WO2022180909A1 - On-vehicle electronic device - Google Patents

On-vehicle electronic device Download PDF

Info

Publication number
WO2022180909A1
WO2022180909A1 PCT/JP2021/035480 JP2021035480W WO2022180909A1 WO 2022180909 A1 WO2022180909 A1 WO 2022180909A1 JP 2021035480 W JP2021035480 W JP 2021035480W WO 2022180909 A1 WO2022180909 A1 WO 2022180909A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
circuit board
generating component
phase change
electronic device
Prior art date
Application number
PCT/JP2021/035480
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 上之
義夫 河合
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023502051A priority Critical patent/JPWO2022180909A1/ja
Publication of WO2022180909A1 publication Critical patent/WO2022180909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to an in-vehicle electronic device.
  • phase change coolers such as vapor chambers or heat pipes are used as means for cooling heat-generating components such as CPUs.
  • This type of phase-change cooler has an evaporator that takes heat from heat-generating parts by changing the phase of a liquid-phase refrigerant to a gas phase without using power as described in Patent Document 1, and a vapor-phase refrigerant. and a condensing section for releasing heat from the gaseous refrigerant into the air by changing the phase to the liquid phase.
  • Patent Document 2 describes a portable computer having a heat dissipation structure using a heat pipe as a heat dissipation structure for releasing heat from heat-generating components mounted on a circuit board to a housing.
  • heat-generating components are connected to a heat receiving plate, the heat receiving plate is connected to a heat pipe, the heat pipe is connected to a connector, the connector is connected to a hinge, and the hinge is connected to a case.
  • a heat dissipation structure is realized to release the heat of the heat-generating parts to the housing.
  • the vehicle electronic device of the present invention has one surface mounted on a circuit board and the other surface opposite to the one surface in the board thickness direction of the circuit board.
  • a connector mounted on the circuit board and connected to an external device; a housing for housing the circuit board on which the heat generating component and the connector are mounted; and the A phase-change cooler that extends from the heat-generating component toward the connector and transfers heat with a phase change of a refrigerant, and contacts the other surface of the heat-generating component and the housing or the phase-change cooler. and a heat transfer member.
  • FIG. 1 is an exploded perspective view showing the configuration of the in-vehicle electronic device of Embodiment 1.
  • FIG. FIG. 2 is an explanatory view schematically showing a cross section of the in-vehicle electronic device taken along line A-A′ shown in FIG. 1;
  • FIG. 4 is an explanatory diagram of an in-vehicle electronic device according to a second embodiment;
  • FIG. 10 is an explanatory diagram of an in-vehicle electronic device according to Embodiment 3;
  • FIG. 11 is a perspective view showing an external configuration of an in-vehicle electronic device according to Embodiment 4;
  • FIG. 6 is a perspective view showing a cross section of the in-vehicle electronic device taken along line B-B' shown in FIG. 5;
  • FIG. 5 is an explanatory diagram of an arrangement structure of a cover having a first top plate portion and a second top plate portion, and a low-height heat-generating component and a high-height heat-generating component
  • FIG. 5 is an explanatory diagram of an arrangement structure of a cover that does not have a first top plate portion and a second top plate portion, and a low-height heat-generating component and a high-height heat-generating component
  • FIG. 11 is an explanatory diagram of an example of an in-vehicle electronic device according to Embodiment 5
  • FIG. 11 is an explanatory diagram of another example of the in-vehicle electronic device of Embodiment 5
  • FIG. 11 is an explanatory diagram of an in-vehicle electronic device according to Embodiment 6;
  • FIG. 11 is an explanatory diagram of an example of an in-vehicle electronic device according to a seventh embodiment;
  • FIG. 12 is an explanatory diagram of another example of the in-vehicle electronic device of Embodiment 7;
  • FIG. 1 is an exploded perspective view showing the configuration of an in-vehicle electronic device 100 of Embodiment 1.
  • FIG. FIG. 2 is an explanatory view schematically showing a cross section of the in-vehicle electronic device 100 taken along line AA' shown in FIG.
  • the in-vehicle electronic device 100 is an electronic device, such as an ECU, mounted in a vehicle.
  • the in-vehicle electronic device 100 includes a housing 1, a circuit board 4 such as a printed circuit board housed in the housing 1, a connector 5 mounted on the circuit board 4, a heat generating component 6 and an electronic component 7, and a heat generating component. 6 and a phase change cooler 9 for dissipating heat from the heat generating component 6 .
  • the housing 1 is a box-shaped member that accommodates the circuit board 4 on which the connector 5, the heat-generating component 6, and the electronic component 7 are mounted.
  • the housing 1 is made of a metal material such as aluminum, copper, or stainless steel, or a resin material.
  • the housing 1 includes a box-shaped cover 2 and a box-shaped case 3 (or a plate-shaped base) whose bottom is shallower than the cover 2 .
  • the cover 2 covers the circuit board 4 while being separated from the heat-generating components 6 mounted on the circuit board 4 in the thickness direction of the circuit board 4 .
  • the cover 2 includes a top plate portion 21 that intersects the circuit board 4 in the thickness direction and faces the circuit board 4 , and side plate portions 22 that are connected to the top plate portion 21 and extend along the thickness direction of the circuit board 4 . have.
  • the outer surface of the top plate portion 21 may be provided with heat radiating fins.
  • the portion of the top plate 21 that covers the connector 5 is farther away from the circuit board 4 in the thickness direction of the circuit board 4 than the portion of the top plate 21 that covers the heat generating component 6 is. may be formed to be longer.
  • the side plate portion 22 includes a first side plate portion 22a adjacent to one end portion 4a of the circuit board 4 in the direction along the circuit board 4 (the in-plane direction of the circuit board 4) and a circuit board portion 22a in the direction along the circuit board 4.
  • the first side plate portion 22a may be a side plate portion 22 having an opening 23 for exposing the connector 5 mounted on the circuit board 4 to the outside.
  • the second side plate portion 22b may be the side plate portion 22 parallel to the first side plate portion 22a.
  • the side plate portion 22 and the opening portion 23 may be provided in the case 3 instead of the cover 2, or may be provided in each of the cover 2 and the case 3.
  • the side plate portion 22 and the opening portion 23 may be portions that constitute the side plate portion and the opening portion of the housing 1 .
  • the top plate portion 21 may also be any part as long as it constitutes the top plate portion of the housing 1 .
  • the connector 5 is a connector mounted on the circuit board 4 and connected to an external device of the in-vehicle electronic device 100 .
  • the connector 5 may be connected to a harness 51 (see FIG. 3) in which wires forming a signal transmission path for communicating with an external device are bundled.
  • the connector 5 is mounted at least on one end 4a of the circuit board 4 in the direction along the circuit board 4, as shown in FIG. That is, the connector 5 is mounted on one of a pair of parallel sides of the rectangular circuit board 4 .
  • the heat generating component 6 is an electronic component that generates a relatively large amount of heat (high heat generating component) among the electronic components mounted on the circuit board 4 .
  • the heat-generating component 6 is an electronic component whose junction temperature (Tj) when energized is higher than that of other electronic components mounted on the circuit board 4 .
  • the heat-generating component 6 is an electronic component in which the difference between the junction temperature (Tjmax) at the maximum rating and the junction temperature (Tj) during energization is smaller than other electronic components.
  • the heat-generating component 6 may be configured by an arithmetic processing device including a processor such as a CPU, MPU, or GPU.
  • the heat-generating component 6 is formed in a plate shape, and as shown in FIG.
  • the heat-generating component 6 is mounted at least on the other end 4b of the circuit board 4 in the direction along the circuit board 4, as shown in FIG. That is, the heat-generating component 6 is mounted on the other of a pair of parallel sides of the rectangular circuit board 4 .
  • the electronic component 7 is an electronic component mounted on the circuit board 4 other than the connector 5 and the heat generating component 6.
  • the electronic component 7 is an electronic component that generates less heat than the heat-generating component 6 .
  • the electronic component 7 may be configured by an electronic component including, for example, an interface circuit such as a communication IC, or a power supply circuit such as a power supply IC.
  • the heat transfer member 8 is a heat transfer member that contacts the other surface 6 b of the heat generating component 6 and the housing 1 or the phase change cooler 9 .
  • the heat transfer member 8 is a member that releases the heat of the heat generating component 6 to the housing 1 or the phase change cooler 9 .
  • the heat transfer member 8 is arranged between the other surface 6b of the heat-generating component 6 and the phase-change cooler 9, and is positioned between the other surface 6b of the heat-generating component 6 and the phase-change cooler 9.
  • the heat transfer member 8 may be composed of, for example, heat dissipating grease or a heat dissipating sheet. It is preferable that the heat transfer member 8 be made of a material having as high a thermal conductivity as possible.
  • the heat transfer member 8 of the present embodiment is preferably made of a material having a level of hardness that does not affect the reliability of the joint between the heat-generating component 6 and the circuit board 4 . From the viewpoint of reliability and heat resistance, the heat transfer member 8 is preferably made of a material that can deform following thermal deformation of the heat generating component 6 and the circuit board 4 .
  • the phase change cooler 9 is a cooler that transports heat with a phase change of the refrigerant.
  • the phase-change cooler 9 includes an evaporator that absorbs heat from the heat-generating component 6 by changing the phase of the liquid-phase refrigerant to the gas phase without using power, and an evaporator that removes heat from the heat-generating component 6 by changing the phase of the liquid-phase refrigerant to the gas phase. and a condenser for releasing heat from the refrigerant to the air.
  • the phase change cooler 9 may be configured by, for example, a vapor chamber or a heat pipe.
  • the phase change cooler 9 is provided in the housing 1.
  • the phase change cooler 9 is joined to the inner surface of the top plate portion 21 of the cover 2 of the housing 1, as shown in FIG.
  • the phase-change cooler 9 is arranged between the heat transfer member 8 contacting the other surface 6 b of the heat-generating component 6 and the top plate portion 21 and contacts the heat transfer member 8 and the top plate portion 21 .
  • Phase change cooler 9 is formed to extend from heat generating component 6 mounted on circuit board 4 toward connector 5, as shown in FIG.
  • Phase change cooler 9 is formed to extend from the other end 4b of circuit board 4 in the direction along circuit board 4 toward one end 4a.
  • Phase-change cooler 9 has one end 9 a closer to connector 5 in the direction along circuit board 4 and the other end 9 b remote from connector 5 in the direction along circuit board 4 .
  • phase change cooler 9 may be the end closer to heat generating component 6 .
  • the phase change cooler 9 may be formed in a plate shape.
  • the phase-change cooler 9 absorbs heat from the heat-generating component 6 via the heat transfer member 8, diffuses the heat throughout the phase-change cooler 9, and transmits the heat to the top plate portion 21 to release it to the outside.
  • the following heat dissipation phenomenon occurs.
  • the heat of the heat generating component 6 is transferred to the phase change cooler 9 via the heat transfer member 8 and transferred to the liquid phase refrigerant inside the other end 9b of the phase change cooler 9 .
  • This liquid-phase refrigerant flows to one end portion 9a of the phase-change cooler 9 while undergoing a phase change to a vapor phase.
  • the refrigerant that has undergone a phase change to gas phase reaches one end portion 9a of the phase change cooler 9, it releases heat and undergoes a phase change to a liquid phase.
  • the refrigerant phase-changed to the liquid phase flows to the other end 9b of the phase-change cooler 9 by capillary action.
  • the refrigerant circulates between the other end portion 9b and the one end portion 9a with a phase change in this way, the heat of the heat-generating component 6 is rapidly diffused and released to the outside. temperature is reduced.
  • the heat dissipation phenomenon described above continues smoothly as long as the heat-generating component 6 generates heat by forming the phase-change cooler 9 so as to extend from the heat-generating component 6 mounted on the circuit board 4 toward the connector 5 . This is because the characteristics of the phase-change cooler 9 and the characteristics of the temperature distribution of the circuit board 4 are utilized, as will be described in detail below.
  • the phase-change cooler 9 is a heat sink in which a refrigerant is enclosed, and due to minute temperature differences on the inner surface, the refrigerant repeats phase changes between the liquid phase and the gas phase, thereby diffusing heat over a wide range. .
  • the phase-change cooler 9 has a heat diffusion capacity that is much higher than that of, for example, a heat sink made of copper or aluminum. This high heat diffusion capability allows the phase change cooler 9 to quickly reduce the temperature of the heat generating component 6 .
  • One of the important things to maintain the high heat diffusion capability of the phase change cooler 9 is to maintain a state of temperature difference along the extending direction of the phase change cooler 9 .
  • the temperature distribution of the entire phase-change cooler 9 becomes uniform. Since the phase change cooler 9 diffuses heat by changing the phase of the refrigerant due to a minute temperature difference on the inner surface, if the temperature distribution of the entire phase change cooler 9 becomes uniform, its heat diffusion capacity will decrease. . Therefore, it is important to configure the phase change cooler 9 so as to maintain a state in which there is a temperature difference along the direction in which the phase change cooler 9 extends.
  • the electronic components 7 including the power supply circuit etc. are often mounted at a position close to the connector 5, and the heat generating components 6 such as the arithmetic processing unit are mounted at a position separated from the connector 5. is often implemented in Also, the heat of the circuit board 4 is radiated by the harness 51 connected to the connector 5 . For these reasons, the temperature distribution of the circuit board 4 is often low near the connector 5 .
  • phase change cooler 9 of Embodiment 1 Since the phase change cooler 9 of Embodiment 1 is formed to extend from the heat generating component 6 mounted on the circuit board 4 toward the connector 5, there is a temperature difference along the direction in which the phase change cooler 9 extends. state can be maintained. As a result, in the in-vehicle electronic device 100 of the first embodiment, the coolant in the phase change cooler 9 can be efficiently circulated between the other end 9b and the one end 9a. can maintain a high heat diffusion capacity. Therefore, in the in-vehicle electronic device 100 of Embodiment 1, the heat diffusion capability of the phase change cooler 9 can be maximized, and high heat dissipation performance can be ensured.
  • the phase change cooler 9 of the first embodiment extends from the other end 4b of the circuit board 4 on which the heat generating component 6 is mounted toward the one end 4a of the circuit board 4 on which the connector 5 is mounted. formed in That is, the phase-change cooler 9 of the first embodiment can be formed long enough to extend over both ends 4 a and 4 b of the circuit board 4 .
  • the in-vehicle electronic device 100 of the first embodiment can increase the temperature difference along the direction in which the phase change cooler 9 extends, and further maintain the high heat diffusion capability of the phase change cooler 9. can. Therefore, in the in-vehicle electronic device 100 of Embodiment 1, the heat diffusion capability of the phase-change cooler 9 can be further extracted, and high heat radiation performance can be further ensured.
  • FIG. 3 is an explanatory diagram of the in-vehicle electronic device 100 of the second embodiment.
  • one phase change cooler 9 diffuses the heat of a plurality of heat-generating components 6 .
  • the heat-generating component 6 of the second embodiment is composed of a plurality of heat-generating components 6 having different heat generation amounts.
  • the plurality of heat-generating components 6 includes a maximum heat-generating component that generates the largest amount of heat and a minimum heat-generating component that generates the smallest amount of heat.
  • the component that generates the maximum heat is mounted at a position that is farther away from the connector 5 in the direction along the circuit board 4 than the component that generates the minimum heat.
  • the heat transfer member 8 of the second embodiment is composed of a plurality of heat transfer members 8 in contact with the other surfaces 6b of the plurality of heat generating components 6, respectively.
  • the phase change cooler 9 of Embodiment 2 extends from the maximum heat generating component to the minimum heat generating component.
  • the phase change cooler 91 on the right side of the figure diffuses the heat of the plurality of heat-generating components 61-63.
  • the heat generating components 61 to 63 have a relationship of magnitude of heat generation as follows: heat generating component 61>heat generating component 62>heat generating component 63.
  • FIG. Among the plurality of heat-generating components 61 to 63 the heat-generating component 61 is the maximum heat-generating component, and the heat-generating component 63 is the minimum heat-generating component.
  • a heat-generating component 61 that is the largest heat-generating component is mounted at a position farthest from the connector 5 .
  • a heat-generating component 62 that generates the next largest amount of heat after the heat-generating component 61 is mounted at a position closer to the connector 5 than the heat-generating component 61 .
  • a heat-generating component 63 that is the smallest heat-generating component is mounted at a position closest to the connector 5 . That is, the plurality of heat-generating components 61 to 63 are arranged so that the amount of heat generated increases as the distance from the connector 5 increases.
  • Phase change cooler 91 is formed to extend from heat generating component 61, which is the maximum heat generating component, toward heat generating component 63, which is the minimum heat generating component.
  • phase change cooler 92 on the left side of the figure diffuses the heat of the plurality of heat-generating components 64-65.
  • the heat generating components 64 to 65 have a heat generating component 64>heat generating component 65, and the heat generating component 64, which is the largest heat generating component, is mounted at a position farthest from the connector 5.
  • FIG. Phase-change cooler 92 is formed to extend from heat-generating component 64, which is the maximum heat-generating component, toward heat-generating component 65, which is the minimum heat-generating component.
  • the refrigerant of the phase change cooler 91 takes heat from the heat generating component 61, which is the largest heat generating component mounted at the farthest position from the connector 5, and then takes heat from the heat generating component 62 ⁇ heat generating component 63 in order. 5 to one end 91a.
  • the refrigerant in the phase change cooler 92 takes heat from the heat generating component 64, which is the largest heat generating component mounted at the farthest position from the connector 5, and then moves to the connector 5 while taking heat from the heat generating component 65. It flows to the near one end 92a.
  • the heat generation amounts of the plurality of heat-generating components 61 to 63 are not in the above-described relationship in which the heat generation amounts increase sequentially as the distance from the connector 5 increases, but for example, the reverse relationship (heat-generating component 61 ⁇ heat-generating component 62 ⁇ heat-generating component 63), the refrigerant in the phase change cooler 91 may not flow to the one end 91 a closer to the connector 5 .
  • the plurality of heat generating components 61 to 63 are arranged so that the heat generation amount increases as the distance from the connector 5 increases. They can flow to one end 92a near the connector 5 while taking away their heat. The same applies to the plurality of heat-generating components 64-65 and the phase change cooler 92 as well.
  • the phase-change cooler 9 of the second embodiment is provided in the housing 1 and formed to extend from the largest heat-generating component included in the plurality of heat-generating components 6 toward the smallest heat-generating component.
  • the in-vehicle electronic device 100 of the second embodiment includes a plurality of heat-generating components 6 having different heat generation amounts, the heat diffusion capability of the phase-change cooler 9 can be maximized and a plurality of heat-generating components can be generated.
  • the heat of each component 6 can be spread by a minimal phase change cooler 9 .
  • the heat diffusion capability of the phase-change cooler 9 can be maximized, and high heat dissipation performance can be achieved. can be secured.
  • FIG. 4 is an explanatory diagram of the in-vehicle electronic device 100 of the third embodiment. Note that FIG. 4 is a diagram corresponding to FIG.
  • the phase change cooler 9 is integrally provided inside the housing 1 .
  • the phase change cooler 9 of the third embodiment is integrally provided inside the top plate portion 21 of the cover 2 .
  • the phase change cooler 9 of Embodiment 3 may be made of a material having the same coefficient of linear expansion as the cover 2, preferably the same material as the cover 2.
  • the in-vehicle electronic device 100 of Embodiment 3 there is no joint between the phase change cooler 9 and the housing 1 .
  • the in-vehicle electronic device 100 of the third embodiment it is possible to suppress deterioration in heat dissipation performance due to thermal resistance at the junction between the phase change cooler 9 and the housing 1 .
  • the vehicle-mounted electronic device 100 is used in a harsher environment (in particular, vibration, temperature, etc.) than general-purpose or industrial-use electronic devices. It's not easy.
  • the mechanical reliability can be improved.
  • FIG. 5 is a perspective view showing the external configuration of the in-vehicle electronic device 100 of Embodiment 4.
  • FIG. 6 is a perspective view showing a cross section of the in-vehicle electronic device 100 taken along line BB' shown in FIG. FIG.
  • FIG. 7 is an explanatory diagram of the arrangement structure of the cover 2 having the first top plate portion 21a and the second top plate portion 21b and the low-height heat-generating component 66 and the high-height heat-generating component 67.
  • FIG. 8 is an explanatory diagram of an arrangement structure of the cover 2 that does not have the first top plate portion 21a and the second top plate portion 21b, the low-height heat-generating component 66, and the high-height heat-generating component 67.
  • FIG. 6 the illustration of the hatching of a cross section is abbreviate
  • the top plate portion 21 of the cover 2 may have an uneven shape.
  • the top plate portion 21 of the cover 2 of the fourth embodiment includes a first top plate portion 21a separated from the circuit board 4 by a first distance D1, and a circuit gap by a second distance D2 longer than the first distance D1. and a second top plate portion 21 b separated from the substrate 4 .
  • the phase change cooler 9 of Embodiment 4 is integrally provided inside the first top plate portion 21a and the second top plate portion 21b.
  • the length of the gap G between the heat generating component 6 and the top plate portion 21 can be appropriately designed according to the height of the heat generating component 6 from the circuit board 4. can be done.
  • the height of the heat-generating component 6 from the circuit board 4 is the height of the heat-generating component 6 with respect to the surface of the circuit board 4 on which the heat-generating component 6 is mounted.
  • the heat generating component 6 is separated from the circuit board 4 as shown in FIG. It may be composed of a plurality of heat-generating components 6 having different heights.
  • the multiple heat generating components 6 include a low heat generating component 66 having a low height from the circuit board 4 and a high heat generating component 67 having a high height from the circuit board 4 .
  • the low-profile heat-generating component 66 is arranged between the first top plate portion 21 a and the circuit board 4 in the board thickness direction of the circuit board 4 .
  • the tall heat-generating component 67 is arranged between the second top plate portion 21b and the circuit board 4 in the board thickness direction of the circuit board 4 .
  • the length of the gap G between each of the low-height heat-generating component 66 and the high-height heat-generating component 67 and the top plate portion 21 can be set to an appropriate length. It is possible to suppress an increase in the thermal resistance of the gap G between.
  • the gap G′ between the low-profile heat-generating component 66 and the top plate portion 21 is a heat transfer member. 8 must be thickened and filled. This is because it is not easy to provide a heat radiation pedestal on the cover 2 having the phase change cooler 9 .
  • Thermal resistance of gap G length of gap G/(thermal conductivity of heat transfer member 8 ⁇ area)
  • the cover 2 has the first top plate portion 21a and the second top plate portion 21b, and the low-height heat-generating component 66 and the high-height heat-generating component 67 are respectively connected to the top plate portion 21.
  • the in-vehicle electronic device 100 of the fourth embodiment includes a plurality of heat-generating components 6 having different heights from the circuit board 4, it is possible to suppress an increase in the thermal resistance of the gap G. Therefore, the heat diffusion capability of the phase change cooler 9 can be maximized, and the heat of each of the plurality of heat generating components 6 can be diffused by the phase change cooler 9 .
  • the heat diffusion capability of the phase-change cooler 9 can be maximized. , can ensure high heat dissipation performance.
  • FIG. 9 is an explanatory diagram of an example of the in-vehicle electronic device 100 according to the fifth embodiment.
  • FIG. 10 is an explanatory diagram of another example of the in-vehicle electronic device 100 of the fifth embodiment. 9 and 10 are diagrams corresponding to FIG.
  • the circuit board 4 is a circuit board that can be mounted on both sides.
  • the connector 5 is an electronic component whose height from the circuit board 4 is higher than that of the heat-generating component 6 .
  • the heat-generating component 6 is mounted on the surface 4d of the circuit board 4 opposite to the surface 4c on which the connector 5 is mounted.
  • the phase change cooler 9 is provided on the top plate portion 21 of the cover 2 facing the surface 4d of the circuit board 4 on which the heat generating component 6 is mounted.
  • the electronic components 7 mounted on the circuit board 4 other than the connector 5 and the heat-generating component 6 may include a low-profile electronic component 71 and a high-profile electronic component 72 .
  • the low-profile electronic component 71 is the electronic component 7 whose height from the circuit board 4 is equal to or less than the heat-generating component 6 .
  • the low-profile electronic component 71 is mounted on the surface 4d of the circuit board 4 on which the heat-generating component 6 is mounted.
  • a tall electronic component 72 is an electronic component 7 whose height from the circuit board 4 is higher than that of the heat-generating component 6 .
  • the tall electronic component 72 is mounted on the surface 4c of the circuit board 4 on which the connector 5 is mounted.
  • the tall electronic component 72 is, for example, an aluminum electrolytic capacitor.
  • the cover 2 of Embodiment 5 As shown in FIGS. need not be stepped. That is, as shown in FIG. 9, the cover 2 of the fifth embodiment has a top plate portion 21 in a flat plate shape from the second side plate portion 22b to the first side plate portion 22a beyond the heat-generating component 6 and the connector 5.
  • the vehicle-mounted electronic device 100 of the fifth embodiment can expand the phase-change cooler 9 extending from the heat-generating component 6 toward the connector 5 along the direction in which the phase-change cooler 9 extends.
  • the phase change cooler 9 can be enlarged so that the distance L1 from the phase change cooler 9 to the outer surface of the first side plate portion 22a is as short as possible.
  • the heat-generating component 6 can be mounted at a position close to the end surface. Therefore, in the on-vehicle electronic device 100 of Embodiment 5, the area of the phase change cooler 9 can be increased, so that the heat dissipation area can be increased. Furthermore, the vehicle-mounted electronic device 100 of Embodiment 5 can increase the temperature difference along the extending direction of the phase-change cooler 9, and can further maintain the high heat diffusion capability of the phase-change cooler 9. . Therefore, in the in-vehicle electronic device 100 of Embodiment 5, the heat diffusion capability of the phase change cooler 9 can be further extracted, and high heat radiation performance can be further ensured.
  • the phase change cooler 9 is integrally provided inside the top plate portion 21 of the cover 2.
  • the container 9 may be joined to the inner surface of the top plate portion 21 .
  • FIG. 11 is an explanatory diagram of the in-vehicle electronic device 100 of the sixth embodiment. Note that FIG. 11 is a diagram corresponding to FIG.
  • the circuit board 4 is a circuit board that can be mounted on both sides.
  • the circuit board 4 includes thermal vias 41 penetrating in the thickness direction of the circuit board 4 inside the region where the heat-generating component 6 is mounted.
  • the phase change cooler 9 is composed of a first phase change cooler 93 and a second phase change cooler 94 . Each of the first phase change cooler 93 and the second phase change cooler 94 is formed to extend from the heat generating component 6 mounted on the circuit board 4 toward the connector 5 .
  • the first phase change cooler 93 is the phase change cooler 9 provided in the housing 1 .
  • the first phase change cooler 93 may be provided on the top plate portion 21 of the cover 2 facing the surface 4d of the circuit board 4 on which the heat generating component 6 is mounted, as in the fifth embodiment.
  • the second phase change cooler 94 is provided on the surface 4 c of the circuit board 4 opposite to the surface 4 d of the circuit board 4 on which the heat generating component 6 is mounted, and contacts the thermal via 41 .
  • the second phase change cooler 94 may be bonded to the surface 4c of the circuit board 4 so as to cover the thermal vias 41 .
  • the second phase change cooler 94 and the surface 4c of the circuit board 4 may be joined using lead-free solder, a conductive adhesive, or the like.
  • the heat-generating component 6 may be mounted on the surface 4d of the circuit board 4 opposite to the surface 4c on which the connector 5 is mounted, as in the fifth embodiment. .
  • the first phase change cooler 93 can diffuse the heat of the heat-generating component 6 as in the fifth embodiment.
  • the second phase change cooler 94 can diffuse the heat transferred from the heat-generating component 6 to the circuit board 4 in the same manner as the first phase change cooler 93 . Therefore, in the in-vehicle electronic device 100 of the sixth embodiment, the heat dissipation performance can be greatly improved as compared with the fifth embodiment.
  • the first phase change cooler 93 is integrally provided inside the top plate portion 21 of the cover 2.
  • a variable cooler 93 may be joined to the inner surface of the top plate portion 21 .
  • FIG. 12 is an explanatory diagram of an example of the in-vehicle electronic device 100 according to the seventh embodiment.
  • the phase change cooler 9 is not provided in the housing 1 including the cover 2, but is provided only in the circuit board 4.
  • the circuit board 4 is a circuit board that can be mounted on both sides.
  • the circuit board 4 includes thermal vias 41 penetrating in the thickness direction of the circuit board 4 inside the region where the heat-generating component 6 is mounted.
  • the phase change cooler 9 is provided on the surface 4c of the circuit board 4 opposite to the surface 4d of the circuit board 4 on which the heat generating component 6 is mounted, and contacts the thermal via 41. As shown in FIG. Phase change cooler 9 is formed to extend from heat generating component 6 mounted on circuit board 4 toward connector 5 .
  • the heat-generating component 6 may be in contact with the case 3 via the heat transfer member 8 .
  • the heat-generating component 6 may be mounted on the surface 4c of the circuit board 4 on which the connector 5 is mounted.
  • the heat-generating component 6 may be in contact with the top plate portion 21 of the cover 2 via the heat transfer member 8 .
  • the phase change cooler 9 can be introduced. high heat dissipation performance can be ensured by utilizing the heat diffusion capability of the phase change cooler 9 .
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention provides an on-vehicle electronic device capable of maximizing the heat diffusion ability of a phase change cooler and ensuring high heat dissipation performance. This on-vehicle electronic device 100 is provided with a heating component 6 having a surface 6a mounted to a circuit board 4 and another surface 6b on the opposite side from the surface 6a in the thickness direction of the circuit board 4, a connector 5 mounted to the circuit board 4 and to be connected to an external device, a housing 1 containing the circuit board 4 to which the heating component 6 and the connector 5 are mounted, a phase change cooler 9 extending from the heating component 6 mounted to the circuit board 4 toward the connector 5 and transferring heat by a phase change of a coolant, and a heat transfer member 8 in contact with the other surface 6b of the heating component 6 and the housing 1 or the phase change cooler 9.

Description

車載用電子装置In-vehicle electronic equipment
 本発明は、車載用電子装置に関する。 The present invention relates to an in-vehicle electronic device.
 コンピュータ等の電子装置において、CPU等の発熱部品を冷却する手段として、例えば、ベーパーチャンバ又はヒートパイプ等の相変化冷却器が使用されている。この種の相変化冷却器は、特許文献1に記載されるような動力を用いることなく、液相冷媒を気相に相変化させることにより発熱部品の熱を奪う蒸発部と、気相冷媒を液相に相変化させることにより気相冷媒から空気中に放熱する凝縮部とを含む冷却器である。 In electronic devices such as computers, phase change coolers such as vapor chambers or heat pipes are used as means for cooling heat-generating components such as CPUs. This type of phase-change cooler has an evaporator that takes heat from heat-generating parts by changing the phase of a liquid-phase refrigerant to a gas phase without using power as described in Patent Document 1, and a vapor-phase refrigerant. and a condensing section for releasing heat from the gaseous refrigerant into the air by changing the phase to the liquid phase.
 特許文献2には、回路基板に実装された発熱部品の熱を筐体へ逃がすための放熱構造として、ヒートパイプを用いた放熱構造を有する携帯型のコンピュータが記載されている。特許文献2のコンピュータは、発熱部品が受熱板に接続され、受熱板がヒートパイプに接続され、ヒートパイプがコネクタに接続され、コネクタがヒンジに接続され、ヒンジがケースに接続されることによって、発熱部品の熱を筐体へ逃がすための放熱構造を実現している。 Patent Document 2 describes a portable computer having a heat dissipation structure using a heat pipe as a heat dissipation structure for releasing heat from heat-generating components mounted on a circuit board to a housing. In the computer of Patent Document 2, heat-generating components are connected to a heat receiving plate, the heat receiving plate is connected to a heat pipe, the heat pipe is connected to a connector, the connector is connected to a hinge, and the hinge is connected to a case. A heat dissipation structure is realized to release the heat of the heat-generating parts to the housing.
特開2017-92074号公報JP 2017-92074 A 特開平11-102235号公報JP-A-11-102235
 しかしながら、特許文献2の放熱構造は、その構成要素の数が多いので、構成要素同士の接続部分において熱抵抗が増加してしまう。特に、特許文献2のコンピュータよりも高い放熱性能が要求される車載用電子装置では、特許文献2の放熱構造を採用しても、放熱性能の要求に応えることが難しい。 However, since the heat dissipation structure of Patent Document 2 has a large number of components, the thermal resistance increases at the connecting portions between the components. In particular, in a vehicle electronic device that requires higher heat dissipation performance than the computer of Patent Document 2, even if the heat dissipation structure of Patent Document 2 is adopted, it is difficult to meet the demand for heat dissipation performance.
 本発明は、上記に鑑みてなされたものであり、相変化冷却器の熱拡散能力を最大限に引き出し、高い放熱性能を確保することが可能な車載用電子装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an in-vehicle electronic device capable of maximizing the heat diffusion capability of a phase change cooler and ensuring high heat dissipation performance. .
 上記課題を解決するために、本発明の車載用電子装置は、回路基板に実装される一方の面と、前記回路基板の板厚方向において前記一方の面とは反対側にある他方の面とを有する発熱部品と、前記回路基板に実装され、外部装置に接続されるコネクタと、前記発熱部品及び前記コネクタが実装された前記回路基板を収容する筐体と、前記回路基板に実装された前記発熱部品から前記コネクタに向かって延び、冷媒の相変化を伴って熱を輸送する相変化冷却器と、前記発熱部品の前記他方の面と、前記筐体又は前記相変化冷却器とに接触する熱伝達部材と、を備える。 In order to solve the above-mentioned problems, the vehicle electronic device of the present invention has one surface mounted on a circuit board and the other surface opposite to the one surface in the board thickness direction of the circuit board. a connector mounted on the circuit board and connected to an external device; a housing for housing the circuit board on which the heat generating component and the connector are mounted; and the A phase-change cooler that extends from the heat-generating component toward the connector and transfers heat with a phase change of a refrigerant, and contacts the other surface of the heat-generating component and the housing or the phase-change cooler. and a heat transfer member.
 本発明によれば、相変化冷却器の熱拡散能力を最大限に引き出し、高い放熱性能を確保することが可能な車載用電子装置を提供することができる。
 上記以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, the heat-diffusion capability of a phase-change cooler can be maximized, and the vehicle-mounted electronic device which can ensure high heat dissipation performance can be provided.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施形態1の車載用電子装置の構成を示す分解斜視図。1 is an exploded perspective view showing the configuration of the in-vehicle electronic device of Embodiment 1. FIG. 図1に示すA-A’線による車載用電子装置の断面を模式的に示す説明図。FIG. 2 is an explanatory view schematically showing a cross section of the in-vehicle electronic device taken along line A-A′ shown in FIG. 1; 実施形態2の車載用電子装置の説明図。FIG. 4 is an explanatory diagram of an in-vehicle electronic device according to a second embodiment; 実施形態3の車載用電子装置の説明図。FIG. 10 is an explanatory diagram of an in-vehicle electronic device according to Embodiment 3; 実施形態4の車載用電子装置の外観構成を示す斜視図。FIG. 11 is a perspective view showing an external configuration of an in-vehicle electronic device according to Embodiment 4; 図5に示すB-B’線による車載用電子装置の断面を示す斜視図。FIG. 6 is a perspective view showing a cross section of the in-vehicle electronic device taken along line B-B' shown in FIG. 5; 第1天板部及び第2天板部を有するカバーと低背発熱部品及び高背発熱部品との配置構造についての説明図。FIG. 5 is an explanatory diagram of an arrangement structure of a cover having a first top plate portion and a second top plate portion, and a low-height heat-generating component and a high-height heat-generating component; 第1天板部及び第2天板部を有しないカバーと低背発熱部品及び高背発熱部品との配置構造についての説明図。FIG. 5 is an explanatory diagram of an arrangement structure of a cover that does not have a first top plate portion and a second top plate portion, and a low-height heat-generating component and a high-height heat-generating component; 実施形態5の車載用電子装置の一例についての説明図。FIG. 11 is an explanatory diagram of an example of an in-vehicle electronic device according to Embodiment 5; 実施形態5の車載用電子装置の他の一例についての説明図。FIG. 11 is an explanatory diagram of another example of the in-vehicle electronic device of Embodiment 5; 実施形態6の車載用電子装置の説明図。FIG. 11 is an explanatory diagram of an in-vehicle electronic device according to Embodiment 6; 実施形態7の車載用電子装置の一例についての説明図。FIG. 11 is an explanatory diagram of an example of an in-vehicle electronic device according to a seventh embodiment; 実施形態7の車載用電子装置の他の一例についての説明図。FIG. 12 is an explanatory diagram of another example of the in-vehicle electronic device of Embodiment 7;
 以下、本発明の実施形態について図面を用いて説明する。なお、各実施形態において同一の符号を付された構成は、特に言及しない限り、各実施形態において同様の機能を有し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that components denoted by the same reference numerals in each embodiment have the same functions in each embodiment unless otherwise specified, and the description thereof will be omitted.
[実施形態1]
 図1~図2を用いて、実施形態1の車載用電子装置100について説明する。
 図1は、実施形態1の車載用電子装置100の構成を示す分解斜視図である。図2は、図1に示すA-A’線による車載用電子装置100の断面を模式的に示す説明図である。
[Embodiment 1]
An in-vehicle electronic device 100 according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG.
FIG. 1 is an exploded perspective view showing the configuration of an in-vehicle electronic device 100 of Embodiment 1. FIG. FIG. 2 is an explanatory view schematically showing a cross section of the in-vehicle electronic device 100 taken along line AA' shown in FIG.
 車載用電子装置100は、ECU等の、車両に搭載される電子装置である。車載用電子装置100は、筐体1と、筐体1に収容されるプリント回路基板等の回路基板4と、回路基板4に実装されるコネクタ5、発熱部品6及び電子部品7と、発熱部品6に接触する熱伝達部材8と、発熱部品6を放熱するための相変化冷却器9とを備える。 The in-vehicle electronic device 100 is an electronic device, such as an ECU, mounted in a vehicle. The in-vehicle electronic device 100 includes a housing 1, a circuit board 4 such as a printed circuit board housed in the housing 1, a connector 5 mounted on the circuit board 4, a heat generating component 6 and an electronic component 7, and a heat generating component. 6 and a phase change cooler 9 for dissipating heat from the heat generating component 6 .
 筐体1は、コネクタ5、発熱部品6及び電子部品7が実装された回路基板4を収容する箱状の部材である。筐体1は、アルミ、銅若しくはステンレス等の金属材料、又は、樹脂材料によって形成される。筐体1は、箱状のカバー2と、カバー2よりも底の浅い箱状のケース3(又は板状のベース)とを含む。 The housing 1 is a box-shaped member that accommodates the circuit board 4 on which the connector 5, the heat-generating component 6, and the electronic component 7 are mounted. The housing 1 is made of a metal material such as aluminum, copper, or stainless steel, or a resin material. The housing 1 includes a box-shaped cover 2 and a box-shaped case 3 (or a plate-shaped base) whose bottom is shallower than the cover 2 .
 カバー2は、回路基板4に実装された発熱部品6から回路基板4の板厚方向に離隔した状態で回路基板4を覆う。カバー2は、回路基板4の板厚方向に交差し回路基板4に対向する天板部21と、天板部21に連接して回路基板4の板厚方向に沿って延びる側板部22とを有する。 The cover 2 covers the circuit board 4 while being separated from the heat-generating components 6 mounted on the circuit board 4 in the thickness direction of the circuit board 4 . The cover 2 includes a top plate portion 21 that intersects the circuit board 4 in the thickness direction and faces the circuit board 4 , and side plate portions 22 that are connected to the top plate portion 21 and extend along the thickness direction of the circuit board 4 . have.
 図1に示すように、天板部21の外表面には、放熱フィンが設けられていてもよい。図1及び図2に示すように、天板部21のコネクタ5を覆う部分は、天板部21の発熱部品6を覆う部分よりも、回路基板4の板厚方向における回路基板4からの距離が長くなるように形成されてもよい。側板部22は、回路基板4に沿った方向(回路基板4の面内方向)における回路基板4の一方の端部4aに隣接する第1側板部22aと、回路基板4に沿った方向における回路基板4の他方の端部4bに隣接する第2側板部22bとを含む。第1側板部22aは、回路基板4に実装されたコネクタ5を外部に露出させる開口部23を有する側板部22であってもよい。第2側板部22bは、第1側板部22aと並行な側板部22であってもよい。 As shown in FIG. 1, the outer surface of the top plate portion 21 may be provided with heat radiating fins. As shown in FIGS. 1 and 2, the portion of the top plate 21 that covers the connector 5 is farther away from the circuit board 4 in the thickness direction of the circuit board 4 than the portion of the top plate 21 that covers the heat generating component 6 is. may be formed to be longer. The side plate portion 22 includes a first side plate portion 22a adjacent to one end portion 4a of the circuit board 4 in the direction along the circuit board 4 (the in-plane direction of the circuit board 4) and a circuit board portion 22a in the direction along the circuit board 4. a second side plate portion 22b adjacent to the other end portion 4b of the substrate 4; The first side plate portion 22a may be a side plate portion 22 having an opening 23 for exposing the connector 5 mounted on the circuit board 4 to the outside. The second side plate portion 22b may be the side plate portion 22 parallel to the first side plate portion 22a.
 なお、側板部22及び開口部23は、カバー2ではなくケース3に設けられたり、カバー2及びケース3のそれぞれに設けられたりしてもよい。すなわち、側板部22及び開口部23は、筐体1の側板部及び開口部を構成する部分であればよい。天板部21も、筐体1の天板部を構成する部分であればよい。 Note that the side plate portion 22 and the opening portion 23 may be provided in the case 3 instead of the cover 2, or may be provided in each of the cover 2 and the case 3. In other words, the side plate portion 22 and the opening portion 23 may be portions that constitute the side plate portion and the opening portion of the housing 1 . The top plate portion 21 may also be any part as long as it constitutes the top plate portion of the housing 1 .
 コネクタ5は、回路基板4に実装され、車載用電子装置100の外部装置に接続されるコネクタである。コネクタ5には、外部装置と通信するための信号の伝送経路を構成するワイヤを束ねたハーネス51(図3を参照)が接続されてもよい。コネクタ5は、図1に示すように、少なくとも、回路基板4に沿った方向における回路基板4の一方の端部4aに実装される。すなわち、コネクタ5は、矩形状の回路基板4において互いに並行する一対の辺部分の一方に実装される。 The connector 5 is a connector mounted on the circuit board 4 and connected to an external device of the in-vehicle electronic device 100 . The connector 5 may be connected to a harness 51 (see FIG. 3) in which wires forming a signal transmission path for communicating with an external device are bundled. The connector 5 is mounted at least on one end 4a of the circuit board 4 in the direction along the circuit board 4, as shown in FIG. That is, the connector 5 is mounted on one of a pair of parallel sides of the rectangular circuit board 4 .
 発熱部品6は、回路基板4に実装される電子部品のうち、発熱量が比較的大きい電子部品(高発熱部品)である。発熱部品6は、通電時のジャンクション温度(Tj)が、回路基板4に実装される他の電子部品よりも高温になる電子部品である。発熱部品6は、最大定格におけるジャンクション温度(Tjmax)と通電時のジャンクション温度(Tj)との差が、他の電子部品よりも小さい電子部品である。発熱部品6は、CPU、MPU又はGPU等のプロセッサを含む演算処理装置によって構成されてもよい。発熱部品6は、板状に形成され、図2に示すように、回路基板4に実装される一方の面6aと、回路基板4の板厚方向において一方の面6aとは反対側にある他方の面6bとを有する。発熱部品6は、図1に示すように、少なくとも、回路基板4に沿った方向における回路基板4の他方の端部4bに実装される。すなわち、発熱部品6は、矩形状の回路基板4において互いに並行する一対の辺部分の他方に実装される。 The heat generating component 6 is an electronic component that generates a relatively large amount of heat (high heat generating component) among the electronic components mounted on the circuit board 4 . The heat-generating component 6 is an electronic component whose junction temperature (Tj) when energized is higher than that of other electronic components mounted on the circuit board 4 . The heat-generating component 6 is an electronic component in which the difference between the junction temperature (Tjmax) at the maximum rating and the junction temperature (Tj) during energization is smaller than other electronic components. The heat-generating component 6 may be configured by an arithmetic processing device including a processor such as a CPU, MPU, or GPU. The heat-generating component 6 is formed in a plate shape, and as shown in FIG. and a surface 6b of The heat-generating component 6 is mounted at least on the other end 4b of the circuit board 4 in the direction along the circuit board 4, as shown in FIG. That is, the heat-generating component 6 is mounted on the other of a pair of parallel sides of the rectangular circuit board 4 .
 電子部品7は、コネクタ5及び発熱部品6以外の回路基板4に実装される電子部品である。電子部品7は、発熱部品6よりも発熱量が小さい電子部品である。電子部品7は、例えば、通信IC等のインターフェース回路、又は、電源IC等の電源回路等を含む電子部品によって構成されてもよい。 The electronic component 7 is an electronic component mounted on the circuit board 4 other than the connector 5 and the heat generating component 6. The electronic component 7 is an electronic component that generates less heat than the heat-generating component 6 . The electronic component 7 may be configured by an electronic component including, for example, an interface circuit such as a communication IC, or a power supply circuit such as a power supply IC.
 熱伝達部材8は、発熱部品6の他方の面6bと、筐体1又は相変化冷却器9とに接触する熱伝達部材である。熱伝達部材8は、発熱部品6の熱を、筐体1又は相変化冷却器9へ逃がす部材である。熱伝達部材8は、図2に示すように、発熱部品6の他方の面6bと相変化冷却器9との間に配置され、発熱部品6の他方の面6bと相変化冷却器9とに接触する。熱伝達部材8は、例えば、放熱グリス又は放熱シート等によって構成されてもよい。熱伝達部材8は、できるだけ熱伝導率の高い材料によって形成されることが好ましい。しかし、熱伝導率が高い熱伝達部材の多くは、硬い材料によって形成されており、発熱部品6と回路基板4との接合部の信頼性に影響を及ぼす。本実施形態の熱伝達部材8は、発熱部品6と回路基板4との接合部の信頼性に影響を与えないレベルの硬度を有する材料によって形成されることが好ましい。当該信頼性及び熱抵抗の観点から、熱伝達部材8は、発熱部品6及び回路基板4の熱変形に追従して変形可能な材料によって形成されることが好ましい。 The heat transfer member 8 is a heat transfer member that contacts the other surface 6 b of the heat generating component 6 and the housing 1 or the phase change cooler 9 . The heat transfer member 8 is a member that releases the heat of the heat generating component 6 to the housing 1 or the phase change cooler 9 . As shown in FIG. 2, the heat transfer member 8 is arranged between the other surface 6b of the heat-generating component 6 and the phase-change cooler 9, and is positioned between the other surface 6b of the heat-generating component 6 and the phase-change cooler 9. Contact. The heat transfer member 8 may be composed of, for example, heat dissipating grease or a heat dissipating sheet. It is preferable that the heat transfer member 8 be made of a material having as high a thermal conductivity as possible. However, most heat transfer members with high thermal conductivity are made of hard materials, which affects the reliability of the joint between the heat generating component 6 and the circuit board 4 . The heat transfer member 8 of the present embodiment is preferably made of a material having a level of hardness that does not affect the reliability of the joint between the heat-generating component 6 and the circuit board 4 . From the viewpoint of reliability and heat resistance, the heat transfer member 8 is preferably made of a material that can deform following thermal deformation of the heat generating component 6 and the circuit board 4 .
 相変化冷却器9は、冷媒の相変化を伴って熱を輸送する冷却器である。相変化冷却器9は、動力を用いることなく、液相冷媒を気相に相変化させることにより発熱部品6の熱を奪う蒸発部と、気相冷媒を液相に相変化させることにより気相冷媒から空気中に放熱する凝縮部とを含む冷却器である。相変化冷却器9は、例えば、ベーパーチャンバ又はヒートパイプ等によって構成されてもよい。 The phase change cooler 9 is a cooler that transports heat with a phase change of the refrigerant. The phase-change cooler 9 includes an evaporator that absorbs heat from the heat-generating component 6 by changing the phase of the liquid-phase refrigerant to the gas phase without using power, and an evaporator that removes heat from the heat-generating component 6 by changing the phase of the liquid-phase refrigerant to the gas phase. and a condenser for releasing heat from the refrigerant to the air. The phase change cooler 9 may be configured by, for example, a vapor chamber or a heat pipe.
 相変化冷却器9は、筐体1に設けられる。相変化冷却器9は、図2に示すように、筐体1のカバー2の天板部21の内表面に接合される。相変化冷却器9は、発熱部品6の他方の面6bに接触する熱伝達部材8と天板部21との間に配置され、熱伝達部材8と天板部21とに接触する。相変化冷却器9は、図1に示すように、回路基板4に実装された発熱部品6からコネクタ5に向かって延びるように形成される。相変化冷却器9は、回路基板4に沿った方向における回路基板4の他方の端部4bから一方の端部4aに向かって延びるように形成される。相変化冷却器9は、回路基板4に沿った方向においてコネクタ5に近い一方の端部9aと、回路基板4に沿った方向においてコネクタ5から離隔した他方の端部9bとを有する。相変化冷却器9の他方の端部9bは、発熱部品6に近い端部であり得る。相変化冷却器9は、板状に形成されてもよい。相変化冷却器9は、発熱部品6の熱を、熱伝達部材8を介して奪い、相変化冷却器9の全体に亘って拡散させると共に、天板部21に伝えて外部に放出させる。 The phase change cooler 9 is provided in the housing 1. The phase change cooler 9 is joined to the inner surface of the top plate portion 21 of the cover 2 of the housing 1, as shown in FIG. The phase-change cooler 9 is arranged between the heat transfer member 8 contacting the other surface 6 b of the heat-generating component 6 and the top plate portion 21 and contacts the heat transfer member 8 and the top plate portion 21 . Phase change cooler 9 is formed to extend from heat generating component 6 mounted on circuit board 4 toward connector 5, as shown in FIG. Phase change cooler 9 is formed to extend from the other end 4b of circuit board 4 in the direction along circuit board 4 toward one end 4a. Phase-change cooler 9 has one end 9 a closer to connector 5 in the direction along circuit board 4 and the other end 9 b remote from connector 5 in the direction along circuit board 4 . The other end 9 b of phase change cooler 9 may be the end closer to heat generating component 6 . The phase change cooler 9 may be formed in a plate shape. The phase-change cooler 9 absorbs heat from the heat-generating component 6 via the heat transfer member 8, diffuses the heat throughout the phase-change cooler 9, and transmits the heat to the top plate portion 21 to release it to the outside.
 上記構成の車載用電子装置100では、次のような放熱現象が生じる。発熱部品6の熱は、熱伝達部材8を介して相変化冷却器9へと伝わり、相変化冷却器9の他方の端部9bの内部の液相冷媒へと伝わる。この液相冷媒は、気相に相変化しつつ相変化冷却器9の一方の端部9aへ流れる。気相に相変化した冷媒は、相変化冷却器9の一方の端部9aへ到達すると放熱して液相に相変化する。液相に相変化した冷媒は、毛細管現象によって相変化冷却器9の他方の端部9bへ流れる。このように冷媒が相変化を伴って他方の端部9bと一方の端部9aとの間を循環することによって、発熱部品6の熱が迅速に拡散して外部に放出され、発熱部品6の温度が低減される。 In the in-vehicle electronic device 100 configured as described above, the following heat dissipation phenomenon occurs. The heat of the heat generating component 6 is transferred to the phase change cooler 9 via the heat transfer member 8 and transferred to the liquid phase refrigerant inside the other end 9b of the phase change cooler 9 . This liquid-phase refrigerant flows to one end portion 9a of the phase-change cooler 9 while undergoing a phase change to a vapor phase. When the refrigerant that has undergone a phase change to gas phase reaches one end portion 9a of the phase change cooler 9, it releases heat and undergoes a phase change to a liquid phase. The refrigerant phase-changed to the liquid phase flows to the other end 9b of the phase-change cooler 9 by capillary action. As the refrigerant circulates between the other end portion 9b and the one end portion 9a with a phase change in this way, the heat of the heat-generating component 6 is rapidly diffused and released to the outside. temperature is reduced.
 上記の放熱現象は、相変化冷却器9が回路基板4に実装された発熱部品6からコネクタ5に向かって延びるように形成されることによって、発熱部品6が発熱する限りは滞りなく持続する。これは、以下に詳述するように、相変化冷却器9の特徴と回路基板4の温度分布の特徴を利用しているからである。 The heat dissipation phenomenon described above continues smoothly as long as the heat-generating component 6 generates heat by forming the phase-change cooler 9 so as to extend from the heat-generating component 6 mounted on the circuit board 4 toward the connector 5 . This is because the characteristics of the phase-change cooler 9 and the characteristics of the temperature distribution of the circuit board 4 are utilized, as will be described in detail below.
 相変化冷却器9は、内部に冷媒が封入されたヒートシンクであり、内表面の微小な温度差によって、冷媒が液相と気相との間の相変化を繰り返して、熱を広範囲に拡散させる。相変化冷却器9は、例えば、銅製又はアルミ製の放熱板と比べても桁違いに高い熱拡散能力を有する。この高い熱拡散能力により、相変化冷却器9は、発熱部品6の温度を迅速に低減することが可能である。相変化冷却器9の高い熱拡散能力を維持するために重要なことの1つは、相変化冷却器9の延びる方向に沿って温度差のある状態を維持することである。発熱部品6を備える車載用電子装置100の場合、相変化冷却器9の熱容量を超える程の熱が相変化冷却器9に伝えられると、相変化冷却器9全体の温度分布が均一になる。相変化冷却器9は、内表面の微小な温度差による冷媒の相変化によって熱を拡散させることから、相変化冷却器9全体の温度分布が均一になると、その熱拡散能力が低下してしまう。よって、相変化冷却器9は、相変化冷却器9の延びる方向に沿って温度差のある状態を維持するよう構成することが重要である。 The phase-change cooler 9 is a heat sink in which a refrigerant is enclosed, and due to minute temperature differences on the inner surface, the refrigerant repeats phase changes between the liquid phase and the gas phase, thereby diffusing heat over a wide range. . The phase-change cooler 9 has a heat diffusion capacity that is much higher than that of, for example, a heat sink made of copper or aluminum. This high heat diffusion capability allows the phase change cooler 9 to quickly reduce the temperature of the heat generating component 6 . One of the important things to maintain the high heat diffusion capability of the phase change cooler 9 is to maintain a state of temperature difference along the extending direction of the phase change cooler 9 . In the case of the in-vehicle electronic device 100 including the heat-generating component 6, when heat is transferred to the phase-change cooler 9 so as to exceed the heat capacity of the phase-change cooler 9, the temperature distribution of the entire phase-change cooler 9 becomes uniform. Since the phase change cooler 9 diffuses heat by changing the phase of the refrigerant due to a minute temperature difference on the inner surface, if the temperature distribution of the entire phase change cooler 9 becomes uniform, its heat diffusion capacity will decrease. . Therefore, it is important to configure the phase change cooler 9 so as to maintain a state in which there is a temperature difference along the direction in which the phase change cooler 9 extends.
 一方、車載用電子装置100の回路基板4では、電源回路等を含む電子部品7がコネクタ5から近い位置に実装されることが多く、演算処理装置等の発熱部品6がコネクタ5から離隔した位置に実装されることが多い。また、回路基板4の熱は、コネクタ5に接続されるハーネス51によって放熱される。これらのことから、回路基板4の温度分布は、コネクタ5付近が低温となることが多い。 On the other hand, in the circuit board 4 of the in-vehicle electronic device 100, the electronic components 7 including the power supply circuit etc. are often mounted at a position close to the connector 5, and the heat generating components 6 such as the arithmetic processing unit are mounted at a position separated from the connector 5. is often implemented in Also, the heat of the circuit board 4 is radiated by the harness 51 connected to the connector 5 . For these reasons, the temperature distribution of the circuit board 4 is often low near the connector 5 .
 実施形態1の相変化冷却器9は、回路基板4に実装された発熱部品6からコネクタ5に向かって延びるように形成されるので、相変化冷却器9の延びる方向に沿って温度差のある状態を維持することができる。これにより、実施形態1の車載用電子装置100では、相変化冷却器9の冷媒を他方の端部9bと一方の端部9aとの間において効率よく循環させることができ、相変化冷却器9の高い熱拡散能力を維持することができる。よって、実施形態1の車載用電子装置100では、相変化冷却器9の熱拡散能力を最大限に引き出し、高い放熱性能を確保することができる。 Since the phase change cooler 9 of Embodiment 1 is formed to extend from the heat generating component 6 mounted on the circuit board 4 toward the connector 5, there is a temperature difference along the direction in which the phase change cooler 9 extends. state can be maintained. As a result, in the in-vehicle electronic device 100 of the first embodiment, the coolant in the phase change cooler 9 can be efficiently circulated between the other end 9b and the one end 9a. can maintain a high heat diffusion capacity. Therefore, in the in-vehicle electronic device 100 of Embodiment 1, the heat diffusion capability of the phase change cooler 9 can be maximized, and high heat dissipation performance can be ensured.
 特に、実施形態1の相変化冷却器9は、発熱部品6が実装された回路基板4の他方の端部4bからコネクタ5が実装された回路基板4の一方の端部4aに向かって延びるように形成される。すなわち、実施形態1の相変化冷却器9は、回路基板4の両端部4a,4bに亘るほどに相変化冷却器9を長尺に形成することができる。これにより、実施形態1の車載用電子装置100は、相変化冷却器9の延びる方向に沿って温度差を大きくすることができ、相変化冷却器9の高い熱拡散能力を更に維持することができる。よって、実施形態1の車載用電子装置100では、相変化冷却器9の熱拡散能力を更に引き出し、高い放熱性能を更に確保することができる。 In particular, the phase change cooler 9 of the first embodiment extends from the other end 4b of the circuit board 4 on which the heat generating component 6 is mounted toward the one end 4a of the circuit board 4 on which the connector 5 is mounted. formed in That is, the phase-change cooler 9 of the first embodiment can be formed long enough to extend over both ends 4 a and 4 b of the circuit board 4 . As a result, the in-vehicle electronic device 100 of the first embodiment can increase the temperature difference along the direction in which the phase change cooler 9 extends, and further maintain the high heat diffusion capability of the phase change cooler 9. can. Therefore, in the in-vehicle electronic device 100 of Embodiment 1, the heat diffusion capability of the phase-change cooler 9 can be further extracted, and high heat radiation performance can be further ensured.
[実施形態2]
 図3を用いて、実施形態2の車載用電子装置100について説明する。実施形態2の車載用電子装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
 図3は、実施形態2の車載用電子装置100の説明図である。
[Embodiment 2]
A vehicle-mounted electronic device 100 according to the second embodiment will be described with reference to FIG. In the in-vehicle electronic device 100 of the second embodiment, descriptions of the same configurations and operations as those of the previous embodiments are omitted.
FIG. 3 is an explanatory diagram of the in-vehicle electronic device 100 of the second embodiment.
 実施形態2の車載用電子装置100では、1つの相変化冷却器9によって複数の発熱部品6の熱を拡散させる。具体的には、実施形態2の発熱部品6は、発熱量に差がある複数の発熱部品6によって構成される。複数の発熱部品6は、発熱量が最も大きい最大発熱部品と、発熱量が最も小さい最小発熱部品とを含む。最大発熱部品は、回路基板4に沿った方向において最小発熱部品よりもコネクタ5から離隔した位置に実装される。実施形態2の熱伝達部材8は、複数の発熱部品6のそれぞれの他方の面6bに接触する複数の熱伝達部材8によって構成される。実施形態2の相変化冷却器9は、最大発熱部品から最小発熱部品に向かって延びる。 In the in-vehicle electronic device 100 of the second embodiment, one phase change cooler 9 diffuses the heat of a plurality of heat-generating components 6 . Specifically, the heat-generating component 6 of the second embodiment is composed of a plurality of heat-generating components 6 having different heat generation amounts. The plurality of heat-generating components 6 includes a maximum heat-generating component that generates the largest amount of heat and a minimum heat-generating component that generates the smallest amount of heat. The component that generates the maximum heat is mounted at a position that is farther away from the connector 5 in the direction along the circuit board 4 than the component that generates the minimum heat. The heat transfer member 8 of the second embodiment is composed of a plurality of heat transfer members 8 in contact with the other surfaces 6b of the plurality of heat generating components 6, respectively. The phase change cooler 9 of Embodiment 2 extends from the maximum heat generating component to the minimum heat generating component.
 図3の例では、図中右側の相変化冷却器91によって複数の発熱部品61~63の熱を拡散させる。発熱部品61~63における発熱量の大小関係は、発熱部品61>発熱部品62>発熱部品63という関係になっている。複数の発熱部品61~63のうち、発熱部品61は最大発熱部品であり、発熱部品63は最小発熱部品である。最大発熱部品である発熱部品61は、コネクタ5から最も離隔した位置に実装される。発熱部品61の次に発熱量が大きい発熱部品62は、発熱部品61よりもコネクタ5に近い位置に実装される。最小発熱部品である発熱部品63は、コネクタ5から最も近い位置に実装される。すなわち、複数の発熱部品61~63は、コネクタ5から離隔するに従って発熱量が順次大きくなるように配置される。相変化冷却器91は、最大発熱部品である発熱部品61から最小発熱部品である発熱部品63に向かって延びるように形成される。 In the example of FIG. 3, the phase change cooler 91 on the right side of the figure diffuses the heat of the plurality of heat-generating components 61-63. The heat generating components 61 to 63 have a relationship of magnitude of heat generation as follows: heat generating component 61>heat generating component 62>heat generating component 63. FIG. Among the plurality of heat-generating components 61 to 63, the heat-generating component 61 is the maximum heat-generating component, and the heat-generating component 63 is the minimum heat-generating component. A heat-generating component 61 that is the largest heat-generating component is mounted at a position farthest from the connector 5 . A heat-generating component 62 that generates the next largest amount of heat after the heat-generating component 61 is mounted at a position closer to the connector 5 than the heat-generating component 61 . A heat-generating component 63 that is the smallest heat-generating component is mounted at a position closest to the connector 5 . That is, the plurality of heat-generating components 61 to 63 are arranged so that the amount of heat generated increases as the distance from the connector 5 increases. Phase change cooler 91 is formed to extend from heat generating component 61, which is the maximum heat generating component, toward heat generating component 63, which is the minimum heat generating component.
 同様に、図3の例では、図中左側の相変化冷却器92によって複数の発熱部品64~65の熱を拡散させる。発熱部品64~65における発熱量の大小関係は、発熱部品64>発熱部品65という関係になっており、最大発熱部品である発熱部品64がコネクタ5から最も離隔した位置に実装される。相変化冷却器92は、最大発熱部品である発熱部品64から最小発熱部品である発熱部品65に向かって延びるように形成される。 Similarly, in the example of FIG. 3, the phase change cooler 92 on the left side of the figure diffuses the heat of the plurality of heat-generating components 64-65. The heat generating components 64 to 65 have a heat generating component 64>heat generating component 65, and the heat generating component 64, which is the largest heat generating component, is mounted at a position farthest from the connector 5. FIG. Phase-change cooler 92 is formed to extend from heat-generating component 64, which is the maximum heat-generating component, toward heat-generating component 65, which is the minimum heat-generating component.
 相変化冷却器91の冷媒は、コネクタ5から最も離れた位置に実装された最大発熱部品である発熱部品61の熱を奪った後、発熱部品62→発熱部品63の順に熱を奪いながら、コネクタ5に近い一方の端部91aへと流れていく。同様に、相変化冷却器92の冷媒は、コネクタ5から最も離れた位置に実装された最大発熱部品である発熱部品64の熱を奪った後、発熱部品65の熱を奪いながら、コネクタ5に近い一方の端部92aへと流れていく。 The refrigerant of the phase change cooler 91 takes heat from the heat generating component 61, which is the largest heat generating component mounted at the farthest position from the connector 5, and then takes heat from the heat generating component 62→heat generating component 63 in order. 5 to one end 91a. Similarly, the refrigerant in the phase change cooler 92 takes heat from the heat generating component 64, which is the largest heat generating component mounted at the farthest position from the connector 5, and then moves to the connector 5 while taking heat from the heat generating component 65. It flows to the near one end 92a.
 ここで、複数の発熱部品61~63の発熱量が、コネクタ5から離隔するに従って発熱量が順次大きくなるような上記の関係ではなく、例えば逆の関係(発熱部品61<発熱部品62<発熱部品63)である場合、相変化冷却器91の冷媒がコネクタ5に近い一方の端部91aへと流れない可能性がある。本実施形態では、複数の発熱部品61~63が、コネクタ5から離隔するに従って発熱量が順次大きくなるように配置されるので、相変化冷却器91の冷媒が、複数の発熱部品61~63のそれぞれの熱を奪いながらコネクタ5に近い一方の端部92aへと流れ得る。複数の発熱部品64~65及び相変化冷却器92についても同様である。 Here, the heat generation amounts of the plurality of heat-generating components 61 to 63 are not in the above-described relationship in which the heat generation amounts increase sequentially as the distance from the connector 5 increases, but for example, the reverse relationship (heat-generating component 61<heat-generating component 62<heat-generating component 63), the refrigerant in the phase change cooler 91 may not flow to the one end 91 a closer to the connector 5 . In this embodiment, the plurality of heat generating components 61 to 63 are arranged so that the heat generation amount increases as the distance from the connector 5 increases. They can flow to one end 92a near the connector 5 while taking away their heat. The same applies to the plurality of heat-generating components 64-65 and the phase change cooler 92 as well.
 このように、実施形態2の相変化冷却器9は、筐体1に設けられ、複数の発熱部品6に含まれる最大発熱部品から最小発熱部品に向かって延びるように形成される。これにより、実施形態2の車載用電子装置100では、発熱量に差がある複数の発熱部品6を備える場合であっても、相変化冷却器9の熱拡散能力を最大限引き出し、複数の発熱部品6のそれぞれの熱を最小限の相変化冷却器9によって拡散させることができる。よって、実施形態2の車載用電子装置100では、発熱量に差がある複数の発熱部品6を備える場合であっても、相変化冷却器9の熱拡散能力を最大限引き出し、高い放熱性能を確保することができる。 Thus, the phase-change cooler 9 of the second embodiment is provided in the housing 1 and formed to extend from the largest heat-generating component included in the plurality of heat-generating components 6 toward the smallest heat-generating component. As a result, even when the in-vehicle electronic device 100 of the second embodiment includes a plurality of heat-generating components 6 having different heat generation amounts, the heat diffusion capability of the phase-change cooler 9 can be maximized and a plurality of heat-generating components can be generated. The heat of each component 6 can be spread by a minimal phase change cooler 9 . Therefore, in the vehicle-mounted electronic device 100 of the second embodiment, even when a plurality of heat-generating components 6 having different heat generation amounts are provided, the heat diffusion capability of the phase-change cooler 9 can be maximized, and high heat dissipation performance can be achieved. can be secured.
[実施形態3]
 図4を用いて、実施形態3の車載用電子装置100について説明する。実施形態3の車載用電子装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
 図4は、実施形態3の車載用電子装置100の説明図である。なお、図4は、図2に対応する図である。
[Embodiment 3]
A vehicle-mounted electronic device 100 according to the third embodiment will be described with reference to FIG. In the in-vehicle electronic device 100 of Embodiment 3, descriptions of the same configurations and operations as those of the previous embodiments are omitted.
FIG. 4 is an explanatory diagram of the in-vehicle electronic device 100 of the third embodiment. Note that FIG. 4 is a diagram corresponding to FIG.
 実施形態3の車載用電子装置100では、相変化冷却器9が、筐体1の内部に一体的に設けられる。具体的には、実施形態3の相変化冷却器9は、カバー2の天板部21の内部に一体的に設けられる。実施形態3の相変化冷却器9は、カバー2と同じ線膨張係数を有する材料、好ましくは、カバー2と同じ材料によって形成されてもよい。 In the in-vehicle electronic device 100 of Embodiment 3, the phase change cooler 9 is integrally provided inside the housing 1 . Specifically, the phase change cooler 9 of the third embodiment is integrally provided inside the top plate portion 21 of the cover 2 . The phase change cooler 9 of Embodiment 3 may be made of a material having the same coefficient of linear expansion as the cover 2, preferably the same material as the cover 2.
 これにより、実施形態3の車載用電子装置100では、相変化冷却器9と筐体1との接合部が無くなる。この結果、実施形態3の車載用電子装置100では、相変化冷却器9と筐体1との接合部における熱抵抗によって、放熱性能が低下することを抑制することができる。車載用電子装置100は、一般用又は産業用の電子装置と比べて、使用される環境(特に振動や温度等の環境)が過酷であるので、接合部の機械的信頼性を確保することは容易ではない。実施形態3の車載用電子装置100では、相変化冷却器9と筐体1との接合部が無くなるので、実施形態1のように相変化冷却器9を筐体1に接合する場合と比べて、機械的信頼性を向上させることができる。 Accordingly, in the in-vehicle electronic device 100 of Embodiment 3, there is no joint between the phase change cooler 9 and the housing 1 . As a result, in the in-vehicle electronic device 100 of the third embodiment, it is possible to suppress deterioration in heat dissipation performance due to thermal resistance at the junction between the phase change cooler 9 and the housing 1 . The vehicle-mounted electronic device 100 is used in a harsher environment (in particular, vibration, temperature, etc.) than general-purpose or industrial-use electronic devices. It's not easy. In the in-vehicle electronic device 100 of the third embodiment, since there is no joint between the phase change cooler 9 and the housing 1, compared to the case where the phase change cooler 9 is joined to the housing 1 as in the first embodiment, , the mechanical reliability can be improved.
[実施形態4]
 図5~図8を用いて、実施形態4の車載用電子装置100について説明する。実施形態4の車載用電子装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
 図5は、実施形態4の車載用電子装置100の外観構成を示す斜視図である。図6は、図5に示すB-B’線による車載用電子装置100の断面を示す斜視図である。図7は、第1天板部21a及び第2天板部21bを有するカバー2と低背発熱部品66及び高背発熱部品67との配置構造についての説明図である。図8は、第1天板部21a及び第2天板部21bを有しないカバー2と低背発熱部品66及び高背発熱部品67との配置構造についての説明図である。なお、図6では、断面のハッチングの図示を省略している。
[Embodiment 4]
An in-vehicle electronic device 100 according to the fourth embodiment will be described with reference to FIGS. 5 to 8. FIG. In the in-vehicle electronic device 100 of the fourth embodiment, descriptions of the same configurations and operations as those of the previous embodiments are omitted.
FIG. 5 is a perspective view showing the external configuration of the in-vehicle electronic device 100 of Embodiment 4. As shown in FIG. 6 is a perspective view showing a cross section of the in-vehicle electronic device 100 taken along line BB' shown in FIG. FIG. 7 is an explanatory diagram of the arrangement structure of the cover 2 having the first top plate portion 21a and the second top plate portion 21b and the low-height heat-generating component 66 and the high-height heat-generating component 67. As shown in FIG. FIG. 8 is an explanatory diagram of an arrangement structure of the cover 2 that does not have the first top plate portion 21a and the second top plate portion 21b, the low-height heat-generating component 66, and the high-height heat-generating component 67. As shown in FIG. In addition, in FIG. 6, the illustration of the hatching of a cross section is abbreviate|omitted.
 実施形態4の車載用電子装置100では、カバー2の天板部21が、凹凸形状を有していてもよい。具体的には、実施形態4のカバー2の天板部21は、第1距離D1だけ回路基板4から離隔した第1天板部21aと、第1距離D1よりも長い第2距離D2だけ回路基板4から離隔した第2天板部21bとを有する。実施形態4の相変化冷却器9は、第1天板部21a及び第2天板部21bの内部に一体的に設けられる。これにより、実施形態4の車載用電子装置100では、発熱部品6の回路基板4からの高さに応じて、発熱部品6と天板部21とのギャップGの長さを適切に設計することができる。なお、発熱部品6の回路基板4からの高さとは、発熱部品6が実装された回路基板4の面を基準とする発熱部品6の高さである。 In the in-vehicle electronic device 100 of Embodiment 4, the top plate portion 21 of the cover 2 may have an uneven shape. Specifically, the top plate portion 21 of the cover 2 of the fourth embodiment includes a first top plate portion 21a separated from the circuit board 4 by a first distance D1, and a circuit gap by a second distance D2 longer than the first distance D1. and a second top plate portion 21 b separated from the substrate 4 . The phase change cooler 9 of Embodiment 4 is integrally provided inside the first top plate portion 21a and the second top plate portion 21b. Thus, in the in-vehicle electronic device 100 of Embodiment 4, the length of the gap G between the heat generating component 6 and the top plate portion 21 can be appropriately designed according to the height of the heat generating component 6 from the circuit board 4. can be done. The height of the heat-generating component 6 from the circuit board 4 is the height of the heat-generating component 6 with respect to the surface of the circuit board 4 on which the heat-generating component 6 is mounted.
 このような第1天板部21a及び第2天板部21bを有するカバー2を備える実施形態4の車載用電子装置100では、図7に示すように、発熱部品6が、回路基板4からの高さに差がある複数の発熱部品6によって構成されてもよい。複数の発熱部品6は、回路基板4からの高さが低い低背発熱部品66と、回路基板4からの高さが高い高背発熱部品67とを含む。低背発熱部品66は、回路基板4の板厚方向において第1天板部21aと回路基板4との間に配置される。高背発熱部品67は、回路基板4の板厚方向において第2天板部21bと回路基板4との間に配置される。これにより、実施形態4の車載用電子装置100では、低背発熱部品66及び高背発熱部品67のそれぞれと天板部21とのギャップGの長さを適切な長さとすることができ、これらのギャップGの熱抵抗の増加を抑制することができる。 In the in-vehicle electronic device 100 of Embodiment 4 including the cover 2 having the first top plate portion 21a and the second top plate portion 21b, the heat generating component 6 is separated from the circuit board 4 as shown in FIG. It may be composed of a plurality of heat-generating components 6 having different heights. The multiple heat generating components 6 include a low heat generating component 66 having a low height from the circuit board 4 and a high heat generating component 67 having a high height from the circuit board 4 . The low-profile heat-generating component 66 is arranged between the first top plate portion 21 a and the circuit board 4 in the board thickness direction of the circuit board 4 . The tall heat-generating component 67 is arranged between the second top plate portion 21b and the circuit board 4 in the board thickness direction of the circuit board 4 . As a result, in the in-vehicle electronic device 100 of Embodiment 4, the length of the gap G between each of the low-height heat-generating component 66 and the high-height heat-generating component 67 and the top plate portion 21 can be set to an appropriate length. It is possible to suppress an increase in the thermal resistance of the gap G between.
 すなわち、図8に示すように、カバー2が第1天板部21a及び第2天板部21bを有しない場合、低背発熱部品66と天板部21とのギャップG’は、熱伝達部材8を厚くして埋める必要がある。これは、相変化冷却器9を備えるカバー2には、放熱台座を設けることが容易ではないからである。低背発熱部品66の回路基板4からの高さが低い程、ギャップG’の長さは長くなり、熱伝達部材8の厚さは厚くなる。熱伝達部材8の熱伝導率はカバー2及び相変化冷却器9よりも低いことから、ギャップG’の長さが長くなる程、次式に示すように、ギャップGの熱抵抗が増加する。よって、ギャップGの熱抵抗の増加を抑制するためには、ギャップGの長さを如何に短くするかが重要となる。
  ギャップGの熱抵抗=ギャップGの長さ/(熱伝達部材8の熱伝導率×面積)
That is, as shown in FIG. 8, when the cover 2 does not have the first top plate portion 21a and the second top plate portion 21b, the gap G′ between the low-profile heat-generating component 66 and the top plate portion 21 is a heat transfer member. 8 must be thickened and filled. This is because it is not easy to provide a heat radiation pedestal on the cover 2 having the phase change cooler 9 . The shorter the height of the low-profile heat-generating component 66 from the circuit board 4, the longer the length of the gap G' and the thicker the thickness of the heat transfer member 8. FIG. Since the thermal conductivity of the heat transfer member 8 is lower than that of the cover 2 and the phase-change cooler 9, the thermal resistance of the gap G increases as the length of the gap G' increases, as shown in the following equation. Therefore, in order to suppress the increase in the thermal resistance of the gap G, how to shorten the length of the gap G is important.
Thermal resistance of gap G=length of gap G/(thermal conductivity of heat transfer member 8×area)
 実施形態4の車載用電子装置100では、カバー2が第1天板部21a及び第2天板部21bを有し、低背発熱部品66及び高背発熱部品67のそれぞれと天板部21とのギャップGの長さを適切な長さとすることができる。これにより、実施形態4の車載用電子装置100では、回路基板4からの高さに差がある複数の発熱部品6を備える場合であっても、ギャップGの熱抵抗の増加を抑制することができるので、相変化冷却器9の熱拡散能力を最大限引き出し、複数の発熱部品6のそれぞれの熱を相変化冷却器9によって拡散させることができる。よって、実施形態4の車載用電子装置100では、回路基板4からの高さに差がある複数の発熱部品6を備える場合であっても、相変化冷却器9の熱拡散能力を最大限引き出し、高い放熱性能を確保することができる。 In the in-vehicle electronic device 100 of the fourth embodiment, the cover 2 has the first top plate portion 21a and the second top plate portion 21b, and the low-height heat-generating component 66 and the high-height heat-generating component 67 are respectively connected to the top plate portion 21. can be an appropriate length. As a result, even if the in-vehicle electronic device 100 of the fourth embodiment includes a plurality of heat-generating components 6 having different heights from the circuit board 4, it is possible to suppress an increase in the thermal resistance of the gap G. Therefore, the heat diffusion capability of the phase change cooler 9 can be maximized, and the heat of each of the plurality of heat generating components 6 can be diffused by the phase change cooler 9 . Therefore, in the vehicle-mounted electronic device 100 of Embodiment 4, even when a plurality of heat-generating components 6 having different heights from the circuit board 4 are provided, the heat diffusion capability of the phase-change cooler 9 can be maximized. , can ensure high heat dissipation performance.
[実施形態5]
 図9~図10を用いて、実施形態5の車載用電子装置100について説明する。実施形態5の車載用電子装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
 図9は、実施形態5の車載用電子装置100の一例についての説明図である。図10は、実施形態5の車載用電子装置100の他の一例についての説明図である。なお、図9及び図10のそれぞれは、図2に対応する図である。
[Embodiment 5]
An in-vehicle electronic device 100 according to Embodiment 5 will be described with reference to FIGS. 9 and 10. FIG. In the in-vehicle electronic device 100 of the fifth embodiment, descriptions of the same configurations and operations as those of the previous embodiments are omitted.
FIG. 9 is an explanatory diagram of an example of the in-vehicle electronic device 100 according to the fifth embodiment. FIG. 10 is an explanatory diagram of another example of the in-vehicle electronic device 100 of the fifth embodiment. 9 and 10 are diagrams corresponding to FIG.
 実施形態5の車載用電子装置100では、回路基板4が、両面実装が可能な回路基板である。コネクタ5は、回路基板4からの高さが発熱部品6よりも高い電子部品である。発熱部品6は、コネクタ5が実装された面4cとは反対側の回路基板4の面4dに実装される。相変化冷却器9は、発熱部品6が実装された回路基板4の面4dに対向するカバー2の天板部21に設けられる。 In the in-vehicle electronic device 100 of Embodiment 5, the circuit board 4 is a circuit board that can be mounted on both sides. The connector 5 is an electronic component whose height from the circuit board 4 is higher than that of the heat-generating component 6 . The heat-generating component 6 is mounted on the surface 4d of the circuit board 4 opposite to the surface 4c on which the connector 5 is mounted. The phase change cooler 9 is provided on the top plate portion 21 of the cover 2 facing the surface 4d of the circuit board 4 on which the heat generating component 6 is mounted.
 また、実施形態5の車載用電子装置100では、コネクタ5及び発熱部品6以外の回路基板4に実装される電子部品7として、低背電子部品71と高背電子部品72とを含んでもよい。低背電子部品71は、回路基板4からの高さが発熱部品6以下の電子部品7である。低背電子部品71は、発熱部品6が実装された回路基板4の面4dに実装される。高背電子部品72は、回路基板4からの高さが発熱部品6よりも高い電子部品7である。高背電子部品72は、コネクタ5が実装された回路基板4の面4cに実装される。高背電子部品72は、例えば、アルミ電解コンデンサ等である。 Further, in the vehicle-mounted electronic device 100 of Embodiment 5, the electronic components 7 mounted on the circuit board 4 other than the connector 5 and the heat-generating component 6 may include a low-profile electronic component 71 and a high-profile electronic component 72 . The low-profile electronic component 71 is the electronic component 7 whose height from the circuit board 4 is equal to or less than the heat-generating component 6 . The low-profile electronic component 71 is mounted on the surface 4d of the circuit board 4 on which the heat-generating component 6 is mounted. A tall electronic component 72 is an electronic component 7 whose height from the circuit board 4 is higher than that of the heat-generating component 6 . The tall electronic component 72 is mounted on the surface 4c of the circuit board 4 on which the connector 5 is mounted. The tall electronic component 72 is, for example, an aluminum electrolytic capacitor.
 このような構成により、実施形態5のカバー2では、図1及び図2に示すように、発熱部品6及びコネクタ5のそれぞれの回路基板4からの高さの差に応じて、天板部21を段付き形状とする必要がない。すなわち、実施形態5のカバー2は、図9に示すように、天板部21を、第2側板部22bから発熱部品6及びコネクタ5を越えて第1側板部22aに至るまで平坦な平板形状とすることができる。これにより、実施形態5の車載用電子装置100は、発熱部品6からコネクタ5に向かって延びる相変化冷却器9を、相変化冷却器9の延びる方向に沿って拡大することができる。例えば図9に示すように、相変化冷却器9から第1側板部22aの外表面までの距離L1が可能な限り短くなるように、相変化冷却器9を拡大することができる。相変化冷却器9を当該方向に沿って拡大することにより、例えば図10に示すように、発熱部品6から回路基板4の他方の端部4b側の端面までの距離L2が可能な限り短くなるように、発熱部品6を当該端面に近い位置に実装することができる。したがって、実施形態5の車載用電子装置100では、相変化冷却器9の面積を拡大することができるので、放熱面積を拡大することができる。更に、実施形態5の車載用電子装置100は、相変化冷却器9の延びる方向に沿って温度差を大きくすることができ、相変化冷却器9の高い熱拡散能力を更に維持することができる。よって、実施形態5の車載用電子装置100では、相変化冷却器9の熱拡散能力を更に引き出し、高い放熱性能を更に確保することができる。 With such a configuration, in the cover 2 of Embodiment 5, as shown in FIGS. need not be stepped. That is, as shown in FIG. 9, the cover 2 of the fifth embodiment has a top plate portion 21 in a flat plate shape from the second side plate portion 22b to the first side plate portion 22a beyond the heat-generating component 6 and the connector 5. can be As a result, the vehicle-mounted electronic device 100 of the fifth embodiment can expand the phase-change cooler 9 extending from the heat-generating component 6 toward the connector 5 along the direction in which the phase-change cooler 9 extends. For example, as shown in FIG. 9, the phase change cooler 9 can be enlarged so that the distance L1 from the phase change cooler 9 to the outer surface of the first side plate portion 22a is as short as possible. By enlarging the phase change cooler 9 along this direction, the distance L2 from the heat-generating component 6 to the end surface of the circuit board 4 on the other end 4b side becomes as short as possible, as shown in FIG. 10, for example. Thus, the heat-generating component 6 can be mounted at a position close to the end surface. Therefore, in the on-vehicle electronic device 100 of Embodiment 5, the area of the phase change cooler 9 can be increased, so that the heat dissipation area can be increased. Furthermore, the vehicle-mounted electronic device 100 of Embodiment 5 can increase the temperature difference along the extending direction of the phase-change cooler 9, and can further maintain the high heat diffusion capability of the phase-change cooler 9. . Therefore, in the in-vehicle electronic device 100 of Embodiment 5, the heat diffusion capability of the phase change cooler 9 can be further extracted, and high heat radiation performance can be further ensured.
 なお、実施形態4、5の車載用電子装置100では、相変化冷却器9がカバー2の天板部21の内部に一体的に設けられていたが、実施形態1と同様に、相変化冷却器9が天板部21の内表面に接合されていてもよい。 In the vehicle electronic device 100 of Embodiments 4 and 5, the phase change cooler 9 is integrally provided inside the top plate portion 21 of the cover 2. The container 9 may be joined to the inner surface of the top plate portion 21 .
[実施形態6]
 図11を用いて、実施形態6の車載用電子装置100について説明する。実施形態6の車載用電子装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
 図11は、実施形態6の車載用電子装置100の説明図である。なお、図11は、図2に対応する図である。
[Embodiment 6]
A vehicle-mounted electronic device 100 according to the sixth embodiment will be described with reference to FIG. 11 . In the in-vehicle electronic device 100 of Embodiment 6, descriptions of the same configurations and operations as those of the previous embodiments are omitted.
FIG. 11 is an explanatory diagram of the in-vehicle electronic device 100 of the sixth embodiment. Note that FIG. 11 is a diagram corresponding to FIG.
 実施形態6の車載用電子装置100では、回路基板4が、両面実装が可能な回路基板である。回路基板4は、発熱部品6が実装された領域の内部を、回路基板4の板厚方向に貫通するサーマルビア41を含む。相変化冷却器9は、第1相変化冷却器93と、第2相変化冷却器94とによって構成される。第1相変化冷却器93及び第2相変化冷却器94のそれぞれは、回路基板4に実装された発熱部品6からコネクタ5に向かって延びるように形成される。 In the vehicle-mounted electronic device 100 of Embodiment 6, the circuit board 4 is a circuit board that can be mounted on both sides. The circuit board 4 includes thermal vias 41 penetrating in the thickness direction of the circuit board 4 inside the region where the heat-generating component 6 is mounted. The phase change cooler 9 is composed of a first phase change cooler 93 and a second phase change cooler 94 . Each of the first phase change cooler 93 and the second phase change cooler 94 is formed to extend from the heat generating component 6 mounted on the circuit board 4 toward the connector 5 .
 第1相変化冷却器93は、筐体1に設けられた相変化冷却器9である。例えば、第1相変化冷却器93は、実施形態5と同様に、発熱部品6が実装された回路基板4の面4dに対向するカバー2の天板部21に設けられてもよい。第2相変化冷却器94は、発熱部品6が実装された回路基板4の面4dとは反対側の回路基板4の面4cに設けられ、サーマルビア41に接触する。例えば、第2相変化冷却器94は、サーマルビア41を覆うように回路基板4の面4cに接合されてもよい。第2相変化冷却器94と回路基板4の面4cとは、鉛フリーはんだ又は導電性接着材等を用いて接合されてもよい。 The first phase change cooler 93 is the phase change cooler 9 provided in the housing 1 . For example, the first phase change cooler 93 may be provided on the top plate portion 21 of the cover 2 facing the surface 4d of the circuit board 4 on which the heat generating component 6 is mounted, as in the fifth embodiment. The second phase change cooler 94 is provided on the surface 4 c of the circuit board 4 opposite to the surface 4 d of the circuit board 4 on which the heat generating component 6 is mounted, and contacts the thermal via 41 . For example, the second phase change cooler 94 may be bonded to the surface 4c of the circuit board 4 so as to cover the thermal vias 41 . The second phase change cooler 94 and the surface 4c of the circuit board 4 may be joined using lead-free solder, a conductive adhesive, or the like.
 また、実施形態6の車載用電子装置100は、実施形態5と同様に、発熱部品6が、コネクタ5が実装された面4cとは反対側の回路基板4の面4dに実装されてもよい。 Further, in the in-vehicle electronic device 100 of the sixth embodiment, the heat-generating component 6 may be mounted on the surface 4d of the circuit board 4 opposite to the surface 4c on which the connector 5 is mounted, as in the fifth embodiment. .
 このような構成により、実施形態6の車載用電子装置100は、第1相変化冷却器93が、実施形態5と同様に、発熱部品6の熱を拡散させることができる。更に、実施形態6の車載用電子装置100は、第2相変化冷却器94が、発熱部品6から回路基板4に伝わる熱を、第1相変化冷却器93と同様に拡散させることができる。よって、実施形態6の車載用電子装置100では、実施形態5よりも放熱性能を大幅に向上させることができる。 With such a configuration, in the vehicle-mounted electronic device 100 of the sixth embodiment, the first phase change cooler 93 can diffuse the heat of the heat-generating component 6 as in the fifth embodiment. Furthermore, in the vehicle-mounted electronic device 100 of Embodiment 6, the second phase change cooler 94 can diffuse the heat transferred from the heat-generating component 6 to the circuit board 4 in the same manner as the first phase change cooler 93 . Therefore, in the in-vehicle electronic device 100 of the sixth embodiment, the heat dissipation performance can be greatly improved as compared with the fifth embodiment.
 なお、実施形態6の車載用電子装置100では、第1相変化冷却器93がカバー2の天板部21の内部に一体的に設けられていたが、実施形態1と同様に、第1相変化冷却器93が天板部21の内表面に接合されていてもよい。 In addition, in the vehicle-mounted electronic device 100 of the sixth embodiment, the first phase change cooler 93 is integrally provided inside the top plate portion 21 of the cover 2. A variable cooler 93 may be joined to the inner surface of the top plate portion 21 .
[実施形態7]
 図12~図13を用いて、実施形態7の車載用電子装置100について説明する。実施形態7の車載用電子装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
 図12は、実施形態7の車載用電子装置100の一例についての説明図である。図13は、実施形態7の車載用電子装置100の他の一例についての説明図である。なお、図12及び図13のそれぞれは、図2に対応する図である。
[Embodiment 7]
An in-vehicle electronic device 100 according to Embodiment 7 will be described with reference to FIGS. 12 and 13. FIG. In the vehicle-mounted electronic device 100 of Embodiment 7, the description of the same configuration and operation as those of the previous embodiments will be omitted.
FIG. 12 is an explanatory diagram of an example of the in-vehicle electronic device 100 according to the seventh embodiment. FIG. 13 is an explanatory diagram of another example of the in-vehicle electronic device 100 of the seventh embodiment. 12 and 13 are diagrams corresponding to FIG. 2. FIG.
 実施形態7の車載用電子装置100では、相変化冷却器9が、カバー2を含む筐体1には設けられず、回路基板4だけに設けられる。具体的には、実施形態7の車載用電子装置100では、回路基板4が、両面実装が可能な回路基板である。回路基板4は、発熱部品6が実装された領域の内部を、回路基板4の板厚方向に貫通するサーマルビア41を含む。相変化冷却器9は、発熱部品6が実装された回路基板4の面4dとは反対側の回路基板4の面4cに設けられ、サーマルビア41に接触する。相変化冷却器9は、回路基板4に実装された発熱部品6からコネクタ5に向かって延びるように形成される。 In the vehicle-mounted electronic device 100 of Embodiment 7, the phase change cooler 9 is not provided in the housing 1 including the cover 2, but is provided only in the circuit board 4. Specifically, in the in-vehicle electronic device 100 of Embodiment 7, the circuit board 4 is a circuit board that can be mounted on both sides. The circuit board 4 includes thermal vias 41 penetrating in the thickness direction of the circuit board 4 inside the region where the heat-generating component 6 is mounted. The phase change cooler 9 is provided on the surface 4c of the circuit board 4 opposite to the surface 4d of the circuit board 4 on which the heat generating component 6 is mounted, and contacts the thermal via 41. As shown in FIG. Phase change cooler 9 is formed to extend from heat generating component 6 mounted on circuit board 4 toward connector 5 .
 また、実施形態7の車載用電子装置100は、例えば図12に示すように、発熱部品6が、コネクタ5が実装された面4cとは反対側の回路基板4の面4dに実装されてもよい。そして、発熱部品6は、熱伝達部材8を介してケース3に接触していてもよい。 Further, in the vehicle-mounted electronic device 100 of Embodiment 7, for example, as shown in FIG. good. The heat-generating component 6 may be in contact with the case 3 via the heat transfer member 8 .
 或いは、実施形態7の車載用電子装置100は、例えば図13に示すように、発熱部品6が、コネクタ5が実装された回路基板4の面4cに実装されてもよい。そして、発熱部品6は、熱伝達部材8を介してカバー2の天板部21に接触していてもよい。 Alternatively, in the in-vehicle electronic device 100 of Embodiment 7, for example, as shown in FIG. 13, the heat-generating component 6 may be mounted on the surface 4c of the circuit board 4 on which the connector 5 is mounted. The heat-generating component 6 may be in contact with the top plate portion 21 of the cover 2 via the heat transfer member 8 .
 このような構成により、実施形態7の車載用電子装置100では、カバー2を含む筐体1に相変化冷却器9を設けることができない場合であっても、相変化冷却器9を導入することができ、相変化冷却器9の熱拡散能力を利用して高い放熱性能を確保することができる。 With such a configuration, in the in-vehicle electronic device 100 of Embodiment 7, even if the phase change cooler 9 cannot be provided in the housing 1 including the cover 2, the phase change cooler 9 can be introduced. high heat dissipation performance can be ensured by utilizing the heat diffusion capability of the phase change cooler 9 .
[その他]
 なお、本発明は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、或る実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、或る実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[others]
In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Moreover, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 1…筐体、2…カバー、21a…第1天板部、21b…第2天板部、4…回路基板、41…サーマルビア、5…コネクタ、6…発熱部品、8…熱伝達部材、9…相変化冷却器、93…第1相変化冷却器、94…第2相変化冷却器、100…車載用電子装置 REFERENCE SIGNS LIST 1 housing 2 cover 21a first top plate portion 21b second top plate portion 4 circuit board 41 thermal via 5 connector 6 heat generating component 8 heat transfer member 9 phase change cooler, 93 first phase change cooler, 94 second phase change cooler, 100 in-vehicle electronic device

Claims (8)

  1.  回路基板に実装される一方の面と、前記回路基板の板厚方向において前記一方の面とは反対側にある他方の面とを有する発熱部品と、
     前記回路基板に実装され、外部装置に接続されるコネクタと、
     前記発熱部品及び前記コネクタが実装された前記回路基板を収容する筐体と、
     前記回路基板に実装された前記発熱部品から前記コネクタに向かって延び、冷媒の相変化を伴って熱を輸送する相変化冷却器と、
     前記発熱部品の前記他方の面と、前記筐体又は前記相変化冷却器とに接触する熱伝達部材と、を備える
     ことを特徴とする車載用電子装置。
    a heat-generating component having one surface mounted on a circuit board and the other surface opposite to the one surface in the thickness direction of the circuit board;
    a connector mounted on the circuit board and connected to an external device;
    a housing that houses the circuit board on which the heat-generating component and the connector are mounted;
    a phase-change cooler that extends from the heat-generating component mounted on the circuit board toward the connector and transports heat with a phase change of a coolant;
    An in-vehicle electronic device, comprising: a heat transfer member that contacts the other surface of the heat-generating component and the housing or the phase change cooler.
  2.  前記コネクタは、少なくとも前記回路基板の一方の端部に実装され、
     前記発熱部品は、少なくとも前記回路基板の他方の端部に実装され、
     前記相変化冷却器は、前記筐体に設けられ、前記他方の端部から前記一方の端部に向かって延びる
     ことを特徴とする請求項1に記載の車載用電子装置。
    The connector is mounted on at least one end of the circuit board,
    The heat-generating component is mounted at least on the other end of the circuit board,
    The in-vehicle electronic device according to claim 1, wherein the phase change cooler is provided in the housing and extends from the other end toward the one end.
  3.  前記発熱部品は、発熱量に差がある複数の前記発熱部品によって構成され、
     前記複数の発熱部品は、前記発熱量が最も大きい最大発熱部品と、前記発熱量が最も小さい最小発熱部品とを含み、
     前記最大発熱部品は、前記回路基板に沿った方向において前記最小発熱部品よりも前記コネクタから離隔した位置に実装され、
     前記熱伝達部材は、前記複数の発熱部品のそれぞれの前記他方の面に接触する複数の前記熱伝達部材によって構成され、
     前記相変化冷却器は、前記筐体に設けられ、前記最大発熱部品から前記最小発熱部品に向かって延びる
     ことを特徴とする請求項1に記載の車載用電子装置。
    The heat-generating component is composed of a plurality of heat-generating components having different heat generation amounts,
    The plurality of heat-generating components includes a maximum heat-generating component with the largest heat generation amount and a minimum heat-generating component with the smallest heat generation amount,
    The maximum heat generating component is mounted at a position further away from the connector than the minimum heat generating component in a direction along the circuit board,
    the heat transfer member is configured by a plurality of the heat transfer members contacting the other surface of each of the plurality of heat generating components,
    2. The in-vehicle electronic device according to claim 1, wherein the phase change cooler is provided in the housing and extends from the maximum heat generating component toward the minimum heat generating component.
  4.  前記筐体は、前記回路基板に実装された前記発熱部品から前記回路基板の板厚方向に離隔した状態で前記回路基板を覆うカバーを含み、
     前記カバーは、第1距離だけ前記回路基板から離隔した第1天板部と、前記第1距離よりも長い第2距離だけ前記回路基板から離隔した第2天板部とを有し、
     前記発熱部品は、前記回路基板からの高さに差がある複数の前記発熱部品によって構成され、
     前記複数の発熱部品は、前記回路基板からの前記高さが低い低背発熱部品と、前記回路基板からの前記高さが高い高背発熱部品と、を含み、
     前記低背発熱部品は、前記板厚方向において前記第1天板部と前記回路基板との間に配置され、
     前記高背発熱部品は、前記板厚方向において前記第2天板部と前記回路基板との間に配置され、
     前記相変化冷却器は、前記第1天板部及び前記第2天板部に設けられる
     ことを特徴とする請求項1に記載の車載用電子装置。
    The housing includes a cover that covers the circuit board while being separated from the heat-generating component mounted on the circuit board in the thickness direction of the circuit board,
    The cover has a first top plate portion separated from the circuit board by a first distance and a second top plate portion separated from the circuit board by a second distance longer than the first distance,
    The heat-generating component is composed of a plurality of heat-generating components having different heights from the circuit board,
    The plurality of heat generating components includes a low heat generating component having a low height from the circuit board and a high heat generating component having a high height from the circuit board,
    The low-profile heat-generating component is arranged between the first top plate portion and the circuit board in the plate thickness direction,
    The tall heat-generating component is arranged between the second top plate portion and the circuit board in the plate thickness direction,
    The in-vehicle electronic device according to claim 1, wherein the phase change cooler is provided on the first top plate portion and the second top plate portion.
  5.  前記筐体は、前記回路基板に実装された前記発熱部品から前記回路基板の板厚方向に離隔した状態で前記回路基板を覆うカバーを含み、
     前記相変化冷却器は、前記カバーの内部に一体的に設けられる
     ことを特徴とする請求項1に記載の車載用電子装置。
    The housing includes a cover that covers the circuit board while being separated from the heat-generating component mounted on the circuit board in the thickness direction of the circuit board,
    The in-vehicle electronic device according to claim 1, wherein the phase change cooler is integrally provided inside the cover.
  6.  前記回路基板は、両面実装が可能な回路基板であり、
     前記コネクタは、前記回路基板からの高さが前記発熱部品よりも高い電子部品であり、 前記発熱部品は、前記コネクタが実装された面とは反対側の前記回路基板の面に実装される
     ことを特徴とする請求項1に記載の車載用電子装置。
    The circuit board is a circuit board that can be mounted on both sides,
    The connector is an electronic component whose height from the circuit board is higher than the heat-generating component, and the heat-generating component is mounted on the surface of the circuit board opposite to the surface on which the connector is mounted. The in-vehicle electronic device according to claim 1, characterized by:
  7.  前記回路基板は、両面実装が可能な回路基板であり、前記発熱部品が実装された領域の内部を前記回路基板の板厚方向に貫通するサーマルビアを含み、
     前記相変化冷却器は、前記発熱部品が実装された面とは反対側の前記回路基板の面に設けられ、前記サーマルビアに接触する
     ことを特徴とする請求項1に記載の車載用電子装置。
    The circuit board is a circuit board that can be mounted on both sides, and includes a thermal via that penetrates the inside of the area where the heat generating component is mounted in the thickness direction of the circuit board,
    2. The in-vehicle electronic device according to claim 1, wherein the phase-change cooler is provided on the surface of the circuit board opposite to the surface on which the heat-generating component is mounted, and is in contact with the thermal via. .
  8.  前記回路基板は、両面実装が可能な回路基板であり、前記発熱部品が実装された領域の内部を前記回路基板の板厚方向に貫通するサーマルビアを含み、
     前記相変化冷却器は、前記筐体に設けられた第1相変化冷却器と、前記発熱部品が実装された面とは反対側の前記回路基板の面に設けられ前記サーマルビアに接触する第2相変化冷却器とによって構成される
     ことを特徴とする請求項1に記載の車載用電子装置。
    The circuit board is a circuit board that can be mounted on both sides, and includes a thermal via that penetrates the inside of the area where the heat generating component is mounted in the thickness direction of the circuit board,
    The phase change cooler includes a first phase change cooler provided in the housing and a second phase change cooler provided on the surface of the circuit board opposite to the surface on which the heat generating component is mounted and in contact with the thermal via. 2. The in-vehicle electronic device according to claim 1, further comprising a two-phase change cooler.
PCT/JP2021/035480 2021-02-24 2021-09-28 On-vehicle electronic device WO2022180909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502051A JPWO2022180909A1 (en) 2021-02-24 2021-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027864 2021-02-24
JP2021-027864 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022180909A1 true WO2022180909A1 (en) 2022-09-01

Family

ID=83048785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035480 WO2022180909A1 (en) 2021-02-24 2021-09-28 On-vehicle electronic device

Country Status (2)

Country Link
JP (1) JPWO2022180909A1 (en)
WO (1) WO2022180909A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218573A (en) * 2002-12-18 2003-07-31 Hitachi Ltd Method for manufacturing electronic unit casing
JP2008262974A (en) * 2007-04-10 2008-10-30 Sumitomo Electric Ind Ltd Semiconductor device
JP2009272353A (en) * 2008-04-30 2009-11-19 Yushin Precision Equipment Co Ltd Cooling structure for controller
JP2018085528A (en) * 2017-12-27 2018-05-31 日立オートモティブシステムズ株式会社 Box shaped on-vehicle control device
JP2018198335A (en) * 2018-09-11 2018-12-13 日立オートモティブシステムズ株式会社 Electronic control equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218573A (en) * 2002-12-18 2003-07-31 Hitachi Ltd Method for manufacturing electronic unit casing
JP2008262974A (en) * 2007-04-10 2008-10-30 Sumitomo Electric Ind Ltd Semiconductor device
JP2009272353A (en) * 2008-04-30 2009-11-19 Yushin Precision Equipment Co Ltd Cooling structure for controller
JP2018085528A (en) * 2017-12-27 2018-05-31 日立オートモティブシステムズ株式会社 Box shaped on-vehicle control device
JP2018198335A (en) * 2018-09-11 2018-12-13 日立オートモティブシステムズ株式会社 Electronic control equipment

Also Published As

Publication number Publication date
JPWO2022180909A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
TWI722736B (en) Heat sink
US7621316B2 (en) Heat sink with heat pipes and method for manufacturing the same
US6626233B1 (en) Bi-level heat sink
US5933323A (en) Electronic component lid that provides improved thermal dissipation
JP2006278041A (en) Back panel of backlight module
JP2004303866A (en) Heat sink with radiation fin and method for fixing radiation fin
US20130126139A1 (en) Heat transporting unit, electronic circuit board and electronic device
JP2009290118A (en) Electronic device
US20080068797A1 (en) Mounting assembly and electronic device with the mounting assembly
JPH11351769A (en) Heat sink
US20060227515A1 (en) Cooling apparatus for electronic device
JP3977378B2 (en) Module for cooling semiconductor elements
US8743547B2 (en) Electronic device having cooling structure
US20220117076A1 (en) Electronic device
JP4278720B2 (en) Plate heat pipe
EP3518072A1 (en) Heat transferring module
WO2012161002A1 (en) Flat plate cooling device, and method for using same
KR20110103387A (en) Heat pipe and electronic device
WO2022180909A1 (en) On-vehicle electronic device
JP3665508B2 (en) Heat sink with fins
JP2002246521A (en) Heat radiating fin and heat sink
US7239514B2 (en) Heat transfer structure for electronic devices
JP4360624B2 (en) Heat sink for semiconductor element cooling
JPH11101585A (en) Plate-type heat pump and its packaging structure
JP5624771B2 (en) Heat pipe and heat sink with heat pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928004

Country of ref document: EP

Kind code of ref document: A1