进一步地,根据温度设定范围和实际温度控制半导体制冷***150的步骤还包括:
若温度设定范围为小于第二温度预设值,第二温度预设值小于0℃,判断实际温度是否大于第二开机温度;
若是,向半导体制冷***150施加正向电压,使得半导体制冷***150为变温间室110提供冷量;
判断实际温度是否小于等于第二关机温度;
若是,停止向半导体制冷***150供电。
当设定温度所处的温度设定范围小于第二温度预设值时,说明变温间室110的设定温度处于较低的温度设定范围,此时,若变温间室110的实际温度大于第二开机温度,说明变温间室110达到了开机条件,此时,应向半导体制冷***150施加正向电压,使得半导体制冷***150为变温间室110提供冷量,随着变温间室110的温度下降,当变温间室110的实际温度降低到小于等于第二关机温度时,变温间室110达到了关机条件,此时应停止向半导体制冷***150供电,从而将变温间室110的实际温度在短时间内调整到设定温度。而且,压缩制冷***将半导体制冷***150的热端153维持在低温环境,实现冷端154的温度的进一步下降,实现了变温间室110的深度制冷。
进一步地,根据温度设定范围和实际温度控制半导体制冷***150的步骤还包括:
若温度设定范围为大于等于第二温度预设值且小于等于第一温度预设值,停止向半导体制冷***150供电或保持半导体制冷***150的断电状态;
根据变温间室110在预设时间内的实际温度变化情况控制半导体制冷系 统150。
当变温间室110的设定温度所处的温度设定范围处于第一温度预设值与第二温度预设值之间时,说明变温间室110的设定温度不高不低,半导体制冷***150不需要工作,压缩制冷***运行过程中,热换热器151的冷量即可将半导体制冷***150的冷换热器152的温度降下来,达到给变温间室110降温的目的。但为了避免变温间室110温度变化过大,本实施例需要根据变温间室110在一定时间内的实际温度的变化情况来控制半导体制冷***150,以将变温间室110的实际温度保持在设定温度。
具体地,根据变温间室110在预设时间内的实际温度变化情况控制半导体制冷***150的步骤可包括:
判断变温间室110在预设时间内的实际温度是否达到过第三关机温度;
若是,保持半导体制冷***150的断电状态;
若否,判断变温间室110在预设时间内的实际温度是否一直大于第三开机温度,若是,向半导体芯片155施加正向电压;判断变温间室110在预设时间内的实际温度是否一直小于第三关机温度,若是,向半导体芯片155施加反向电压。
在压缩制冷运行过程中,变温间室110如果在一定时间内的实际温度达到过第三关机温度,说明依靠热换热器151的冷量传导可以将变温间室110的温度降低到设定温度,则无需开启半导体制冷***150。而如果在一定时间内变温间室110的实际温度未达到过第三关机温度,而且实际温度一直大于第三开机温度,说明依靠热换热器151的冷量传导不能及时将变温间室110的温度降低,此时需要向半导体芯片155施加正向电压,热端153的热量通过热换热器151带走,冷端154温度下降,在送风机156的驱动下,使得变温间室110的温度快速降低。而当实际温度一直小于第三关机温度时,说明依靠热换热器151的冷量传导使得变温间室110的温度降低过多,此时需要向半导体芯片155施加反向电压,热端153变冷,冷端154变热,热端153的冷量被热换热器151带走,冷端154的热量在送风机156的驱动下进入变温间室110,升高变温间室110的温度。
如上,当变温间室110的设定温度不高不低时,冷藏冷冻装置10先停止半导体制冷***150的运行,再根据变温间室110在一定时间内的实际温度的变化情况对半导体制冷***150进行控制,保证了变温间室110一直保 持在设定温度,满足用户对设定温度的需求,并避免了过多的能耗,提高了用户使用体验。
进一步地,在向半导体芯片155施加正向电压之后,当检测到实际温度小于等于第三关机温度时,停止向半导体芯片155供电;
在向半导体芯片155施加反向电压之后,当检测到实际温度大于所述第三开机温度时,停止向半导体芯片155供电。
当变温间室110的实际温度达到前述的条件时,变温间室110的实际温度达到了设定温度,此时需停止向半导体芯片155供电,避免变温间室110的实际温度的进一步降低或升高,并节省能耗。
由前所述可知,本实施例的冷藏冷冻装置10是根据变温间室110的设定温度所处的不同温度设定范围对半导体制冷***150进行的控制,当外界环温不同会导致变温间室110的热负荷不同,半导体制冷***150通正向电压、反向电压、或者是不通电压的临界温度也会不一样。也即是说,外界环温不同,第一温度预设值、第二温度预设值也不一样。
因此,为对变温间室110的温度的进行精确调整,本实施例的控制方法,在判断设定温度所处的温度设定范围的步骤之前,还包括:
检测冷藏冷冻装置10的环境温度;
根据环境温度更新第一温度预设值和第二温度预设值,环境温度越高,第一温度预设值、第二温度预设值均越高。
也即是说,前述的温度设定范围是根据环境温度进行更新的,在判断变温间室110的设定温度处于哪一个温度设定范围之前,先根据环境温度确定各个温度设定范围,如此可对半导体制冷***150进行精确控制,提高了变温间室110的温度控制的精确性,确保不期望的能源浪费。
如表1所示,本实施例示例性地给出了环境温度与第一温度预设值Tc1、第二温度预设值Tc2的一种对应关系。
表1
  环温≤13℃ 13<环温≤28℃ 28<环温≤38℃ 环温>38℃
Tc1 10 8 5 2
Tc2 -18 -15 -10 -5
表1仅为示例,本发明对环境温度与第一温度预设值、第二温度预设值的对应关系不作具体限定。
为更清楚地理解本实施例的控制方法,如图5所示,本实施例给出了冷 藏冷冻装置10的控制方法的一种流程,具体地,控制方法包括:
S502,开启压缩机101,打开电磁阀105的第二出端;
S504,实时检测冷藏冷冻装置10的环境温度和变温间室110的实际温度,并获取变温间室110的设定温度;
S506,根据环境温度更新第一温度预设值和第二温度预设值;
S508,若设定温度大于第一温度预设值,执行步骤S510,若设定温度小于第二温度预设值,执行步骤S512,若设定温度大于等于第二温度预设值且小于等于第一温度预设值,执行步骤S514;
S510,当实际温度小于等于第一关机温度时,向半导体制冷***150施加反向电压,并在实际温度大于第一开机温度时,停止向半导体制冷***150供电;
S512,当实际温度大于第二开机温度时,向半导体制冷***150施加正向电压,并在实际温度小于等于第二关机温度时,停止向半导体制冷***150供电;
S514,停止向半导体制冷***150供电;
S516,判断变温间室110在预设时间内的实际温度是否达到过第三关机温度,若是,执行步骤S518,若否,执行步骤S520;
S518,保持半导体制冷***150的断电状态;
S520,判断变温间室110在预设时间内的实际温度是否一直大于第三开机温度,若是,执行步骤S522,若否,执行步骤S526;
S522,向半导体芯片155施加正向电压;
S524,当检测到实际温度小于等于第三关机温度时,停止向半导体芯片155供电;
S526,当变温间室110在预设时间内的实际温度一直小于第三关机温度,向半导体芯片155施加反向电压;
S528,当检测到实际温度大于第三开机温度时,停止向半导体芯片155供电。
前述的第一开机温度、第一关机温度、第二开机温度、第二关机温度、第三开机温度、第三关机温度可根据变温间室110的各个设定温度确定,本实施例对此不作具体限定。
基于前述的冷藏冷冻装置10的控制方法,如图6所示,本实施例的冷 藏冷冻装置10还包括温度传感器,温度传感器配置为检测变温间室110的实际温度,控制器160具有存储器161以及处理器162,并且存储器161内存储有计算机程序1611,计算机程序1611被处理器162执行时用于实现前述任一项的控制方法。
在一些实施例中,冷藏冷冻装置10还可包括另一温度传感器,其配置为检测冷藏冷冻装置10所处的环境的温度。前述的温度传感器和另一温度传感器可分别记为第一温度传感器170和第二温度传感器180。
处理器162可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器162通过通信接口收发数据。存储器161用于存储处理器162执行的程序。存储器161是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器161的组合。上述计算机程序1611可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载到计算机或外部存储设备。
计算机程序1611可以完全布置在本地计算设备、作为独立的软件包、部分布置在本地计算设备并且部分布置在远程计算设备上、或者完全布置在远程计算设备或服务器(包括云端设备)上来执行。
本实施例的冷藏冷冻装置10及其控制方法,结合压缩制冷***和半导体制冷***150,根据环境温度确定变温间室110的各个温度设定范围,根据变温间室110的当前设定温度所处的温度设定范围和变温间室110当前的实际温度控制半导体制冷***150,实现了变温间室110的宽幅温度调节,提高了变温间室110的温度控制的精确性,节省了能耗,提高了制冷效率。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括限定有变温间室的箱体、用于调节所述变温间室的温度的半导体制冷***,其中,所述控制方法包括:
    检测所述变温间室的实际温度;
    获取所述变温间室的设定温度;
    判断所述设定温度所处的温度设定范围;
    根据所述温度设定范围和所述实际温度控制所述半导体制冷***。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的步骤包括:
    若所述温度设定范围为大于第一温度预设值,所述第一温度预设值大于等于0℃,判断所述实际温度是否小于等于第一关机温度;
    若是,向所述半导体制冷***施加反向电压,使得所述半导体制冷***为所述变温间室提供热量;
    判断所述实际温度是否大于第一开机温度;
    若是,停止向所述半导体制冷***供电。
  3. 根据权利要求2所述的控制方法,其中,所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的步骤还包括:
    若所述温度设定范围为小于第二温度预设值,所述第二温度预设值小于0℃,判断所述实际温度是否大于第二开机温度;
    若是,向所述半导体制冷***施加正向电压,使得所述半导体制冷***为所述变温间室提供冷量;
    判断所述实际温度是否小于等于第二关机温度;
    若是,停止向所述半导体制冷***供电。
  4. 根据权利要求3所述的控制方法,其中,
    所述半导体制冷***包括热换热器、冷换热器和处于所述热换热器与所述冷换热器之间的半导体芯片,所述半导体芯片具有热端和冷端,所述热换热器部分地与所述热端粘连,所述冷换热器部分地与所述冷端粘连,所述冷 换热器配置为在所述半导体芯片被施加正向电压时,向所述变温间室提供冷量,在所述半导体芯片被施加反向电压时,向所述变温间室提供热量;
    所述冷藏冷冻装置还包括压缩制冷***,所述压缩制冷***包括压缩机和毛细管,所述热换热器设置于所述毛细管的出口与所述压缩机的进口之间;以使得所述压缩制冷***的制冷剂流经所述热换热器,与所述热端进行热交换;
    所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的步骤还包括:
    若所述温度设定范围为大于等于第二温度预设值且小于等于第一温度预设值,停止向所述半导体制冷***供电或保持所述半导体制冷***的断电状态;
    根据所述变温间室在预设时间内的实际温度变化情况控制所述半导体制冷***。
  5. 根据权利要求4所述的控制方法,其中,所述根据所述变温间室在预设时间内的实际温度变化情况控制所述半导体制冷***的步骤包括:
    判断所述变温间室在所述预设时间内的实际温度是否达到过第三关机温度;
    若是,保持所述半导体制冷***的断电状态;
    若否,判断所述变温间室在所述预设时间内的实际温度是否一直大于第三开机温度,若是,向所述半导体芯片施加正向电压;判断所述变温间室在所述预设时间内的实际温度是否一直小于所述第三关机温度,若是,向所述半导体芯片施加反向电压。
  6. 根据权利要求5所述的控制方法,其中,所述根据所述变温间室在预设时间内的实际温度变化情况控制所述半导体制冷***的步骤还包括:
    在向所述半导体芯片施加正向电压之后,当检测到所述实际温度小于等于所述第三关机温度时,停止向所述半导体芯片供电;
    在向所述半导体芯片施加反向电压之后,当检测到所述实际温度大于所述第三开机温度时,停止向所述半导体芯片供电。
  7. 根据权利要求4所述的控制方法,其中
    在所述根据所述温度设定范围和所述实际温度控制所述半导体制冷***的同时,所述压缩机处于开启状态,所述制冷剂依次流经所述毛细管、所述热换热器、所述压缩机。
  8. 根据权利要求3所述的控制方法,在所述判断所述设定温度所处的温度设定范围的步骤之前,还包括:
    检测所述冷藏冷冻装置的环境温度;
    根据所述环境温度更新所述第一温度预设值和所述第二温度预设值,所述环境温度越高,所述第一温度预设值、所述第二温度预设值均越高。
  9. 一种冷藏冷冻装置,包括:
    箱体,限定有变温间室;
    半导体制冷***,用于调节所述变温间室的温度;
    温度传感器,配置为检测所述变温间室的实际温度;
    控制器,其具有存储器以及处理器,并且所述存储器内存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据权利要求1至8中任一项所述的冷藏冷冻装置的控制方法。
  10. 根据权利要求9所述的冷藏冷冻装置,其中
    所述半导体制冷***包括热换热器、冷换热器和处于所述热换热器与所述冷换热器之间的半导体芯片,所述半导体芯片具有热端和冷端,所述热换热器部分地与所述热端粘连,所述冷换热器部分地与所述冷端粘连,所述冷换热器配置为在所述半导体芯片被施加正向电压时,向所述变温间室提供冷量,在所述半导体芯片被施加反向电压时,向所述变温间室提供热量;
    所述冷藏冷冻装置还包括压缩制冷***,所述压缩制冷***包括压缩机和毛细管,所述热换热器设置于所述毛细管的出口与所述压缩机的进口之间,以使得所述压缩制冷***的制冷剂流经所述热换热器,与所述热端进行热交换。
PCT/CN2022/071765 2021-03-02 2022-01-13 冷藏冷冻装置及其控制方法 WO2022183849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110228854.5 2021-03-02
CN202110228854.5A CN114992949B (zh) 2021-03-02 2021-03-02 冷藏冷冻装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2022183849A1 true WO2022183849A1 (zh) 2022-09-09

Family

ID=83018071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071765 WO2022183849A1 (zh) 2021-03-02 2022-01-13 冷藏冷冻装置及其控制方法

Country Status (2)

Country Link
CN (1) CN114992949B (zh)
WO (1) WO2022183849A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717805A (zh) * 2022-11-18 2023-02-28 江苏拓米洛环境试验设备有限公司 一种制冷***的控制方法、装置和制冷***
CN116294364A (zh) * 2023-03-06 2023-06-23 长虹美菱股份有限公司 一种直冷冰箱制冷装置及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193280A1 (en) * 2004-10-22 2007-08-23 Tuskiewicz George A Portable cooled merchandizing unit with customer enticement features
CN102788445A (zh) * 2012-08-24 2012-11-21 合肥美的荣事达电冰箱有限公司 半导体制冷片驱动电路、温度控制装置及冰箱
CN105222459A (zh) * 2014-06-30 2016-01-06 青岛海尔股份有限公司 冰箱
CN106091508A (zh) * 2016-07-22 2016-11-09 沈阳理工大学 一种半导体温控箱的控制***
CN106546034A (zh) * 2016-11-30 2017-03-29 武汉工程大学 一种基于半导体制冷制热的恒温箱
CN111263566A (zh) * 2020-01-21 2020-06-09 北京百度网讯科技有限公司 温控***、温控方法、电子设备及计算机可读介质
CN211084550U (zh) * 2019-09-29 2020-07-24 青岛海尔电冰箱有限公司 冰箱

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411366B (zh) * 2013-08-26 2016-02-24 合肥美的电冰箱有限公司 冰箱
CN106196843A (zh) * 2016-07-06 2016-12-07 青岛海尔股份有限公司 风冷冰箱及其除湿方法
KR101821289B1 (ko) * 2016-09-02 2018-01-23 엘지전자 주식회사 냉장고
KR102304277B1 (ko) * 2017-03-21 2021-09-23 엘지전자 주식회사 냉장고
AU2019256534A1 (en) * 2018-04-19 2020-10-22 Ember Technologies, Inc. Portable cooler with active temperature control
KR20200105288A (ko) * 2019-02-28 2020-09-07 엘지전자 주식회사 냉장고의 제어 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193280A1 (en) * 2004-10-22 2007-08-23 Tuskiewicz George A Portable cooled merchandizing unit with customer enticement features
CN102788445A (zh) * 2012-08-24 2012-11-21 合肥美的荣事达电冰箱有限公司 半导体制冷片驱动电路、温度控制装置及冰箱
CN105222459A (zh) * 2014-06-30 2016-01-06 青岛海尔股份有限公司 冰箱
CN106091508A (zh) * 2016-07-22 2016-11-09 沈阳理工大学 一种半导体温控箱的控制***
CN106546034A (zh) * 2016-11-30 2017-03-29 武汉工程大学 一种基于半导体制冷制热的恒温箱
CN211084550U (zh) * 2019-09-29 2020-07-24 青岛海尔电冰箱有限公司 冰箱
CN111263566A (zh) * 2020-01-21 2020-06-09 北京百度网讯科技有限公司 温控***、温控方法、电子设备及计算机可读介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717805A (zh) * 2022-11-18 2023-02-28 江苏拓米洛环境试验设备有限公司 一种制冷***的控制方法、装置和制冷***
CN115717805B (zh) * 2022-11-18 2023-11-07 江苏拓米洛高端装备股份有限公司 一种制冷***的控制方法、装置和制冷***
CN116294364A (zh) * 2023-03-06 2023-06-23 长虹美菱股份有限公司 一种直冷冰箱制冷装置及控制方法

Also Published As

Publication number Publication date
CN114992949A (zh) 2022-09-02
CN114992949B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2022183849A1 (zh) 冷藏冷冻装置及其控制方法
CA2989495C (en) Flash tank pressure control for transcritical system with ejector(s)
CN105180348A (zh) 机房空调***及其控制方法
CN108603709A (zh) 一种用于根据可变温度设定点来控制蒸汽压缩***的风扇的方法
KR20170112781A (ko) 열전소자를 적용한 반도체 공정용 칠러
CN108613343A (zh) 一种空调器的控制方法及控制***
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
WO2019015536A1 (zh) 一种空调器的控制方法
WO2021223530A1 (zh) 变频空调的控制方法
CN106895621A (zh) 空调及其控制方法
WO2024045573A1 (zh) 冰箱温度的控制方法及单温控的风冷冰箱
CN105737419B (zh) 一种主动式动态降温控制装置及方法
WO2022193807A1 (zh) 冷藏冷冻装置及其化霜控制方法
WO2023231303A1 (zh) 供暖***及其控制方法
CN111964238A (zh) 空调设备的控制方法和装置、空调设备和可读存储介质
US20060048529A1 (en) Refrigerating system for refrigerator
JP2009115442A (ja) 温度調整装置
KR100826926B1 (ko) 수냉식 공기조화기 및 그 제어방법
JP2003214682A (ja) 比例制御弁を用いたブラインの温度制御装置
JP6320897B2 (ja) 温度制御方法
KR20140095670A (ko) 실내온도 제어시스템 및 이를 이용한 냉난방 방법
JPH06323639A (ja) 冷水供給装置の制御方法
WO2023142952A1 (zh) 冷藏冷冻装置及其控制方法
WO2023134541A1 (zh) 冷藏冷冻装置及其控制方法
WO2018202496A1 (en) A method for controlling suction pressure based on a most loaded cooling entity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762318

Country of ref document: EP

Kind code of ref document: A1