WO2022183772A1 - 一种电池簇及储能*** - Google Patents

一种电池簇及储能*** Download PDF

Info

Publication number
WO2022183772A1
WO2022183772A1 PCT/CN2021/130614 CN2021130614W WO2022183772A1 WO 2022183772 A1 WO2022183772 A1 WO 2022183772A1 CN 2021130614 W CN2021130614 W CN 2021130614W WO 2022183772 A1 WO2022183772 A1 WO 2022183772A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
fuse
series
cluster
packs
Prior art date
Application number
PCT/CN2021/130614
Other languages
English (en)
French (fr)
Inventor
许二超
陶文玉
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to AU2021431621A priority Critical patent/AU2021431621A1/en
Priority to US18/273,128 priority patent/US20240079750A1/en
Priority to EP21928844.6A priority patent/EP4262009A1/en
Publication of WO2022183772A1 publication Critical patent/WO2022183772A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of energy storage, in particular to a battery cluster and an energy storage system.
  • a battery cluster includes at least a plurality of battery packs, and each battery pack is connected in series to a switch box, and is connected to a battery junction cabinet at the rear stage through the switch box.
  • a fuse is provided in the switch box. The action of the fuse in the switch box cuts off the connection between the faulty battery cluster and the energy storage system, thereby preventing the further expansion of the fault.
  • the invention provides a battery cluster and an energy storage system.
  • a first fuse is connected in series in the battery cluster to cooperate with a second fuse in a switch box to achieve double protection. When the second fuse in the switch box fails, the first fuse is relied on. Fuses provide protection and ensure the safe operation of battery clusters and energy storage systems.
  • the present invention provides a battery cluster, comprising: a plurality of battery packs and at least one first fuse, wherein,
  • Each of the battery packs and each of the first fuses are connected in series to form a series branch;
  • the series branch is connected to a switch box provided with a second fuse.
  • the second fuse in the switch box is blown before the first fuse.
  • the rated fusing current of the first fuse and the second fuse is the same, and the fusing sensitivity of the first fuse is lower than the fusing sensitivity of the second fuse.
  • the rated fusing current of the first fuse is greater than the rated fusing current of the second fuse.
  • dividing all the battery packs into multiple battery packs, and any one of the battery packs includes at least one of the battery packs;
  • the battery packs in each of the battery packs are connected in series to form a battery pack string;
  • each of the battery strings is connected in series;
  • At least one of the first fuses is connected in series between at least a pair of adjacent battery strings.
  • each of the battery packs is mounted on a battery rack, and the battery packs in the same battery pack are located in the same row;
  • the first fuse is connected in series between the battery strings of two adjacent columns of the battery rack.
  • the first fuse includes multiple, at least one of the battery strings is connected in series with at least one of the first fuses.
  • dividing all the battery packs into multiple battery packs, and any one of the battery packs includes at least one of the battery packs;
  • the battery packs in each of the battery packs are connected in series to form a battery pack string;
  • each of the battery strings is connected in series;
  • At least one of the first fuses is connected in series in at least one of the battery strings.
  • connection between the first fuse and the battery packs is prior to the connection between the battery packs.
  • connection of the positive output cable and the negative output cable of the battery cluster to the battery pack is performed after the battery pack in the battery cluster is connected to the first fuse.
  • connection between the negative output cable and the battery pack is prior to the connection between the positive output cable and the battery pack.
  • the present invention provides an energy storage system, comprising: a battery combiner cabinet BCP, an energy storage inverter PCS, and at least one battery cluster according to any one of the first aspect of the present invention, wherein,
  • Each of the battery clusters is respectively connected to one end of the BCP;
  • the other end of the BCP is connected to the grid via the PCS.
  • the switch box in the battery cluster is connected to the BCP;
  • the energy storage system further includes a switch box, and the switch box is connected in series between the battery cluster and the BCP.
  • the battery cluster provided by the present invention includes a plurality of battery packs and at least one first fuse, each battery pack and each first fuse are connected in series to form a series branch, and the obtained series branch is connected with the battery provided with the second fuse.
  • Switch box connection With the battery cluster provided by the present invention, at least one first fuse is connected in series in the battery cluster, and the first fuse cooperates with the second fuse in the switch box to realize double protection. When the second fuse in the switch box fails, The protection can also be achieved by relying on the first fuse, thereby effectively improving the reliability of the fuse protection and ensuring the safe operation of the battery cluster and the energy storage system.
  • FIG. 1 is a schematic structural diagram of a battery cluster provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another battery cluster provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the installation of a battery cluster according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of installation of another battery cluster provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another battery cluster provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the installation of still another battery cluster provided by an embodiment of the present invention.
  • FIG. 8 is another fuse performance curve provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an energy storage system provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a battery cluster provided by an embodiment of the present invention.
  • the battery cluster provided by this embodiment includes a plurality of battery packs P and at least one first fuse F1 (in FIG. 1, a first fuse F1). fuse F1 is shown), where,
  • Each battery pack P and each first fuse F1 are connected in series to form a series branch.
  • the series branch is further connected to the switch box, and two current transmission paths are arranged in the switch box, and each transmission path includes a second fuse F2 and a DC switch K1 connected in series, as shown in FIG.
  • the terminals are shown as B+ and P+, the two ends of the negative transmission path are shown as B- and P-, and the series branch formed by the series connection of the battery packs P is connected externally through the switch box.
  • the battery cluster and the switch box in the embodiment shown in FIG. 1 are two independent parts.
  • the switch box can also be integrated into the battery cluster, that is, the battery cluster is in the embodiment shown in FIG. 1 .
  • At least one first fuse is connected in series in the battery cluster, and the first fuse cooperates with the second fuse in the switch box to realize double protection.
  • the first fuse can also be used for protection, thereby effectively improving the reliability of the fuse protection and ensuring the safe operation of the battery cluster and the energy storage system.
  • FIG. 2 is a schematic structural diagram of another battery cluster provided by an embodiment of the present invention.
  • the battery cluster provided in this embodiment further combines the Each battery pack P is divided into a plurality of battery packs (battery packs 1 and 2 are shown in FIG. 2 ), and each battery pack includes at least one battery pack P.
  • the battery packs P in the pack are connected in series to form a battery pack string, and then each battery pack string obtained is connected in series to form the series branch circuit mentioned in the previous embodiment. Both ends are connected to a switch box provided with a second fuse F2.
  • the battery cluster includes at least one first fuse F1
  • at least one first fuse F1 should be connected in series between at least one pair of connected battery string strings.
  • a first fuse F1 is connected in series between the battery pack 1 and the battery pack 2.
  • the battery pack also includes the battery pack 3, it can be further selected between the battery pack 2 and the battery pack 3.
  • the first fuse F1 is connected in series.
  • the first fuse F1 between the battery pack 2 and the battery pack 3 can also be chosen not to be connected in series, but only the first fuse F1 between the battery pack 1 and the battery pack 2 is provided.
  • two or more first fuses F1 can also be connected in series between the connected battery packs, which is also allowed. It also falls within the protection scope of the present invention under the premise of not exceeding the scope of the core idea of the present application.
  • FIG. 3 is a schematic diagram of the installation of a battery cluster provided by an embodiment of the present invention.
  • Each battery pack is arranged in a matrix form on a battery rack (the specific structure of the battery rack is not shown in the figure, which can be implemented with reference to the prior art).
  • the battery packs in the same battery pack are located in the same column.
  • the first fuse is connected in series between the battery strings in two adjacent columns of the battery rack. As shown in Figure 3, the first fuse is connected in series between the first and second columns from the left, and the second column is connected to the battery. between the third column. As mentioned above, any one of the first fuses in the embodiment shown in FIG. 3 may be eliminated, and only one of the first fuses may be retained.
  • FIG. 3 also shows the connection between the battery packs and between the battery packs and the switch box.
  • the connection between the battery packs is shown as a series cable. After each battery pack and each first fuse are connected in series, the positive pole of the series branch is connected to the connection point B+ of the switch box through the positive pole output cable. The negative pole of the series branch is connected to the connection point B- of the switch box through the negative output cable.
  • the first fuse is only connected in series between the battery packs obtained by dividing the battery cluster, instead of adding a first fuse for each battery pack, which can effectively improve the fuse protection. reliability, ensuring the safe operation of the battery cluster and the energy storage system, and at the same time reducing the number of first fuses, which is beneficial to the cost control of the battery cluster.
  • the battery cluster when the battery cluster includes a plurality of first fuses, the battery cluster may also adopt the installation method shown in FIG. 4 .
  • the battery cluster On the basis of the embodiment shown in FIG. 3 , in at least one battery string At least one first fuse is connected in series. As shown in FIG. 4 , one or more first fuses can be connected in series between battery packs in the same column.
  • FIG. 5 shows a schematic structural diagram of another battery cluster provided by the present invention
  • FIG. 6 shows the battery cluster corresponding to the embodiment shown in FIG. 5 . Installation diagram.
  • the battery packs in the battery cluster are firstly divided into multiple battery packs, and any battery pack includes at least one battery pack P, such as the battery packs 1 and 5 shown in FIG. 5 . battery pack 2.
  • the battery packs P in each battery pack are connected in series to form a battery pack string, and the battery pack strings are connected in series.
  • only at least one first fuse F1 is connected in series in at least one battery pack.
  • the battery packs in the same column belong to the same battery group, that is, the battery packs in each column are divided into the same battery group.
  • the first fuse is only connected in series between the battery packs in the same row, and the first fuse is no longer arranged between the battery packs in different rows.
  • the selection of the first fuse and the second fuse is described below based on the battery cluster provided by any of the above embodiments.
  • the selection principle of the first fuse and the second fuse is that the second fuse in the switch box should blow before the first fuse in the battery cluster, and It can also be ensured that when the second fuse in the switch box fails, the battery pack in the battery cluster is protected by the first fuse, thereby preventing further expansion of the accident.
  • the first fuse may be a GPV type fuse having both overload segment and short circuit segment capabilities
  • the second fuse may be an AR type fuse.
  • the second is that the rated fusing current of the first fuse is greater than the rated fusing current of the second fuse.
  • the same type of fuse should be selected for the first fuse and the second fuse.
  • the performance curves of the first fuse and the second fuse can be referred to as shown in FIG. 8 .
  • the present invention defines the installation sequence of the battery clusters provided by the above embodiments.
  • connection bars are installed at both ends of the first fuse, and then fixed at the preset installation position of the battery rack, and then the battery clusters are connected in sequence according to the series relationship between the battery packs each battery pack inside, ensuring that the connection between the first fuse and the battery pack precedes the connection between the battery packs.
  • the positive output cable and the negative output cable of the battery cluster are connected. Specifically, the negative output cable is connected first, and then the positive output cable is connected to prevent the pulse peak voltage during connection from damaging the control circuit in the cell.
  • the battery cluster is assembled according to the above connection method, even if any of the above short-circuit conditions occurs during the assembly process, since the first fuse has been installed, the overall safety of the battery cluster can be effectively guaranteed by the first fuse.
  • the places where the short-circuit fault may occur mainly include two points, namely the M point and the N point in the embodiment shown in FIG. 2.
  • the high probability occurrence position of the short-circuit fault is the same as the position shown in FIG. 2 , which is not described in conjunction with the illustration here. For details, refer to FIG. 2 .
  • the protection effect is not as good as the protection effect of the embodiments shown in FIGS. 3 and 4 when a short-circuit fault at point N occurs.
  • FIG. 9 is a schematic structural diagram of an energy storage system provided by an embodiment of the present invention.
  • the energy storage system provided by this embodiment includes: a battery combiner cabinet BCP, an energy storage inverter PCS, and at least one The battery cluster provided by any of the above embodiments, wherein,
  • Each battery cluster is respectively connected to one end of the BCP;
  • the other end of the BCP is connected to the grid via the PCS.
  • the switch box in the battery cluster is connected to the BCP;
  • the energy storage system further includes a switch box, and the switch box is connected in series between the battery cluster and the BCP.
  • a software module can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供的电池簇及储能***, 应用于储能技术领域, 该电池簇包括多个电池包和至少一个第一熔断器, 各电池包以及各第一熔断器串联连接, 形成串联支路, 且所得串联支路与设置有第二熔断器的开关盒连接. 通过本发明提供的电池簇, 电池簇内串联至少一个第一熔断器, 该第一熔断器与开关盒内的第二熔断器配合实现双重保护, 在开关盒内的第二熔断器失效时, 还可依赖第一熔断器实现保护, 进而有效提高熔断保护的可靠性, 确保电池簇以及储能***的安全运行.

Description

一种电池簇及储能***
本申请要求于2021年03月02日提交中国专利局、申请号为202110228824.4、发明名称为“一种电池簇及储能***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及储能技术领域,特别涉及一种电池簇及储能***。
背景技术
在现有技术中,电池簇内至少包括多个电池包,各个电池包串联连接后与开关盒相连,并经开关盒与后级的电池汇流柜相连。为防止任一电池簇故障时影响储能***中其他电池簇,甚至整个储能***的安全运行,开关盒内设置有熔断器,当与开关盒相连的电池簇发生短路或者其他故障时,通过开关盒内熔断器的动作切断故障电池簇与储能***的连接,从而防止故障的进一步扩大。
然而,基于上述内容可以看出,一旦开关盒内的熔断器失效,在电池簇故障时熔断器不能可靠动作,将难以对电池簇进行有效的保护,甚至影响整个储能***的安全运行。
发明内容
本发明提供一种电池簇及储能***,电池簇内串联第一熔断器,与开关盒内的第二熔断器配合实现双重保护,在开关盒内的第二熔断器失效时,依赖第一熔断器实现保护,确保电池簇以及储能***的安全运行。
为实现上述目的,本申请提供的技术方案如下:
第一方面,本发明提供一种电池簇,包括:多个电池包和至少一个第一熔断器,其中,
各所述电池包以及各所述第一熔断器串联连接,形成串联支路;
所述串联支路与设置有第二熔断器的开关盒连接。
可选的,在故障情况下,所述开关盒内的第二熔断器先于所述第一熔断器熔断。
可选的,所述第一熔断器与所述第二熔断器的额定熔断电流相同,且所述第一熔断器的熔断灵敏度低于所述第二熔断器的熔断灵敏度。
可选的,所述第一熔断器的额定熔断电流大于所述第二熔断器的额定熔断电流。
可选的,划分全部所述电池包为多个电池组,且任一所述电池组内包括至少一个所述电池包;
各所述电池组内的电池包串联连接,形成电池组串;
各所述电池组串串联连接;
至少一对相邻的所述电池组串之间,串联有至少一个所述第一熔断器。
可选的,各所述电池包安装于电池架,且同一所述电池组内的电池包位于同一列内;
所述第一熔断器串联于所述电池架相邻两列的电池组串之间。
可选的,在所述第一熔断器包括多个的情况下,至少一个所述电池组串内串联有至少一个所述第一熔断器。
可选的,划分全部所述电池包为多个电池组,且任一所述电池组内包括至少一个所述电池包;
各所述电池组内的电池包串联连接,形成电池组串;
各所述电池组串串联连接;
至少一个所述电池组串内串联有至少一个所述第一熔断器。
可选的,在组装所述电池簇过程中,所述第一熔断器与电池包的连接,先于电池包之间的连接。
可选的,所述电池簇的正极输出线缆和负极输出线缆与电池包的连接,在所述电池簇内的所述电池包和所述第一熔断器连接完成后进行。
可选的,所述负极输出线缆与电池包的连接,先于所述正极输出线缆与电池包的连接。
第二方面,本发明提供一种储能***,包括:电池汇流柜BCP、储能逆变器PCS和至少一个本发明第一方面任一项所述电池簇,其中,
各所述电池簇分别与所述BCP的一端相连;
所述BCP的另一端经所述PCS与电网连接。
可选的,在所述电池簇包括开关盒的情况下,所述电池簇内的开关盒与所 述BCP相连;
在所述电池簇不包括开关盒的情况下,所述储能***还包括开关盒,且所述开关盒串联于所述电池簇与所述BCP之间。
本发明提供的电池簇,包括多个电池包和至少一个第一熔断器,各电池包以及各第一熔断器串联连接,形成串联支路,且所得串联支路与设置有第二熔断器的开关盒连接。通过本发明提供的电池簇,电池簇内串联至少一个第一熔断器,该第一熔断器与开关盒内的第二熔断器配合实现双重保护,在开关盒内的第二熔断器失效时,还可依赖第一熔断器实现保护,进而有效提高熔断保护的可靠性,确保电池簇以及储能***的安全运行。
附图说明
为了更清楚地说明本发明实施例或现有技术内的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述内的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种电池簇的结构示意图;
图2是本发明实施例提供的另一种电池簇的结构示意图;
图3是本发明实施例提供的一种电池簇的安装示意图;
图4是本发明实施例提供的另一种电池簇的安装示意图;
图5是本发明实施例提供的再一种电池簇的结构示意图;
图6是本发明实施例提供的再一种电池簇的安装示意图;
图7是本发明实施例提供的一种熔断器性能曲线;
图8是本发明实施例提供的另一种熔断器性能曲线;
图9是本发明实施例提供的一种储能***的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,图1是本发明实施例提供的一种电池簇的结构示意图,本实施例提供的电池簇包括多个电池包P和至少一个第一熔断器F1(图1中以一个第一熔断器F1示出),其中,
各电池包P以及各第一熔断器F1串联连接,形成串联支路。串联支路进一步与开关盒连接,开关盒内设置有两条电流传输路径,每一条传输路径均包括串联连接的第二熔断器F2和直流开关K1,如图1所示,正极传输路径的两端以B+和P+示出,负极传输路径的两端以B-和P-示出,电池包P串联连接形成的串联支路通过开关盒实现外部连接。
需要说明的是,图1示出的实施例中电池簇和开关盒是独立的两部分,在实际应用中,同样可以将开关盒集成于电池簇内,即电池簇在图1所示实施例的基础上还包括开关盒,对于此种结构,不再提供图示,具体可参照现有技术实现。在后续实施例中不再对此情况进行单独说明。但需要强调的是,不论开关盒是否集成于电池簇内,开关盒内必须设置有第二熔断器F2。
综上所述,本发明实施例提供的电池簇,电池簇内串联至少一个第一熔断器,该第一熔断器与开关盒内的第二熔断器配合实现双重保护,在开关盒内的第二熔断器失效无法提供有效的短路保护时,还可依赖第一熔断器实现保护,进而有效提高熔断保护的可靠性,确保电池簇以及储能***的安全运行。
下面对电池簇内第一熔断器的可选设置位置进行介绍:
可选的,参见图2,图2是本发明实施例提供的另一种电池簇的结构示意图,在图1所示实施例的基础上,本实施例提供的电池簇进一步将电池簇内的各电池包P划分为多个电池组(图2中电池组1和电池组2示出),且每一个电池组内包括至少一个电池包P。
对于任一电池组而言,组内的电池包P串联连接,进而形成电池组串,然后所得各个电池组串串联连接,形成前述实施例中述及的串联支路,当然,串联支路的两端与设置有第二熔断器F2的开关盒相连。
由于电池簇内至少包括一个第一熔断器F1,在划分得到多个电池组之后,应该在至少一对相连的电池组串之间串联有至少一个第一熔断器F1。如图2所示,电池组1和电池组2之间串联有第一熔断器F1,相应的,如果电池簇还包括电池组3的话,则可以进一步选择在电池组2和电池组3之间串联第一 熔断器F1,当然,也可以选择不在电池组2和电池组3之间串联第一熔断器F1,仅仅设置电池组1和电池组2之间的第一熔断器F1。
进一步可以想到的是,在成本不是主要考虑因素的情况下,为了提高电池簇的运行安全性,也可以在相连的电池组之间串联两个或多个第一熔断器F1,这同样是允许的,在不超出本申请核心思想范围的前提下,同样属于本发明保护的范围内。
在实际应用中,电池簇内的各个电池包都是集中安装在电池架之上的,并且,为了便于电池包之间的连接,电池包放置与电池架之上时,往往呈多行多列的矩阵式排布。参见图3,图3是本发明实施例提供的一种电池簇的安装示意图,各个电池包在电池架(图中未示出电池架的具体结构,可参照现有技术实现)上呈矩阵式排布,且在图2所示实施例中将电池包划分为多个电池组的基础上,在具体安装电池包时,同一个电池组内的电池包位于同一列内。
第一熔断器即串联于电池架相邻两列的电池组串之间,如图3所示,第一熔断器分别串联于左起第一列和第二列之间,以及第二列与第三列之间。如前所述,还以取消图3所示实施例中任意一个第一熔断器,仅保留一个亦可。
此外,图3还示出电池包之间,电池包与开关盒之间的连接方式。具体的,为了便于描述,电池包之间的连接以串联电缆示出,在各个电池包以及各第一熔断器串联连接后,串联支路的正极通过正极输出线缆与开关盒的连接点B+相连,串联支路的负极通过负极输出线缆与开关盒的连接点B-相连。
基于图2和图3所示实施例,只在划分电池簇得到的电池组之间串联第一熔断器,而不是为每个电池包增加都第一熔断器,这样既能有效提高熔断保护的可靠性,确保电池簇以及储能***的安全运行,同时,减少第一熔断器的设置数量,有利于电池簇的成本控制。
可选的,在电池簇内包括多个第一熔断器的情况下,电池簇还可以采用图4所示的安装方式,在图3所示实施例的基础上,在至少一个电池组串内串联至少一个第一熔断器,如图4所示,可在同一列内的电池包之间串联一个或多个第一熔断器。
需要说明的是,不论是列间的第一熔断器和同一列内的第一熔断器,应选择规格一致的熔断器。
可选的,参见图5和图6,其中,图5示出的是本发明提供的另一种电池簇的结构示意图,图6示出的是与图5所示实施例对应的电池簇的安装示意图。
具体的,与图2所示实施例类似,首先将电池簇内的电池包划分为多个电池组,任一电池组内包括至少一个电池包P,如图5中示出的电池组1和电池组2。各电池组内的电池包P串联连接,形成电池组串,各电池组串串联连接。与图2所示实施例不同的是,在本实施例中只在至少一个电池组内串联有至少一个第一熔断器F1。
当电池包安装于电池架之上,并呈图6所示的矩阵式布置时,同一列内的电池包归属于同一电池组,即每一列的电池包划分为同一电池组。在本实施例中,只在同一列内的电池包之间串联第一熔断器,不再在不同列电池包之间设置第一熔断器。
下面基于上述任一实施例提供的电池簇,对第一熔断器和第二熔断器的选型进行介绍。
首先需要强调说明的是,为了有效实现分级保护,第一熔断器和第二熔断器的选型原则在于,开关盒内的第二熔断器应先于电池簇内的第一熔断器熔断,并且还能够确保在开关盒内的第二熔断器故障的情况下,通过第一熔断器保护电池簇内的电池包,防止事故进一步扩大。
基于上述选型原则,结合熔断器的现有参数设置,主要可以分为两种情况,其一是第一熔断器与第二熔断器的额定熔断电流相同,但是第一熔断器的熔断灵敏度低于第二熔断器的熔断灵敏度。此种情况下,第一熔断器和第二熔断器的性能曲线可以参见图7所示。具体的,第一熔断器可以选用兼具过载分段与短路分段能力的GPV类熔断器,而第二熔断器则可以选用AR类熔断器。
其二是第一熔断器的额定熔断电流大于第二熔断器的额定熔断电流,当然,第一熔断器和第二熔断器应选择同一类型的熔断器。此种情况下,第一熔断器和第二熔断器的性能曲线可以参见图8所示。
在电池簇的实际组装过程中,连接片、串联线缆或安装工具,如果搭接到同一个电池包的正负极之间,或者,搭接到相邻电池包串联所形成的串联支路 的正负极之间,或者,电池包的正负极同时搭接到电池架等情况发生时,就会出现短路故障,造成安装事故。
为解决这一问题,本发明对上述各个实施例提供的电池簇的安装顺序做出限定。
在各个电池包均放置于电池架上之后,在第一熔断器的两端安装连接排,然后固定在电池架的预设安装位置处,然后按照电池包之间的串联关系,依次连接电池簇内的各个电池包,确保第一熔断器与电池包的连接先于电池包之间的连接。
进一步的,在电池簇内各个电池包以及各个第一熔断器之间连接完毕后,再行连接电池簇的正极输出线缆和负极输出线缆。具体的,先连接负极输出线缆,然后再连接正极输出线缆,防止连接时的脉冲尖峰电压损坏电芯内的控制电路。
按照上述连接方式组装电池簇,即使组装过程中出现上述任何一种短路情况,由于已将安装了第一熔断器,通过第一熔断器可以有效保证电池簇整体的安全性。
进一步的,在电池簇的实际使用过程中,短路故障可能出现的地方主要包括两点,即图2所示实施例中的M点和N点,当然,对于图5所示实施例而言,短路故障的大概率发生位置与图2所示的位置是相同的,此处不再结合图示说明,具体可参见图2所示。
以图3所示的优选实施例为例,当M点发生短路故障时,由于第一熔断器和第二熔断器的熔断顺序不一致,开关盒内的第二熔断器先于电池架上的第一熔断器熔断,可以实现分级保护;当N点发生短路故障时,则可以通过列间的第一熔断器提供保护。
以图4所示的实施例为例,与图3所示实施例相比,除了能够提供分级保护以及N电路时的保护外,更为重要的是,图4中熔断器的设置方式可以将闪弧伤害有效降低,从而降低个人防护用品的选型等级。
至于图5和图6所示实施例,由于列间并未设置第一熔断器,因此,在发生N点位置的短路故障时,保护效果不及图3和图4所示实施例的保护效果。
可选的,参见图9,图9是本发明实施例提供的一种储能***的结构示意图,本实施例提供的储能***包括:电池汇流柜BCP、储能逆变器PCS和至少一个上述任一实施例提供的电池簇,其中,
各电池簇分别与BCP的一端相连;
BCP的另一端经PCS与电网连接。
可选的,在电池簇包括开关盒的情况下,电池簇内的开关盒与BCP相连;
在电池簇不包括开关盒的情况下,储能***还包括开关盒,且开关盒串联于电池簇与所述BCP之间。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的核心思想或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种电池簇,其特征在于,包括:多个电池包和至少一个第一熔断器,其中,
    各所述电池包以及各所述第一熔断器串联连接,形成串联支路;
    所述串联支路与设置有第二熔断器的开关盒连接。
  2. 根据权利要求1所述的电池簇,其特征在于,在故障情况下,所述开关盒内的第二熔断器先于所述第一熔断器熔断。
  3. 根据权利要求2所述的电池簇,其特征在于,所述第一熔断器与所述第二熔断器的额定熔断电流相同,且所述第一熔断器的熔断灵敏度低于所述第二熔断器的熔断灵敏度。
  4. 根据权利要求2所述的电池簇,其特征在于,所述第一熔断器的额定熔断电流大于所述第二熔断器的额定熔断电流。
  5. 根据权利要求1所述的电池簇,其特征在于,划分全部所述电池包为多个电池组,且任一所述电池组内包括至少一个所述电池包;
    各所述电池组内的电池包串联连接,形成电池组串;
    各所述电池组串串联连接;
    至少一对相邻的所述电池组串之间,串联有至少一个所述第一熔断器。
  6. 根据权利要求5所述的电池簇,其特征在于,各所述电池包安装于电池架,且同一所述电池组内的电池包位于同一列内;
    所述第一熔断器串联于所述电池架相邻两列的电池组串之间。
  7. 根据权利要求5所述的电池簇,其特征在于,在所述第一熔断器包括多个的情况下,至少一个所述电池组串内串联有至少一个所述第一熔断器。
  8. 根据权利要求1所述的电池簇,其特征在于,划分全部所述电池包为多个电池组,且任一所述电池组内包括至少一个所述电池包;
    各所述电池组内的电池包串联连接,形成电池组串;
    各所述电池组串串联连接;
    至少一个所述电池组串内串联有至少一个所述第一熔断器。
  9. 根据权利要求1-8任一项所述的电池簇,其特征在于,在组装所述电池簇过程中,所述第一熔断器与电池包的连接,先于电池包之间的连接。
  10. 根据权利要求9所述的电池簇,其特征在于,所述电池簇的正极输出 线缆和负极输出线缆与电池包的连接,在所述电池簇内的所述电池包和所述第一熔断器连接完成后进行。
  11. 根据权利要求10所述的电池簇,其特征在于,所述负极输出线缆与电池包的连接,先于所述正极输出线缆与电池包的连接。
  12. 一种储能***,其特征在于,包括:电池汇流柜BCP、储能逆变器PCS和至少一个权利要求1-11任一项所述电池簇,其中,
    各所述电池簇分别与所述BCP的一端相连;
    所述BCP的另一端经所述PCS与电网连接。
  13. 根据权利要求12所述的储能***,其特征在于,在所述电池簇包括开关盒的情况下,所述电池簇内的开关盒与所述BCP相连;
    在所述电池簇不包括开关盒的情况下,所述储能***还包括开关盒,且所述开关盒串联于所述电池簇与所述BCP之间。
PCT/CN2021/130614 2021-03-02 2021-11-15 一种电池簇及储能*** WO2022183772A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021431621A AU2021431621A1 (en) 2021-03-02 2021-11-15 Battery cluster and energy storage system
US18/273,128 US20240079750A1 (en) 2021-03-02 2021-11-15 Battery cluster and energy storage system
EP21928844.6A EP4262009A1 (en) 2021-03-02 2021-11-15 Battery cluster and energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110228824.4A CN113036317A (zh) 2021-03-02 2021-03-02 一种电池簇及储能***
CN202110228824.4 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022183772A1 true WO2022183772A1 (zh) 2022-09-09

Family

ID=76465319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130614 WO2022183772A1 (zh) 2021-03-02 2021-11-15 一种电池簇及储能***

Country Status (5)

Country Link
US (1) US20240079750A1 (zh)
EP (1) EP4262009A1 (zh)
CN (1) CN113036317A (zh)
AU (1) AU2021431621A1 (zh)
WO (1) WO2022183772A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230107559A1 (en) * 2019-07-08 2023-04-06 Sungrow Power Supply Co., Ltd. High voltage battery cluster, and overcurrent protection circuit and switch box thereof
CN115995650A (zh) * 2023-02-10 2023-04-21 厦门海辰储能科技股份有限公司 储能***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036317A (zh) * 2021-03-02 2021-06-25 阳光电源股份有限公司 一种电池簇及储能***
CN113839402A (zh) * 2021-09-24 2021-12-24 远景能源有限公司 一种储能电池簇及储能***
CN114300795A (zh) * 2021-12-30 2022-04-08 蜂巢能源科技(无锡)有限公司 储能电池簇***
CN218243061U (zh) * 2022-08-15 2023-01-06 阳光电源股份有限公司 储能装置及电池柜
CN117741509B (zh) * 2024-02-20 2024-05-24 天津大学 储能电站故障检测方法、装置、设备、介质及程序产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075301A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 电池、电池控制***和无人飞行器
CN110299744A (zh) * 2019-07-08 2019-10-01 阳光电源股份有限公司 一种高压电池簇及其过流保护电路和开关盒
CN110492453A (zh) * 2019-09-11 2019-11-22 阳光电源股份有限公司 一种储能***及其多级短路保护***
CN111640905A (zh) * 2020-05-26 2020-09-08 北京海博思创科技有限公司 电池簇
CN113036317A (zh) * 2021-03-02 2021-06-25 阳光电源股份有限公司 一种电池簇及储能***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311106A (ja) * 2007-06-15 2008-12-25 Sanyo Electric Co Ltd パック電池
EP2600436A4 (en) * 2010-07-29 2015-04-29 Panasonic Ip Man Co Ltd BATTERY MODULE
JP5683372B2 (ja) * 2011-04-27 2015-03-11 デクセリアルズ株式会社 充放電制御装置、バッテリパック、電気機器、及び、充放電制御方法
CN105006867B (zh) * 2015-08-05 2018-05-29 深圳先进储能材料国家工程研究中心有限公司 应用于高功率高电压工况的储能***的电池单元连接线路
JP2019068489A (ja) * 2016-02-25 2019-04-25 三洋電機株式会社 電源システム
KR102345507B1 (ko) * 2017-01-24 2021-12-29 삼성에스디아이 주식회사 배터리 팩 및 배터리 팩이 연결된 차량
JP6844460B2 (ja) * 2017-07-19 2021-03-17 トヨタ自動車株式会社 二次電池システム
CN208423051U (zh) * 2018-06-28 2019-01-22 江苏天钧精密技术有限公司 一种断电保护装置
CN109286046B (zh) * 2018-08-31 2022-04-15 深圳市科陆电子科技股份有限公司 一种电池储能***
CN211295254U (zh) * 2020-01-20 2020-08-18 珠海科创电力电子有限公司 一种储能***的电池簇保护装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075301A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 电池、电池控制***和无人飞行器
CN110299744A (zh) * 2019-07-08 2019-10-01 阳光电源股份有限公司 一种高压电池簇及其过流保护电路和开关盒
CN110492453A (zh) * 2019-09-11 2019-11-22 阳光电源股份有限公司 一种储能***及其多级短路保护***
CN111640905A (zh) * 2020-05-26 2020-09-08 北京海博思创科技有限公司 电池簇
CN113036317A (zh) * 2021-03-02 2021-06-25 阳光电源股份有限公司 一种电池簇及储能***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230107559A1 (en) * 2019-07-08 2023-04-06 Sungrow Power Supply Co., Ltd. High voltage battery cluster, and overcurrent protection circuit and switch box thereof
US11942775B2 (en) * 2019-07-08 2024-03-26 Sungrow Power Supply Co., Ltd. High voltage battery cluster, and overcurrent protection circuit and switch box thereof
CN115995650A (zh) * 2023-02-10 2023-04-21 厦门海辰储能科技股份有限公司 储能***

Also Published As

Publication number Publication date
EP4262009A1 (en) 2023-10-18
CN113036317A (zh) 2021-06-25
US20240079750A1 (en) 2024-03-07
AU2021431621A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2022183772A1 (zh) 一种电池簇及储能***
JP3316336B2 (ja) 太陽電池装置
US11942775B2 (en) High voltage battery cluster, and overcurrent protection circuit and switch box thereof
US20210075218A1 (en) Energy Storage System and Multi-Stage Short Circuit Protection System Thereof
CN106786403B (zh) 一种带续流回路的直流固态断路器
CN113300009A (zh) 一种电池簇及储能***
KR102398245B1 (ko) 배터리 팩 및 상기 배터리 팩을 사용한 버스바 개방 여부 감지 방법
KR20150083908A (ko) 배터리
EP4016695A1 (en) Battery cluster and energy storage system
CN116231578A (zh) 一种基于储能***直流侧的多段阶梯式保护***
CN113839402A (zh) 一种储能电池簇及储能***
US20210043407A1 (en) Fuse for a 48v battery system of an electric vehicle
CN114512957A (zh) 一种基于晶闸管的直流断路器及其控制方法
CN210224996U (zh) 一种ups电池组充电回路保护装置
CN211719692U (zh) 一种带短路保护的软包模组汇流排
JP2022062882A (ja) 組電池の監視装置
CN220604605U (zh) 一种低压保护快速熔断器
CN109450026A (zh) 一种供电电源和一种pos机
CN216871958U (zh) 基于开路失效模式的瞬态电压抑制二极管及其电路、***
CN213460012U (zh) 一种锂离子电池模组内小单元间无缝对接过电流的装置
KR101378004B1 (ko) 2차 전지 셀과 퓨즈의 브리지 접속에 의해 형성된 2차 전지 팩
CN111106295B (zh) 电路转接板以及电池包
CN113659524B (zh) 保险主动熔断电路和电池组件
CN208143178U (zh) 一种新型光伏电压***自保护装置
CN114242692A (zh) 基于开路失效模式的瞬态电压抑制二极管及其电路、***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273128

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021928844

Country of ref document: EP

Effective date: 20230713

ENP Entry into the national phase

Ref document number: 2021431621

Country of ref document: AU

Date of ref document: 20211115

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE