WO2022179040A1 - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
WO2022179040A1
WO2022179040A1 PCT/CN2021/107033 CN2021107033W WO2022179040A1 WO 2022179040 A1 WO2022179040 A1 WO 2022179040A1 CN 2021107033 W CN2021107033 W CN 2021107033W WO 2022179040 A1 WO2022179040 A1 WO 2022179040A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sub
frequency domain
data
target
Prior art date
Application number
PCT/CN2021/107033
Other languages
English (en)
French (fr)
Inventor
冯志勇
黄赛
赵艺帆
张奇勋
尉志青
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Priority to US18/245,762 priority Critical patent/US20230396482A1/en
Publication of WO2022179040A1 publication Critical patent/WO2022179040A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a signal processing method and device.
  • One vehicle (which can be referred to as the first vehicle) in the IoV system based on the integration of radar communication technology can generate a pulse signal carrying the radar signal and the data signal, and send it to another vehicle (which can be referred to as the second vehicle)
  • the pulse signal when the pulse signal reaches the second vehicle, will reflect the echo signal to the first vehicle.
  • the first vehicle can determine the distance to the second vehicle and the current traveling speed of the second vehicle relative to the first vehicle according to the echo signal.
  • a frequency domain signal including a pilot sequence and a data signal can be generated, wherein the pilot sequence is used as a radar signal, and the pilot sequence is a designated subcarrier and a designated OFDM (Orthogonal Frequency Division Multiplexing, positive) in the frequency domain signal.
  • a frequency division multiplexing) symbol, one subcarrier is a row vector of the frequency domain signal, and one OFDM symbol is a column vector of the frequency domain signal.
  • other elements except the above-mentioned designated subcarriers and designated OFDM symbols are data signals to be transmitted. Then, perform inverse fast discrete Fourier transform on the frequency domain signal to obtain a pulse signal.
  • the number of subcarriers and OFDM symbols contained in the frequency domain signal needs to be increased, that is, It is necessary to increase the spectrum resources used for transmitting the data signal, and further, the utilization rate of the spectrum resources is low.
  • the purpose of the embodiments of the present invention is to provide a signal processing method and apparatus, so as to improve the utilization rate of spectrum resources.
  • the specific technical solutions are as follows:
  • an embodiment of the present invention provides a signal processing system, where the signal processing system includes: a first device and a second device, wherein: the first device is used for Set the number of pilot sequences, divide the data bits in the data signal to be transmitted to obtain the first sub-data signal and the second sub-data signal; based on the data bits in the first sub-data signal, and the preset The corresponding relationship between the insertion positions and the data bits, determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position; according to the target insertion position, each pilot sequence and the The two sub-data signals are combined to obtain the first frequency domain signal; wherein, the second sub-data signal is located at an insertion position other than the target insertion position in the first frequency domain signal; A frequency domain signal is subjected to inverse fast discrete Fourier transform to obtain a pulse signal; the pulse signal is sent to the second device; the second device is used to perform discrete Fourier transform on the pulse
  • an embodiment of the present invention provides a signal processing method, the method is applied to a first device in a signal processing system, the signal processing system further includes a second device, and the method includes : based on the number of multiple preset pilot sequences, the data bits in the data signal to be transmitted are divided to obtain a first sub-data signal and a second sub-data signal; based on the data bits in the first sub-data signal , and the corresponding relationship between preset insertion positions and data bits, determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position; according to the target insertion position, for each pilot frequency The sequence and the second sub-data signal are combined to obtain the first frequency domain signal; wherein, the second sub-data signal is located at an insertion position other than the target insertion position in the first frequency domain signal ; Perform inverse fast discrete Fourier transform on the first frequency domain signal to obtain a pulse signal; send the pulse signal to the second device, so that
  • an embodiment of the present invention provides a signal processing method, where the method is applied to a second device in a signal processing system, the signal processing system further includes a first device, and the method includes : when receiving the pulse signal sent by the first device, perform discrete Fourier transform on the pulse signal to obtain a frequency domain signal corresponding to the pulse signal as the first frequency domain signal; wherein, the pulse signal The signal is: obtained by the first device performing inverse fast discrete Fourier transform on the first frequency domain signal; the first frequency domain signal is: the first device is based on the number of multiple preset pilot sequences , divide the data bits in the data signal to be transmitted to obtain a first sub-data signal and a second sub-data signal, and based on the data bits in the first sub-data signal, and the preset insertion position and data bits Corresponding relationship, determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position, and perform each pilot sequence and the second sub-data
  • the second sub-data signal is located at an insertion position other than the target insertion position in the first frequency-domain signal; for each sub-carrier in the first frequency-domain signal, Correlation processing is performed between the carrier and the locally stored pilot sequence to obtain a vector corresponding to the subcarrier as a target vector; if there is a target element in the target vector, the subcarrier is determined as a pilot sequence; The target element is larger than the element adjacent to the target element in the target vector; for the insertion position of each pilot sequence in the first frequency domain signal, the corresponding relationship between the preset insertion position and data bits , determine the data bit corresponding to the insertion position to obtain a first sub-data signal; perform demodulation processing on other sub-carriers except the pilot sequence in the first frequency domain signal to obtain a second sub-data signal; The first sub-data signal and the second sub-data signal are spliced to obtain the data signal sent by the first device.
  • an embodiment of the present invention provides a signal processing apparatus, the apparatus is applied to a first device in a signal processing system, the signal processing system further includes a second device, and the device includes : a dividing module, used for dividing the data bits in the data signal to be transmitted based on the number of multiple preset pilot sequences to obtain the first sub-data signal and the second sub-data signal; Describe the data bits in the first sub-data signal, and the corresponding relationship between the preset insertion positions and the data bits, determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position; combination; a module, configured to combine each pilot sequence and the second sub-data signal according to the target insertion position to obtain the first frequency domain signal; wherein, the second sub-data signal is located in the first other insertion positions other than the target insertion position in the frequency domain signal; a generating module for performing inverse fast discrete Fourier transform on the first frequency domain signal to obtain a
  • an embodiment of the present invention provides a signal processing apparatus, the apparatus is applied to a second device in a signal processing system, the signal processing system further includes a first device, and the apparatus includes : a first determination module, configured to perform discrete Fourier transform on the pulse signal when receiving the pulse signal sent by the first device, to obtain the frequency domain signal corresponding to the pulse signal, as the first frequency domain wherein, the pulse signal is obtained by the first device performing inverse fast discrete Fourier transform on the first frequency domain signal; the first frequency domain signal is: the first device is based on a plurality of pre- Set the number of pilot sequences, divide the data bits in the data signal to be transmitted, obtain the first sub-data signal and the second sub-data signal, and based on the data bits in the first sub-data signal, and preset The corresponding relationship between the insertion position and the data bit, determine the insertion position of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position, and according to the target
  • the third determining module is used for if the If there is a target element in the target vector, the subcarrier is determined as a pilot sequence; wherein, the target element is larger than the element adjacent to the target element in the target vector; the fourth determination module is used for each The insertion position of the pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bit, determines the data bit corresponding to the insertion position, and obtains the first sub-data signal; the demodulation module, is used to demodulate other sub-carriers except the pilot sequence in the first frequency domain signal to obtain a second sub-data signal; a splicing module is used to perform demodulation on the first sub-data signal and the The second sub-data signal is spliced to obtain the data signal sent by the first device.
  • An embodiment of the present invention also provides an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus; the memory is used for storing computer programs; The processor is configured to implement the steps of the signal processing method described in any one of the second aspect or the third aspect when executing the program stored in the memory.
  • Embodiments of the present invention further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the second aspect or the third aspect is implemented The signal processing method steps.
  • Embodiments of the present invention also provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the signal processing method described in any one of the second aspect or the third aspect.
  • the first device determines that the pilot sequence is in the first sub-data signal based on the data bits in the first sub-data signal obtained by dividing the data bits in the data signal, and the corresponding relationship between the insertion positions and the data bits.
  • the target insertion position in the frequency domain signal according to the target insertion position, combine the pilot sequence and the second sub-data signal obtained by dividing the data bits in the data signal to obtain the first frequency domain signal; send the pair to the second device.
  • the pulse signal corresponding to the first frequency domain signal.
  • the second device For each subcarrier in the first frequency domain signal corresponding to the pulse signal, the second device performs correlation processing on the subcarrier and the locally stored pilot sequence to obtain a target vector corresponding to the subcarrier; if there is a target in the target vector element, then determine the subcarrier as a pilot sequence; for the insertion position of each pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bits, determine the corresponding insertion position. data bits to obtain the first sub-data signal; demodulate the other sub-carriers except the pilot sequence in the first frequency domain signal to obtain the second sub-data signal; the first sub-data signal and the second sub-data signal Splicing is performed to obtain the data signal sent by the first device.
  • the second device can determine the transmitted data signal based on the insertion position of the pilot in the first frequency domain signal , there is no need to increase the number of subcarriers and OFDM symbols included in the first frequency domain signal, and a complete data signal can also be transmitted, that is, there is no need to increase the spectrum resources used for transmitting the data signal. Further, the utilization rate of spectrum resources can be improved. Of course, it is not necessary for any product or method of the present invention to achieve all of the advantages described above at the same time.
  • FIG. 1 is a flowchart of a signal processing method provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of another signal processing method provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of another signal processing method provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for determining a target distance and a target speed provided by an embodiment of the present invention
  • FIG. 5 is a flowchart of another signal processing method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a pulse signal provided by an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a signal processing apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of another signal processing apparatus provided by an embodiment of the present invention.
  • FIG. 9 is a structural diagram of an electronic device according to an embodiment of the present invention.
  • An embodiment of the present invention provides a signal processing system, the signal processing system includes: a first device and a second device, wherein:
  • the first device may divide the data bits in the data signal to be transmitted based on the number of multiple preset pilot sequences to obtain the first sub-data signal and the second sub-data signal; based on the data in the first sub-data signal bits, and the corresponding relationship between preset insertion positions and data bits, determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position; according to the target insertion position, for each pilot sequence Combining with the second sub-data signal to obtain a first frequency domain signal; wherein, the second sub-data signal is located in the first frequency domain signal at other insertion positions except the target insertion position; the first frequency domain signal is subjected to fast discrete Fourier transform Inverse Liye transform to obtain a pulse signal; send the pulse signal to the second device.
  • the second device may perform discrete Fourier transform on the received pulse signal to obtain a frequency domain signal corresponding to the pulse signal, which is used as the first frequency domain signal; for each subcarrier in the first frequency domain signal, the subcarrier Perform correlation processing with the locally stored pilot sequence to obtain the vector corresponding to the subcarrier as the target vector; if there is a target element in the target vector, then determine the subcarrier as the pilot sequence; wherein, the target element is greater than the target vector in the The element adjacent to the target element; for the insertion position of each pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bit, determine the data bit corresponding to the insertion position, and obtain the first a sub-data signal; demodulate other sub-carriers except the pilot sequence in the first frequency domain signal to obtain a second sub-data signal; splicing the first sub-data signal and the second sub-data signal to obtain the first sub-data signal A data signal sent by a device.
  • the second device may be based on the insertion position of the pilot in the first frequency domain signal , the transmitted data signal is determined, and the number of subcarriers and OFDM symbols contained in the first frequency domain signal does not need to be increased, and the complete data signal can also be transmitted, that is, the spectrum resource used for transmitting the data signal does not need to be increased. Furthermore, the utilization rate of spectrum resources can be improved.
  • FIG. 1 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • the method can be applied to the first device in the above-mentioned signal processing system.
  • the signal processing system further includes a second device, and the method may include The following steps:
  • S101 Divide data bits in a data signal to be transmitted based on the number of multiple preset pilot sequences to obtain a first sub-data signal and a second sub-data signal.
  • S102 Based on the data bits in the first sub-data signal and the preset correspondence between the insertion positions and the data bits, determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion positions .
  • S103 Combine each pilot sequence and the second sub-data signal according to the target insertion position to obtain a first frequency domain signal.
  • the second sub-data signal is located at an insertion position other than the target insertion position in the first frequency domain signal.
  • S104 Perform inverse fast discrete Fourier transform on the first frequency domain signal to obtain a pulse signal.
  • S105 Send a pulse signal to the second device, so that the second device performs discrete Fourier transform on the pulse signal to obtain a frequency domain signal corresponding to the pulse signal as the first frequency domain signal; for each of the first frequency domain signals For a subcarrier, perform correlation processing on the subcarrier and the pilot sequence stored locally by the second device to obtain a vector corresponding to the subcarrier as a target vector; if there is a target element in the target vector, then determine the subcarrier as a pilot frequency sequence; for the insertion position of each pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bit, determine the data bit corresponding to the insertion position, and obtain the first sub-data signal; Perform demodulation processing on other sub-carriers except the pilot sequence in the first frequency domain signal to obtain a second sub-data signal; splicing the first sub-data signal and the second sub-data signal to obtain the data sent by the first device Signal.
  • the target element is larger than the element adjacent to the target element
  • the second device may, however, be based on the insertion position of the pilot in the first frequency domain signal.
  • the transmitted data signal is determined, and the number of subcarriers and OFDM symbols contained in the first frequency domain signal does not need to be increased, and the complete data signal can also be transmitted, that is, the spectrum resource used for transmitting the data signal does not need to be increased. Furthermore, the utilization rate of spectrum resources can be improved.
  • the signal processing system may be a communication system using the radar communication integration technology.
  • the signal processing system may be a car networking system
  • the first device may be any vehicle in the car networking system
  • the second device may be a vehicle in the car networking system that receives the pulse signal sent by the first vehicle.
  • the multiple preset pilot sequences are the same, and the preset pilot sequences may be sequences with strong autocorrelation, for example, Barker codes, M sequences, or gold sequences.
  • step S101 may include the following steps:
  • the first sub-data signal is the first number of data bits in the data signal to be transmitted, or the first sub-data signal is the first number of data bits in the data signal to be transmitted; the first number is the pilot frequency A preset multiple of the number of sequences.
  • S1012 Determine other data bits except the first sub-data signal in the data signal to be transmitted as the second sub-data signal.
  • the first number is a preset multiple of the number of pilot sequences, and the preset multiple may be 2, or the preset multiple may also be 3, but is not limited thereto.
  • the number of pilot sequences can be set by technicians based on experience. For example, when the number of pilot sequences is 3 and the preset multiple is 2, the first number is 6, or the number of pilot sequences is 4, and the preset multiple is 6. 3, the first number is 12, but is not limited thereto.
  • the data signal to be transmitted may be: 111011100001101011001010010100, the number of pilot sequences is 2, and the preset multiple is 2. Accordingly, the first number is four. Further, the first device may determine that the first 4 data bits (ie 1110) in the data signal to be transmitted are the first sub-data signal, or the first device may determine that the last 4 data bits ( That is, 0100) is the first sub-data signal.
  • the preset corresponding relationship between the insertion position and the data bit may be: the corresponding relationship between the decimal value representing the insertion position and the binary data bit.
  • the number of data bits is the same as the preset multiple. For example, if the preset multiple is 2, the data bits in the above correspondence are two-digit binary. For example, the insertion position 0 corresponds to the data bit 00, and the insertion position 1 corresponds to the data bit 01. correspond. Or, if the preset multiple is 3, the data bits in the above correspondence are three-bit binary, for example, the insertion position 0 corresponds to the data bit 000, and the insertion position 1 corresponds to the data bit 001.
  • the insertion positions represent the positions of the subcarriers in the first frequency domain signal.
  • the insertion position is 0, which corresponds to the first subcarrier in the first frequency domain signal; the insertion position is 1, which corresponds to the second subcarrier in the first frequency domain signal; the insertion position is 2, which corresponds to the first frequency domain signal The 3rd subcarrier in the domain signal, and so on.
  • step S102 may include the following steps:
  • S1021 Group each data bit in the first sub-data signal according to the order of each data bit in the first sub-data signal, to obtain a plurality of data bit groups.
  • the number of data bits in each data bit group is a preset multiple.
  • the first device after grouping the first sub-data signal to obtain a plurality of data bit groups (which may be referred to as first groups), for the first first group, the first device may be in a preset insertion position. In the corresponding relationship with the data bits, the insertion positions corresponding to the data bits in the first first packet are determined. Then, in the first second number of subcarriers in the first frequency domain signal, the position of the subcarrier corresponding to the insertion position may be determined as the target insertion position.
  • first groups which may be referred to as first groups
  • the first device may determine the insertion position corresponding to the data bit in the second first group in the preset correspondence between the insertion position and the data bit, and then determine the first second number In the second number of subcarriers after the subcarriers, the position of the subcarrier corresponding to the insertion position is the target insertion position, and so on, until the insertion position corresponding to the data bits in each first packet is determined, and each lead can be obtained.
  • the respective insertion positions of the frequency sequences in the first frequency domain signal to be generated ie, respective target insertion positions).
  • the second number is the quotient of the number of subcarriers in the first frequency domain signal and the number of pilot sequences.
  • the number of subcarriers in the first frequency domain signal may be determined by a technician according to a bandwidth that can be used by the first device to transmit the pulse signal. For example, the available bandwidth of the first device for sending the pulse signal is 120KHz to 1.4MHz, and the bandwidth occupied by one subcarrier is 15KHz. The minimum number of subcarriers in the first frequency domain signal is 8 and the maximum is 72.
  • the first device may further divide subcarriers included in the first frequency domain signal to obtain multiple subcarrier groups, and the number of subcarrier groups is the same as the number of pilot sequences.
  • the subcarrier groups are in one-to-one correspondence with the first groups, and the position of one subcarrier group in each subcarrier group is consistent with the position of the corresponding first group in each first group.
  • the order of each subcarrier grouping is the order of each subcarrier grouping in the first frequency domain signal, and the order of each first grouping is the order of each first grouping in the first sub-data signal.
  • the number of subcarriers in each subcarrier group is the same, and the position of only one subcarrier in each subcarrier group is the target insertion position of the pilot sequence.
  • the first device may determine the insertion position corresponding to the data bit in the first group in the preset correspondence between the insertion position and the data bit, and then may determine that the first group corresponds to The position of the subcarrier corresponding to the insertion position in the subcarrier grouping is the target insertion position.
  • the number of sub-carriers in the first frequency domain signal is 16, the number of pilot sequences is 4, the first sub-data signal is: 01010010, the preset multiple is 2, and the first device responds to the first sub-data signal.
  • the first group obtained by grouping includes: 01, 01, 00, and 10.
  • the first device may divide the subcarriers included in the first frequency domain signal into 4 subcarrier groups, and each subcarrier group includes 4 subcarriers.
  • the first device can determine: the insertion position corresponding to 01 in the first first group is 1, that is, the first device can set the second subcarrier in the first subcarrier group as the pilot sequence; the second subcarrier The insertion position corresponding to 01 in the first group is 1, that is, the first device can set the second subcarrier in the second subcarrier group as the pilot sequence; the insertion position corresponding to 00 in the third first group is 0, that is, the first device can set the first subcarrier in the third subcarrier group as the pilot sequence; the insertion position corresponding to 10 in the fourth first group is 2, that is, the first device can set the fourth subcarrier The 3rd subcarrier in the carrier grouping is set as the pilot sequence.
  • the first device may set the subcarrier at the target insertion position in the first frequency domain signal as the pilot sequence. Then, the first device may further group the second sub-data signal according to the order of the data bits in the second sub-data signal, using the third number of data bits as a group, to obtain a plurality of data bit groups (which may be referred to as the second group). The third number is the number of data bits included in one pilot sequence. Then, the first device can set other subcarriers in the first frequency domain signal except the target insertion position as the data bits in the second group according to the order of each second group in the second sub-data signal, and can obtain The first frequency domain signal.
  • the first device may perform inverse fast discrete Fourier transform on the first frequency domain signal to obtain a pulse signal. Furthermore, the first device may send the generated pulse signal to the second device according to a preset pulse repetition interval. Among them, the pulse signal can be expressed as:
  • s(t) represents the pulse signal
  • L represents the sequence number of the subcarrier in a pulse signal
  • m represents the sequence number of the OFDM symbol in a pulse signal
  • u represents the sequence number of each pulse signal sent in the historical time period
  • A[L, m, u] represents the first frequency domain signal corresponding to a pulse signal
  • M represents the number of OFDM symbols in a pulse signal
  • U represents the number of pulse signals
  • N represents the number of subcarriers in a pulse signal
  • T represents the number of subcarriers in a pulse signal.
  • T s represents the duration of one OFDM symbol to which the cyclic prefix is added
  • T PRI represents the pulse repetition interval when the first device sends the pulse signal
  • x( ) represents the pulse shaping function.
  • the first device can modulate the pulse signal onto a high-frequency carrier with a frequency of fc to obtain a target signal, and send the target signal to the second device, where the target signal can be expressed as:
  • s(t)′ represents the target signal, means to take The real part of , s(t) represents the pulse signal, e represents the natural constant, j represents the imaginary unit, and f c represents the frequency of the high-frequency carrier.
  • the second device may process the pulse signal to obtain the data signal sent by the first device.
  • the second device may process the pulse signal to obtain the data signal sent by the first device.
  • the signal processing system may be a car networking system
  • the first device is any vehicle in the car networking system
  • the second device is a vehicle that receives a pulse signal sent by the first device.
  • the first device can also determine the distance between the first device and the second device (which may be referred to as a target distance), and the current moving speed of the second device relative to the first device (which may be referred to as a target speed).
  • FIG. 4 is a flowchart of a method for determining a target distance and a target speed provided by an embodiment of the present invention, and the method may include the following steps:
  • S402 Calculate the distance between the first device and the second device, and the current moving speed of the second device relative to the first device, based on the distance Doppler map.
  • the first device may send multiple pulse signals to the second device according to a preset pulse repetition interval.
  • Each pulse signal will be reflected when it reaches the second device, and each reflected pulse signal will be superimposed when it reaches the first device, and each superimposed pulse signal is an echo signal in the embodiment of the present invention.
  • the historical time period is one coherent processing time
  • one coherent processing time is the duration of one OFDM frame signal
  • the duration of one OFDM frame signal is 10ms.
  • the first device can determine the distance Doppler map between the first device and the second device according to the echo signal, and calculate the distance between the first device and the second device based on the distance Doppler map (ie the target distance), and the current movement speed of the second device relative to the first device (ie the target speed).
  • the echo signal can be expressed as:
  • r(t) represents the echo signal
  • G represents the total number of second devices
  • c represents the speed of light
  • ⁇ g represents the attenuation coefficient of the pulse signal when it is transmitted between the first device and the g-th second device
  • f c represents the th
  • the frequency of the high-frequency carrier of the pulse signal sent by a device R g represents the distance between the first device and the g-th second device
  • v g represents the current moving speed of the g-th second device relative to the first device
  • e represents a natural constant
  • j represents an imaginary unit
  • ⁇ (t) represents white Gaussian noise
  • t represents the moment when the first device sends the first pulse signal in each pulse signal, Indicates the time period from when the first device sends the first pulse signal to when the first device receives the echo signal.
  • step S401 may include the following steps:
  • Step 1 When receiving the echo signals reflected when each pulse signal sent by the first device within the historical time period reaches the second device, sample the echo signals according to the preset sampling interval to obtain the sampled signals, and analyze the echo signals.
  • the sampled signal is subjected to discrete Fourier transform to obtain a frequency domain signal corresponding to each pulse signal as a second frequency domain signal.
  • the second frequency domain signal is:
  • r[L, m, u] represents the second frequency domain signal
  • N represents the number of sub-carriers in a pulse signal
  • L represents the serial number of the sub-carriers in a pulse signal
  • the serial number of a sub-carrier represents the sub-carrier in the pulse signal.
  • the position in the pulse signal m represents the serial number of the OFDM symbol in a pulse signal
  • the serial number of an OFDM symbol represents the position of the OFDM symbol in the pulse signal
  • u represents the serial number of each pulse signal sent in the historical time period
  • a The serial number of the pulse signal represents the sequence in which the first device sends the pulse signal
  • A[L, m, u] represents the first frequency domain signal corresponding to a pulse signal
  • T represents the duration of an OFDM symbol without adding a cyclic prefix
  • T s represents the duration of one OFDM symbol with a cyclic prefix added
  • T PRI represents the pulse repetition interval when the first device sends each pulse signal
  • Step 2 Discrete Fourier transform is performed on the second frequency domain signal to obtain a third frequency domain signal corresponding to each pulse signal.
  • the third frequency domain signal is:
  • P[L, m, u] represents the third frequency domain signal.
  • Step 3 Determine the pilot sequence in the third frequency domain signal as a pilot signal.
  • Step 4 Perform matched filtering on the pilot frequency domain signal to obtain a fourth frequency domain signal corresponding to each pulse signal.
  • the fourth frequency domain signal is:
  • E[L, k, u] represents the fourth frequency domain signal
  • ⁇ [L, k] represents the pilot sequence in a pulse signal after matched filtering
  • i represents the target insertion position of each pilot sequence in a pulse signal
  • k represents the serial number of the column vector of the third frequency domain signal after matched filtering
  • the serial number of a column vector represents the position of the column vector in the third frequency domain signal.
  • Step 5 Divide the fourth frequency domain signal to obtain a plurality of matrices to be processed. Among them, a plurality of matrices to be processed are in one-to-one correspondence with each pulse signal.
  • Step 6 For each matrix to be processed, determine the largest element in each row vector in the matrix to be processed as the first element.
  • Step 7 Use each first element in each matrix to be processed as a column vector to obtain the target matrix.
  • Step 8 Perform inverse fast Fourier transform on the row vector and column vector of the target matrix, respectively, to obtain a distance Doppler map between the first device and the second device.
  • the distance Doppler map is:
  • E[r,v] represents the range Doppler map
  • U represents the number of pulse signals
  • N 1 represents the number of pilot sequences in a pulse signal
  • E[L, u] represents the target matrix
  • r represents the range Doppler
  • the first device may sample the received echo signal according to a preset sampling interval to obtain a sampled signal.
  • the preset sampling interval may be: uT PRI +mT s +bT, where b is a positive integer, for example, b may be 0, or 1, or 2, but not limited thereto.
  • the first device may perform discrete Fourier transform on the sampled signal to obtain a second frequency domain signal as shown in formula (4).
  • the first device may further perform discrete Fourier transform on the second frequency domain signal to obtain a third frequency domain signal as shown in formula (5).
  • the first device may also determine a pilot sequence in the third frequency domain signal, and extract the determined pilot sequence from the third frequency domain signal to obtain a pilot signal.
  • the manner in which the first device determines the pilot sequence in the third frequency domain signal is similar to the manner in which the second device determines the pilot sequence in the first frequency domain signal, and reference may be made to related introductions in subsequent embodiments.
  • the echo signal received by the first device is obtained by superimposing each reflected pulse signal, that is to say, the echo signal includes each reflected pulse signal.
  • the third frequency-domain signal determined based on the echo signal includes a frequency-domain signal (which may be referred to as a sub-frequency-domain signal) corresponding to each pulse signal.
  • the pilot sequence in the third frequency domain signal is also the pilot sequence in each pulse signal, that is, the pilot signal includes the pilot sequence in each pulse signal. Therefore, the fourth frequency domain signal obtained by performing matched filtering on the pilot signal includes the pilot sequence in each pulse signal after the matched filtering.
  • the first device may divide the fourth frequency domain signal, that is, determine the pilot sequence (ie, the matrix to be processed) in each pulse signal after matched filtering from the fourth frequency domain signal.
  • the first device may determine the number of pilot sequences in each pulse signal (ie, N 1 ), and then, the first device may take N 1 row vectors as a matrix to be processed, and perform the processing for the fourth frequency
  • the domain signal is divided to obtain multiple matrices to be processed.
  • the first device may determine the largest element in each row vector in the matrix to be processed as the first element, and use each first element in each matrix to be processed as a column vector , get the target matrix.
  • the echo signal received by the first device is obtained by superimposing five reflected pulse signals
  • the third frequency domain signal includes sub-frequency domain signals corresponding to the five pulse signals
  • the pilot signal includes the five pulse signals.
  • the first device may divide the fourth frequency domain signal into 5 matrices to be processed according to every 3 row vectors as a matrix to be processed.
  • For each matrix to be processed determine the largest element (ie, the first element) in each row vector of the matrix to be processed, obtain 3 elements, and use the 3 elements as a column vector of the target matrix. Furthermore, a target matrix including the first element in each matrix to be processed can be obtained, and the dimension of the target matrix is 3*5.
  • the first device may also perform inverse fast Fourier transform on the row vector and column vector of the target matrix, respectively, to obtain a range Doppler map between the first device and the second device as shown in formula (7).
  • step S402 may include the following steps:
  • Step 1 Determine the number of rows in the range Doppler map where the elements are larger than the preset threshold as the first value, and the number of columns where the elements in the range Doppler map are larger than the preset threshold are determined as the second value.
  • Step 2 Determine the distance between the first device and the second device based on the first value and the first preset formula.
  • the first preset formula is:
  • R g represents the distance between the first device and the g-th second device
  • c represents the speed of light
  • N represents the number of sub-carriers in a pulse signal
  • x g represents the distance between the g-th device and the second device in the Doppler map greater than the preset threshold
  • T represents the duration of an OFDM symbol without adding a cyclic prefix;
  • Step 3 Determine the current moving speed of the second device relative to the first device based on the second value and the second preset formula.
  • the second preset formula is:
  • v g represents the current moving speed of the g-th second device relative to the first device
  • U represents the number of pulse signals sent in the historical time period
  • c represents the speed of light
  • y g represents the distance in the Doppler graph where the g-th device is greater than The second value corresponding to the element of the preset threshold
  • T PRI represents the pulse repetition interval when the first device sends the pulse signal
  • f c represents the frequency of the high-frequency carrier of each pulse signal sent by the first device.
  • the first device may perform inverse fast discrete Fourier transform on each row vector of the range Doppler matrix, to obtain the following formula (10):
  • ⁇ (x g ) represents the g-th target element
  • N 1 represents the number of pilot sequences in one pulse signal
  • R g represents the distance between the first device and the g-th second device
  • c represents the speed of light
  • x g represents the second value of the g-th target element
  • L represents the sequence number of the sub-carrier in a pulse signal.
  • the target distance calculation formula shown in the above formula (8) can be obtained based on the above formula (10). Furthermore, the first device may determine the distance between the first device and the second device based on the above formula (8).
  • the first device can also perform inverse fast discrete Fourier transform on each column vector of the range Doppler matrix, to obtain the following formula (10):
  • ⁇ (y g ) represents the g-th target element
  • U represents the number in the pulse signal
  • v g represents the current moving speed of the g-th second device relative to the first device
  • c represents the speed of light
  • y g represents the g-th target
  • u represents the serial number of the pulse signal
  • T PRI represents the pulse repetition interval when the first device sends the pulse signal
  • f c represents the frequency of the high-frequency carrier that the first device sends the pulse signal
  • c represents the speed of light.
  • the target speed calculation formula shown in the above formula (9) can be obtained based on the above formula (11). Furthermore, the first device may determine the current moving speed of the second device relative to the first device based on the above formula (9).
  • the accuracy of the target distance that the first device can determine can be expressed as:
  • ⁇ R represents the accuracy of the target distance
  • B represents the bandwidth that can be used by the first device to send the pulse signal
  • c represents the speed of light.
  • the accuracy of the target distance is related to the bandwidth that can be used by the first device to send the pulse signal. Therefore, it can be obtained that the maximum distance that can be determined by the first device under the condition of the highest accuracy (which can be referred to as the first maximum distance) can be expressed as:
  • R max 1 represents the first maximum distance
  • N 1 represents the number of pilot sequences in one pulse signal.
  • the number of pilot sequences may be set to a number greater than 2, which can improve the utilization rate of spectrum resources and at the same time increase the first maximum distance.
  • the accuracy of the target velocity that the first device can determine can be expressed as:
  • ⁇ v represents the accuracy of the target speed
  • c represents the speed of light
  • U represents the number of pulse signals
  • T PRI represents the pulse repetition interval when the first device sends the pulse signal
  • f c represents the frequency of the high-frequency carrier that the first device sends the pulse signal.
  • Velocity can be expressed as:
  • v max represents the maximum speed that the first device can determine.
  • the spectrum resource utilization rate (which may be referred to as the first utilization rate) based on the signal processing method provided by the embodiment of the present invention may be expressed as:
  • represents the first utilization rate
  • ⁇ 0 represents the spectrum resource utilization rate based on the prior art (which can be called the second utilization rate)
  • represents the difference between the first utilization rate and the second utilization rate
  • represents the frequency in a pulse signal.
  • m represents the sequence number of the OFDM symbol in a pulse signal
  • M represents the number of OFDM symbols in a pulse signal.
  • part of the subcarriers in the pulse signal is set as a pilot sequence, and the other part is set as a data signal.
  • the first maximum distance is positively correlated with the number of pilot sequences, so increasing the number of pilot sequences can increase the first maximum distance of the first device, but it will reduce the transmitted data signal and reduce the transmission rate of the data signal. Therefore, the data transmission rate (which may be referred to as the first transmission rate) based on the signal processing method provided by the embodiment of the present invention can be expressed as:
  • the data transfer rate (which can be called the second transfer rate) based on the prior art can be expressed as:
  • ⁇ 1 represents the first transmission rate
  • N 1 represents the number of pilot sequences in one pulse signal
  • N 2 represents the number of sub-carriers set as data signals in one pulse signal
  • represents the pilot sequence in one pulse signal
  • M represents the number of OFDM symbols in a pulse signal
  • m represents the sequence number of OFDM symbols in a pulse signal
  • represents the cyclic prefix in an OFDM symbol.
  • N represents the number of all subcarriers contained in a pulse signal
  • B represents the bandwidth that the first device can use to send the pulse signal
  • T PRI represents the pulse repetition interval when the first device sends the pulse signal
  • T s represents adding a cyclic prefix
  • the duration of one OFDM symbol, ⁇ 0 represents the second transmission rate.
  • the relational expression between the first maximum distance and the first transmission rate based on the signal processing method provided by the embodiment of the present invention can be obtained as:
  • the relationship between the maximum distance (the second maximum distance) that can be determined by the first device and the second transmission rate is expressed as:
  • N 1 represents the number of pilot sequences in a pulse signal
  • represents the ratio of the number of pilot sequences in a pulse signal to the number of all sub-carriers contained in the pulse signal
  • R max 1 represents the first maximum distance
  • R max 2 represents the second maximum distance
  • c represents the speed of light.
  • the signal processing method provided by the embodiment of the present invention can transmit more data signals than the prior art. , which can improve the transmission rate of the data signal.
  • the first maximum distance is greater than the second maximum distance.
  • FIG. 5 is a flowchart of another signal processing method provided by an embodiment of the present invention.
  • the method can be applied to the second device in the above-mentioned signal processing system.
  • the signal processing system further includes a first device, and the method can Include the following steps:
  • S501 When receiving the pulse signal sent by the first device, perform discrete Fourier transform on the pulse signal to obtain a frequency domain signal corresponding to the pulse signal, which is used as the first frequency domain signal.
  • the pulse signal is obtained by the first device performing inverse fast discrete Fourier transform on the first frequency domain signal;
  • the first frequency domain signal is: the first device is to be transmitted based on the number of multiple preset pilot sequences
  • the data bits in the data signal are divided to obtain the first sub-data signal and the second sub-data signal, and based on the data bits in the first sub-data signal and the preset correspondence between the insertion positions and the data bits, determine each
  • the respective insertion positions of the pilot sequences in the first frequency domain signal to be generated are taken as the target insertion positions, and each pilot sequence and the second sub-data signal are combined according to the target insertion positions to obtain; the second sub-data signal Other insertion positions other than the target insertion position in the first frequency domain signal.
  • S502 For each subcarrier in the first frequency domain signal, perform correlation processing on the subcarrier and the locally stored pilot sequence to obtain a vector corresponding to the subcarrier as a target vector.
  • S503 If there is a target element in the target vector, determine the subcarrier as a pilot sequence. Among them, the target element is larger than the element adjacent to the target element in the target vector.
  • S505 Perform demodulation processing on other sub-carriers except the pilot sequence in the first frequency domain signal to obtain a second sub-data signal.
  • S506 Splicing the first sub-data signal and the second sub-data signal to obtain a data signal sent by the first device.
  • the second device may, however, be based on the insertion position of the pilot in the first frequency domain signal.
  • the transmitted data signal is determined, and the number of subcarriers and OFDM symbols contained in the first frequency domain signal does not need to be increased, and the complete data signal can also be transmitted, that is, the spectrum resource used for transmitting the data signal does not need to be increased. Furthermore, the utilization rate of spectrum resources can be improved.
  • the first device may generate a pulse signal including a pilot sequence and a data signal, and send the pulse signal to the second device.
  • the second device may perform discrete Fourier transform on the pulse signal to obtain a frequency domain signal corresponding to the pulse signal, as the first frequency domain signal.
  • the second device can perform correlation processing on the sub-carrier and the locally stored pilot sequence to obtain a vector corresponding to the sub-carrier as a target vector . If there is a target element larger than adjacent elements in the target vector, the subcarrier is determined as a pilot sequence.
  • step S504 may include the following steps:
  • Step 1 For the insertion position of each pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bit, determine the data bit corresponding to the insertion position.
  • Step 2 According to the order of the insertion positions in the first frequency domain signal, splicing the data bits corresponding to the insertion positions to obtain a first sub-data signal.
  • the corresponding relationship between the preset insertion position stored in the second device and the data bits is the same as the preset insertion position stored in the first device.
  • the corresponding relationship is the same as that of the data bits.
  • the insertion positions of the pilot sequence are 0, 1 and 3.
  • the data bit corresponding to insertion position 0 is 00
  • the data bit corresponding to insertion position 1 is 01
  • the data bit corresponding to insertion position 3 is 10, then the second device can determine that the first sub-data signal is: 000110.
  • the second device may determine other subcarriers (which may be referred to as data carriers) in the first frequency domain signal except for the pilot sequence, and then the second device may perform demodulation processing on the data subcarriers, A second sub-data signal is obtained. Furthermore, the second device may splicing the first sub-data signal and the second sub-data signal to obtain the data signal sent by the first device.
  • subcarriers which may be referred to as data carriers
  • FIG. 6 is a schematic diagram of a pulse signal provided by an embodiment of the present invention.
  • an OFDM frame signal that is, U (U is 5 in FIG. 6 ) pulse signals sent within one coherent processing time.
  • the part shown by the dotted box is an OFDM pulse (ie, a pulse signal).
  • Each pulse signal includes M (M is 3 in FIG. 6 ) OFDM symbols and N (N is 12 in FIG. 6 ) subcarriers.
  • the subcarriers shown in the black part in each pulse signal are the subcarriers set as the pilot sequence, and the other subcarriers except the black part are the subcarriers set as the data signal.
  • the first device sends each pulse signal according to a preset pulse repetition interval (ie, T PRI ).
  • each pulse signal includes 3 pilot sequences
  • the 12 subcarriers included in the pulse signal are divided into 3 subcarrier groups
  • each subcarrier group includes 4 subcarriers
  • each subcarrier group includes a pilot sequence.
  • data bit 00 corresponds to the first subcarrier
  • data bit 01 corresponds to the second subcarrier
  • data bit 10 corresponds to the third subcarrier
  • data bit 11 corresponds to the fourth subcarrier corresponding to the carrier. Therefore, the data signal indicated by the insertion position of the pilot sequence in each pulse signal shown in FIG. 6 is 111011100001101011001010010100.
  • FIG. 7 is a structural diagram of a signal processing apparatus provided by an embodiment of the present invention.
  • the apparatus is applied to a first device in a signal processing system, and the signal processing system further includes a first device. 2.
  • the apparatus includes: a dividing module 701, configured to divide the data bits in the data signal to be transmitted based on the number of multiple preset pilot sequences to obtain a first sub-data signal and a second sub-data signal; determine Module 702, configured to determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated based on the data bits in the first sub-data signal and the preset correspondence between the insertion positions and the data bits, as a target insertion position; the combining module 703 is configured to combine each pilot sequence and the second sub-data signal according to the target insertion position to obtain a first frequency-domain signal; wherein, the second sub-data signal is located in the first frequency-domain signal Other insertion positions except the target insertion position; the generating module 704 is used to perform inverse fast discrete Fourier transform on the first frequency domain signal to obtain a pulse signal; the sending module 705 is used to send the pulse signal to the second device to obtain a pulse signal.
  • a dividing module 701 configured to divide the data bits in the data signal
  • the second device perform discrete Fourier transform on the pulse signal to obtain a frequency domain signal corresponding to the pulse signal as the first frequency domain signal; for each subcarrier in the first frequency domain signal, the subcarrier and the second
  • the pilot sequence stored locally by the device performs correlation processing to obtain the vector corresponding to the sub-carrier as the target vector; if there is a target element in the target vector, the sub-carrier is determined as the pilot sequence; for each pilot sequence in the first An insertion position in a frequency domain signal, in the preset correspondence between the insertion position and the data bit, determine the data bit corresponding to the insertion position to obtain the first sub-data signal; remove the pilot sequence from the first frequency domain signal Perform demodulation processing on other sub-carriers other than the sub-carrier to obtain the second sub-data signal; splicing the first sub-data signal and the second sub-data signal to obtain the data signal sent by the first device; wherein, the target element is greater than the Elements adjacent to the target element.
  • the dividing module 701 is specifically configured to determine a first number of consecutive data bits from the data signal to be transmitted as the first sub-data signal; wherein, the first sub-data signal is one of the data signals to be transmitted.
  • the first first number of data bits, or, the first sub-data signal is the second first number of data bits in the data signal to be transmitted; the first number is a preset multiple of the number of pilot sequences; determine the data signal to be transmitted
  • the other data bits except the first sub-data signal are regarded as the second sub-data signal.
  • the determining module 702 is specifically configured to group the data bits in the first sub-data signal according to the order of the data bits in the first sub-data signal to obtain multiple data bit groups;
  • the number of data bits in the data bit grouping is a preset multiple; for each data bit grouping, in the preset correspondence between the insertion positions and the data bits, determine the insertion position corresponding to the data bits in the data bit grouping, and obtain The respective insertion positions of each pilot sequence in the to-be-generated first frequency domain signal are used as target insertion positions.
  • the apparatus further includes: a processing module configured to determine the first device based on the echo signal when receiving the echo signal reflected when each pulse signal sent by the first device within the historical time period reaches the second device. a distance Doppler map with the second device; based on the distance Doppler map, calculate the distance between the first device and the second device, and the current moving speed of the second device relative to the first device.
  • the echo signal is:
  • r(t) represents the echo signal
  • G represents the total number of second devices
  • c represents the speed of light
  • ⁇ g represents the attenuation coefficient of the pulse signal when it is transmitted between the first device and the g-th second device
  • f c represents the th
  • the frequency of the high-frequency carrier of the pulse signal sent by a device R g represents the distance between the first device and the g-th second device
  • v g represents the current moving speed of the g-th second device relative to the first device
  • e represents a natural constant
  • j represents an imaginary unit
  • ⁇ (t) represents white Gaussian noise
  • t represents the moment when the first device sends the first pulse signal in each pulse signal, Indicates the time period from when the first device sends the first pulse signal to when the first device receives the echo signal;
  • the processing module is specifically configured to sample the echo signals according to a preset sampling interval when receiving the echo signals reflected when each pulse signal sent by the first device within the historical time period reaches the second device to obtain the sampled signals , and perform discrete Fourier transform on the sampled signal to obtain the frequency domain signal corresponding to each pulse signal as the second frequency domain signal; wherein, the second frequency domain signal is:
  • r[L, m, u] represents the second frequency domain signal
  • N represents the number of sub-carriers in a pulse signal
  • L represents the serial number of the sub-carriers in a pulse signal
  • the serial number of a sub-carrier represents the sub-carrier in the pulse signal.
  • the position in the pulse signal, m represents the sequence number of the orthogonal frequency division multiplexing OFDM symbol in a pulse signal
  • the sequence number of an OFDM symbol represents the position of the OFDM symbol in the pulse signal
  • u represents each transmission in the historical time period.
  • the serial number of the pulse signal, the serial number of a pulse signal indicates the order in which the first device sends the pulse signal;
  • A[L, m, u] indicates the first frequency domain signal corresponding to a pulse signal;
  • T indicates an OFDM without adding a cyclic prefix The duration of the symbol;
  • T s represents the duration of one OFDM symbol with a cyclic prefix added;
  • T PRI represents the pulse repetition interval when the first device sends each pulse signal;
  • the discrete Fourier transform is performed on the second frequency domain signal to obtain the third frequency domain signal corresponding to each pulse signal, wherein the third frequency domain signal is:
  • P[L, m, u] represents the third frequency domain signal
  • the pilot signal is matched and filtered to obtain the fourth frequency domain signal corresponding to each pulse signal; wherein, the fourth frequency domain signal is:
  • E[L, k, u] represents the fourth frequency domain signal
  • ⁇ [L, k] represents each pilot sequence in a pulse signal after matched filtering
  • i represents the target insertion of each pilot sequence in a pulse signal position
  • k represents the serial number of the column vector in the third frequency domain signal after matched filtering
  • the serial number of a column vector represents the position of the column vector in the third frequency domain signal
  • E[r,v] represents the range Doppler map
  • U represents the number of pulse signals
  • N 1 represents the number of pilot sequences in a pulse signal
  • E[L, u] represents the target matrix
  • r represents the range Doppler
  • a processing module which is specifically used to determine the number of rows in the distance Doppler map where the elements greater than the preset threshold are located, as the first value, and the number of columns where the elements greater than the preset threshold are located in the distance Doppler map, as the second value; based on the first value and the first preset formula, determine the distance between the first device and the second device; wherein, the first preset formula is:
  • R g represents the distance between the first device and the g-th second device
  • c represents the speed of light
  • N represents the number of sub-carriers in a pulse signal
  • x g represents the distance between the g-th device and the second device in the Doppler map greater than the preset threshold
  • T represents the duration of an OFDM symbol without adding a cyclic prefix;
  • the second preset formula determines the current moving speed of the second device relative to the first device; wherein, the second preset formula is:
  • v g represents the current moving speed of the g-th second device relative to the first device
  • U represents the number of pulse signals sent in the historical time period
  • c represents the speed of light
  • y g represents the distance in the Doppler graph where the g-th device is greater than The second value corresponding to the element of the preset threshold
  • T PRI represents the pulse repetition interval when the first device sends the pulse signal
  • f c represents the frequency of the high-frequency carrier of each pulse signal sent by the first device.
  • the second device may, however, be based on the insertion position of the pilot in the first frequency domain signal.
  • the transmitted data signal is determined, and the number of subcarriers and OFDM symbols contained in the first frequency domain signal does not need to be increased, and the complete data signal can also be transmitted, that is, the spectrum resource used for transmitting the data signal does not need to be increased. Furthermore, the utilization rate of spectrum resources can be improved.
  • FIG. 8 is a structural diagram of another signal processing apparatus provided by an embodiment of the present invention.
  • the apparatus is applied to a second device in a signal processing system, and the signal processing system further includes:
  • the first device the device includes: a first determination module 801, configured to perform discrete Fourier transform on the pulse signal when receiving the pulse signal sent by the first device, and obtain a frequency domain signal corresponding to the pulse signal, which is used as the first frequency signal.
  • the pulse signal is obtained by the first device performing inverse fast discrete Fourier transform on the first frequency domain signal;
  • the first frequency domain signal is: the first device is based on the number of multiple preset pilot sequences , divide the data bits in the data signal to be transmitted to obtain the first sub-data signal and the second sub-data signal, and based on the data bits in the first sub-data signal, and the preset insertion position and the corresponding relationship between the data bits , determine the respective insertion positions of each pilot sequence in the first frequency domain signal to be generated, as the target insertion position, and combine each pilot sequence and the second sub-data signal according to the target insertion position;
  • the sub-data signal is located at other insertion positions other than the target insertion position in the first frequency domain signal;
  • the second determination module 802 is configured to, for each sub-carrier in the first frequency-domain signal, compare the sub-carrier with the locally stored guide.
  • Correlation processing is performed on the frequency sequence to obtain a vector corresponding to the subcarrier as a target vector; the third determination module 803 is used to determine the subcarrier as a pilot sequence if there is a target element in the target vector; wherein, the target element is greater than The element adjacent to the target element in the target vector; the fourth determination module 804 is used for the insertion position of each pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bits, Determining the data bit corresponding to the insertion position to obtain the first sub-data signal; the demodulation module 805 is used for demodulating other sub-carriers except the pilot sequence in the first frequency domain signal to obtain the second sub-data signal ; The splicing module 806 is used for splicing the first sub-data signal and the second sub-data signal to obtain the data signal sent by the first device.
  • the fourth determining module 804 is specifically configured to, for the insertion position of each pilot sequence in the first frequency domain signal, in the preset correspondence between the insertion position and the data bits, determine the corresponding insertion position.
  • Data bits according to the order of the insertion positions in the first frequency domain signal, splicing the data bits corresponding to the insertion positions to obtain the first sub-data signal.
  • the second device may, however, be based on the insertion position of the pilot in the first frequency domain signal.
  • the transmitted data signal is determined, and the number of subcarriers and OFDM symbols contained in the first frequency domain signal does not need to be increased, and the complete data signal can also be transmitted, that is, the spectrum resource used for transmitting the data signal does not need to be increased. Furthermore, the utilization rate of spectrum resources can be improved.
  • An embodiment of the present invention further provides an electronic device, as shown in FIG. 9 , including a processor 901 , a communication interface 902 , a memory 903 and a communication bus 904 , wherein the processor 901 , the communication interface 902 , and the memory 903 pass through the communication bus 904 After completing the mutual communication, the memory 903 is used to store the computer program; the processor 901 is used to implement the steps of any of the above signal processing methods when executing the program stored in the memory 903 .
  • the communication bus mentioned in the above electronic device may be a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like.
  • PCI peripheral component interconnect standard
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above electronic device and other devices.
  • the memory may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk storage.
  • RAM Random Access Memory
  • NVM non-Volatile Memory
  • the memory may also be at least one storage device located away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP), dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium is also provided, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the above signal processing methods is implemented A step of.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明实施例提供了一种信号处理方法及装置,第一设备基于对数据信号划分得到的第一子数据信号中的数据比特,确定导频序列在第一频域信号中的目标***位置;按照目标***位置对导频序列和对数据信号划分得到的第二子数据信号进行组合,得到第一频域信号;向第二设备发送第一频域信号对应的脉冲信号。第二设备确定脉冲信号对应的第一频域信号中的导频序列,并确定每一导频序列在第一频域信号中的***位置对应的数据比特,得到第一子数据信号;对第一频域信号中除导频序列外的其他子载波进行解调处理得到第二子数据信号;对第一子数据信号和第二子数据信号进行拼接得到对应的数据信号。基于上述处理,可以提高频谱资源的利用率。

Description

一种信号处理方法及装置 技术领域
本发明涉及通信技术领域,特别是涉及一种信号处理方法及装置。
背景技术
基于雷达通信一体化技术的车联网***中的一个车辆(可以称为第一车辆),可以生成携带有雷达信号和数据信号的脉冲信号,并向另一个车辆(可以称为第二车辆)发送脉冲信号,脉冲信号到达第二车辆时会向第一车辆反射回波信号。进而,第一车辆可以根据该回波信号,确定与第二车辆之间的距离,以及第二车辆当前相对于第一车辆的行驶速度。
现有技术中,可以生成包含导频序列和数据信号的频域信号,其中,导频序列作为雷达信号,导频序列为频域信号中的指定子载波和指定OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,一个子载波为频域信号的一个行向量,一个OFDM符号为频域信号的一个列向量。频域信号中,除上述指定子载波和指定OFDM符号以外的其他元素均为待传输的数据信号。然后,对该频域信号进行快速离散傅里叶逆变换,得到脉冲信号。
然而,由于将频域信号中的一个子载波和一个OFDM符号设置为导频序列,为了能够发送完整的数据信号,则需要增加频域信号包含的子载波和OFDM符号的数目,也就是说,需要增加传输数据信号所使用频谱资源,进而,导致频谱资源的利用率较低。
发明内容
本发明实施例的目的在于提供一种信号处理方法及装置,以提高频谱资源的利用率。具体技术方案如下:
第一方面,为了达到上述目的,本发明实施例提供了一种信号处理***,所述信号处理***包括:第一设备和第二设备,其中:所述第一设备,用于基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合,得到所述第一频域信号; 其中,所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;对所述第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;向所述第二设备发送所述脉冲信号;所述第二设备,用于对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;针对所述第一频域信号中的每一子载波,对该子载波与所述第二设备本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素;针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号。
第二方面,为了达到上述目的,本发明实施例提供了一种信号处理方法,所述方法应用于信号处理***中的第一设备,所述信号处理***还包括第二设备,所述方法包括:基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合,得到所述第一频域信号;其中,所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;对所述第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;向所述第二设备发送所述脉冲信号,以使所述第二设备对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;针对所述第一频域信号中的每一子载波,对该子载波与所述第二设备本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素。
第三方面,为了达到上述目的,本发明实施例提供了一种信号处理方法, 所述方法应用于信号处理***中的第二设备,所述信号处理***还包括第一设备,所述方法包括:当接收到所述第一设备发送的脉冲信号时,对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;其中,所述脉冲信号为:所述第一设备对第一频域信号进行快速离散傅里叶逆变换得到的;所述第一频域信号为:所述第一设备基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,并基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,并按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合得到的;所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;针对所述第一频域信号中的每一子载波,对该子载波与本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素;针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号。
第四方面,为了达到上述目的,本发明实施例提供了一种信号处理装置,所述装置应用于信号处理***中的第一设备,所述信号处理***还包括第二设备,所述装置包括:划分模块,用于基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;确定模块,用于基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;组合模块,用于按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合,得到所述第一频域信号;其中,所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;生成模块,用于对所述第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;发送模块,用于向所述第二设备发送所述脉冲信号,以使所述第二设备对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;针对所述第一频域信号中的每一子载波,对该子载波与所述第二设备本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果所述目标向量中存在目标元素,则将该子载波确 定为导频序列;针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素。
第五方面,为了达到上述目的,本发明实施例提供了一种信号处理装置,所述装置应用于信号处理***中的第二设备,所述信号处理***还包括第一设备,所述装置包括:第一确定模块,用于当接收到所述第一设备发送的脉冲信号时,对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;其中,所述脉冲信号为:所述第一设备对第一频域信号进行快速离散傅里叶逆变换得到的;所述第一频域信号为:所述第一设备基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,并基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,并按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合得到的;所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;第二确定模块,用于针对所述第一频域信号中的每一子载波,对该子载波与本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;第三确定模块,用于如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素;第四确定模块,用于针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;解调模块,用于对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;拼接模块,用于对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号。
本发明实施例还提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现上述第二方面或者第三方面任一所述的信号处理方法步骤。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介 质内存储有计算机程序,所述计算机程序被处理器执行时实现上述第二方面或者第三方面任一所述的信号处理方法步骤。
本发明实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或者第三方面任一所述的信号处理方法。
本发明实施例提供的技术方案,第一设备基于对数据信号中的数据比特划分得到的第一子数据信号中的数据比特,以及***位置与数据比特的对应关系,确定导频序列在第一频域信号中的目标***位置;按照目标***位置,对导频序列和对数据信号中的数据比特划分得到的第二子数据信号进行组合,得到第一频域信号;向第二设备发送对第一频域信号对应的脉冲信号。针对脉冲信号对应的第一频域信号中的每一子载波,第二设备对该子载波与本地存储的导频序列进行相关处理,得到该子载波对应的目标向量;如果目标向量中存在目标元素,则将该子载波确定为导频序列;针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对第一频域信号中除导频序列外的其他子载波进行解调处理,得到第二子数据信号;对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号。
基于上述处理,虽然也要将第一频域信号中的部分子载波设置为导频序列,然而,第二设备可以基于导频在第一频域信号中的***位置,确定出传输的数据信号,也就不需要增加第一频域信号包含的子载波和OFDM符号的数目,也可以传输完整的数据信号,即不需要增加传输数据信号所使用的频谱资源。进而可以提高频谱资源的利用率。当然,实施本发明的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本发明实施例提供的一种信号处理方法的流程图;
图2为本发明实施例提供的另一种信号处理方法的流程图;
图3为本发明实施例提供的另一种信号处理方法的流程图;
图4为本发明实施例提供的一种确定目标距离和目标速度的方法的流程图;
图5为本发明实施例提供的另一种信号处理方法的流程图;
图6为本发明实施例提供的一种脉冲信号的示意图;
图7为本发明实施例提供的一种信号处理装置的结构图;
图8为本发明实施例提供的另一种信号处理装置的结构图;
图9为本发明实施例提供的一种电子设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种信号处理***,该信号处理***包括:第一设备和第二设备,其中:
第一设备可以基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;基于第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;按照目标***位置,对各个导频序列和第二子数据信号进行组合,得到第一频域信号;其中,第二子数据信号位于第一频域信号中除目标***位置以外的其他***位置;对第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;向第二设备发送脉冲信号。第二设备可以对接收到的脉冲信号进行离散傅里叶变换,得到脉冲信号对应的频域信号,作为第一频域信号;针对第一频域信号中的每一子载波,对该子载波与本地存储的导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果目标向量中存在目标元素,则将该子载波确定为导频序列;其中,目标元素大于目标向量中与目标元素相邻的元素;针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对第一频域信号中除导频序列外的其他子载波进行解调处理,得到第二子数据信号;对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号。
基于本发明实施例提供的信号处理***,虽然也要将第一频域信号中的部分子载波设置为导频序列,然而,第二设备可以基于导频在第一频域信号中的***位置,确定出传输的数据信号,也就不需要增加第一频域信号包含的子载 波和OFDM符号的数目,也可以传输完整的数据信号,即不需要增加传输数据信号所使用的频谱资源。进而,可以提高频谱资源的利用率。
针对上述信号处理***的其他实施例,可以参考后续关于第一设备和第二设备的方法实施例的相关介绍。
参见图1,图1为本发明实施例提供的一种信号处理方法的流程图,该方法可以应用于上述信号处理***中的第一设备,信号处理***还包括第二设备,该方法可以包括以下步骤:
S101:基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号。
S102:基于第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置。
S103:按照目标***位置,对各个导频序列和第二子数据信号进行组合,得到第一频域信号。其中,第二子数据信号位于第一频域信号中除目标***位置以外的其他***位置。
S104:对第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号。
S105:向第二设备发送脉冲信号,以使第二设备对脉冲信号进行离散傅里叶变换,得到脉冲信号对应的频域信号,作为第一频域信号;针对第一频域信号中的每一子载波,对该子载波与第二设备本地存储的导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果目标向量中存在目标元素,则将该子载波确定为导频序列;针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对第一频域信号中除导频序列外的其他子载波进行解调处理,得到第二子数据信号;对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号。其中,目标元素大于目标向量中与目标元素相邻的元素。
基于本发明实施例提供的信号处理方法,虽然也要将第一频域信号中的部分子载波设置为导频序列,然而,第二设备可以基于导频在第一频域信号中的***位置,确定出传输的数据信号,也就不需要增加第一频域信号包含的子载波和OFDM符号的数目,也可以传输完整的数据信号,即不需要增加传输数据信号所使用的频谱资源。进而,可以提高频谱资源的利用率。
在步骤S201中,信号处理***可以为使用雷达通信一体化技术的通信***。例如,信号处理***可以为车联网***,相应的,第一设备可以为车联网***中的任一个车辆,第二设备可以为车联网***中接收第一车辆发送的脉冲信号的车辆。多个预设的导频序列相同,预设的导频序列可以为自相关性较强的序列,例如,可以为巴克码,或者也可以为M序列,或者也可以为gold序列。
在本发明的一个实施例中,参见图2,步骤S101可以包括以下步骤:
S1011:从待传输的数据信号中,确定第一数目个连续的数据比特,作为第一子数据信号。其中,第一子数据信号为待传输的数据信号中前第一数目个数据比特,或者,第一子数据信号为待传输的数据信号中后第一数目个数据比特;第一数目为导频序列的数目的预设倍数。
S1012:确定待传输的数据信号中除第一子数据信号外的其他数据比特,作为第二子数据信号。
第一数目为导频序列的数目的预设倍数,预设倍数可以为2,或者预设倍数也可以为3,但并不限于此。导频序列的数目可以由技术人员根据经验设置,例如,导频序列的数目为3,预设倍数为2时,第一数目为6,或者,导频序列的数目为4,预设倍数为3时,第一数目为12,但并不限于此。
示例性的,待传输的数据信号可以为:111011100001101011001010010100,导频序列的数目为2,预设倍数为2。相应的,第一数目为4。进而,第一设备可以确定待传输的数据信号中的前4个数据比特(即1110)为第一子数据信号,或者,第一设备可以确定待传输的数据信号中的后4个数据比特(即0100)为第一子数据信号。
在步骤S102中,预设的***位置与数据比特的对应关系可以为:表示***位置的十进制数值与二进制数据比特的对应关系。数据比特的位数与预设倍数相同,例如,预设倍数为2,则上述对应关系中的数据比特为两位二进制,例如,***位置0与数据比特00对应,***位置1与数据比特01对应。或者,预设倍数为3,则上述对应关系中的数据比特为三位二进制,例如,***位置0与数据比特000对应,***位置1与数据比特001对应。***位置表示第一频域信号中子载波的位置。例如,***位置为0,其对应第一频域信号中的第1个子载波;***位置为1,其对应第一频域信号中的第2个子载波;***位置为2,其对应第一频域信号中的第3个子载波,以此类推。
在本发明的一个实施例中,参见图3,步骤S102可以包括以下步骤:
S1021:按照第一子数据信号中的各数据比特的顺序,对第一子数据信号中的各数据比特进行分组,得到多个数据比特分组。其中,每一数据比特分组中的数据比特的数目为预设倍数。
S1022:针对每一数据比特分组,在预设的***位置与数据比特的对应关系中,确定该数据比特分组中的数据比特对应的***位置,得到各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置。
一种实现方式中,在对第一子数据信号进行分组,得到多个数据比特分组(可以称为第一分组)之后,针对第一个第一分组,第一设备可以在预设的***位置与数据比特的对应关系中,确定第一个第一分组中的数据比特对应的***位置。然后,可以确定第一频域信号中前第二数目个子载波中,该***位置对应的子载波的位置为目标***位置。然后针对第二个第一分组,第一设备可以在预设的***位置与数据比特的对应关系中,确定第二个第一分组中的数据比特对应的***位置,进而,确定前第二数目个子载波之后的第二数目个子载波中,该***位置对应的子载波的位置为目标***位置,以此类推,直至确定出每一个第一分组中的数据比特对应的***位置,可以得到各个导频序列各自在待生成的第一频域信号中的***位置(即各个目标***位置)。
其中,第二数目为第一频域信号中的子载波的数目与导频序列的数目的商。第一频域信号中的子载波的数目可以由技术人员根据第一设备发送脉冲信号能够使用的带宽确定。例如,第一设备发送脉冲信号可使用的带宽为120KHz至1.4MHz,一个子载波所占的带宽为15KHz,则第一频域信号中的子载波的数目最小为8,最大为72。
另一种实现方式中,第一设备还可以对第一频域信号包含的子载波进行划分,得到多个子载波分组,子载波分组的数目与导频序列的数目相同。子载波分组与第一分组一一对应,一个子载波分组在各个子载波分组中的位置与对应的第一分组在各个第一分组中的位置一致。各个子载波分组的顺序为各子载波分组在第一频域信号中的顺序,各个第一分组中的顺序为各个第一分组在第一子数据信号中的顺序。每一子载波分组中的子载波的数目相同,每一子载波分组中的仅有一个子载波的位置为导频序列的目标***位置。然后,针对每一第一分组,第一设备可以在预设的***位置与数据比特的对应关系中,确定该第一分组中的数据比特对应的***位置,然后,可以确定该第一分组对应的子载波分组中该***位置对应的子载波的位置为目标***位置。
示例性的,第一频域信号中的子载波的数目为16,导频序列的数目为4, 第一子数据信号为:01010010,预设倍数为2,第一设备对第一子数据信号进行分组得到的第一分组包括:01,01,00,10。第一设备可以将第一频域信号包含的子载波划分为4个子载波分组,每一子载波分组均包含4个子载波。然后,第一设备可以确定:第一个第一分组中的01对应的***位置为1,即第一设备可以将第1个子载波分组中的第2个子载波设置为导频序列;第二个第一分组中的01对应的***位置为1,即第一设备可以将第2个子载波分组中的第2个子载波设置为导频序列;第三个第一分组中的00对应的***位置为0,即第一设备可以将第3个子载波分组中的第1个子载波设置为导频序列;第四个第一分组中的10对应的***位置为2,即第一设备可以将第4个子载波分组中的第3个子载波设置为导频序列。
一种实现方式中,第一设备可以将第一频域信号中的目标***位置的子载波设置为导频序列。然后,第一设备还可以按照数据比特在第二子数据信号中的顺序,以第三数目个数据比特为一组,对第二子数据信号进行分组,得到多个数据比特分组(可以称为第二分组)。其中,第三数目为一个导频序列包含的数据比特的数目。然后,第一设备可以按照各个第二分组在第二子数据信号中的顺序,将第一频域信号中除目标***位置外的其他子载波,设置为第二分组中的数据比特,可以得到第一频域信号。
然后,第一设备可以对第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号。进而,第一设备可以按照预设的脉冲重复间隔,向第二设备发送生成的脉冲信号。其中,脉冲信号可以表示为:
Figure PCTCN2021107033-appb-000001
s(t)表示脉冲信号,L表示一个脉冲信号中的子载波的序号,m表示一个脉冲信号中的OFDM符号的序号,u表示历史时间段内发送的各脉冲信号的序号;A[L,m,u]表示一个脉冲信号对应的第一频域信号,M表示一个脉冲信号中的OFDM符号的数目,U表示脉冲信号的数目,N表示一个脉冲信号中的子载波的数目,T表示未添加循环前缀的一个OFDM符号的持续时间,T s表示添加循环前缀的一个OFDM符号的持续时间,T PRI表示第一设备发送脉冲信号时的脉冲重复间隔,x()表示脉冲整形函数。
第一设备可以将脉冲信号调制到频率为f c的高频载波上,得到目标信号,并向第二设备发送目标信号,其中,目标信号可以表示为:
Figure PCTCN2021107033-appb-000002
s(t)′表示目标信号,
Figure PCTCN2021107033-appb-000003
表示取
Figure PCTCN2021107033-appb-000004
的实部,s(t)表示脉冲信号,e表示自然常数,j表示虚数单位,f c表示高频载波的频率。
相应的,第二设备接收到脉冲信号之后,可以对脉冲信号进行处理,以获取第一设备发送的数据信号。第二设备的具体处理方式可以参见后续实施例的相关介绍。
在本发明的一个实施例中,信号处理***可以是车联网***,则第一设备为车联网***中的任一车辆,第二设备为接收到第一设备发送的脉冲信号的车辆。进而,第一设备还可以确定第一设备与第二设备之间的距离(可以称为目标距离),以及第二设备当前相对于第一设备的移动速度(可以称为目标速度)。
相应的,参见图4,图4为本发明实施例提供的一种确定目标距离和目标速度的方法的流程图,该方法可以包括以下步骤:
S401:当接收到第一设备在历史时间段内发送的各脉冲信号到达第二设备时反射的回波信号时,基于回波信号,确定第一设备与第二设备之间的距离多普勒图。
S402:基于距离多普勒图,计算第一设备与第二设备之间的距离,以及第二设备当前相对于第一设备的移动速度。
针对步骤S401和步骤S402中,一种实现方式中,在历史时间段内,第一设备可以按照预设的脉冲重复间隔向第二设备发送多个脉冲信号。每一脉冲信号在到达第二设备时会发生反射,反射后的各脉冲信号达到第一设备时会发生叠加,叠加之后的各脉冲信号即为本发明实施例中的回波信号。
历史时间段为一个相干处理时间,一个相干处理时间为一个OFDM帧信号所持续的时长,一个OFDM帧信号所持续的时长为10ms。进而,第一设备可以根据该回波信号,确定第一设备与第二设备之间的距离多普勒图,并基于该距离多普勒图,计算第一设备与第二设备之间的距离(即目标距离),以及第二设备当前相对于第一设备的移动速度(即目标速度)。
在本发明的一个实施例中,回波信号可以表示为:
Figure PCTCN2021107033-appb-000005
r(t)表示回波信号,G表示第二设备的总数目,c表示光速,ρ g表示脉冲信号在第一设备与第g个第二设备之间传输时的衰减系数,f c表示第一设备发送脉 冲信号的高频载波的频率,R g表示第一设备与第g个第二设备之间的距离,v g表示第g个第二设备当前相对于第一设备的移动速度,e表示自然常数,j表示虚数单位,ω(t)表示高斯白噪声;
Figure PCTCN2021107033-appb-000006
表示各脉冲信号到达第g个第二设备时反射的各脉冲信号;t表示第一设备发送各脉冲信号中的第一个脉冲信号的时刻,
Figure PCTCN2021107033-appb-000007
表示从第一设备发送第一个脉冲信号,至第一设备接收到回波信号之间的时长。
相应的,步骤S401可以包括以下步骤:
步骤1:当接收到第一设备在历史时间段内发送的各脉冲信号到达第二设备时反射的回波信号时,按照预设的采样间隔对回波信号进行采样,得到采样信号,并对采样信号进行离散傅里叶变换,得到各脉冲信号对应的频域信号,作为第二频域信号。其中,第二频域信号为:
Figure PCTCN2021107033-appb-000008
其中,
Figure PCTCN2021107033-appb-000009
r[L,m,u]表示第二频域信号,N表示一个脉冲信号中的子载波的数目,L表示一个脉冲信号中的子载波的序号,一个子载波的序号表示该子载波在该脉冲信号中的位置,m表示一个脉冲信号中的OFDM符号的序号,一个OFDM符号的序号表示该OFDM符号在该脉冲信号中的位置,u表示历史时间段内发送的各脉冲信号的序号,一个脉冲信号的序号表示第一设备发送该脉冲信号的顺序;A[L,m,u]表示一个脉冲信号对应的第一频域信号;T表示未添加循环前缀的一个OFDM符号的持续时间;T s表示添加循环前缀的一个OFDM符号的持续时间;T PRI表示第一设备发送各脉冲信号时的脉冲重复间隔;
步骤2:对第二频域信号进行离散傅里叶变换,得到各脉冲信号对应的第三频域信号。其中,第三频域信号为:
Figure PCTCN2021107033-appb-000010
P[L,m,u]表示第三频域信号。
步骤3:确定第三频域信号中的导频序列,作为导频信号。
步骤4:对导频频域信号进行匹配滤波,得到各脉冲信号对应的第四频域信号。其中,第四频域信号为:
Figure PCTCN2021107033-appb-000011
E[L,k,u]表示第四频域信号,∏[L,k]表示匹配滤波之后的一个脉冲信号中的导频序列;i表示一个脉冲信号中的各导频序列的目标***位置;k表示表示匹配滤波之后的第三频域信号的列向量的序号,一个列向量的序号表示该列向量在第三频域信号中的位置。
步骤5:对第四频域信号进行划分,得到多个待处理矩阵。其中,多个待处理矩阵与各脉冲信号一一对应。
步骤6:针对每一待处理矩阵,确定该待处理矩阵中的每一行向量中最大的元素,作为第一元素。
步骤7:将每一待处理矩阵中的各第一元素作为一个列向量,得到目标矩阵。
步骤8:对目标矩阵的行向量和列向量分别进行快速傅里叶逆变换,得到第一设备与第二设备之间的距离多普勒图。其中,距离多普勒图为:
Figure PCTCN2021107033-appb-000012
E[r,v]表示距离多普勒图,U表示各脉冲信号的数目,N 1表示一个脉冲信号中的导频序列的数目,E[L,u]表示目标矩阵;r表示距离多普勒图中行向量的序号,一个行向量的序号表示该行向量在距离多普勒图中的位置,v表示距离多普勒图中列向量的序号,一个列向量的序号表示该列向量在距离多普勒图中的位置。
一种实现方式中,当接收到回波信号时,第一设备可以按照预设采样间隔对接收到的回波信号进行采样,得到采样信号。预设的采样间隔可以为:uT PRI+mT s+bT,其中,b为正整数,例如,b可以为0,或者也可以为1,或者也可以为2,但并不限于此。
然后,第一设备可以对采样信号进行离散傅里叶变换,得到如公式(4)所示的第二频域信号。第一设备还可以对第二频域信号进行离散傅里叶变换, 得到如公式(5)所示的第三频域信号。第一设备还可以确定第三频域信号中的导频序列,并从第三频域信号中提取确定出的导频序列,得到导频信号。第一设备确定第三频域信号中的导频序列的方式,与第二设备确定第一频域信号中的导频序列的方式类似,可以参见后续实施例的相关介绍。
由于第一设备接收到的回波信号是由反射后的各脉冲信号叠加得到的,也就是说,回波信号包含反射后的各脉冲信号。相应的,基于回波信号确定的第三频域信号包含了各脉冲信号各自对应的频域信号(可以称为子频域信号)。
因此,第三频域信号中的导频序列也就是各脉冲信号中的导频序列,也就是说,导频信号包含了各脉冲信号中的导频序列。因此,对导频信号进行匹配滤波得到的第四频域信号中包含匹配滤波之后的各脉冲信号中的导频序列。
进而,第一设备可以对第四频域信号进行划分,即从第四频域信号中确定匹配滤波之后的每一脉冲信号中的导频序列(即待处理矩阵)。一种实现方式中,第一设备可以确定每一脉冲信号中的导频序列的数目(即N 1),然后,第一设备可以按照N 1个行向量为一个待处理矩阵,对第四频域信号进行划分,得到多个待处理矩阵。进而,针对每一待处理矩阵,第一设备可以确定该待处理矩阵中的每一行向量中最大的元素,作为第一元素,并将每一待处理矩阵中的各第一元素作为一个列向量,得到目标矩阵。
示例性的,第一设备接收到的回波信号由5个反射后的脉冲信号叠加得到,第三频域信号包含该5个脉冲信号对应的子频域信号,导频信号包含该5个脉冲信号中的导频序列,一个脉冲信号中包含3个导频序列,则第一设备可以按照每3个行向量为一个待处理矩阵,将第四频域信号划分为5个待处理矩阵。
针对每一待处理矩阵,确定该待处理矩阵的每一行向量中最大的元素(即第一元素),得到3个元素,并将该3个元素作为目标矩阵的一个列向量。进而,可以得到包含各待处理矩阵中的第一元素的目标矩阵,目标矩阵的维度为3*5。
第一设备还可以对目标矩阵的行向量和列向量分别进行快速傅里叶逆变换,得到如公式(7)所示的第一设备与第二设备之间的距离多普勒图。
在本发明的一个实施例中,步骤S402可以包括以下步骤:
步骤一:确定距离多普勒图中大于预设阈值的元素所在的行数,作为第一数值,以及距离多普勒图中大于预设阈值的元素所在列数,作为第二数值。
步骤二:基于第一数值和第一预设公式,确定第一设备与第二设备之间的距离。其中,第一预设公式为:
Figure PCTCN2021107033-appb-000013
R g表示第一设备与第g个第二设备之间的距离,c表示光速,N表示一个脉冲信号中的子载波的数目,x g表示距离多普勒图中第g个大于预设阈值的元素对应的第一数值;T表示未添加循环前缀的一个OFDM符号的持续时间;
步骤三:基于第二数值和第二预设公式,确定第二设备当前相对于第一设备的移动速度。其中,第二预设公式为:
Figure PCTCN2021107033-appb-000014
v g表示第g个第二设备当前相对于第一设备的移动速度,U表示历史时间段内发送的各脉冲信号的数目,c表示光速,y g表示距离多普勒图中第g个大于预设阈值的元素对应的第二数值;T PRI表示第一设备发送脉冲信号时的脉冲重复间隔;f c表示第一设备发送各脉冲信号的高频载波的频率。
一种实现方式中,第一设备可以对距离多普勒矩阵的各行向量进行快速离散傅里叶逆变换,得到如下公式(10):
Figure PCTCN2021107033-appb-000015
γ(x g)表示第g个目标元素,N 1表示一个脉冲信号中的导频序列的数目,R g表示第一设备与第g个第二设备之间的距离,c表示光速,x g表示第g个目标元素的第二数值,L表示一个脉冲信号中的子载波的序号。
当上述公式(10)中的
Figure PCTCN2021107033-appb-000016
时,可以基于上述公式(10),得到上述公式(8)所示的目标距离计算公式。进而,第一设备可以基于上述公式(8)确定第一设备与第二设备之间的距离。
第一设备还可以对距离多普勒矩阵的各列向量进行快速离散傅里叶逆变 换,得到如下公式(10):
Figure PCTCN2021107033-appb-000017
γ(y g)表示第g个目标元素,U表示脉冲信号中的数目,v g表示第g个第二设备当前相对于第一设备的移动速度,c表示光速,y g表示第g个目标元素的第三数值,u表示脉冲信号的序号,T PRI表示第一设备发送脉冲信号时的脉冲重复间隔,f c表示第一设备发送脉冲信号的高频载波的频率,c表示光速。
当上述公式(11)中的
Figure PCTCN2021107033-appb-000018
时,可以基于上述公式(11),得到上述公式(9)所示的目标速度计算公式。进而,第一设备可以基于上述公式(9)确定第二设备当前相对于第一设备的移动速度。
另外,第一设备可以确定的目标距离的精确度可以表示为:
Figure PCTCN2021107033-appb-000019
ΔR表示目标距离的精确度,B表示第一设备发送脉冲信号能够使用的带宽,c表示光速。
目标距离的精确度与第一设备发送脉冲信号能够使用的带宽相关,因此,可以得到第一设备在最高精确度条件下,能够确定的最大距离(可以称为第一最大距离)可以表示为:
Figure PCTCN2021107033-appb-000020
R max 1表示第一最大距离,N 1表示一个脉冲信号中的导频序列的数目。
本发明实施例提供的信号处理方法中,导频序列的数目可以设置为大于2的数目,在能够提高频谱资源利用率的同时,可以提高第一最大距离。
第一设备可以确定的目标速度的精确度可以表示为:
Figure PCTCN2021107033-appb-000021
Δv表示目标速度的精确度,c表示光速,U表示脉冲信号的数目,T PRI表示 第一设备发送脉冲信号时的脉冲重复间隔;f c表示第一设备发送脉冲信号的高频载波的频率。
当第一设备发送脉冲信号的高频载波的频率f c固定不变时,目标速度的精确度与第一设备发送脉冲信号的脉冲重复间隔带宽相关,因此,可以得到第一设备能够确定的最大速度可以表示为:
Figure PCTCN2021107033-appb-000022
v max表示第一设备能够确定的最大速度。
基于本发明实施例提供的信号处理方法的频谱资源利用率(可以称为第一利用率)可以表示为:
Figure PCTCN2021107033-appb-000023
η表示第一利用率,η 0表示基于现有技术的频谱资源利用率(可以称为第二利用率),Δη表示第一利用率与第二利用率的差值,α表示一个脉冲信号中的导频序列的数目与该脉冲信号包含的所有子载波的数目的比值,m表示一个脉冲信号中的OFDM符号的序号,M表示一个脉冲信号中的OFDM符号的数目。
基于雷达通信一体化技术的通信***中,脉冲信号中的子载波一部分被设置为导频序列,另一部分被设置为数据信号。第一最大距离与导频序列的数目成正相关,所以增加导频序列的数目,可以增大第一设备第一最大距离,但是会减少传输的数据信号,降低数据信号的传输速率。因此,基于本发明实施例提供的信号处理方法的数据传输速率(可以称为第一传输速率)可以表示为:
Figure PCTCN2021107033-appb-000024
基于现有技术的数据传输速率(可以称为第二传输速率)可以表示为:
Figure PCTCN2021107033-appb-000025
T Off=T PRI-MT s     (19)
δ 1表示第一传输速率,N 1表示一个脉冲信号中的导频序列的数目,N 2表示一个脉冲信号中的设置为数据信号的子载波的数目,α表示一个脉冲信号中的 导频序列的数目与该脉冲信号包含的所有子载波的数目的比值,M表示一个脉冲信号中的OFDM符号的数目,m表示一个脉冲信号中的OFDM符号的序号,β表示一个OFDM符号中循环前缀所占的比例,N表示一个脉冲信号包含的所有子载波的数目,B表示第一设备发送脉冲信号能够使用的带宽,T PRI表示第一设备发送脉冲信号时的脉冲重复间隔,T s表示添加循环前缀的一个OFDM符号的持续时间,δ 0表示第二传输速率。
由于第一最大距离和第一传输速率,与第一设备发送脉冲信号能够使用的带宽B相关。因此,可以得到基于本发明实施例提供的信号处理方法的第一最大距离与第一传输速率的关系表达式为:
Figure PCTCN2021107033-appb-000026
现有技术中第一设备能够确定的最大距离(第二最大距离)与第二传输速率的关系表达式为:
Figure PCTCN2021107033-appb-000027
N 1表示一个脉冲信号中的导频序列的数目,α表示一个脉冲信号中的导频序列的数目与该脉冲信号包含的所有子载波的数目的比值,R max 1表示第一最大距离,R max 2表示第二最大距离,c表示光速。
对比上述公式(20)和公式(21)可以得到,当第一设备发送脉冲信号能够使用的带宽相同时,基于本发明实施例提供的信号处理方法相对于现有技术可以传输更多的数据信号,可以提高数据信号的传输速率。当数据信号的传输速率相同时,第一最大距离大于第二最大距离。
参见图5,图5为本发明实施例提供的另一种信号处理方法的流程图,该方法可以应用于上述信号处理***中的第二设备,信号处理***还包括第一设备,该方法可以包括以下步骤:
S501:当接收到第一设备发送的脉冲信号时,对脉冲信号进行离散傅里叶变换,得到脉冲信号对应的频域信号,作为第一频域信号。
其中,脉冲信号为:第一设备对第一频域信号进行快速离散傅里叶逆变换得到的;第一频域信号为:第一设备基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,并基于第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应 关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,并按照目标***位置,对各个导频序列和第二子数据信号进行组合得到的;第二子数据信号位于第一频域信号中除目标***位置以外的其他***位置。
S502:针对第一频域信号中的每一子载波,对该子载波与本地存储的导频序列进行相关处理,得到该子载波对应的向量,作为目标向量。
S503:如果目标向量中存在目标元素,则将该子载波确定为导频序列。其中,目标元素大于目标向量中与目标元素相邻的元素。
S504:针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号。
S505:对第一频域信号中除导频序列外的其他子载波进行解调处理,得到第二子数据信号。
S506:对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号。
基于本发明实施例提供的信号处理方法,虽然也要将第一频域信号中的部分子载波设置为导频序列,然而,第二设备可以基于导频在第一频域信号中的***位置,确定出传输的数据信号,也就不需要增加第一频域信号包含的子载波和OFDM符号的数目,也可以传输完整的数据信号,即不需要增加传输数据信号所使用的频谱资源。进而,可以提高频谱资源的利用率。
在步骤501中,第一设备可以生成包含导频序列和数据信号的脉冲信号,并向第二设备发送脉冲信号。第一设备的具体处理方式可以参见前述实施例的相关介绍。相应的,在接收到脉冲信号时,第二设备可以对脉冲信号进行离散傅里叶变换,得到脉冲信号对应的频域信号,作为第一频域信号。
针对步骤S502和步骤S503,针对第一频域信号中的每一子载波,第二设备可以对该子载波与本地存储的导频序列进行相关处理,得到该子载波对应的向量,作为目标向量。如果目标向量中存在大于相邻元素的目标元素,则将该子载波确定为导频序列。
在本发明的一个实施例中,步骤S504可以包括以下步骤:
步骤1:针对每一导频序列在第一频域信号中的***位置,在预设的*** 位置与数据比特的对应关系中,确定该***位置对应的数据比特。
步骤2:按照各***位置在第一频域信号中的顺序,对各***位置对应的数据比特进行拼接,得到第一子数据信号。
可以理解的是,为了使得第二设备可以获取第一设备发送的数据信号,第二设备中存储的预设的***位置与数据比特的对应关系,与第一设备中存储的预设的***位置与数据比特的对应关系相同。
示例性的,导频序列为第一频域信号中的第1个载波、第2个载波和第4个子载波,则导频序列的***位置为0、1和3。***位置0对应的数据比特为00,***位置1对应的数据比特为01,***位置3对应的数据比特为10,则第二设备可以确定第一子数据信号为:000110。
针对步骤S505和步骤S506,第二设备可以确定第一频域信号中除导频序列外的其他子载波(可以称为数据载波),然后,第二设备可以对数据子载波进行解调处理,得到第二子数据信号。进而,第二设备可以对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号。
参见图6,图6为本发明实施例提供的一种脉冲信号的示意图。图6所示的为一个OFDM帧信号,即一个相干处理时间内发送的U(图6中U为5)个脉冲信号。其中,虚线框所示部分为一个OFDM脉冲(即一个脉冲信号)。每一脉冲信号包含M(图6中M为3)个OFDM符号和N(图6中N为12)个子载波。每一脉冲信号中黑色部分所示的子载波为设置为导频序列的子载波,除黑色部分的其他子载波为设置为数据信号的子载波。第一设备按照预设的脉冲重复间隔(即T PRI)发送每一脉冲信号。
图6中,每一个脉冲信号包含3个导频序列,该脉冲信号包含的12个子载波被划分为3个子载波分组,每个子载波分组包含4个子载波,每个子载波分组包含一个导频序列。根据预设的***位置与数据比特的对应关系,数据比特00与第1个子载波对应,数据比特01与第2个子载波对应,数据比特10与第3个子载波对应,数据比特11与第4个子载波对应。因此,图6所示的各脉冲信号中的导频序列的***位置表示的数据信号为:111011100001101011001010010100。
与图1的方法实施例相对应,参见图7,图7为本发明实施例提供的一种信号处理装置的结构图,装置应用于信号处理***中的第一设备,信号处理***还包括第二设备,装置包括:划分模块701,用于基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;确定模块702,用于基于第一子数据信号中的数据比特,以及 预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;组合模块703,用于按照目标***位置,对各个导频序列和第二子数据信号进行组合,得到第一频域信号;其中,第二子数据信号位于第一频域信号中除目标***位置以外的其他***位置;生成模块704,用于对第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;发送模块705,用于向第二设备发送脉冲信号,以使第二设备对脉冲信号进行离散傅里叶变换,得到脉冲信号对应的频域信号,作为第一频域信号;针对第一频域信号中的每一子载波,对该子载波与第二设备本地存储的导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果目标向量中存在目标元素,则将该子载波确定为导频序列;针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对第一频域信号中除导频序列外的其他子载波进行解调处理,得到第二子数据信号;对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号;其中,目标元素大于目标向量中与目标元素相邻的元素。
可选的,划分模块701,具体用于从待传输的数据信号中,确定第一数目个连续的数据比特,作为第一子数据信号;其中,第一子数据信号为待传输的数据信号中前第一数目个数据比特,或者,第一子数据信号为待传输的数据信号中后第一数目个数据比特;第一数目为导频序列的数目的预设倍数;确定待传输的数据信号中除第一子数据信号外的其他数据比特,作为第二子数据信号。
可选的,确定模块702,具体用于按照第一子数据信号中的各数据比特的顺序,对第一子数据信号中的各数据比特进行分组,得到多个数据比特分组;其中,每一数据比特分组中的数据比特的数目为预设倍数;针对每一数据比特分组,在预设的***位置与数据比特的对应关系中,确定该数据比特分组中的数据比特对应的***位置,得到各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置。
可选的,装置还包括:处理模块,用于当接收到第一设备在历史时间段内发送的各脉冲信号到达第二设备时反射的回波信号时,基于回波信号,确定第一设备与第二设备之间的距离多普勒图;基于距离多普勒图,计算第一设备与第二设备之间的距离,以及第二设备当前相对于第一设备的移动速度。
可选的,回波信号为:
Figure PCTCN2021107033-appb-000028
r(t)表示回波信号,G表示第二设备的总数目,c表示光速,ρ g表示脉冲信号在第一设备与第g个第二设备之间传输时的衰减系数,f c表示第一设备发送脉冲信号的高频载波的频率,R g表示第一设备与第g个第二设备之间的距离,v g表示第g个第二设备当前相对于第一设备的移动速度,e表示自然常数,j表示虚数单位,ω(t)表示高斯白噪声;
Figure PCTCN2021107033-appb-000029
表示各脉冲信号到达第g个第二设备时反射的各脉冲信号;t表示第一设备发送各脉冲信号中的第一个脉冲信号的时刻,
Figure PCTCN2021107033-appb-000030
表示从第一设备发送第一个脉冲信号,至第一设备接收到回波信号之间的时长;
处理模块,具体用于当接收到第一设备在历史时间段内发送的各脉冲信号到达第二设备时反射的回波信号时,按照预设的采样间隔对回波信号进行采样,得到采样信号,并对采样信号进行离散傅里叶变换,得到各脉冲信号对应的频域信号,作为第二频域信号;其中,第二频域信号为:
Figure PCTCN2021107033-appb-000031
其中,
Figure PCTCN2021107033-appb-000032
r[L,m,u]表示第二频域信号,N表示一个脉冲信号中的子载波的数目,L表示一个脉冲信号中的子载波的序号,一个子载波的序号表示该子载波在该脉冲信号中的位置,m表示一个脉冲信号中的正交频分复用OFDM符号的序号,一个OFDM符号的序号表示该OFDM符号在该脉冲信号中的位置,u表示历史时间段内发送的各脉冲信号的序号,一个脉冲信号的序号表示第一设备发送该脉冲信号的顺序;A[L,m,u]表示一个脉冲信号对应的第一频域信号;T表示未添加循环前缀的一个OFDM符号的持续时间;T s表示添加循环前缀的一个 OFDM符号的持续时间;T PRI表示第一设备发送各脉冲信号时的脉冲重复间隔;
对第二频域信号进行离散傅里叶变换,得到各脉冲信号对应的第三频域信号,其中,第三频域信号为:
Figure PCTCN2021107033-appb-000033
P[L,m,u]表示第三频域信号;
确定第三频域信号中的导频序列,作为导频信号;
对导频信号进行匹配滤波,得到各脉冲信号对应的第四频域信号;其中,第四频域信号为:
Figure PCTCN2021107033-appb-000034
E[L,k,u]表示第四频域信号,∏[L,k]表示匹配滤波之后的一个脉冲信号中的各导频序列;i表示一个脉冲信号中的各导频序列的目标***位置;k表示表示匹配滤波之后的第三频域信号中的列向量的序号,一个列向量的序号表示该列向量在第三频域信号中的位置;
对第四频域信号进行划分,得到多个待处理矩阵;其中,多个待处理矩阵与各脉冲信号一一对应;针对每一待处理矩阵,确定该待处理矩阵中的每一行向量中最大的元素,作为第一元素;将每一待处理矩阵中的各第一元素作为一个列向量,得到目标矩阵;对目标矩阵的行向量和列向量分别进行快速傅里叶逆变换,得到第一设备与第二设备之间的距离多普勒图;其中,距离多普勒图为:
Figure PCTCN2021107033-appb-000035
E[r,v]表示距离多普勒图,U表示各脉冲信号的数目,N 1表示一个脉冲信号中的导频序列的数目,E[L,u]表示目标矩阵;r表示距离多普勒图中行向量的序号,一个行向量的序号表示该行向量在距离多普勒图中的位置,v表示距离多普勒图中列向量的序号,一个列向量的序号表示该列向量在距离多普勒图 中的位置。
可选的,处理模块,具体用于确定距离多普勒图中大于预设阈值的元素所在的行数,作为第一数值,以及距离多普勒图中大于预设阈值的元素所在列数,作为第二数值;基于第一数值和第一预设公式,确定第一设备与第二设备之间的距离;其中,第一预设公式为:
Figure PCTCN2021107033-appb-000036
R g表示第一设备与第g个第二设备之间的距离,c表示光速,N表示一个脉冲信号中的子载波的数目,x g表示距离多普勒图中第g个大于预设阈值的元素对应的第一数值;T表示未添加循环前缀的一个OFDM符号的持续时间;
基于第二数值和第二预设公式,确定第二设备当前相对于第一设备的移动速度;其中,第二预设公式为:
Figure PCTCN2021107033-appb-000037
v g表示第g个第二设备当前相对于第一设备的移动速度,U表示历史时间段内发送的各脉冲信号的数目,c表示光速,y g表示距离多普勒图中第g个大于预设阈值的元素对应的第二数值;T PRI表示第一设备发送脉冲信号时的脉冲重复间隔;f c表示第一设备发送各脉冲信号的高频载波的频率。
基于本发明实施例提供的信号处理方法,虽然也要将第一频域信号中的部分子载波设置为导频序列,然而,第二设备可以基于导频在第一频域信号中的***位置,确定出传输的数据信号,也就不需要增加第一频域信号包含的子载波和OFDM符号的数目,也可以传输完整的数据信号,即不需要增加传输数据信号所使用的频谱资源。进而,可以提高频谱资源的利用率。
与图5的方法实施例相对应,参见图8,图8为本发明实施例提供的另一种信号处理装置的结构图,装置应用于信号处理***中的第二设备,信号处理***还包括第一设备,装置包括:第一确定模块801,用于当接收到第一设备发送的脉冲信号时,对脉冲信号进行离散傅里叶变换,得到脉冲信号对应的频域 信号,作为第一频域信号;其中,脉冲信号为:第一设备对第一频域信号进行快速离散傅里叶逆变换得到的;第一频域信号为:第一设备基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,并基于第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,并按照目标***位置,对各个导频序列和第二子数据信号进行组合得到的;第二子数据信号位于第一频域信号中除目标***位置以外的其他***位置;第二确定模块802,用于针对第一频域信号中的每一子载波,对该子载波与本地存储的导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;第三确定模块803,用于如果目标向量中存在目标元素,则将该子载波确定为导频序列;其中,目标元素大于目标向量中与目标元素相邻的元素;第四确定模块804,用于针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;解调模块805,用于对第一频域信号中除导频序列外的其他子载波进行解调处理,得到第二子数据信号;拼接模块806,用于对第一子数据信号和第二子数据信号进行拼接,得到第一设备发送的数据信号。
可选的,第四确定模块804,具体用于针对每一导频序列在第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特;按照各***位置在第一频域信号中的顺序,对各***位置对应的数据比特进行拼接,得到第一子数据信号。
基于本发明实施例提供的信号处理方法,虽然也要将第一频域信号中的部分子载波设置为导频序列,然而,第二设备可以基于导频在第一频域信号中的***位置,确定出传输的数据信号,也就不需要增加第一频域信号包含的子载波和OFDM符号的数目,也可以传输完整的数据信号,即不需要增加传输数据信号所使用的频谱资源。进而,可以提高频谱资源的利用率。
本发明实施例还提供了一种电子设备,如图9所示,包括处理器901、通信接口902、存储器903和通信总线904,其中,处理器901,通信接口902,存储器903通过通信总线904完成相互间的通信,存储器903,用于存放计算机程序;处理器901,用于执行存储器903上所存放的程序时,实现上述任一信号处理方法的步骤。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry  Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本发明提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一信号处理方法的步骤。
在本发明提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一信号处理方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、***、电子设备、计算机可读存储介质和计算机程序产品实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本发明的较佳实施例,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种信号处理方法,其特征在于,所述方法应用于信号处理***中的第一设备,所述信号处理***还包括第二设备,所述方法包括:
    基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;
    基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;
    按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合,得到所述第一频域信号;其中,所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;
    对所述第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;
    向所述第二设备发送所述脉冲信号,以使所述第二设备对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;针对所述第一频域信号中的每一子载波,对该子载波与所述第二设备本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素。
  2. 根据权利要求1所述的方法,其特征在于,所述基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,包括:
    从所述待传输的数据信号中,确定第一数目个连续的数据比特,作为所述第一子数据信号;其中,所述第一子数据信号为所述待传输的数据信号中前所述第一数目个数据比特,或者,所述第一子数据信号为所述待传输的数据信号 中后所述第一数目个数据比特;所述第一数目为所述导频序列的数目的预设倍数;
    确定所述待传输的数据信号中除所述第一子数据信号外的其他数据比特,作为第二子数据信号。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,包括:
    按照第一子数据信号中的各数据比特的顺序,对第一子数据信号中的各数据比特进行分组,得到多个数据比特分组;其中,每一数据比特分组中的数据比特的数目为所述预设倍数;
    针对每一数据比特分组,在预设的***位置与数据比特的对应关系中,确定该数据比特分组中的数据比特对应的***位置,得到各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当接收到所述第一设备在历史时间段内发送的各脉冲信号到达所述第二设备时反射的回波信号时,基于所述回波信号,确定所述第一设备与所述第二设备之间的距离多普勒图;
    基于所述距离多普勒图,计算所述第一设备与所述第二设备之间的距离,以及所述第二设备当前相对于所述第一设备的移动速度。
  5. 根据权利要求4所述的方法,其特征在于,所述回波信号为:
    Figure PCTCN2021107033-appb-100001
    r(t)表示所述回波信号,G表示所述第二设备的总数目,c表示光速,ρ g表示脉冲信号在所述第一设备与第g个第二设备之间传输时的衰减系数,f c表示所述第一设备发送脉冲信号的高频载波的频率,R g表示所述第一设备与第g个第 二设备之间的距离,v g表示第g个第二设备当前相对于所述第一设备的移动速度,e表示自然常数,j表示虚数单位,ω(t)表示高斯白噪声;
    Figure PCTCN2021107033-appb-100002
    表示所述各脉冲信号到达第g个第二设备时反射的各脉冲信号;t表示所述第一设备发送所述各脉冲信号中的第一个脉冲信号的时刻,
    Figure PCTCN2021107033-appb-100003
    表示从所述第一设备发送所述第一个脉冲信号,至所述第一设备接收到所述回波信号之间的时长;
    所述当接收到所述第一设备在历史时间段内发送的各脉冲信号,到达所述第二设备时反射的回波信号时,基于所述回波信号,确定所述第一设备与所述第二设备之间的距离多普勒图,包括:
    当接收到所述第一设备在历史时间段内发送的各脉冲信号到达第二设备时反射的回波信号时,按照预设的采样间隔对所述回波信号进行采样,得到采样信号,并对所述采样信号进行离散傅里叶变换,得到各脉冲信号对应的频域信号,作为第二频域信号;其中,所述第二频域信号为:
    Figure PCTCN2021107033-appb-100004
    其中,
    Figure PCTCN2021107033-appb-100005
    r[L,m,u]表示所述第二频域信号,N表示一个脉冲信号中的子载波的数目,L表示一个脉冲信号中的子载波的序号,一个子载波的序号表示该子载波在该脉冲信号中的位置,m表示一个脉冲信号中的正交频分复用OFDM符号的序号,一个OFDM符号的序号表示该OFDM符号在该脉冲信号中的位置,u表示所述历史时间段内发送的各脉冲信号的序号,一个脉冲信号的序号表示所述第一设备发送该脉冲信号的顺序;A[L,m,u]表示一个脉冲信号对应的第一频域信号;T表示未添加循环前缀的一个OFDM符号的持续时间;T s表示添加循环前缀的一个OFDM符号的持续时间;T PRI表示第一设备发送所述各脉冲信号时 的脉冲重复间隔;
    对所述第二频域信号进行离散傅里叶变换,得到各脉冲信号对应的第三频域信号,其中,所述第三频域信号为:
    Figure PCTCN2021107033-appb-100006
    P[L,m,u]表示所述第三频域信号;
    确定所述第三频域信号中的导频序列,作为导频信号;
    对所述导频信号进行匹配滤波,得到各脉冲信号对应的第四频域信号;其中,所述第四频域信号为:
    Figure PCTCN2021107033-appb-100007
    E[L,k,u]表示所述第四频域信号,∏[L,k]表示匹配滤波之后的一个脉冲信号中的各导频序列;i表示一个脉冲信号中的各导频序列的目标***位置;k表示表示匹配滤波之后的第三频域信号中的列向量的序号,一个列向量的序号表示该列向量在第三频域信号中的位置;
    对所述第四频域信号进行划分,得到多个待处理矩阵;其中,所述多个待处理矩阵与各脉冲信号一一对应;
    针对每一待处理矩阵,确定该待处理矩阵中的每一行向量中最大的元素,作为第一元素;
    将每一待处理矩阵中的各第一元素作为一个列向量,得到目标矩阵;
    对所述目标矩阵的行向量和列向量分别进行快速傅里叶逆变换,得到所述第一设备与所述第二设备之间的距离多普勒图;其中,所述距离多普勒图为:
    Figure PCTCN2021107033-appb-100008
    E[r,v]表示所述距离多普勒图,U表示所述各脉冲信号的数目,N 1表示一个脉冲信号中的所述导频序列的数目,E[L,u]表示所述目标矩阵;r表示所述距离多普勒图中行向量的序号,一个行向量的序号表示该行向量在距离多普勒图中的位置,v表示所述距离多普勒图中列向量的序号,一个列向量的序号表示该列向量在距离多普勒图中的位置。
  6. 根据权利要求4所述的方法,其特征在于,所述基于所述距离多普勒图,计算所述第一设备与所述第二设备之间的距离,以及所述第二设备当前相对于所述第一设备的移动速度,包括:
    确定所述距离多普勒图中大于预设阈值的元素所在的行数,作为第一数值,以及所述距离多普勒图中大于预设阈值的元素所在列数,作为第二数值;
    基于所述第一数值和第一预设公式,确定所述第一设备与所述第二设备之间的距离;其中,所述第一预设公式为:
    Figure PCTCN2021107033-appb-100009
    R g表示所述第一设备与第g个第二设备之间的距离,c表示光速,N表示一个脉冲信号中的子载波的数目,x g表示所述距离多普勒图中第g个大于预设阈值的元素对应的第一数值;T表示未添加循环前缀的一个OFDM符号的持续时间;
    基于所述第二数值和第二预设公式,确定第二设备当前相对于所述第一设备的移动速度;其中,所述第二预设公式为:
    Figure PCTCN2021107033-appb-100010
    v g表示第g个第二设备当前相对于所述第一设备的移动速度,U表示所述历史时间段内发送的各脉冲信号的数目,c表示光速,y g表示所述距离多普勒图中第g个大于预设阈值的元素对应的第二数值;T PRI表示所述第一设备发送脉冲信号时的脉冲重复间隔;f c表示所述第一设备发送所述各脉冲信号的高频载波的频率。
  7. 一种信号处理方法,其特征在于,所述方法应用于信号处理***中的第二设备,所述信号处理***还包括第一设备,所述方法包括:
    当接收到所述第一设备发送的脉冲信号时,对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;其中,所述脉冲信号为:所述第一设备对第一频域信号进行快速离散傅里叶逆变换得到的;所述第一频域信号为:所述第一设备基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,并基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,并按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合得到的;所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;
    针对所述第一频域信号中的每一子载波,对该子载波与本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;
    如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素;
    针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;
    对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;
    对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号。
  8. 根据权利要求7所述的方法,其特征在于,所述针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号,包括:
    针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特;
    按照各***位置在所述第一频域信号中的顺序,对各***位置对应的数据比特进行拼接,得到第一子数据信号。
  9. 一种信号处理装置,其特征在于,所述装置应用于信号处理***中的第一设备,所述信号处理***还包括第二设备,所述装置包括:
    划分模块,用于基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号;
    确定模块,用于基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置;
    组合模块,用于按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合,得到所述第一频域信号;其中,所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;
    生成模块,用于对所述第一频域信号进行快速离散傅里叶逆变换,得到脉冲信号;
    发送模块,用于向所述第二设备发送所述脉冲信号,以使所述第二设备对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;针对所述第一频域信号中的每一子载波,对该子载波与所述第二设备本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;如果所述目标向量中存在目标元素,则将该子载波确定为导频序 列;针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素。
  10. 一种信号处理装置,其特征在于,所述装置应用于信号处理***中的第二设备,所述信号处理***还包括第一设备,所述装置包括:
    第一确定模块,用于当接收到所述第一设备发送的脉冲信号时,对所述脉冲信号进行离散傅里叶变换,得到所述脉冲信号对应的频域信号,作为第一频域信号;其中,所述脉冲信号为:所述第一设备对第一频域信号进行快速离散傅里叶逆变换得到的;所述第一频域信号为:所述第一设备基于多个预设的导频序列的数目,对待传输的数据信号中的数据比特进行划分,得到第一子数据信号和第二子数据信号,并基于所述第一子数据信号中的数据比特,以及预设的***位置与数据比特的对应关系,确定各个导频序列各自在待生成的第一频域信号中的***位置,作为目标***位置,并按照所述目标***位置,对各个导频序列和所述第二子数据信号进行组合得到的;所述第二子数据信号位于所述第一频域信号中除所述目标***位置以外的其他***位置;
    第二确定模块,用于针对所述第一频域信号中的每一子载波,对该子载波与本地存储的所述导频序列进行相关处理,得到该子载波对应的向量,作为目标向量;
    第三确定模块,用于如果所述目标向量中存在目标元素,则将该子载波确定为导频序列;其中,所述目标元素大于所述目标向量中与所述目标元素相邻的元素;
    第四确定模块,用于针对每一导频序列在所述第一频域信号中的***位置,在预设的***位置与数据比特的对应关系中,确定该***位置对应的数据比特,得到第一子数据信号;
    解调模块,用于对所述第一频域信号中除所述导频序列外的其他子载波进行解调处理,得到第二子数据信号;
    拼接模块,用于对所述第一子数据信号和所述第二子数据信号进行拼接,得到所述第一设备发送的数据信号。
PCT/CN2021/107033 2021-02-24 2021-07-19 一种信号处理方法及装置 WO2022179040A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/245,762 US20230396482A1 (en) 2021-02-24 2021-07-19 Signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110205794.5 2021-02-24
CN202110205794.5A CN113067790B (zh) 2021-02-24 2021-02-24 一种信号处理方法及装置

Publications (1)

Publication Number Publication Date
WO2022179040A1 true WO2022179040A1 (zh) 2022-09-01

Family

ID=76558971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107033 WO2022179040A1 (zh) 2021-02-24 2021-07-19 一种信号处理方法及装置

Country Status (3)

Country Link
US (1) US20230396482A1 (zh)
CN (1) CN113067790B (zh)
WO (1) WO2022179040A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067790B (zh) * 2021-02-24 2022-06-14 北京邮电大学 一种信号处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099939A1 (en) * 2003-08-14 2005-05-12 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving pilot signals in an OFDM communication system
CN109061633A (zh) * 2018-10-19 2018-12-21 西安电子科技大学 Ofdm雷达通信一体化机载平台***的信号设计方法
CN111245759A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 使用ofdm导频和数据载波用于集成雷达和通信的汽车雷达
CN111327551A (zh) * 2020-03-10 2020-06-23 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置
CN113067790A (zh) * 2021-02-24 2021-07-02 北京邮电大学 一种信号处理方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981552B1 (ko) * 2005-06-21 2010-09-10 삼성전자주식회사 주파수분할 다중접속 시스템에서 상향링크 파일롯의 송수신장치 및 방법
US7729433B2 (en) * 2006-03-07 2010-06-01 Motorola, Inc. Method and apparatus for hybrid CDM OFDMA wireless transmission
ES2350875T3 (es) * 2008-02-22 2011-01-27 Thales Nederland B.V. Procedimiento para medir la velocidad radial de un objetivo con un radar doppler.
CN107786483B (zh) * 2016-08-26 2021-08-20 华为技术有限公司 数据信号处理方法及相关设备
CN109085575B (zh) * 2018-10-19 2022-05-17 西安电子科技大学 Ofdm雷达通信一体化机载平台***的信号处理方法
CN110412557B (zh) * 2019-08-13 2021-08-06 北京邮电大学 一种基于ofdm信号的测量速度和距离的方法及装置
CN111198355B (zh) * 2020-01-15 2023-03-10 西安电子科技大学 基于fpga的pcr回波信号处理***及方法
CN111585644B (zh) * 2020-05-27 2021-07-20 北京邮电大学 雷达通信一体化***、信号处理方法及设备、存储介质
CN111880171B (zh) * 2020-07-07 2023-09-05 西安电子科技大学 一种消除雷达目标盲速的脉冲分段编码方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099939A1 (en) * 2003-08-14 2005-05-12 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving pilot signals in an OFDM communication system
CN109061633A (zh) * 2018-10-19 2018-12-21 西安电子科技大学 Ofdm雷达通信一体化机载平台***的信号设计方法
CN111245759A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 使用ofdm导频和数据载波用于集成雷达和通信的汽车雷达
CN111327551A (zh) * 2020-03-10 2020-06-23 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置
CN113067790A (zh) * 2021-02-24 2021-07-02 北京邮电大学 一种信号处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO YIFAN: "Integrated Waveform Design of Radar and Communications Based on OFDM", MASTER'S DISSERTATION OF BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, 30 June 2021 (2021-06-30), XP055961878 *

Also Published As

Publication number Publication date
CN113067790A (zh) 2021-07-02
US20230396482A1 (en) 2023-12-07
CN113067790B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
EP3042480B1 (fr) Procédé et dispositif de transmission de blocs de symboles de données complexes, procédé et dispositif de réception et programmes d'ordinateur correspondants
EP3146687B1 (fr) Procede de transmission d'un signal avec preambule et dispositifs correspondants, signal avec preambule correspondant pour synchronisation d'un recepteur
WO2017015837A1 (zh) 一种实现数据传输的方法及装置
WO2022179040A1 (zh) 一种信号处理方法及装置
CN104104623B (zh) 正交频分复用***中信道估计方法及其装置
WO2020024381A1 (zh) 定位参考信号生成方法、装置、通信***及存储介质
CN115208734B (zh) 信号精同步的方法及装置
CN108270714A (zh) 一种帧前导信号的生成方法及设备
CN107426129B (zh) 一种gfdm信号的调制、解调方法及装置
CN114598584A (zh) 一种无线通信***中的细频偏估计方法及装置
CN114726702A (zh) 信道频偏的估计和补偿方法及装置
CN111614439B (zh) 一种信息传输方法、***、装置及电子设备
EP3079323A1 (fr) Récepteur et méthode de réception fbmc à faible latence de décodage
CN115051939B (zh) 群时延估计方法及装置
FR3026907A1 (fr) Procede d'emission d'un signal multi-porteuses, procede de reception, dispositifs, et programmes d'ordinateurs associes
CN111630820B (zh) 用于确定相位跟踪参考信号资源位置的方法、装置和设备
FR2995749A1 (fr) Procede de synchronisation d'un recepteur, procede de transmission d'un signal avec preambule et dispositifs correspondants, signal avec preambule correspondant
CN109792263B (zh) 数据传输方法及装置
CN111148220B (zh) 一种定位方法及装置
CN107809403A (zh) 一种参数配置方法及装置
CN107534463A (zh) 用于传输具有多个导频信号和零值的一个或多个符号的装置、方法和计算机程序
CN115665847B (zh) 一种窄带物联网单载波信号的上行同步方法和装置
CN116208461B (zh) 参数估计方法、装置、电子设备及可读存储介质
CN116846725B (zh) 一种无线信号的采样时钟偏差补偿方法及装置
RU2618211C2 (ru) Способ повышения помехоустойчивости приема ofdm сигналов в каналах с памятью

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927469

Country of ref document: EP

Kind code of ref document: A1