WO2017015837A1 - 一种实现数据传输的方法及装置 - Google Patents

一种实现数据传输的方法及装置 Download PDF

Info

Publication number
WO2017015837A1
WO2017015837A1 PCT/CN2015/085211 CN2015085211W WO2017015837A1 WO 2017015837 A1 WO2017015837 A1 WO 2017015837A1 CN 2015085211 W CN2015085211 W CN 2015085211W WO 2017015837 A1 WO2017015837 A1 WO 2017015837A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signal
frequency
subcarrier
signals
Prior art date
Application number
PCT/CN2015/085211
Other languages
English (en)
French (fr)
Inventor
胡文权
花梦
王宗杰
段为明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580046773.6A priority Critical patent/CN106688214B/zh
Priority to EP15899189.3A priority patent/EP3316541B1/en
Priority to PCT/CN2015/085211 priority patent/WO2017015837A1/zh
Publication of WO2017015837A1 publication Critical patent/WO2017015837A1/zh
Priority to US15/878,774 priority patent/US10721047B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for implementing data transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Different carrier frequency bands use OFDM symbols with different parameters. For example, as the carrier frequency increases, OFDM symbols use a larger subcarrier spacing (or length), a shorter symbol period.
  • the symbols of different subcarrier intervals in the same transmission time interval (English: Transmission Time Interval, TTI for short) use frequency resources by frequency division, for example, symbol multiplexing with subcarrier spacings of 15KHZ and 30KHZ in one frequency. Segment frequency.
  • Embodiments of the present invention provide a method and apparatus for implementing data transmission, which implements interference generated by symbols between different subcarrier spacings.
  • an embodiment of the present invention provides a method for implementing data transmission, including:
  • the first signal includes a plurality of first sub-signals, and a sub-carrier frequency interval of each first sub-signal is M times a sub-carrier frequency interval of each second sub-signal included in the second signal, where M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain;
  • the generating the first signal to be sent includes at least one of the following:
  • the first signal generating, according to the at least one first modulation symbol, at least one first sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency within a range of the first preset frequency from the reference sub-carrier frequency;
  • the at least one first modulation symbol is all a non-zero preset symbol; or the part of the at least one first modulation symbol is a non-zero preset symbol, and the remaining part is a zero symbol;
  • the reference subcarrier frequency is a subcarrier frequency of the first sub-signal of the two signals adjacent in the frequency domain;
  • the M first sub-signals are continuous in the time domain and the sub-carrier frequencies are the same, and the phase of any two of the M first sub-signals that are consecutive in the time domain is continuous at the switching time;
  • the two first sub-signals consecutive in the time domain include a previous first sub-signal and a subsequent first sub-signal, and the switching moment is a signal end time of the previous first sub-signal and a next first sub-signal The signal start time of the signal;
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol is determined.
  • the phase difference is a subcarrier angular frequency corresponding to a previous one of the two adjacent first modulation symbols The length of time of a cyclic prefix corresponding to a first modulation symbol.
  • the generating the M first sub-signals that are sent on the sub-carrier includes:
  • the start time of a group of signals consisting of the M first sub-signals is the same as the start time of a second sub-signal.
  • an embodiment of the present invention provides a method for implementing data transmission, including:
  • the second signal includes a plurality of second sub-signals; and the sub-carrier frequency interval of each first sub-signal included in the first signal is M times the sub-carrier frequency interval of each second sub-signal, where M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain;
  • the second signal at least one of the subcarrier frequencies corresponding to the subcarrier frequency of the first subsignal having a difference from the reference subcarrier frequency within a range of the first predetermined frequency from the reference subcarrier frequency
  • the at least one second sub-signal transmitted on the sub-carrier is a non-zero signal, and the difference from the reference sub-carrier frequency is sent on each sub-carrier corresponding to the sub-carrier frequency of the non-integer multiple of the sub-carrier frequency interval of the first sub-signal
  • Each of the second sub-signals is a zero signal
  • the reference sub-carrier frequency is a sub-carrier frequency of the first sub-signal adjacent to the second signal in the frequency domain.
  • the generating the second signal to be sent includes:
  • the start time of a group of signals consisting of M first sub-signals consecutive in time domain and having the same sub-carrier frequency is the same as the start time of a second sub-signal to be transmitted.
  • the embodiment of the present invention further provides an apparatus for implementing data transmission, including:
  • a processing unit configured to generate a first signal to be sent
  • the first signal includes a plurality of first sub-signals, and between sub-carrier frequencies of each first sub-signal
  • the interval is M times the subcarrier frequency interval of each second sub-signal included by the second signal, the M being a positive integer greater than 1; the second signal being adjacent to the first signal in the frequency domain;
  • a sending unit configured to perform, for each of the first sub-signals generated by the processing unit, to transmit the first sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the first sub-signal;
  • the processing unit is specifically configured to generate the first signal to be sent by using at least one of the following methods, including:
  • the first signal generating, according to the at least one first modulation symbol, at least one first sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency within a range of the first preset frequency from the reference sub-carrier frequency;
  • the at least one first modulation symbol is all a non-zero preset symbol; or the part of the at least one first modulation symbol is a non-zero preset symbol, and the remaining part is a zero symbol;
  • the reference subcarrier frequency is a subcarrier frequency of the first sub-signal of the two signals adjacent in the frequency domain;
  • the M first sub-signals are continuous in the time domain and the sub-carrier frequencies are the same, and the phase of any two of the M first sub-signals that are consecutive in the time domain is continuous at the switching time;
  • the two first sub-signals consecutive in the time domain include a previous first sub-signal and a subsequent first sub-signal, and the switching moment is a signal end time of the previous first sub-signal and a next first sub-signal The signal start time of the signal;
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol is determined.
  • the phase difference is a subcarrier angular frequency corresponding to a previous one of the two adjacent first modulation symbols The length of time of a cyclic prefix corresponding to a first modulation symbol.
  • the processing unit is configured to generate the M first sub-signals that are sent on the sub-carrier When specifically used to:
  • the start time of a group of signals consisting of the M first sub-signals is the same as the start time of a second sub-signal.
  • the embodiment of the present invention further provides an apparatus for implementing data transmission, including:
  • a processing unit configured to generate a second signal to be sent
  • the second signal includes a plurality of second sub-signals; and the sub-carrier frequency interval of each first sub-signal included in the first signal is M times the sub-carrier frequency interval of each second sub-signal, where M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain;
  • a sending unit configured to perform, for each second sub-signal generated by the processing unit, to transmit the second sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the second sub-signal;
  • the second signal at least one of the subcarrier frequencies corresponding to the subcarrier frequency of the first subsignal having a difference from the reference subcarrier frequency within a range of the first predetermined frequency from the reference subcarrier frequency
  • the at least one second sub-signal transmitted on the sub-carrier is a non-zero signal, and the difference from the reference sub-carrier frequency is sent on each sub-carrier corresponding to the sub-carrier frequency of the non-integer multiple of the sub-carrier frequency interval of the first sub-signal
  • Each of the second sub-signals is a zero signal
  • the reference sub-carrier frequency is a sub-carrier frequency of the first sub-signal adjacent to the second signal in the frequency domain.
  • the processing unit is specifically configured to:
  • the start time of a group of signals consisting of M first sub-signals consecutive in time domain and having the same sub-carrier frequency is the same as the start time of a second sub-signal to be transmitted.
  • the processing unit is further configured to implement the third aspect and the first aspect of the third aspect
  • the transmitting unit is further configured to implement the first to second possible implementation manners of the third aspect and the third aspect The function implemented by any of the transmitting units described.
  • the subcarrier frequency corresponding to the reference subcarrier frequency is an integer multiple of the subcarrier frequency interval of the first signal.
  • the second signal is transmitted on the subcarriers, and no signal is transmitted on the remaining subcarriers. It can be ensured that the second signal does not interfere with the first signal within a range from the first preset frequency to the reference subcarrier frequency. This avoids the waste of frequency resources caused by not transmitting signals within the frequency guard band.
  • a first signal composed of respective first sub-signals generated from non-zero preset symbols can be used for channel estimation and measurement.
  • the first signal can be used as a pilot signal or a reference signal.
  • the first signal can be correctly demodulated after receiving the first signal and the second signal. Or, by ensuring that the phase of any two consecutive first sub-signals of the M first sub-signals consecutive in the time domain and having the same sub-carrier frequency is continuous at the switching time, and is within a range of the second preset frequency from the reference sub-carrier frequency
  • the first signal transmitted is orthogonal to the transmitted second signal, thereby reducing interference of the first signal with the second signal.
  • 1A is a schematic diagram of a signal with a subcarrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz when a symbol with a complete subcarrier frequency interval of 30 kHz is intercepted in the time domain according to an embodiment of the present invention
  • FIG. 1B is a signal waveform diagram of a signal with a subcarrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz according to a time domain diagram of FIG. 1 according to an embodiment of the present disclosure
  • 2A is a schematic diagram of a signal with a subcarrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz when a complete subcarrier frequency interval of 15 kHz is intercepted in the time domain according to an embodiment of the present invention
  • 2B is a signal waveform diagram of a signal with a subcarrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz according to a time domain diagram of FIG. 2 according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for implementing data transmission according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a signal with a subcarrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another signal with a carrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another method for implementing data transmission according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of still another method for implementing data transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an apparatus for implementing data transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another apparatus for implementing data transmission according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an apparatus for implementing data transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another apparatus for implementing data transmission according to an embodiment of the present invention.
  • Embodiments of the present invention provide a data transmission method and device, which can reduce interference generated between symbols of different subcarrier spacings.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 2A to FIG. 2B show an example in which a symbol having a subcarrier frequency interval of 30 kHz and a subcarrier frequency interval of 15 kHz are taken as an example.
  • the symbols with the subcarrier spacing of 30KHZ are called the first symbol
  • the symbols with the subcarrier spacing of 15KHZ are called the first. Two symbols.
  • a signal consisting of a first symbol of length T1 plus a cyclic prefix of length Tcp1 is referred to as a first signal
  • a second symbol of length T0 is added with a signal consisting of a cyclic prefix of length Tcp0. Called the second signal.
  • each signal of the subcarrier frequency and the second signal subcarrier frequency interval is an integral multiple of 30 kHz (the subcarrier frequency interval or length of the first symbol) and The second signal is orthogonal.
  • each of the signals whose subcarrier frequency and the second signal subcarrier frequency are not separated by an integer multiple of 30 kHz is non-orthogonal. However, when the interval between the subcarrier frequencies between the first signal and the second signal is larger, the generated interference is gradually reduced.
  • the two signals are orthogonal, indicating that there is no interference between the two signals; the two signals are non-orthogonal, indicating that there is interference between the two signals.
  • the second signal analysis with a subcarrier frequency interval of 15 kHz is used to intercept a complete second symbol time length in the time domain. Since the length of time in the time domain is equal to the reciprocal of the subcarrier frequency interval, a complete second symbol time length in the time domain is equal to two first symbol time lengths. As shown in FIG. 2B, the first signal and the second signal are non-orthogonal as viewed in the frequency domain.
  • the interference of the second signal on the first signal is very small, but the first signal is second.
  • the signal still has interference.
  • the embodiment of the present invention provides a method for implementing data transmission. As shown in FIG. 3, the method includes:
  • Step 301 Generate a first signal to be sent; the first signal includes a plurality of first sub-signals, and a subcarrier frequency interval of each first sub-signal is a sub-segment of each second sub-signal included in the second signal M times the carrier frequency interval, the M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain.
  • Step 302 Perform, for each first sub-signal, that the first sub-signal is carried on a sub-carrier corresponding to a sub-carrier frequency of the first sub-signal.
  • the generating the first signal to be sent includes at least one of the following:
  • the first signal generating, according to the at least one first modulation symbol, at least one first sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency within a range of the first preset frequency from the reference sub-carrier frequency;
  • the at least one first modulation symbol is all a non-zero preset symbol; or the part of the at least one first modulation symbol is a non-zero preset symbol, and the remaining part is a zero symbol;
  • the reference subcarrier frequency is The subcarrier frequency of the first sub-signal of the two signals adjacent in the frequency domain.
  • the first preset frequency is satisfied: when the subcarrier frequency interval of the first signal and the second signal is greater than the first preset frequency, the interference can be ignored.
  • the transmission of the first signal may be undefined except outside the range of the first preset frequency from the reference subcarrier frequency.
  • the first signal composed of the respective first sub-signals generated from the non-zero preset symbols can be used for channel estimation and measurement.
  • the first signal can be used as a pilot signal or a reference signal. Since the second signal does not interfere with the first signal, after the first signal and the second signal are received, the first signal is correctly demodulated, and then the first signal is eliminated as an interference signal, and the signal is successfully demodulated. The second signal is output.
  • the pattern for transmitting the first signal can satisfy the pattern as shown in FIG. 4, and FIG. 4 is an example in which the first signal has a subcarrier frequency interval of 30 kHz and the second signal has a subcarrier frequency interval of 15 kHz. And, in the time domain, the start time of the signal group consisting of the two first signals is the same as the start time of a second signal.
  • the M first sub-signals are continuous in the time domain and the sub-carrier frequencies are the same, and the phase of any two of the M first sub-signals that are consecutive in the time domain is continuous at the switching time;
  • the two first sub-signals consecutive in the time domain include a previous first sub-signal and a subsequent first sub-signal, and the switching moment is a signal end time of the previous first sub-signal and a next first sub-signal The signal begins at the moment.
  • the signal phase of any two consecutive first sub-signals of the M first sub-signals at the switching moment is continuous: any two consecutive first sub-signals in the time domain are viewed from the waveform in the time domain. Is a continuous signal with no discontinuities.
  • the transmitted first signal is orthogonal to the transmitted second signal. Thereby reducing the interference of the first signal to the second signal.
  • the third scheme can be implemented by the following:
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol in the number is determined.
  • phase difference is a time length of a sub-carrier angular frequency corresponding to a previous one of the two adjacent first modulation symbols multiplied by a cyclic prefix corresponding to a first modulation symbol.
  • the generated M first sub-signals that are continuous in the time domain and have the same sub-carrier frequency and the second sub-signal to be transmitted; wherein, the start time of a group of signals consisting of the M first sub-signals The same as the start time of the second sub-signal. This ensures that the two signals are aligned in time when transmitted, thus avoiding interference due to time misalignment between signals of different subcarrier frequency intervals.
  • the signal after the length of one symbol period plus the cyclic prefix CP is:
  • T cp which represents the length of the cyclic prefix.
  • the subcarrier frequency interval immediately adjacent to the above signal is Mf 0 HZ, and the symbol of the length of one symbol period plus CP is:
  • M is a positive integer greater than one.
  • the M subcarrier frequency interval Mf 0 HZ signal (including the CP part) is orthogonal to s 1 (t), and M can be constructed.
  • the signal whose subcarrier frequency interval is Mf 0 HZ is as follows:
  • the continuous M subcarriers have a frequency interval between the signals of Mf 0 HZ being continuous.
  • the first signal transmitted is orthogonal to the transmitted second signal.
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol is determined.
  • phase difference is a previous one of the two adjacent first modulation symbols
  • the subcarrier angular frequency corresponding to the symbol is multiplied by the length of the cyclic prefix corresponding to the first first modulation symbol.
  • the M first sub-signals generated are
  • x(n) is a symbol generated by digital modulation.
  • the generated M first sub-signals that are continuous in the time domain and have the same sub-carrier frequency and the second sub-signal to be transmitted; wherein, the start time of a group of signals consisting of the M first sub-signals The same as the start time of the second sub-signal. This ensures that the two signals are aligned in time when transmitted, thus avoiding interference due to time misalignment between signals of different subcarrier frequency intervals.
  • the embodiment of the invention further provides a method for implementing data transmission, as shown in FIG. 6, which includes:
  • Step 601 generate a second signal to be transmitted; the second signal includes a plurality of second sub-signals; and the sub-carrier frequency interval of each first sub-signal included in the first signal is a sub-signal of each second sub-signal M times the carrier frequency interval, the M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain.
  • Step 602 Perform, for each second sub-signal, respectively: transmitting the second sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the second sub-signal; and in the second signal, being spaced apart from a reference sub-carrier frequency In the range of the first preset frequency, the at least one second sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency whose difference from the reference sub-carrier frequency is an integer multiple of the sub-carrier frequency interval of the first sub-signal is non- a zero signal, and each second sub-signal transmitted on each sub-carrier corresponding to a sub-carrier frequency whose sub-carrier frequency interval of the first sub-signal is not a multiple of the reference sub-carrier frequency is a zero signal, the reference The subcarrier frequency is a subcarrier frequency of the first sub-signal adjacent to the second signal in the frequency domain.
  • the first preset frequency in this embodiment may be the same as the first preset frequency shown in FIG. 3, or Different.
  • the interference of the second signal on the first signal is very small, and therefore, the present invention is utilized.
  • the solution provided by the embodiment can reduce the interference of the second signal on the first signal.
  • the first preset frequency is satisfied: when the subcarrier frequency interval of the first signal and the second signal is greater than the first preset frequency, the interference can be ignored.
  • the transmission of the first signal may be undefined except outside the range of the first preset frequency from the reference subcarrier frequency.
  • the subcarrier frequency corresponding to the reference subcarrier frequency is an integer multiple of the subcarrier frequency interval of the first signal.
  • the second signal is transmitted on the subcarriers, and no signal is transmitted on the remaining subcarriers. It can be ensured that the second signal does not interfere with the first signal within a range from the first preset frequency to the reference subcarrier frequency. This avoids the waste of frequency resources caused by not transmitting signals within the frequency guard band.
  • the start time of a group of signals consisting of M first sub-signals consecutive in time domain and having the same sub-carrier frequency is the same as the start time of a second sub-signal to be transmitted.
  • An embodiment of the present invention further provides a method for implementing data transmission. As shown in FIG. 7, the method includes:
  • Step 701 Generate a first signal to be transmitted and a second signal to be sent, where the first signal includes at least one first sub-signal, and the second signal includes at least one second sub-signal; wherein, the first signal
  • the subcarrier frequency interval is M times the subcarrier frequency interval of the second signal, and the M is a positive integer greater than one.
  • Step 702 Performing, for each first sub-signal, respectively: carrying the first sub-signal in its own sub- And transmitting on the subcarrier corresponding to the carrier frequency; performing, for each second subsignal, transmitting the second subsignal on a subcarrier corresponding to the frequency of the subcarrier.
  • the difference from the reference subcarrier frequency is a subcarrier frequency corresponding to an integer multiple of the subcarrier frequency interval of the first subsignal
  • At least one second sub-signal transmitted on the at least one sub-carrier is a non-zero signal, and the difference from the reference sub-carrier frequency is on each sub-carrier corresponding to the sub-carrier frequency of the sub-carrier frequency interval of the first sub-signal
  • Each of the transmitted second sub-signals is a zero signal
  • the reference sub-carrier frequency is a sub-carrier frequency of the first sub-signal adjacent to the second signal in the frequency domain.
  • the second sub-signal sent on the sub-carrier corresponding to the sub-carrier frequency of the first sub-carrier frequency interval is a zero signal, which is equivalent to the reference sub-carrier.
  • the difference in frequency is that no signal is transmitted on the subcarrier corresponding to the subcarrier frequency of the subcarrier frequency interval of the first signal.
  • the interval between the first signal and the subcarrier frequency of the second signal is larger at the first signal analysis with the subcarrier frequency interval of 30 kHz, the interference of the second signal with the first signal is getting smaller and smaller. Therefore, the first preset frequency is satisfied, and when the subcarrier frequency interval of the first signal and the second signal is greater than the first preset frequency, the interference can be ignored.
  • the transmission of the first signal and the second signal may be undefined except outside the range of the first preset frequency from the reference subcarrier frequency.
  • the subcarrier with the difference between the reference subcarrier frequency and the reference subcarrier frequency is an integer multiple of the subcarrier frequency of the first signal within a range from the first preset frequency to the reference subcarrier frequency.
  • the second signal is transmitted on the subcarrier corresponding to the frequency, and no signal is transmitted on the remaining subcarriers. It can be ensured that the second signal does not interfere with the first signal within a range from the first preset frequency to the reference subcarrier frequency. This avoids the waste of frequency resources caused by not transmitting signals within the frequency guard band.
  • the generating the first signal to be sent includes:
  • the at least one first modulation symbol is all a non-zero preset symbol; or, the part of the at least one first modulation symbol is a non-zero preset symbol, and the remaining part is a zero symbol;
  • the reference subcarrier frequency is a subcarrier frequency of the first sub-signal adjacent to the second signal in the frequency domain;
  • the second preset frequency may be equal to the first preset frequency, or may be greater than the first preset frequency.
  • the first signal composed of the respective first sub-signals generated from the non-zero preset symbols can be used for channel estimation and measurement.
  • the first signal can be used as a pilot signal or a reference signal. Since the second signal does not interfere with the first signal, after the first signal and the second signal are received, the first signal is correctly demodulated, and then the first signal is eliminated as an interference signal, and the signal is successfully demodulated. The second signal is output.
  • the pattern of transmitting the first signal and the second signal may satisfy the pattern as shown in FIG. 4, and FIG. 4 is an example in which the first signal has a subcarrier frequency interval of 30 kHz and the second signal has a subcarrier frequency interval of 15 kHz. And, in the time domain, the start time of the signal group consisting of the two first signals is the same as the start time of a second signal.
  • the generating the first signal to be sent includes:
  • the M first sub-signals are continuous in the time domain and the sub-carrier frequencies are the same, and the phase of any two of the M first sub-signals that are consecutive in the time domain is continuous at the switching time;
  • the two first sub-signals consecutive in the time domain include a previous first sub-signal and a subsequent first sub-signal, and the switching moment is a signal end time of the previous first sub-signal and a next first sub-signal The signal begins at the moment.
  • the signal phase of any two consecutive first sub-signals of the M first sub-signals at the switching moment is continuous: any two consecutive first sub-signals in the time domain are viewed from the waveform in the time domain. Is a continuous signal with no discontinuities.
  • the first sub-signal is continuous in phase at the switching instant, and is orthogonal between the transmitted first signal and the transmitted second signal within a range from the second sub-frequency of the reference sub-carrier frequency.
  • the generating the first signal to be sent includes:
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol is determined.
  • An embodiment of the present invention further provides an apparatus for implementing data transmission. As shown in FIG. 8, the apparatus includes:
  • the processing unit 801 is configured to generate a first signal to be sent.
  • the first signal includes a plurality of first sub-signals, and a sub-carrier frequency interval of each first sub-signal is M times a sub-carrier frequency interval of each second sub-signal included in the second signal, where M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain;
  • the sending unit 802 is configured to perform, for each of the first sub-signals generated by the processing unit 801, to transmit the first sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the first sub-signal;
  • the processing unit 801 is specifically configured to generate the first signal to be sent by using at least one of the following solutions, including:
  • the first implementation is a first implementation:
  • the first signal In the first signal, generating a distance from the reference subcarrier frequency according to the at least one first modulation symbol At least one first sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency in the range of the first preset frequency; wherein the at least one first modulation symbol is all a non-zero preset symbol; or The portion of the at least one first modulation symbol is a non-zero preset symbol, and the remaining portion is a zero symbol; the reference subcarrier frequency is a subcarrier frequency of the first sub signal adjacent to the second signal in the frequency domain.
  • the first preset frequency is satisfied: when the subcarrier frequency interval of the first signal and the second signal is greater than the first preset frequency, the interference can be ignored.
  • the transmission of the first signal may be undefined except outside the range of the first preset frequency from the reference subcarrier frequency.
  • the first signal composed of the respective first sub-signals generated from the non-zero preset symbols can be used for channel estimation and measurement.
  • the first signal can be used as a pilot signal or a reference signal. Since the second signal does not interfere with the first signal, after the first signal and the second signal are received, the first signal is correctly demodulated, and then the first signal is eliminated as an interference signal, and the signal is successfully demodulated. The second signal is output.
  • the second implementation is a first implementation.
  • the M first sub-signals transmitted on the subcarrier are generated.
  • the M first sub-signals are continuous in the time domain and the sub-carrier frequencies are the same, and the phase of any two of the M first sub-signals that are consecutive in the time domain is continuous at the switching time;
  • the two first sub-signals consecutive in the time domain include a previous first sub-signal and a subsequent first sub-signal, and the switching moment is a signal end time of the previous first sub-signal and a next first sub-signal The signal begins at the moment.
  • the transmitted first signal is orthogonal to the transmitted second signal. Thereby reducing the interference of the first signal to the second signal.
  • the third implementation is a first implementation.
  • M first sub-signals that are continuous in the time domain and have the same sub-carrier frequency are generated according to the M first modulation symbols.
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol is determined.
  • the phase difference is a time length of a sub-carrier angular frequency corresponding to a previous one of the two adjacent first modulation symbols, and a cyclic prefix corresponding to a subsequent one of the first modulation symbols.
  • the processing unit 801 is specifically configured to: when generating the M first sub-signals sent on the sub-carrier:
  • the start time of a group of signals consisting of the M first sub-signals is the same as the start time of a second sub-signal.
  • An embodiment of the present invention further provides an apparatus for implementing data transmission. As shown in FIG. 9, the apparatus includes:
  • the processing unit 901 is configured to generate a second signal to be sent.
  • the second signal includes a plurality of second sub-signals; and the sub-carrier frequency interval of each first sub-signal included in the first signal is M times the sub-carrier frequency interval of each second sub-signal, where M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain;
  • the sending unit 902 is configured to perform, for each second sub-signal generated by the processing unit 901, to transmit the second sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the second sub-signal;
  • the at least one second sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency of the sub-carrier frequency interval of the sub-carrier frequency interval of the first sub-signal is a non-zero signal, and is related to the reference sub-carrier frequency
  • the second sub-signal transmitted on each sub-carrier corresponding to the sub-carrier frequency corresponding to the sub-carrier frequency interval of the first sub-signal is zero signal, and the reference sub-carrier frequency is in frequency with the second signal.
  • processing unit 901 is specifically configured to:
  • the start time of a group of signals consisting of M first sub-signals consecutive in time domain and having the same sub-carrier frequency is the same as the start time of a second sub-signal to be transmitted.
  • the processing unit 901 is further configured to implement the functions implemented by the processing unit 801 described in the embodiment corresponding to FIG. 8.
  • the sending unit 902 is further configured to implement the sending unit 802 according to the embodiment corresponding to FIG. The function implemented.
  • an embodiment of the present invention further provides an apparatus for implementing data transmission.
  • the device includes a transceiver 1001, a processor 1002, and a memory 1003.
  • the transceiver 1001, the processor 1002, and the memory 1003 are connected to each other.
  • the specific connecting medium between the above components is not limited in the embodiment of the present invention.
  • the memory 1003, the processor 1002, and the transceiver 1001 are connected by a bus 1004 in FIG. 10.
  • the bus is indicated by a thick line in FIG. 10, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the memory 1003 is used to store the program code executed by the processor 1002, and may be a volatile memory, such as a random access memory (English: random-access memory, abbreviation: RAM);
  • the memory 1003 may also be a non-volatile memory (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard Disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviated: SSD), or storage
  • the device 1003 is any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer, but is not limited thereto.
  • the memory 1003 may be a combination of the above memories.
  • the processor 1002 in the embodiment of the present invention may be a central processing unit (English: central processing unit, CPU for short).
  • the processor 1002 is configured to generate a first signal to be sent.
  • the first signal includes a plurality of first sub-signals, and a sub-carrier frequency interval of each first sub-signal is M times a sub-carrier frequency interval of each second sub-signal included in the second signal, where M is a positive integer greater than 1; the second signal is adjacent to the first signal in the frequency domain;
  • the transceiver 1001 is configured to perform, for each of the first sub-signals generated by the processor 1002, to transmit the first sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the first sub-signal;
  • the processor 1002 is specifically configured to generate the first signal to be sent by using at least one of the following methods, including:
  • the first implementation is a first implementation:
  • the first signal generating, according to the at least one first modulation symbol, at least one first sub-signal transmitted on the at least one sub-carrier corresponding to the sub-carrier frequency within a range of the first preset frequency from the reference sub-carrier frequency;
  • the at least one first modulation symbol is all a non-zero preset symbol; or the part of the at least one first modulation symbol is a non-zero preset symbol, and the remaining part is a zero symbol;
  • the reference subcarrier frequency is The subcarrier frequency of the first sub-signal of the two signals adjacent in the frequency domain.
  • the second implementation is a first implementation.
  • the M first sub-signals transmitted on the subcarrier are generated.
  • the M first sub-signals are continuous in the time domain and the sub-carrier frequencies are the same, and any two of the M first sub-signals that are consecutive in the time domain are consecutive in phase at the switching instant.
  • the two first sub-signals continuous in the time domain include a previous first sub-signal and a subsequent first sub-signal a signal, the switching moment being a signal end time of the previous first sub-signal and a signal start time of the next first sub-signal.
  • the third implementation is a first implementation.
  • M first sub-signals that are continuous in the time domain and have the same sub-carrier frequency are generated according to the M first modulation symbols.
  • the amplitudes of the M first modulation symbols are the same, and the phase differences of the two first modulation symbols adjacent to each of the M first modulation symbols are based on the two adjacent first modulation symbols.
  • the length of time of the cyclic prefix corresponding to the latter first modulation symbol is determined.
  • the phase difference is a time length of a sub-carrier angular frequency corresponding to a previous one of the two adjacent first modulation symbols, and a cyclic prefix corresponding to a subsequent first modulation symbol.
  • the processor 1002 is specifically configured to: when generating the M first sub-signals sent on the sub-carrier:
  • the start time of a group of signals consisting of the M first sub-signals is the same as the start time of a second sub-signal.
  • an embodiment of the present invention further provides an apparatus for implementing data transmission.
  • the device includes a transceiver 1101, a processor 1102, and a memory 1103.
  • the transceiver 1101, the processor 1102, and the memory 1103 are connected to each other.
  • the specific connecting medium between the above components is not limited in the embodiment of the present invention.
  • the memory 1103, the processor 1102, and the transceiver 1101 are connected by a bus 1104 in FIG. 11, and the bus is indicated by a thick line in FIG. 11, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the memory 1103 is used to store the program code executed by the processor 1102 in the embodiment of the present invention. Therefore, it is a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory 1103 can also be a non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD), or memory 1103, is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 1103 may be a combination of the above memories.
  • the processor 1102 in the embodiment of the present invention may be a central processing unit (CPU).
  • CPU central processing unit
  • the processor 1102 is configured to generate a second signal to be sent.
  • the second signal includes a plurality of second sub-signals; and the sub-carrier frequency interval of each first sub-signal included in the first signal is M times the sub-carrier frequency interval of each second sub-signal, where M is a positive integer greater than one; the second signal is adjacent to the first signal in the frequency domain.
  • the transceiver 1101 is configured to perform, for each second sub-signal generated by the processor 1102, to transmit the second sub-signal on a sub-carrier corresponding to a sub-carrier frequency of the second sub-signal.
  • the second signal at least one of the subcarrier frequencies corresponding to the subcarrier frequency of the first subsignal having a difference from the reference subcarrier frequency within a range of the first predetermined frequency from the reference subcarrier frequency
  • the at least one second sub-signal transmitted on the sub-carrier is a non-zero signal, and the difference from the reference sub-carrier frequency is sent on each sub-carrier corresponding to the sub-carrier frequency of the non-integer multiple of the sub-carrier frequency interval of the first sub-signal
  • Each of the second sub-signals is a zero signal
  • the reference sub-carrier frequency is a sub-carrier frequency of the first sub-signal adjacent to the second signal in the frequency domain.
  • the processor 1102 is specifically configured to:
  • the start time of a group of signals consisting of M first sub-signals consecutive in time domain and having the same sub-carrier frequency is the same as the start time of a second sub-signal to be transmitted.
  • the processor 1102 is further configured to implement the functions implemented by the processor 1002 illustrated in FIG. 10,
  • the transceiver 1101 is also used to implement the functions implemented by the transceiver 1001 described in FIG.
  • the subcarrier frequency corresponding to the reference subcarrier frequency is an integer multiple of the subcarrier frequency interval of the first signal.
  • the second signal is transmitted on the subcarriers, and no signal is transmitted on the remaining subcarriers. It can be ensured that the second signal does not interfere with the first signal within a range from the first preset frequency to the reference subcarrier frequency. This avoids the waste of frequency resources caused by not transmitting signals within the frequency guard band.
  • the first signal composed of the respective first sub-signals generated from the non-zero preset symbols can be used for channel estimation and measurement.
  • the first signal can be used as a pilot signal or a reference signal.
  • the second signal does not interfere with the first signal.
  • the phase of any two consecutive first sub-signals of the M first sub-signals consecutive in the time domain and having the same sub-carrier frequency is continuous at the switching time, and is within a range of the second preset frequency from the reference sub-carrier frequency
  • the first signal transmitted is orthogonal to the transmitted second signal. Thereby reducing the interference of the first signal to the second signal.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the computer readable memory is stored in the computer readable memory.
  • the instructions in the production result include an article of manufacture of the instruction device that implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明提供了一种实现数据传输的方法及装置,用于减少不同子载波间隔的符号之间的干扰。该方法包括:产生第一信号和第二信号,第一信号包括至少一个第一子信号,第二信号包括至少一个第二子信号;其中,第一子信号的子载波频率间隔是第二子信号的子载波频率间隔的M倍;分别将各个第一子信号和各个第二子信号发送;在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一信号的子载波频率间隔非整数倍的子载波频率对应的子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。

Description

一种实现数据传输的方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种实现数据传输的方法及装置。
背景技术
在第五代移动通信技术(英文:5-Generation,简称:5G)标准备选方案中,基于现有正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)***信号结构,在不同载波频段采用不同参数的OFDM符号。比如随着载波频率的上升,OFDM符号采用更大的子载波间隔(或长度),更短的符号周期。在同一传输时间间隔(英文:Transmission Time Interval,简称:TTI)时间内不同子载波间隔的符号通过频分方式使用频率资源,例如在一段频率内采用子载波间隔为15KHZ和30KHZ的符号复用该段频率。
由于不同子载波间隔的OFDM符号在同一时间段内,不能够继续保持信号间的正交性,因此在不同子载波间隔的符号之间产生很大的干扰。如何减少不同子载波间隔的符号之间的干扰,目前并没有一种有效的方法。
发明内容
本发明实施例提供了一种实现数据传输的方法及装置,实现了减少不同子载波间隔的符号之间产生的干扰。
第一方面,本发明实施例提供了一种实现数据传输的方法,包括:
产生待发送的第一信号;
所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
针对每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送;
所述产生待发送的第一信号,包括如下的至少一种方案:
在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率;
或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
产生在该子载波上发送的M个第一子信号;
所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻;
或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号;
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
结合第一方面,在第一方面的第一种可能的实现方式中,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述产生在该子载波上发送的M个第一子信号,包括:
在该子载波上,产生时域上连续且子载波频率相同的M个第一子信号;
其中,由所述M个第一子信号组成的一组信号的起始时刻与一个第二子信号的起始时刻相同。
第二方面,本发明实施例提供了一种实现数据传输的方法,包括:
产生待发送的第二信号;
所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
针对每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送;
在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
结合第二方面,在第二方面的第一种可能的实现方式中,所述产生待发送的第二信号,包括:
在第二信号的每个子载波上产生待发送的第二子信号;
其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,还包括:如第一方面和第一方面的第一种至第二种可能的实现方式中的任意一种所述的方法。
第三方面,本发明实施例还提供了一种实现数据传输的装置,包括:
处理单元,用于产生待发送的第一信号;
所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间 隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
发送单元,用于针对所述处理单元产生的每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送;
所述处理单元具体用于采用如下的至少一种方案产生待发送的第一信号,包括:
在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率;
或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
产生在该子载波上发送的M个第一子信号;
所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻;
或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号;
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
结合第三方面,在第三方面的第一种可能的实现方式中,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理单元在产生在该子载波上发送的M个第一子信号时,具体用于:
在该子载波上,产生时域上连续且子载波频率相同的M个第一子信号;
其中,由所述M个第一子信号组成的一组信号的起始时刻与一个第二子信号的起始时刻相同。
第四方面,本发明实施例还提供了一种实现数据传输的装置,包括:
处理单元,用于产生待发送的第二信号;
所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
发送单元,用于针对所述处理单元产生的每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送;
在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
结合第四方面,在第四方面的第一种可能的实现方式中,所述处理单元,具体用于:
在第二信号的每个子载波上产生待发送的第二子信号;
其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述处理单元还用于实现第三方面和第三方面的第一种至第二种可能的实现方式中任意一种所述的处理单元所实现的功能,所述发送单元还用于实现实现第三方面和第三方面的第一种至第二种可能的实现方式中任意一种所述的发送单元所实现的功能。
利用本发明实施例提供的方案,在与参考子载波频率相距第一预设频率的范围内,在与参考子载波频率的差值为第一信号的子载波频率间隔整数倍的子载波频率对应的子载波上发送第二信号,其余子载波上不发送信号。可以保证在与参考子载波频率相距第一预设频率的范围内,第二信号不会对第一信号产生干扰。从而避免了在频率保护带内均不发送信号而对频率资源造成的浪费。另外,根据非零预设符号产生的各个第一子信号组成的第一信号可以用于信道估计和测量。可以将第一信号作为导频信号或参考信号。由于第二信号不会对第一信号产生干扰,可以在接收到第一信号和第二信号后,正确解调出第一信号。或者,通过保证时域连续且子载波频率相同的M个第一子信号中任意两个连续的第一子信号在切换时刻的相位连续,在与参考子载波频率相距第二预设频率的范围内,所发送的第一信号与发送的第二信号之间正交,从而减少了第一信号对第二信号的干扰。
附图说明
图1A为本发明实施例提供的在时域上所截取一个完整的子载波频率间隔为30KHZ的符号时,子载波频率间隔为30KHZ的信号与子载波频率间隔为15KHZ的信号的示意图;
图1B为本发明实施例提供的图1的时域图对应的频域上的子载波频率间隔为30KHZ的信号与子载波频率间隔为15KHZ的信号波形图;
图2A为本发明实施例提供的在时域上,在截取一个完整的子载波频率间隔为15KHZ的符号时,子载波频率间隔为30KHZ的信号与子载波频率间隔为15KHZ的信号的示意图;
图2B为本发明实施例提供的图2的时域图对应的频域上的子载波频率间隔为30KHZ的信号与子载波频率间隔为15KHZ的信号波形图;
图3为本发明实施例提供的一种实现数据传输的方法流程图;
图4为本发明实施例提供的一种子载波频率间隔为30KHZ的信号和子载波频率间隔为15KHZ的信号示意图;
图5为本发明实施例提供的另一种子载波频率间隔为30KHZ的信号和子载波频率间隔为15KHZ的信号示意图。
图6为本发明实施例提供的另一种实现数据传输的方法流程图;
图7为本发明实施例提供的又一种实现数据传输的方法流程图;
图8为本发明实施例提供的一种实现数据传输的装置示意图;
图9为本发明实施例提供的另一种实现数据传输的装置示意图;
图10为本发明实施例提供的一种实现数据传输的设备示意图;
图11为本发明实施例提供的另一种实现数据传输的设备示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供一种数据传输的方法及设备,实现了减少不同子载波间隔的符号之间产生的干扰。其中,方法和设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
如图1A~图1B,图2A~图2B,以子载波频率间隔为30KHZ的符号与子载波频率间隔为15KHZ的符号为例。为了后续描述简单,将各个子载波间隔为30KHZ的符号称为第一符号,将各个子载波间隔为15KHZ的符号称为第 二符号。
需要说明的是,为了防止各个子载波频率间隔相同的各个符号之间互相干扰,需要在每个符号前面加一段时间的循环前缀,具体可以参照现有技术的实现方式,本发明不再赘述。另外,将时间长度为T1的第一符号加上时间长度为Tcp1的循环前缀组成的信号称为第一信号,将时间长度为T0的第二符号加上时间长度为Tcp0的循环前缀组成的信号称为第二信号。
如图1A所示,以子载波频率间隔为30KHZ的第一信号分析,在时域上,截取一个完整的第一符号时间长度。由于时域上的时间长度等于子载波频率间隔的倒数,因此,时域上一个完整的第一符号时间长度,等于半个第二符号时间长度。如图1B所示,从频域上看,在第一信号中,子载波频率与第二信号子载波频率间隔为30KHZ(第一符号的子载波频率间隔或长度)的整数倍的各个信号与第二信号是正交的。在第一信号中,子载波频率与第二信号子载波频率间隔不为30KHZ的整数倍的各个信号与第二信号是非正交的。但是当第一信号与第二信号之间的子载波频率的间隔越大,产生的干扰会逐渐减少。
其中,两种信号正交,表示两种信号间无干扰;两种信号非正交,表示两种信号之间存在干扰。
如图2A所示,以子载波频率间隔为15KHZ的第二信号分析,在时域上,截取一个完整的第二符号时间长度。由于时域上的时间长度等于子载波频率间隔的倒数,因此,时域上一个完整的第二符号时间长度,等于两个第一符号时间长度。如图2B所示,从频域上看,第一信号与第二信号是非正交的。
因此,得到的结论是:
时间对齐的条件下,在第二信号的子载波频率与第一信号的子载波频率的间隔为30KHZ的整数倍时,第二信号对第一信号的干扰非常小,但是第一信号对第二信号依然存在干扰。
基于上述发现,本发明实施例提供了一种实现数据传输的方法,如图3所示,该方法包括:
步骤301,产生待发送的第一信号;所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻。
步骤302,针对每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送。
其中,所述产生待发送的第一信号,包括如下的至少一种方案:
第一种方案:
在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
由于在以子载波频率间隔为30KHZ的第一信号分析上,第一信号与第二信号的子载波频率的间隔越大,第二信号对第一信号的干扰越来越小。由此第一预设频率满足:在第一信号与第二信号的子载波频率间隔大于第一预设频率时,干扰可以忽略。
需要说明的是,在与参考子载波频率相距第一预设频率的范围外,第一信号的发送可以不受限定。
因此根据非零预设符号产生的各个第一子信号组成的第一信号可以用于信道估计和测量。例如可以将第一信号作为导频信号或参考信号。由于第二信号不会对第一信号产生干扰,可以在接收到第一信号和第二信号后,正确解调出第一信号,然后再将第一信号作为干扰信号进行消除,并成功解调出第二信号。
因此,发送第一信号的图案可以满足如图4所示的图案,图4以第一信号为子载波频率间隔为30KHZ,第二信号的子载波频率间隔为15KHZ为例。 并且,在时域上,由两个第一信号组成的信号组的起始时刻与一个第二信号的起始时刻相同。
第二种方案:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
产生在该子载波上发送的M个第一子信号;
所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻。
具体的,M个第一子信号中任意两个连续的第一子信号在切换时刻的信号相位连续是指:在时域上任意两个连续的第一子信号从时域上的波形来看,是一个连续的信号,没有间断点。
通过保证时域连续且子载波频率相同的M个第一子信号中任意两个连续的第一子信号在切换时刻的相位连续,在与参考子载波频率相距第二预设频率的范围内,所发送的第一信号与发送的第二信号之间正交。从而减少了第一信号对第二信号的干扰。
在时域上,保证时域连续且子载波频率相同的M个第一子信号中任意两个连续的第一子信号在切换时刻的相位连续时,可以通过如下第三方案实现:
第三种方案:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号;
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符 号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
进一步地,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
进一步的,产生的时域上连续且子载波频率相同的M个第一子信号以及待发送的第二子信号;其中,由所述M个第一子信号组成的一组信号的起始时刻与所述第二子信号的起始时刻相同。这样能够保证两种信号发送时,在时间上是对齐的,这样能够避免不同的子载波频率间隔的信号间由于时间不对齐产生的干扰。
例如:假设子载波频率间隔为f0HZ的符号在其一个符号周期长度加循环前缀CP后的长度后的信号为:
Figure PCTCN2015085211-appb-000001
其中,
Figure PCTCN2015085211-appb-000002
表示符号周期;
f0,表示子载波频率间隔;
k,表示整数值;
t,表示时间自变量;
Tcp,表示循环前缀的时间长度。
则与上述信号紧邻的子载波频率间隔为Mf0HZ的符号在其一个符号周期长度加CP后的长度内为:
Figure PCTCN2015085211-appb-000003
其中,M为大于1的正整数。
显然,在
Figure PCTCN2015085211-appb-000004
内截取
Figure PCTCN2015085211-appb-000005
时间长度的信号,sM(t)与s1(t)是正交的。
为了在0≤t<T0+Tcp内截取T0时间长度的信号,M个子载波频率间隔为Mf0HZ的信号(包含CP部分)与s1(t)是正交的,可以构造M个子载波频率间 隔为Mf0HZ的信号为如下表达式:
Figure PCTCN2015085211-appb-000006
即在0≤t<T0+Tcp时间内,截取T0时间长度的信号时,s'M(t)与s1(t)内积为0(s'M(t)与s1(t)正交)。
s'M(t)在
Figure PCTCN2015085211-appb-000007
p=0,1,...,M-1处的信号相位为:
Figure PCTCN2015085211-appb-000008
或s'M(t)在
Figure PCTCN2015085211-appb-000009
p=0,1,...,M-1处的信号相位为:
Figure PCTCN2015085211-appb-000010
因此,从上式可以看出,时域上,连续的M个子载波频率间隔为Mf0HZ的信号之间的相位连续。
所以通过保证时域连续且子载波频率相同的M个第一子信号中任意两个连续的第一子信号在切换时刻的相位连续,在与参考子载波频率相距第二预设频率的范围内,所发送的第一信号与发送的第二信号之间正交。例如,如图5所示。图5是以第一信号为子载波频间隔为30KHZ的信号为例,第二信号为子载波频率间隔为15KHZ的信号为例。即M=2。
在保证时域上,连续的M个子载波频率间隔为Mf0HZ的信号之间的相位连续时,可以通过如下方式实现:
根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号;
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
进一步地,所述相位差为该相邻的两个第一调制符号中的前一个第一调 制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
具体的,M个调制符号为x(n)ejφ(p),p=0,1,...,M-1,
Figure PCTCN2015085211-appb-000011
则产生的M个第一子信号为
Figure PCTCN2015085211-appb-000012
其中,x(n)为数字调制生成的符号。
进一步的,产生的时域上连续且子载波频率相同的M个第一子信号以及待发送的第二子信号;其中,由所述M个第一子信号组成的一组信号的起始时刻与所述第二子信号的起始时刻相同。这样能够保证两种信号发送时,在时间上是对齐的,这样能够避免不同的子载波频率间隔的信号间由于时间不对齐产生的干扰。
本发明实施例还提供了一种实现数据传输的方法,如图6所示,包括:
步骤601,产生待发送的第二信号;所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻。
步骤602,针对每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送;在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
该实施例中的第一预设频率与图3所示的第一预设频率可以相同,也可 以不同。
由于在时间对齐的条件下,在第二信号的子载波频率与第一信号的子载波频率的间隔为30KHZ的整数倍时,第二信号对第一信号的干扰非常小,因此,利用本发明实施例提供的方案,能够减少第二信号对第一信号的干扰。
由于在以子载波频率间隔为30KHZ的第一信号分析上,第一信号与第二信号的子载波频率的间隔越大,第二信号对第一信号的干扰越来越小。由此第一预设频率满足:在第一信号与第二信号的子载波频率间隔大于第一预设频率时,干扰可以忽略。
需要说明的是,在与参考子载波频率相距第一预设频率的范围外,第一信号的发送可以不受限定。
利用本发明实施例提供的方案,在与参考子载波频率相距第一预设频率的范围内,在与参考子载波频率的差值为第一信号的子载波频率间隔整数倍的子载波频率对应的子载波上发送第二信号,其余子载波上不发送信号。可以保证在与参考子载波频率相距第一预设频率的范围内,第二信号不会对第一信号产生干扰。从而避免了在频率保护带内均不发送信号而对频率资源造成的浪费。
要满足时间对齐的条件,可以通过如下方式实现:
在第二信号的每个子载波上产生待发送的第二子信号;
其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
本发明实施例还提供了一种实现数据传输的方法,如图7所示,该方法包括:
步骤701,产生待发送的第一信号以及待发送的第二信号,所述第一信号包括至少一个第一子信号,所述第二信号包括至少一个第二子信号;其中,第一信号的子载波频率间隔是第二信号的子载波频率间隔的M倍,所述M为大于1的正整数。
步骤702,针对每个第一子信号分别执行:将该第一子信号承载在自身子 载波频率对应的子载波上发送;针对每个第二子信号分别执行:将该第二子信号承载在自身子载波频率对应的子载波上发送。其中,在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
其中,与参考子载波频率的差值为第一信号的子载波频率间隔非整数倍的子载波频率对应的子载波上发送的各个第二子信号均为零信号,等价于与参考子载波频率的差值为第一信号的子载波频率间隔非整数倍的子载波频率对应的子载波上不发送信号。
由于在以子载波频率间隔为30KHZ的第一信号分析上,第一信号与第二信号的子载波频率的间隔越大,第二信号对第一信号的干扰越来越小。由此第一预设频率满足,在第一信号与第二信号的子载波频率间隔大于第一预设频率时,干扰可以忽略。
需要说明的是,在与参考子载波频率相距第一预设频率的范围外,第一信号与第二信号的发送可以不受限定。
因此,利用本发明实施例提供的方案,在与参考子载波频率相距第一预设频率的范围内,在与参考子载波频率的差值为第一信号的子载波频率间隔整数倍的子载波频率对应的子载波上发送第二信号,其余子载波上不发送信号。可以保证在与参考子载波频率相距第一预设频率的范围内,第二信号不会对第一信号产生干扰。从而避免了在频率保护带内均不发送信号而对频率资源造成的浪费。
可选地,所述产生待发送的第一信号,包括:
在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一 个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率;
其中,第二预设频率可以等于第一预设频率,也可以大于第一预设频率。
因此根据非零预设符号产生的各个第一子信号组成的第一信号可以用于信道估计和测量。例如可以将第一信号作为导频信号或参考信号。由于第二信号不会对第一信号产生干扰,可以在接收到第一信号和第二信号后,正确解调出第一信号,然后再将第一信号作为干扰信号进行消除,并成功解调出第二信号。
因此,发送第一信号以及第二信号的图案可以满足如图4所示的图案,图4以第一信号为子载波频率间隔为30KHZ,第二信号的子载波频率间隔为15KHZ为例。并且,在时域上,由两个第一信号组成的信号组的起始时刻与一个第二信号的起始时刻相同。
可选地,所述产生待发送的第一信号,包括:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
产生在该子载波上发送的M个第一子信号;
所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻。
具体的,M个第一子信号中任意两个连续的第一子信号在切换时刻的信号相位连续是指:在时域上任意两个连续的第一子信号从时域上的波形来看,是一个连续的信号,没有间断点。
通过保证时域连续且子载波频率相同的M个第一子信号中任意两个连续 的第一子信号在切换时刻的相位连续,在与参考子载波频率相距第二预设频率的范围内,所发送的第一信号与发送的第二信号之间正交。
可选地,所述产生待发送的第一信号,包括:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号;
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
进一步地,产生的时域上连续且子载波频率相同的M个第一子信号以及待发送的第二子信号;其中,由所述M个第一子信号组成的一组信号的起始时刻与所述第二子信号的起始时刻相同。这样能够保证两种信号发送时,在时间上是对齐的,这样能够避免不同的子载波频率间隔的信号间因为时间不对齐产生的干扰。
本发明实施例还提供了一种实现数据传输的装置,如图8所示,该装置包括:
处理单元801,用于产生待发送的第一信号;
所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
发送单元802,用于针对所述处理单元801产生的每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送;
所述处理单元801具体用于采用如下的至少一种方案产生待发送的第一信号,包括:
第一种实现方案:
在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距 第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
由于在以子载波频率间隔为30KHZ的第一信号分析上,第一信号与第二信号的子载波频率的间隔越大,第二信号对第一信号的干扰越来越小。由此第一预设频率满足:在第一信号与第二信号的子载波频率间隔大于第一预设频率时,干扰可以忽略。
需要说明的是,在与参考子载波频率相距第一预设频率的范围外,第一信号的发送可以不受限定。
因此根据非零预设符号产生的各个第一子信号组成的第一信号可以用于信道估计和测量。例如可以将第一信号作为导频信号或参考信号。由于第二信号不会对第一信号产生干扰,可以在接收到第一信号和第二信号后,正确解调出第一信号,然后再将第一信号作为干扰信号进行消除,并成功解调出第二信号。
第二种实现方案:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
产生在该子载波上发送的M个第一子信号。
所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻。
通过保证时域连续且子载波频率相同的M个第一子信号中任意两个连续的第一子信号在切换时刻的相位连续,在与参考子载波频率相距第二预设频 率的范围内,所发送的第一信号与发送的第二信号之间正交。从而减少了第一信号对第二信号的干扰。
第三种实现方案:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号。
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
可选地,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
可选地,所述处理单元801在产生在该子载波上发送的M个第一子信号时,具体用于:
在该子载波上,产生时域上连续且子载波频率相同的M个第一子信号;
其中,由所述M个第一子信号组成的一组信号的起始时刻与一个第二子信号的起始时刻相同。
本发明实施例还提供了一种实现数据传输的装置,如图9所示,该装置包括:
处理单元901,用于产生待发送的第二信号;
所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
发送单元902,用于针对所述处理单元901产生的每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送;
在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参 考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
可选地,所述处理单元901,具体用于:
在第二信号的每个子载波上产生待发送的第二子信号;
其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
所述处理单元901还用于实现图8所对应的实施例所述的处理单元801所实现的功能,所述发送单元902还用于实现图8所对应的实施例所述的发送单元802所实现的功能。
基于上述实施例提供的实现数据传输的方法及装置,本发明实施例还提供了一种实现数据传输的装置。如图10所示,该设备包括收发器1001、处理器1002、存储器1003。收发器1001、处理器1002以及存储器1003相互连接。本发明实施例中不限定上述部件之间的具体连接介质。本发明实施例在图10中以存储器1003、处理器1002以及收发器1001之间通过总线1004连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例中存储器1003,用于存储处理器1002执行的程序代码,可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器1003也可以是非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)、或者存储 器1003是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1003可以是上述存储器的组合。
本发明实施例中处理器1002,可以是一个中央处理单元(英文:central processing unit,简称CPU)。
处理器1002,用于产生待发送的第一信号;
所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
收发器1001,用于针对所述处理器1002产生的每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送;
处理器1002具体用于采用如下的至少一种方案产生待发送的第一信号,包括:
第一种实现方案:
在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
第二种实现方案:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
产生在该子载波上发送的M个第一子信号。
所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续。其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子 信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻。
第三种实现方案:
在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号。
其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
其中,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
处理器1002在产生在该子载波上发送的M个第一子信号时,具体用于:
在该子载波上,产生时域上连续且子载波频率相同的M个第一子信号;
其中,由所述M个第一子信号组成的一组信号的起始时刻与一个第二子信号的起始时刻相同。
基于上述实施例提供的实现数据传输的方法及装置,本发明实施例还提供了一种实现数据传输的装置。如图11所示,该设备包括收发器1101、处理器1102、存储器1103。收发器1101、处理器1102以及存储器1103相互连接。本发明实施例中不限定上述部件之间的具体连接介质。本发明实施例在图11中以存储器1103、处理器1102以及收发器1101之间通过总线1104连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例中存储器1103,用于存储处理器1102执行的程序代码,可 以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器1103也可以是非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)、或者存储器1103是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1103可以是上述存储器的组合。
本发明实施例中处理器1102,可以是一个中央处理单元(英文:central processing unit,简称CPU)。
处理器1102,用于产生待发送的第二信号。
所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻。
收发器1101,用于针对所述处理器1102产生的每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送。
在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
可选地,处理器1102,具体用于:
在第二信号的每个子载波上产生待发送的第二子信号;
其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
可选地,处理器1102还用于实现图10所述的处理器1002所实现的功能, 所述收发器1101还用于实现图10所述的收发器1001所实现的功能。
利用本发明实施例提供的方案,在与参考子载波频率相距第一预设频率的范围内,在与参考子载波频率的差值为第一信号的子载波频率间隔整数倍的子载波频率对应的子载波上发送第二信号,其余子载波上不发送信号。可以保证在与参考子载波频率相距第一预设频率的范围内,第二信号不会对第一信号产生干扰。从而避免了在频率保护带内均不发送信号而对频率资源造成的浪费。因此根据非零预设符号产生的各个第一子信号组成的第一信号可以用于信道估计和测量。例如可以将第一信号作为导频信号或参考信号。由于第二信号不会对第一信号产生干扰。或者,通过保证时域连续且子载波频率相同的M个第一子信号中任意两个连续的第一子信号在切换时刻的相位连续,在与参考子载波频率相距第二预设频率的范围内,所发送的第一信号与发送的第二信号之间正交。从而减少了第一信号对第二信号的干扰。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种实现数据传输的方法,其特征在于,包括:
    产生待发送的第一信号;
    所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
    针对每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送;
    所述产生待发送的第一信号,包括如下的至少一种方案:
    在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率;
    或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
    产生在该子载波上发送的M个第一子信号;
    所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信号的信号开始时刻;
    或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
    在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相 同的M个第一子信号;
    其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
  2. 如权利要求1所述的方法,其特征在于,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
  3. 如权利要求1~2任一所述的方法,其特征在于,所述产生在该子载波上发送的M个第一子信号,包括:
    在该子载波上,产生时域上连续且子载波频率相同的M个第一子信号;
    其中,由所述M个第一子信号组成的一组信号的起始时刻与一个第二子信号的起始时刻相同。
  4. 一种实现数据传输的方法,其特征在于,包括:
    产生待发送的第二信号;
    所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
    针对每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送;
    在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
  5. 如权利要求4所述的方法,其特征在于,所述产生待发送的第二信号,包括:
    在第二信号的每个子载波上产生待发送的第二子信号;
    其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
  6. 如权利要求4或5所述的方法,其特征在于,还包括:如权利要求1~3任一所述的方法。
  7. 一种实现数据传输的装置,其特征在于,包括:
    处理单元,用于产生待发送的第一信号;
    所述第一信号包括多个第一子信号,且每个第一子信号的子载波频率间隔是第二信号包括的每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
    发送单元,用于针对所述处理单元产生的每个第一子信号分别执行:将该第一子信号承载在该第一子信号的子载波频率对应的子载波上发送;
    所述处理单元具体用于采用如下的至少一种方案产生待发送的第一信号,包括:
    在第一信号中,根据至少一个第一调制符号产生与参考子载波频率相距第一预设频率的范围内的子载波频率所对应至少一个子载波上发送的至少一个第一子信号;其中,所述至少一个第一调制符号全部为非零预设符号;或者,所述至少一个第一调制符号中部分为非零预设符号,其余部分为零符号;所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率;
    或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
    产生在该子载波上发送的M个第一子信号;
    所述M个第一子信号在时域上连续且子载波频率相同,所述M个第一子信号中任意两个在时域上连续的第一子信号在切换时刻的相位连续;其中,所述两个在时域上连续的第一子信号包括前一个第一子信号和后一个第一子信号,所述切换时刻为前一个第一子信号的信号结束时刻和下一个第一子信 号的信号开始时刻;
    或者,在第一信号中,针对与参考子载波频率相距第一预设频率的范围内的子载波频率所对应的至少一个子载波的每个子载波上分别执行:
    在该子载波上,根据M个第一调制符号产生时域上连续且子载波频率相同的M个第一子信号;
    其中,所述M个第一调制符号的幅度相同,所述M个第一调制符号中任意时间上相邻的两个第一调制符号的相位差是基于该相邻的两个第一调制符号中的后一个第一调制符号对应的循环前缀的时间长度确定的。
  8. 如权利要求7所述的装置,其特征在于,所述相位差为该相邻的两个第一调制符号中的前一个第一调制符号对应的子载波角频率乘以后一个第一调制符号对应的循环前缀的时间长度。
  9. 如权利要求7或8所述的方法,其特征在于,所述处理单元在产生在该子载波上发送的M个第一子信号时,具体用于:
    在该子载波上,产生时域上连续且子载波频率相同的M个第一子信号;
    其中,由所述M个第一子信号组成的一组信号的起始时刻与一个第二子信号的起始时刻相同。
  10. 一种实现数据传输的装置,其特征在于,包括:
    处理单元,用于产生待发送的第二信号;
    所述第二信号包括多个第二子信号;且第一信号包括的每个第一子信号的子载波频率间隔是每个第二子信号的子载波频率间隔的M倍,所述M为大于1的正整数;所述第二信号与所述第一信号在频域上相邻;
    发送单元,用于针对所述处理单元产生的每个第二子信号分别执行:将该第二子信号承载在该第二子信号的子载波频率对应的子载波上发送;
    在第二信号中,在与参考子载波频率相距第一预设频率的范围内,与参考子载波频率的差值为第一子信号的子载波频率间隔整数倍的子载波频率对应的至少一个子载波上发送的至少一个第二子信号为非零信号,且与参考子载波频率的差值为第一子信号的子载波频率间隔非整数倍的子载波频率对应 的各个子载波上发送的各个第二子信号均为零信号,所述参考子载波频率为与第二信号在频域上相邻的第一子信号的子载波频率。
  11. 如权利要求10所述的装置,其特征在于,所述处理单元,具体用于:
    在第二信号的每个子载波上产生待发送的第二子信号;
    其中,由时域上连续且子载波频率相同的M个第一子信号组成的一组信号的起始时刻与一个待发送的第二子信号的起始时刻相同。
  12. 如权利要求10或11所述的装置,其特征在于,所述处理单元还用于实现如权利要求7~9任一所述的处理单元所实现的功能,所述发送单元还用于实现如权利要求7~9任一所述的发送单元所实现的功能。
PCT/CN2015/085211 2015-07-27 2015-07-27 一种实现数据传输的方法及装置 WO2017015837A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580046773.6A CN106688214B (zh) 2015-07-27 2015-07-27 一种实现数据传输的方法及装置
EP15899189.3A EP3316541B1 (en) 2015-07-27 2015-07-27 Method and apparatus for realizing data transmission
PCT/CN2015/085211 WO2017015837A1 (zh) 2015-07-27 2015-07-27 一种实现数据传输的方法及装置
US15/878,774 US10721047B2 (en) 2015-07-27 2018-01-24 Method and apparatus for implementing data transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085211 WO2017015837A1 (zh) 2015-07-27 2015-07-27 一种实现数据传输的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/878,774 Continuation US10721047B2 (en) 2015-07-27 2018-01-24 Method and apparatus for implementing data transmission

Publications (1)

Publication Number Publication Date
WO2017015837A1 true WO2017015837A1 (zh) 2017-02-02

Family

ID=57885634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085211 WO2017015837A1 (zh) 2015-07-27 2015-07-27 一种实现数据传输的方法及装置

Country Status (4)

Country Link
US (1) US10721047B2 (zh)
EP (1) EP3316541B1 (zh)
CN (1) CN106688214B (zh)
WO (1) WO2017015837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737306A (zh) * 2017-04-14 2018-11-02 上海诺基亚贝尔股份有限公司 基于频分复用的通信

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720348B2 (ja) 2016-05-22 2020-07-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける新しい無線アクセス技術に対するフレーム構造を構成するための方法及び装置
WO2018018479A1 (zh) * 2016-07-27 2018-02-01 广东欧珀移动通信有限公司 通信方法和通信设备
CN109150487B (zh) 2017-06-16 2021-06-22 华为技术有限公司 用于确定传输方向的方法和设备
CN109302718B (zh) * 2017-07-24 2020-10-09 华为技术有限公司 一种数据传输方法及装置
US20220052899A1 (en) * 2018-12-20 2022-02-17 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and apparatus
CN111769920B (zh) * 2019-04-02 2022-11-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112433214A (zh) * 2019-08-08 2021-03-02 华为技术有限公司 一种雷达信号发送方法及装置
CN114731319A (zh) * 2019-11-19 2022-07-08 中兴通讯股份有限公司 用于配置保护子载波的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691659A (zh) * 2004-04-23 2005-11-02 北京三星通信技术研究有限公司 在正交频分复用***中用于同步的方法
CN101394200A (zh) * 2008-11-11 2009-03-25 国网电力科学研究院 一种零变频和自适应频率选择的电力线载波数据传输方法
CN101399585A (zh) * 2007-09-27 2009-04-01 北京信威通信技术股份有限公司 Ofdma智能天线***的用户信号产生及干扰抑制的方法与装置
WO2014128019A1 (en) * 2013-02-22 2014-08-28 St-Ericsson Sa Estimation of the cfo by transmission of a single subcarrier signal in ofdm system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639728B2 (en) * 2003-07-08 2009-12-29 Qualcomm Incorporated Methods for generating and transmitting frequency hopped signals
KR101797494B1 (ko) * 2010-02-05 2017-11-15 엘지전자 주식회사 사운딩 참조신호 전송방법 및 장치
US9137083B1 (en) * 2014-04-17 2015-09-15 Freescale Semiconductor, Inc. Synchronization and frequency correction for a receiver
CN109076034B (zh) * 2016-06-20 2020-08-25 Oppo广东移动通信有限公司 信息传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691659A (zh) * 2004-04-23 2005-11-02 北京三星通信技术研究有限公司 在正交频分复用***中用于同步的方法
CN101399585A (zh) * 2007-09-27 2009-04-01 北京信威通信技术股份有限公司 Ofdma智能天线***的用户信号产生及干扰抑制的方法与装置
CN101394200A (zh) * 2008-11-11 2009-03-25 国网电力科学研究院 一种零变频和自适应频率选择的电力线载波数据传输方法
WO2014128019A1 (en) * 2013-02-22 2014-08-28 St-Ericsson Sa Estimation of the cfo by transmission of a single subcarrier signal in ofdm system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737306A (zh) * 2017-04-14 2018-11-02 上海诺基亚贝尔股份有限公司 基于频分复用的通信

Also Published As

Publication number Publication date
EP3316541A4 (en) 2018-06-27
EP3316541A1 (en) 2018-05-02
US10721047B2 (en) 2020-07-21
CN106688214A (zh) 2017-05-17
CN106688214B (zh) 2019-10-15
US20180152276A1 (en) 2018-05-31
EP3316541B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2017015837A1 (zh) 一种实现数据传输的方法及装置
CN105991266B (zh) 前导符号的生成方法、接收方法、生成装置及接收装置
RU2659352C1 (ru) Передатчик и приемник, способ приема и способ передачи через fbmc сигнала
EP3334058A1 (en) Method and device for transmitting or receiving a signal
IL264474B2 (en) Information transmission method and information transmission device
EP3584968B1 (en) Transmission apparatus
EP3716558B1 (en) Data transmission method and device
US20170163456A1 (en) Methods for generating and processing frequency division multi-waveform signal, and apparatuses
EP3985891B1 (en) Transmission apparatus
CN104253680B (zh) 一种fbmc***中同步信号的发送方法和装置
WO2017193831A1 (zh) 传输参数的配置方法及基站、信息传输方法及终端、存储介质
EP3065319B1 (en) Transmission device, reception device, and communication system
KR20140127949A (ko) 필터뱅크기반 다중반송파 통신시스템에서의 데이터 송수신 방법 및 장치
EP3713177A1 (en) Sequence-based signal processing method and signal processing apparatus
CN111565458B (zh) 一种下行传输方法及其装置
WO2017121412A1 (zh) 多载波***的数据调制、解调方法、帧生成方法及节点
CN109861935A (zh) 频域ofdm符号的生成方法及前导符号的生成方法
CN106470179B (zh) 移动终端上行信号生成方法及装置
WO2017129001A1 (zh) 一种数据处理方法和装置
US20120294253A1 (en) Method and apparatus for transmitting and receiving reference signal in wireless communication system
EP3493645A1 (en) Resource mapping method and communication device
JP2018527841A (ja) マルチキャリア信号を送信するための方法及び装置
CN107438041B (zh) 一种发送信号和接收信号的方法及装置
WO2018058678A1 (zh) 一种信号处理方法及设备
WO2023051351A1 (zh) 数据传输方法、数据调制方法、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE