WO2022172847A1 - Conductive pigment paste, coating material and coating film - Google Patents

Conductive pigment paste, coating material and coating film Download PDF

Info

Publication number
WO2022172847A1
WO2022172847A1 PCT/JP2022/004186 JP2022004186W WO2022172847A1 WO 2022172847 A1 WO2022172847 A1 WO 2022172847A1 JP 2022004186 W JP2022004186 W JP 2022004186W WO 2022172847 A1 WO2022172847 A1 WO 2022172847A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pigment
group
conductive
pigment paste
dispersion resin
Prior art date
Application number
PCT/JP2022/004186
Other languages
French (fr)
Japanese (ja)
Inventor
悠太郎 市
智 古澤
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2022580592A priority Critical patent/JPWO2022172847A1/ja
Publication of WO2022172847A1 publication Critical patent/WO2022172847A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a conductive pigment paste and a coating material that are excellent in pigment dispersibility and storage stability even at high pigment concentrations, and a coating film that is excellent in finishing properties.
  • a paste-like pigment dispersion in which a pigment is dispersed in a mixture of a pigment dispersion resin and a solvent is used as a paint, coating material, coating material, electromagnetic wave shield, display panel, touch screen panel, colored film, colored sheet, Widely used in fields such as decorative materials, protective materials, magnet modifiers, printing inks, device components, secondary battery electrodes, electronic device components, printed wiring boards, solar cells, functional rubber components, and resin molding films.
  • these materials contain conductive pigments, conductive polymers, and the like in order to impart functions such as electrostatic coating properties, conductivity, electromagnetic wave shielding properties, antistatic properties, and battery performance.
  • Pigment dispersing resins and pigment pastes are being developed that have excellent storage stability to prevent reaggregation of the pigment particles in the pigment dispersion.
  • Patent Document 1 discloses a conductive pigment paste containing carbon-coated metal particles obtained by using metal particles as a core material and coating the surfaces of the metal particles with carbon, a binder resin, and a solvent.
  • a conductive pigment paste containing carbon-coated metal particles obtained by using metal particles as a core material and coating the surfaces of the metal particles with carbon, a binder resin, and a solvent.
  • Patent Document 2 discloses a conductive sheet in which carbon nanotubes and carbon black are dispersed in a resin material, and which contains 10 to 50% by weight of a carbon composite filler and 90 to 50% by weight of the resin material. ing. However, since this paste has a low pigment concentration (high resin ratio), it may not have sufficient conductivity.
  • Patent Document 3 discloses a conductive aid dispersion containing at least two or more different carbon materials as conductive aids and a solvent, wherein the first conductive aid has an average primary particle diameter of 20 to 50 nm, BET specific surface area of 300 to 1,400 m 2 /g, average dispersed particle size of 280 to 1,500 nm, the second conductive additive has an average primary particle size of 20 to 70 nm, BET specific surface area of 10 to 200 m 2 /g, Disclosed is a conductive aid dispersion having an average dispersed particle size of 500 to 1,500 nm and a weight ratio of the first conductive aid to the second conductive aid of 20 to 80:80 to 20. However, since this dispersion contains 20% by mass or more of a carbon material having a large specific surface area, the dispersibility may not be sufficient in some cases.
  • the problem to be solved by the present invention is to provide a conductive pigment paste and a coating material that are excellent in pigment dispersibility and storage stability even at a high pigment concentration, and to provide a coating film that is excellent in finishing properties. is.
  • the present invention provides the following conductive pigment paste, coating material, and coating film.
  • Item 1 A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D),
  • the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group.
  • the conductive pigment (B) has an average primary particle diameter of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
  • the solubility parameter ⁇ A of the pigment dispersion resin (A) and the solubility parameter ⁇ C of the solvent (C) have a relationship of
  • Item 2 The conductive pigment paste according to Item 1, wherein the pigment dispersion resin (A) has a solid content of 0.1 to 20% by mass based on the total solid content of the conductive pigment paste.
  • Item 3 The conductive pigment paste according to Item 1 or 2, wherein the content of the conductive pigment (B) is 5 to 99.9% by mass based on the total solid content of the conductive pigment paste.
  • Item 4 Any one of Items 1 to 3, wherein the solubility parameter ⁇ A of the pigment dispersion resin (A) is 9.3 or more and the solubility parameter ⁇ C of the solvent (C) is 10.4 to 15.0. 2.
  • Item 5 A frequency distribution curve obtained by diluting the conductive pigment paste with a solvent and measuring the volume-based particle size distribution by a laser diffraction scattering method has at least two peaks, and the peak top of the peak has a particle size of 150 to At least one in the range of 550 nm, at least one in the range of particle diameter 600 to 3,000 nm, and the peak area ratio in the particle diameter range (total peak area in the range of particle diameter 150 to 550 nm / particle diameter 600 to 3 5.
  • Item 6 Any one of Items 1 to 5, wherein the conductive pigment paste is diluted with a solvent and the average particle diameter (D50) obtained by volume-based particle size distribution measurement by a laser diffraction scattering method is 860 to 1,400 nm. 3.
  • Item 7 Viscosity X at a shear rate of 0.1 s -1 and viscosity Y at a shear rate of 1,000 s -1 of the conductive pigment paste are 500 mPa s ⁇ X ⁇ 5,000 mPa s and X/Y> 1 7.
  • Item 8 Any one of Items 1 to 7, wherein the conductive pigment (B) is at least one type of conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. 2. The conductive pigment paste according to item 1.
  • Item 9 The conductive pigment paste according to any one of Items 1 to 8, further comprising a highly polar low molecular weight component (E).
  • Item 10 The conductive pigment paste according to any one of Items 1 to 9, wherein the highly polar low molecular weight component (E) contains at least one amine compound (E1).
  • Item 11 The conductive pigment paste according to any one of Items 1 to 10, wherein the fluororesin (D) is a resin having a weight average molecular weight of 100,000 or more and a solubility parameter ⁇ D of less than 9.3.
  • Item 12 A conductive pigment paste containing the conductive pigment paste according to any one of Items 1 to 11 and carbon nanotubes (F), wherein the conductive pigment (B) in the conductive pigment paste and A conductive pigment paste in which the carbonan tube has a solid content ratio of 1/99 to 99/1.
  • Item 13 A conductive pigment paste containing a pigment dispersion resin (A), acetylene black (B-2), carbon nanotubes (F), a solvent (C), and a fluororesin (D),
  • the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group.
  • the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g
  • Acetylene black (B-2) has an average primary particle size of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less
  • the solubility parameter ⁇ A of the pigment dispersion resin (A) and the solubility parameter ⁇ C of the solvent (C) have a relationship of
  • Conductive pigment paste is
  • Item 14 A method for dispersing a conductive pigment paste, comprising dispersing the conductive pigment paste substantially without using media in the production of the conductive pigment paste according to any one of Items 1 to 11.
  • Item 15 A coating material containing the conductive pigment paste according to any one of Items 1 to 13 and metal-containing particles (G) having at least one metal element.
  • Item 16 A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a highly polar low molecular weight component (E), and at least one A coating material containing metal-containing particles (G) having a metal element
  • the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group.
  • the conductive pigment (B) has an average primary particle diameter of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
  • the solubility parameter ⁇ A of the pigment dispersion resin (A) and the solubility parameter ⁇ C of the solvent (C) have a relationship of
  • the high polar low molecular weight component (E) contains 3% by mass or more based on 100% by mass of the solid content of the conductive pigment (B). Coating material.
  • Item 17 A method for producing a coating material, comprising adding metal-containing particles (G) having at least one metal element to the conductive pigment paste according to any one of Items 1 to 13.
  • Item 18 A coating film obtained by coating the coating material according to Item 15 or 16.
  • Item 19 A coating material obtained by coating the coating material according to Item 15 or 16 on both sides of a plate-like substrate.
  • the conductive pigment paste and coating material of the present invention are excellent in pigment dispersibility and storage stability even at high pigment concentrations, and can sufficiently reduce the viscosity of the paste with a relatively small amount.
  • the conductive coating film is excellent in finish and the like.
  • the conductive pigment paste of the present invention includes the conductive pigment paste according to the first aspect and the conductive pigment paste according to the second aspect.
  • the “coating material” of the present invention is a liquid composition containing a conductive pigment paste.
  • the “coating film” of the present invention is a solid composition obtained by coating and drying the coating material.
  • the “coating material” of the present invention is obtained by applying the coating material on both sides of a plate-like substrate.
  • the solubility parameter is generally called an SP value (solubility parameter), and is a scale indicating the degree of hydrophilicity or hydrophobicity (polarity) of a solvent or resin. In addition, it is an important measure for judging the solubility and compatibility between solvents and resins, and between resins.
  • a conductive pigment paste having conductive pigment (B) in a moderately dispersed state is prepared. Furthermore, in order to obtain a coating film that satisfies various performances, a coating material or coating material is produced by adding components such as metal-containing particles to the conductive pigment paste.
  • the conductive pigment paste according to the first aspect of the present invention contains a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D), and the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group, and a pigment dispersion resin ( A) has a polar functional group concentration of 10 to 23 mmol/g, the conductive pigment (B) has an average primary particle size of 10 to 80 nm, and the solubility parameter ⁇ A of the pigment dispersion resin (A) and the solvent ( The solubility parameter ⁇ C of C) satisfies
  • the pigment dispersion resin (A) that can be used as a component of the conductive pigment paste according to the first aspect of the present invention includes an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, It contains at least one polar functional group selected from the group consisting of an amino group and a cyano group.
  • the polar functional group concentration of the resin (A) is usually 10 to 23 mmol/g, preferably 11 to 22.5 mmol/g, from the viewpoint of pigment dispersibility, storage stability, and compatibility with solvents. and more preferably 12 to 22 mmol/g.
  • the solubility parameter ⁇ A of the pigment dispersion resin (A) is preferably 9.3 or more, more preferably 10.0 to 13.0, from the viewpoint of pigment dispersibility, storage stability, and compatibility with solvents. Preferably, 11.0 to 12.5 is more preferable.
  • the solubility parameter of the resin is numerically quantified based on a turbidity measurement method known to those skilled in the art. 1968). When two or more pigment dispersion resins (A) are used, the "solubility parameter ⁇ A of the pigment dispersion resin (A)" is the sum of the solubility parameter values of each resin multiplied by the mass fraction.
  • resins include resins other than fluororesin (D), and specific examples include acrylic resins, polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, polyvinyl alcohol, polyvinyl acetal, and polyvinyl. Pyrrolidone, polyvinyl acetate, silicone resins, polycarbonate resins, silicate resins, chlorine-based resins, composite resins thereof, and the like. These resins can be used singly or in combination of two or more.
  • a pigment dispersion resin ( A) preferably contains a vinyl (co)polymer (A-1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer represented by the following formula (1).
  • the "(co)polymer” of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
  • C(-R) 2 C(-R) 2 Formula (1) [In the above formula, each R may be the same or different and is a hydrogen atom or an organic group. ]
  • the vinyl (co)polymer (A-1) has a structural unit represented by “—CH 2 —CH(—X)—” in its structure (where X is an organic group having a polar functional group). ), and the polar functional group X in the structural unit includes an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. It is at least one polar functional group selected from the group.
  • Examples of the vinyl (co)polymer (A-1) include a hydroxyl group-containing vinyl (co)polymer, a carboxyl group-containing vinyl (co)polymer, a pyrrolidone group-containing vinyl (co)polymer, an amide group-containing vinyl Examples include (co)polymers, sulfonic acid group-containing vinyl (co)polymers, phosphoric acid group-containing vinyl (co)polymers, amino group-containing vinyl (co)polymers, and the like. These (co)polymers can be used alone or in combination of two or more.
  • hydroxyl group-containing vinyl (co)polymers examples include polyhydroxyethyl (meth)acrylate, polyvinyl alcohol, vinyl alcohol-fatty acid vinyl copolymer, vinyl alcohol-ethylene copolymer, vinyl alcohol-(N-vinylformamide). Examples include copolymers, copolymers of hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomers, and the like.
  • the vinyl alcohol unit in the (co)polymer may be obtained by (co)polymerizing a fatty acid vinyl unit and then hydrolyzing it.
  • Carboxyl group-containing vinyl (co)polymers include, for example, polymers of (meth)acrylic acid, copolymers of poly(meth)acrylic acid and other polymerizable unsaturated monomers, and the like.
  • Examples of pyrrolidone group-containing vinyl (co)polymers include polyvinylpyrrolidone, N-vinyl-2-pyrrolidone-ethylene copolymer, N-vinyl-2-pyrrolidone-vinyl acetate copolymer and the like.
  • Amide group-containing vinyl (co)polymers include, for example, polymers of (meth)acrylamide, copolymers of (meth)acrylamide and other polymerizable unsaturated monomers, and the like.
  • sulfonic acid group-containing vinyl (co)polymers examples include polymers of allylsulfonic acid or styrenesulfonic acid, copolymers of allylsulfonic acid and/or styrenesulfonic acid with other polymerizable unsaturated monomers, and the like. is mentioned.
  • Phosphate group-containing vinyl (co)polymers include, for example, polymers of (meth)acryloyloxyalkyl acid phosphate, copolymers of (meth)acryloyloxyalkyl acid phosphate and other polymerizable unsaturated monomers, and the like. is mentioned.
  • amino group-containing vinyl (co)polymers examples include polyvinylamine, polyallylamine, polymers of dimethylaminoethyl (meth)acrylate, and copolymers of dimethylaminoethyl (meth)acrylate and other polymerizable unsaturated monomers. A polymer etc. are mentioned.
  • cyano group-containing vinyl (co)polymers include acrylonitrile polymers and copolymers of acrylonitrile and other polymerizable unsaturated monomers.
  • vinyl (co)polymers (A-1) hydroxyl group-containing polyvinyl (co)polymers, carboxyl Group-containing polyvinyl (co)polymers and pyrrolidone group-containing polyvinyl (co)polymers are preferred, hydroxyl group-containing polyvinyl (co)polymers are more preferred, and polyvinyl alcohol (co)polymers are even more preferred.
  • the vinyl (co)polymer (A-1) may, if necessary, have a copolymerizable polymerizable A structural unit derived from an unsaturated group-containing monomer may be included.
  • copolymerizable polymerizable unsaturated group-containing monomers examples include vinyl formate, vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl valerate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, Carboxylic acid vinyl ester monomers such as vinyl benzoate, vinyl versatate and vinyl pivalate; olefins such as ethylene, propylene and butylene; aromatic vinyls such as styrene and ⁇ -methylstyrene; (meth)acrylic acid Ethylenically unsaturated carboxylic acids such as methyl, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dimethyl fumarate, dimethyl maleate, diethyl maleate, and diisopropyl itaconate Alkyl ester monomers; vinyl ether monomers such as methyl vinyl ether,
  • the vinyl (co)polymer (A-1) can be produced by a polymerization method known per se.
  • solution polymerization is preferably used, but the method is not limited to bulk polymerization.
  • emulsion polymerization, suspension polymerization, or the like may be used.
  • solution polymerization it may be continuous polymerization or batch polymerization.
  • the polymerization initiator used in the solution polymerization is not particularly limited, but specific examples include azobisisobutyronitrile, azobis-2,4-dimethylpareronitrile, azobis(4-methoxy-2 ,4-dimethylpareronitrile) and other azo compounds; acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate and other peroxides
  • Peroxydicarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate , t-butylperoxypivalate, and other perester compounds;
  • the vinyl (co)polymer (A-1) thus obtained preferably has a degree of polymerization of 100 to 4,000, more preferably 100 to 3,000, more preferably 150 to 700. . Also, the weight average molecular weight is preferably 1,000 to 200,000, more preferably 2,000 to 100,000, and more preferably 7,000 to 30,000.
  • the vinyl (co)polymer (A-1) can be made into a solid or a resin solution in which an arbitrary solvent is substituted by removing the solvent and/or replacing the solvent after completion of the synthesis. As a method for removing the solvent, heating may be performed at normal pressure, or the solvent may be removed under reduced pressure. As a method for solvent replacement, the replacement solvent may be added at any stage before, during, or after solvent removal.
  • the conductive pigment (B) that can be used in the conductive pigment paste according to the first aspect of the present invention is capable of imparting conductivity to the coating film to be formed.
  • the shape of the pigment is not particularly limited, and various shapes such as particles, flakes, and fibers (including whiskers) can be used.
  • Specific examples include conductive carbon; metal powders such as silver, nickel, copper, graphite, and aluminum; furthermore, antimony-doped tin oxide, phosphorus-doped tin oxide, tin oxide / Acicular titanium oxide surface-coated with antimony, antimony oxide, zinc antimonate, indium tin oxide, carbon or graphite whisker surface coated with tin oxide, etc.; tin oxide, antimony-doped oxide on flake mica surface Pigment coated with at least one conductive metal oxide selected from the group consisting of tin, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), phosphorus-doped tin oxide and nickel oxide; oxidation on the surface of titanium dioxide particles
  • Conductive pigments containing tin and phosphorus can be used.
  • the conductive pigments (B) may be used alone or in combination of two or more.
  • the average primary particle size of the conductive pigment (B) is preferably in the range of 10 to 80 nm, more preferably in the range of 20 to 80 nm, from the viewpoint of viscosity and conductivity. It is more preferably in the range of ⁇ 80 nm, and particularly preferably in the range of greater than 31 and 52 nm or less.
  • the average primary particle size of the present invention is defined by observing the pigment with an electron microscope, determining the projected area of each of 100 particles, and determining the diameter when a circle equal to that area is assumed. means the average diameter of the primary particles obtained by simply averaging the diameters of the particles.
  • the primary particles constituting the aggregated particles are used in the calculation.
  • the BET specific surface area of the conductive pigment (B) is usually 250 m 2 /g or less, preferably in the range of 10 to 250 m 2 /g, more preferably 20 to 200 m 2 , from the relationship between viscosity and conductivity. /g, more preferably 30 to 150 m 2 /g, particularly preferably 30 to 110 m 2 /g.
  • the conductive pigment (B) contains more than 80% of the conductive pigment having a specific surface area of 250 2 /g or less.
  • the dibutyl phthalate (DBP) oil absorption of the conductive pigment (B) is preferably in the range of 60 to 1,000 ml/100 g, and preferably 150 to 800 ml/100 g, in terms of pigment dispersibility and conductivity. It is more preferable to be within the range.
  • the conductive pigment (B) is preferably basic in terms of dispersibility of the pigment, and specifically, preferably has a pH of 7.5 or more, which is 8.0 to 12.0. is more preferable, and 8.5 to 11.0 is even more preferable.
  • the conductive pigment (B) preferably has a state in which the primary particles form a chain structure (structure), and the structure index is within the range of 1.5 to 4.0. 1.7 to 3.2 is particularly preferred.
  • the structure itself can be observed relatively easily in an image taken with an electron microscope, but the structure index is a numerical value that quantifies the degree of structure.
  • the structure index can generally be defined as a value obtained by dividing the DBP oil absorption (ml/100g) by the specific surface area (m 2 /g). If the structure index is less than 1.5, the structure is not developed and sufficient conductivity cannot be obtained, and if it exceeds 4.0, the particle size is large relative to the DBP oil absorption. There is a risk that the conductive path will be reduced and the coating will not be sufficiently conductive, or the viscosity of the coating material will be high.
  • the content of the conductive pigment (B) is preferably 5 to 99.9% by mass, preferably 7 to 95% by mass, based on the total solid content of the conductive pigment paste, from the viewpoint of conductivity and pigment dispersibility. is more preferred, and 10 to 90% by mass is particularly preferred.
  • conductive carbon (B-1) can be preferably used. Specific examples include acetylene black, ketjen black, furnace black, thermal black, It is preferably at least one selected from the group consisting of graphene and graphite. These conductive pigments (B) can be used singly or in combination of two or more. Among them, the conductive carbon (B-1) is preferably acetylene black (B-2).
  • acetylene black (B-2) When acetylene black (B-2) is used, it is preferably contained in the conductive pigment (B) in an amount of more than 80% by mass, more preferably more than 90% by mass, and more than 95% by mass. is more preferred.
  • the conductive pigment (B) one type of acetylene black (B-2) can be used alone, or two or more types of acetylene black (B-2) can be used in combination.
  • the content thereof is, from the viewpoint of conductivity and pigment dispersibility, the pigment dispersion resin (A) of the conductive pigment paste and the conductive carbon (B-1). 60% by mass or more, more preferably 70 to 99% by mass, and even more preferably 80 to 99% by mass, based on the solid content mass of.
  • solvent (C) that can be used in the conductive pigment paste of the present invention
  • conventionally known solvents can be used without particular limitation.
  • hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane and cyclobutane
  • aromatic solvents such as toluene and xylene; methyl isobutyl ketone and the like.
  • Ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate , Ester-based solvents such as ethylene glycol monomethyl ether acetate, butyl carbitol acetate; Ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone; Alcohols such as ethanol, isopropanol, n-butanol, sec-butanol, isobutanol, etc.
  • the solvent (C) that can be used in the conductive pigment paste of the present invention includes a hydroxyl group, a carboxyl group, an amide group, and an amino group from the viewpoint of the solubility of the pigment dispersion resin (A) and the storage stability of the conductive pigment paste. It is preferable to contain a solvent having a polar functional group such as an ether group. In addition, it is preferable that the conductive pigment paste contains substantially no water from the viewpoint of dispersibility of the conductive pigment paste and prevention of deterioration or hydrolysis of the resin. Here, “substantially free of water” means that the water content is usually 1% by mass or less, preferably 0.5% by mass or less, based on the total amount of the conductive pigment paste.
  • the content of water in the conductive pigment paste can be measured by Karl Fischer coulometric titration. Specifically, using a Karl Fischer moisture content meter (manufactured by Kyoto Electronics Industry Co., Ltd., trade name: MKC-610), the moisture vaporizer (manufactured by Kyoto Denshi Co., Ltd., trade name: ADP-611) provided in the device is set. The temperature can be measured as 130°C.
  • the solubility parameter (SP value) of the solvent (C) is 10.0 (cal/cm 3 ) 1/2 more preferably 10.4 to 15.0 (cal/cm 3 ) 1/2 , more preferably 10.5 to 13.0 (cal/cm 3 ) 1/2 It is more preferable to be within the range.
  • the solubility parameter is generally called an SP value (solubility parameter), and is a scale indicating the degree of hydrophilicity or hydrophobicity (polarity) of a solvent or resin.
  • SP value solubility parameter
  • Solubility parameters of solvents can be determined according to the method described in "Polymer Handbook” VII Solubility Parament Values, Eds. When two or more solvents are used in combination as a mixed solvent, the solubility parameters of the mixed solvent can be determined experimentally. It can also be obtained by the sum of the products of The "solubility parameter of the solvent (C)" in the present invention is the solubility parameter of all the solvents (mixed solvent) contained in the conductive pigment paste.
  • the solubility parameter ⁇ A of the pigment dispersion resin (A) and the solubility parameter ⁇ C of the solvent (C) are set to
  • ⁇ 2.0 is preferable, and the relationship
  • the fluororesin (D) that can be used in the conductive pigment paste of the present invention is a resin for the purpose of forming a coating film, and substantially contains a polar functional group that is an essential component of the pigment dispersion resin (A).
  • the polar functional group concentration is less than 10 mmol/g, preferably 5 mmol/g or less, more preferably 1 mmol/g or less.
  • PVDF Polyvinylidene fluoride
  • one of them can be used alone or two or more of them can be used in combination.
  • the fluororesin (D) may be contained during pigment dispersion, or may be added and contained after pigment dispersion.
  • the weight-average molecular weight of the fluororesin (D) is preferably 100,000 or more, preferably 500,000 to 3,000,000, from the viewpoints of adhesion to the substrate, reinforcement of physical properties of the coating film, and solvent resistance. is more preferable, and 650,000 to 2,000,000 is particularly preferable.
  • the solubility parameter of the fluororesin (D) is preferably less than 10, more preferably less than 9.3. Further, from the viewpoint of the solubility and storage stability of the resin, the solubility parameter ⁇ D of the fluororesin (D) and the solubility parameter ⁇ C of the solvent (C) are in the relationship
  • the conductive pigment paste of the present invention preferably contains the following highly polar low molecular weight component (E).
  • the highly polar low-molecular-weight component (E) is preferably basic or acidic, and may be partly or wholly a salt.
  • the highly polar low molecular weight component (E) more preferably contains at least one amine compound (E1) from the viewpoint of increasing the wettability and/or storage stability of the conductive pigment.
  • the amine compound (E1) include ammonia, primary amine, secondary amine, and tertiary amine.
  • Examples of primary amines include ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, Laurylamine, Mystyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethylhexyloxy)propylamine, aminocyclopentane, aminocyclo
  • secondary amines include diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di (2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, diphenylamine, N-methylaniline, N-ethylaniline, dibenzylamine , methylbenzylamine, dinaphthylamine, pyrrole, indoline, indole, secondary monoamines such as morpholine; N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl- 1,3-di
  • Tertiary amines include, for example, trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethy
  • the amine compound (E1) include aliphatic amines, alicyclic amines, and aromatic amines, any of which can be suitably used, but aromatic amines are preferred. Since it is preferable that no amine compound remains in the coating film after drying, the weight average molecular weight of the amine compound (E1) is preferably less than 1000, more preferably 800 or less, and preferably 500 or less. More preferably, it is particularly preferably 200 or less. For the same reason, the boiling point of the amine compound is preferably 400° C.
  • the amine value of the amine compound (E1) is generally 5 to 1000 mgKOH/g, preferably 50 to 1000 mgKOH/g, more preferably 105 to 1000 mgKOH/g.
  • one or more acidic highly-polar low-molecular-weight components selected from organic acids and inorganic acids can be used.
  • one or two or more basic, highly polar, low-molecular-weight components selected from organic bases and inorganic bases can be used.
  • organic acids include organic carboxylic acids (formic acid, acetic acid, propionic acid, benzoic acid, phthalic acid, etc.) and organic sulfonic acids (benzenesulfonic acid, etc.).
  • inorganic acids include hydrochloric acid, sulfuric acid, nitric acid. , phosphoric acid, etc., respectively.
  • organic bases include basic components other than amine compounds, and examples of inorganic bases include metal hydroxides (sodium hydroxide, potassium hydroxide, etc.).
  • the lower limit of the content of the highly polar low molecular weight component (E) is based on 100% by mass of the solid content of the conductive pigment (B). It is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 3% by mass or more, still more preferably 20% by mass or more, and particularly preferably 80% by mass or more. It is usually 500% by mass or less, preferably 450% by mass or less, more preferably 400% by mass or less, still more preferably 350% by mass or less, and particularly preferably 300% by mass or less.
  • conductive pigment paste of the first aspect of the present invention in addition to the above pigment dispersion resin (A), conductive pigment (B), solvent (C), and highly polar low molecular weight component (E), if necessary Other ingredients may be included as required.
  • Other components include a resin other than the pigment dispersion resin (A) and the fluororesin (D), a low molecular weight component other than the highly polar low molecular weight component (E), a neutralizer, an antifoaming agent, a preservative, and an antirust agent. , plasticizers, conductive pigments (B), and pigments other than carbon nanotubes (F).
  • Resins other than the pigment dispersion resin (A) and the fluororesin (D) include, for example, acrylic resins other than the resins (A) and resins (D), polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, Examples include silicone resins, polycarbonate resins, silicate resins, chlorine resins, polyvinylpyrrolidone resins, polyvinyl alcohol resins, polyvinyl acetal resins, styrene resins, diene resins, polyolefin resins, composite resins thereof, and the like. These resins can be used singly or in combination of two or more.
  • Pigments other than the conductive pigment (B) and the carbon nanotube (F) include, for example, white pigments such as titanium white and zinc white; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and patina; Organic red pigments such as azo-based and quinacridone-based red pigments, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone-based, isoindolinone-based, isoindoline-based and quinophthalone-based yellow pigments; mentioned. These pigments can be used singly or in combination of two or more.
  • Pigments other than these conductive pigments (B) and carbon nanotubes (F) can be used for purposes such as color adjustment and reinforcement of film physical properties within a range that does not significantly impair conductivity.
  • ) and the conductive pigment (B) may be simultaneously dispersed, or the pigment dispersion resin (A) and the conductive pigment (B) may be dispersed to prepare a paste and then mixed as a pigment or a pigment paste.
  • the content of pigments other than the conductive pigment (B) and carbon nanotubes (F) is preferably 10% by mass or less, more preferably 5% by mass or less, and 1% by mass, based on the total pigments in the conductive pigment paste. % or less is more preferable, and substantially no content is particularly preferable.
  • the solid content of the pigment dispersion resin (A) in the conductive pigment paste is usually 30% by mass or less, preferably 0.1 to 20% by mass, more preferably 0.5, based on the total solid content of the paste. From the standpoints of viscosity, pigment dispersibility, storage stability, production efficiency, electrical conductivity, etc., it is preferable that the amount is up to 10% by mass.
  • the particle size distribution of the conductive pigment (B) in the conductive pigment paste obtained with the above composition was obtained by overdiluting the conductive pigment paste with the solvent (C) and measuring the volume-based particle size distribution by a laser diffraction scattering method. It is preferable that the resulting frequency distribution curve has at least two peaks, at least one of which has a particle size range of 150 to 550 nm and at least one of a particle size range of 600 to 3000 nm.
  • the peak area ratio in the particle size range is preferably 0.2 to 3.0.
  • the particle size distribution of the conductive pigment (B) has at least two peaks and satisfies the above conditions, the conductive pigment in the conductive pigment paste can form a structure while having appropriate fluidity. , the conductive coating film or the conductive material can obtain good finish and conductivity.
  • Dispersion is weak and the frequency of peak tops on the large particle size side (particle size range of 600 to 3000 nm) (sum of each peak area) increases, and the peak top frequency on the small particle size side (particle size range of 150 to 550 nm) If (total of each peak area) becomes smaller or disappears, there is a risk that the fluidity will decrease.
  • the dispersion is strong and the frequency of peak tops on the small particle size side (particle size range of 150 to 550 nm) (sum of each peak area) increases, and the peak top on the large particle size side (particle size range of 600 to 3000 nm) If the frequency of (the sum of each peak area) is reduced or eliminated, the conductivity will decrease.
  • the volume-based particle size distribution measurement by the laser diffraction scattering method was performed using a particle size distribution analyzer (Microtrac MT3000, trade name, manufactured by Microtrac Bell).
  • the conductive pigment paste is diluted with a solvent, and the average particle diameter (D50) obtained by volume-based particle size distribution measurement by a laser diffraction scattering method is preferably in the range of 400 to 1,500 nm. It is more preferably in the range of ⁇ 1,400 nm, more preferably in the range of 900 to 1,250 nm.
  • the average particle diameter (D50) of the primary particles of the conductive pigment (B) is 1, the conductive pigment paste is diluted with a solvent, and the volume-based particle size distribution is measured by a laser diffraction scattering method.
  • the average particle size (D50) is preferably 15-30, more preferably 18-25.
  • the average particle diameter (D50) is the secondary particle diameter
  • the particle size ratio is preferably 15 to 30, more preferably 18 to 25, when calculated by In the above particle size distribution measurement, if the conductive pigment paste contains a pigment other than the conductive pigment (B), the conductive pigment paste prepared using only the conductive pigment (B) is measured.
  • the viscosity of the conductive pigment paste is less than 5000 mPa s, and is 10 mPa s or more and less than 5000 mPa s. is preferably 50 mPa ⁇ s or more and less than 2500 mPa ⁇ s, and particularly preferably 100 mPa ⁇ s or more and less than 1100 mPa ⁇ s.
  • the viscosity can be measured using, for example, a cone & plate type viscometer (manufactured by HAAKE, trade name Mars2, diameter 35 mm, 2° inclined cone & plate).
  • the conductive pigment paste of the present invention can be prepared by mixing each component described above with, for example, a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin-film rotary high-speed mixer ( (trade names: CLEARMIX, FILMIX, etc.), etc.) by uniformly mixing and dispersing them.
  • the particle size distribution of the conductive pigment (B) has two peaks from the viewpoint of the conductivity of the conductive coating film. It is preferred to disperse without using a media.
  • the method for dispersing the conductive pigment paste may be configured by dispersing the conductive pigment paste substantially without using media. can.
  • the conductive pigment paste according to the second aspect of the present invention can be obtained by mixing the conductive pigment paste according to the first aspect and carbon nanotubes (F).
  • the conductive pigment (B) is preferably one or more of acetylene black (B-2).
  • the conductive pigment paste according to the second aspect of the present invention can obtain more excellent conductivity by containing the above-mentioned carbonan tube (F). Furthermore, by containing acetylene black (B-2), even better conductivity can be obtained.
  • the method of mixing the conductive pigment paste according to the first aspect and the carbonan tube (F) is not particularly limited.
  • a liquid carbon nanotube-dispersed paste is prepared in the same manner as the method for preparing the conductive pigment paste according to the first aspect, and this is combined with the conductive pigment paste according to the first aspect.
  • the carbonan tube itself may be mixed with the conductive pigment paste according to the first aspect.
  • the conductive pigment (B) and the carbon nanotube (F) may be dispersed together.
  • the above-described high-polarity low-molecular-weight component (E) can be similarly contained in the conductive pigment paste according to the second aspect, and the mixing order is not particularly limited.
  • the solid content ratio of the conductive pigment (B) and the carbonan tube (F) is usually in the range of 1/99 to 99/1 for the conductive pigment (B)/carbonan tube (F). and preferably in the range of 50/50 to 99/1.
  • Acetylene black (B-2) is preferable as the conductive pigment (B).
  • the content of carbon nanotubes (F) in the conductive pigment paste according to the second aspect is 0.1 to 99 mass based on the total solid content of the conductive pigment paste from the viewpoint of conductivity and pigment dispersibility. %, more preferably 0.5 to 50% by mass.
  • the viscosity at a shear rate of 0.1 s ⁇ 1 is less than 5000 mPa s and 10 mPa s. It is preferably at least 50 mPa ⁇ s and less than 5000 mPa ⁇ s, more preferably at least 50 mPa ⁇ s and less than 2500 mPa ⁇ s, and particularly preferably at least 100 mPa ⁇ s and less than 1200 mPa ⁇ s.
  • Single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination as the carbon nanotubes (F).
  • the outer diameter of the carbon nanotube (F) is preferably 1 to 25 nm, more preferably 3 to 20 nm, and particularly preferably 5 to 15 nm.
  • the length of the carbon nanotube (F) is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, particularly preferably 10 to 60 ⁇ m.
  • the specific surface area of the carbon nanotube (F) is preferably in the range of 1 to 1000 m 2 /g, more preferably in the range of 10 to 500 m 2 /g, from the viewpoint of viscosity and conductivity.
  • Carbon nanotubes that have undergone surface treatment such as oxidation treatment have high pigment dispersibility, but have poor electrical conductivity due to surface defects and the like that occur during the surface treatment. Therefore, from the viewpoint of conductivity, it is preferable that the carbon nanotube (F) is not surface-treated.
  • the conductive pigment paste of the second aspect preferably contains the above-described high polar low molecular weight component (E), and as the high polar low molecular weight component (E), at least one amine compound (E1 ) is more preferred.
  • the lower limit of the content of the highly polar low molecular weight component (E) in the conductive pigment paste of the second aspect is Based on 100% by mass of the solid content of the organic pigment (B) and the carbon nanotube (F), it is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 3% by mass or more, and still more preferably 20% by mass. It is at least 80% by mass, particularly preferably at least 80% by mass. Especially preferably, it is 300% by mass or less.
  • the coating material of the present invention comprises the conductive pigment paste according to the first aspect and/or the conductive pigment paste according to the second aspect, and metal-containing particles (G) having at least one metal element. contains. If necessary, the coating material of the present invention may be obtained by mixing various components such as other resins, other pigments, solvents, additives, etc. with the conductive pigment paste.
  • resins not contained in the conductive pigment paste include resins not contained in the conductive pigment paste, such as acrylic resins, polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, silicone resins, polycarbonate resins, silicate resins, Examples include chlorine-based resins, polyvinylpyrrolidone resins, polyvinyl alcohol resins, polyvinyl acetal resins, composite resins thereof, and the like. These resins can be used singly or in combination of two or more.
  • the coating material of the present invention preferably contains the above-described high polar low molecular weight component (E) from the viewpoint of storage stability (suppression of thickening) in the coating material. More preferably, at least one amine compound (E1) is contained as component (E).
  • the highly polar low-molecular-weight component (E) may be contained in the conductive pigment paste that is a raw material for the coating material, or may be added after the conductive pigment paste is produced.
  • the high-polarity low-molecular-weight component (E) may be added when the coating material is produced by mixing the contained particles.
  • the preferred lower limit of the content of the highly polar low molecular weight component (E) is the conductive pigment (B) [in the case of the second embodiment, the conductive pigment (B) and carbon nanotubes ( Based on 100% by mass of the solid content of F)], from the viewpoint of storage stability (suppression of thickening) of the coating material, usually 3% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, It is more preferably 40% by mass or more, particularly preferably 80% by mass or more, and the upper limit of the content is usually 500% by mass or less, preferably 450% by mass, from the viewpoint of the amount of component (E) remaining in the coating film. % or less, more preferably 400 mass % or less, still more preferably 350 mass % or less, and particularly preferably 300 mass % or less.
  • the coating material contains composite metal particles (G1) having an alkali metal, which will be described later, the viscosity may increase during storage. At least one of the following two points can be considered as the reason for this. In both cases, storage thickening of the coating material can be suppressed by containing a certain amount or more of the amine compound (E1).
  • the composite metal particles (G1) may elute alkali metal hydroxides (e.g., KOH, NaOH, LiOH, etc.) derived from raw materials into the coating material, and the strong base component causes the resin (pigment It is thought that a reaction between the dispersion resin and/or the fluororesin occurs and the viscosity increases.
  • the composite metal particles (G1) may have alkali metal hydroxides on the particle surface, the conductive pigment (B) and the carbon nanotube (F) in the case of having an acidic surface, It is considered to aggregate (thicken).
  • pigments include pigments other than the metal-containing particles and pigments contained in the conductive pigment paste described later, such as coloring pigments, luster pigments, extender pigments, and antirust pigments. etc. These pigments can be used singly or in combination of two or more. Above all, it is preferable to add and contain metal-containing particles having at least one metal element.
  • the metal-containing particles (G) contained in the coating material of the present invention are mixed with the conductive pigment paste in the manufacturing process of the coating material, and the conductive pigment (B ) and carbon nanotubes (F).
  • the metal-containing particles (G) contain at least one metal element.
  • the metal-containing particles (G) can be appropriately selected according to the application of the coating film, and among them, composite metal particles (G1) containing at least one alkali metal and at least one transition metal element are preferable. , their nitrides, oxides, sulfides and/or hydroxides can also be suitably used, with oxides being particularly preferred.
  • the transition metal elements include Fe, Cu, Mn, Ni, Zr, Zn, Mo, Ag, Au, Pt, Ti, and Cr.
  • the average particle diameter of the metal-containing particles is preferably 1,501 nm or more in the average particle diameter (D50) obtained by diluting the coating material with a solvent and measuring the volume-based particle size distribution by a laser diffraction scattering method. , 600 to 50,000 nm, more preferably 2,000 to 30,000 nm.
  • the content of the metal-containing particles in the coating material is usually 10% by mass or more and 99% by mass or less, preferably 15% by mass or more and 95% by mass or less, based on the total solid content in the coating material. It is preferable from the viewpoint of electrical conductivity, physical properties of the coating film, and the like.
  • the conductive pigment paste according to the first aspect and / or the conductive pigment paste according to the second aspect by adding metal-containing particles having at least one metal element, coating A method of manufacturing materials can be configured.
  • the solvent is not particularly limited, but the same solvent as the solvent (C) described above can be preferably used.
  • the above solvents may be used singly or in combination of two or more.
  • Additives include neutralizers, pigment dispersants, antifoaming agents, preservatives, rust preventives, plasticizers, viscosity modifiers and the like.
  • the content of the pigment dispersion resin (A) in the coating material is usually 0.01 to 80% by mass, preferably 0.02 to 50% by mass, more preferably 0.02 to 50% by mass, based on the total solid content in the coating material. 0.05 to 20% by mass, particularly preferably 0.08 to 10% by mass, is preferred from the viewpoints of viscosity, pigment dispersibility, storage stability, production efficiency, electrical conductivity, etc.
  • the content of the pigment dispersion resin (A) with respect to 100 parts by mass of the conductive pigment (B) is usually 0.01 to 400 parts by mass, preferably 0.02 to 50 parts by mass, based on the total solid content. It is more preferably 0.05 to 25 parts by mass, still more preferably 0.05 to 7 parts by mass, and particularly preferably 0.05 to 4.5 parts by mass.
  • the coating material is prepared by mixing each of the components described above with, for example, a disper, a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin-film rotating high-speed mixer, and the like. It can be prepared by uniformly mixing or dispersing using a known stirrer or disperser. Above all, it is preferable to disperse without substantially using a media.
  • the coating film of the present invention can be obtained by applying (coating) the coating material described above to an object to be coated.
  • the coating material of the present invention can be obtained by applying (coating) the above-described coating material on both sides of a plate-like substrate. It is a solid film that is applied to a substrate (substrate) and dried by heating. It is also possible to obtain a conductive material by
  • the shape and the like of the object to be coated are not particularly limited, and examples thereof include arbitrary shapes such as plate-like, rod-like, film-like, and spherical shapes.
  • the material of the object to be coated or the plate-shaped substrate is not particularly limited, and examples include metal materials; various plastic materials; inorganic materials such as glass, cement, and concrete; wood; and may be a composite material thereof.
  • the coated surface of the object to be coated or the plate-like substrate can be appropriately subjected to degreasing treatment, surface treatment, or the like as necessary.
  • the coating method is not particularly limited as long as it can be applied within a certain film thickness range. tar coating and the like.
  • the dry film thickness is preferably 1 to 200 ⁇ m, more preferably 2 to 150 ⁇ m.
  • the drying temperature is preferably 60 to 300°C, more preferably 80 to 200°C.
  • Parts in each example means parts by mass
  • % means % by mass
  • Examples 1 to 32 conductive pigment paste of the first embodiment
  • Comparative Examples 1 to 5 The pigment dispersion resin (A), the conductive pigment (B), the solvent (C), the fluororesin (D), and the highly polar low molecular weight component (E) described in Tables 1 to 3 are described in Table 3, respectively. (parts by mass), and then dispersed for the time described in Tables 1 to 3 with Filmix (trade name: thin film swirling high-speed mixer manufactured by Primix Co., Ltd.) or ball mill, conductive pigment paste X -1 to X-32 and X-39 to X-43 were obtained.
  • the amount of resin compounded and the conductive pigment in the table are the solid content values.
  • Examples 33 to 38 (second aspect of conductive pigment paste)>
  • the pigment dispersion resin (A), the conductive pigment (B), the solvent (C), the fluororesin (D) and the highly polar low molecular weight component (E) described in Table 3 are added to the amounts (mass ), and then dispersed for the time shown in Table 3 using Filmix (trade name: thin-film swirling high-speed mixer manufactured by Primix) or a ball mill. After that, carbon nanotubes (F) were added in the amount (parts by mass) shown in Table 3, and further dispersed for 60 minutes with a thin-film rotating high-speed mixer (manufactured by Primix, trade name Filmix). 33 to X-38 were obtained.
  • Tables 1 to 4 show the SP value difference, particle size (number of peaks, peak area ratio, average particle size (D50), particle size ratio) and evaluation test (initial viscosity, dispersion properties, storage stability, finish properties, conductivity) are also described.
  • particle size number of peaks, peak area ratio, average particle size (D50), secondary particle / primary particle ratio
  • the water content of each of the conductive pigment pastes X-1 to X-43 was measured by Karl Fischer coulometric titration, and all of them were 0.1% by mass or less.
  • Conductive pigment A carbon black (acetylene black) (average primary particle size 25 nm, pH: 9, BET specific surface area 115 m 2 /g)
  • Conductive pigment B carbon black (acetylene black) (average primary particle size 35 nm, pH: 9, BET specific surface area 70 m 2 /g)
  • Conductive pigment C carbon black (acetylene black) (average primary particle diameter 50 nm, pH: 9, BET specific surface area 36 m 2 /g)
  • Conductive pigment D carbon black (acetylene black) (average primary particle size 55 nm, pH: 9, BET specific surface area 28 m 2 /g)
  • Conductive pigment E carbon black (acetylene black) (average primary particle size 90 nm, pH: 9, BET specific surface area 9 m 2 /g)
  • NMP N-methyl-2-pyrrolidone (SP value 11.1)
  • DMAc N,N-dimethylacetamide (SP value 11.2)
  • PGME propylene glycol monomethyl ether (SP value 10.4)
  • MEK methyl ethyl ketone (SP value 9.3)
  • PVDF Polyvinylidene fluoride (weight average molecular weight: 800,000, SP value 9.1)
  • CNT carbon nanotube (multi-layer, average outer diameter 9 nm, average length 20 ⁇ m)
  • ⁇ Peak area ratio> In the frequency distribution curve, the peak area ratio in the particle diameter range of 150 to 550 nm and the particle diameter range of 600 to 3,000 nm (total peak area in the particle diameter range of 150 to 550 nm / particle diameter of 600 to 3,000 nm) The sum of the peak areas in the range) was calculated. As for X-32, since it has only one crest, it is not calculated and marked with * in the table.
  • ⁇ Average particle size (D50)> The conductive pigment paste was diluted with a solvent, and the volume-based average particle diameter (D50) was calculated using a laser diffraction scattering method.
  • the resulting conductive pigment paste was subjected to the dispersibility test of JIS K-5600-2-5, and the dispersibility was evaluated using a grain gauge according to the following criteria.
  • S The pigment is dispersed with a size of less than 10 ⁇ m. Dispersibility is very good.
  • C The pigment is dispersed in a size of 20 ⁇ m or more, but no aggregates can be visually confirmed. Dispersibility is slightly inferior.
  • D Aggregates are visually confirmed. Dispersibility is very poor.
  • ⁇ Storage stability (conductive pigment paste)> The obtained conductive pigment paste was stored at a temperature of 50° C. for one month, and the initial viscosity and the viscosity after storage were compared. Viscosity is measured using a cone & plate type viscometer (HAAKE, trade name Mars2, diameter 35 mm, 2° inclined cone & plate) at a shear rate of 1.0 s -1 , and the viscosity increase rate is calculated by the following formula.
  • Viscosity increase rate (%) after storage is 10% or more and less than 50%.
  • B Viscosity increase rate (%) after storage is 50% or more and less than 100%.
  • C Viscosity increase rate (%) after storage is 100% or more and less than 200%.
  • D Viscosity increase rate (%) after storage is 200% or more.
  • the resistivity of the dry coating film applied between the aluminum foil tapes was measured using a measuring device (manufactured by Yokogawa Keisoku Co., Ltd., trade name digital multimeter MODEL 73401) at 20 ° C. and a relative humidity of 65%. Conductivity was evaluated. S: The resistivity is less than 0.005 ⁇ m, and the electrical conductivity is the best. A: The resistivity is 0.005 ⁇ m or more and less than 0.0065 ⁇ m, and the electrical conductivity is very good. B: The resistivity is 0.0065 ⁇ m or more and less than 0.008 ⁇ m, and the conductivity is good. C: The resistivity is 0.008 ⁇ m or more and less than 0.01 ⁇ m, and the conductivity is slightly inferior. D: The resistivity is 0.01 ⁇ m or more, and the electrical conductivity is very poor.
  • Examples 39 to 76 ⁇ Manufacture of coating material and coating film> 100 parts of the conductive pigment pastes (X-1 to X-38) obtained in Examples 1 to 38, 50 parts of N-methyl-2-pyrrolidone as a solvent, and Na as the composite metal particles (G1) 2/3 Ni 1/3 Mn 2/3 O 2 (average particle size: 5 ⁇ m) was added in 20 parts, mixed and stirred for 60 minutes using a disper, and coating materials Y-1 to Y for Examples 39 to 76 were obtained. -38 was obtained.
  • a cold-rolled steel sheet (150 mm (vertical) ⁇ 70 mm (horizontal) ⁇ 0.8 mm (thickness)) that has been chemically treated with a zinc phosphate treatment agent (manufactured by Nihon Parkerizing Co., Ltd., trade name Palbond #3020) is coated.
  • a zinc phosphate treatment agent manufactured by Nihon Parkerizing Co., Ltd., trade name Palbond #3020
  • the above coating materials Y-1 to Y-38 were applied with an applicator to a dry film thickness of 50 ⁇ m and dried at a temperature of 150° C. for 40 minutes to obtain a coating film. All of the obtained coating films had a residual solvent amount of less than 1% and were excellent in finish and the like.
  • Examples 77 to 92 ⁇ Manufacture of coating material and coating film> The formulations shown in Table 4 below were added in order from the top while stirring using a disper, and finally stirred for 60 minutes to obtain coating materials Z-1 to Z-16 of Examples 77 to 92. Subsequently, using an aluminum foil (150 mm (vertical) ⁇ 70 mm (horizontal)) as an object to be coated, the above coating materials Z-1 to Z-16 were applied with an applicator so that the dry film thickness was 50 ⁇ m, and 150 ° C. and dried for 40 minutes at a temperature of to obtain a coating film. All of the obtained coating films had a residual solvent amount of less than 1% and were excellent in finish and the like. Tables 5 and 6 below also show the evaluation results of the storage stability of the coating materials Z-1 to Z-16.
  • Viscosity increase rate (%) viscosity after storage (mPa s) / initial viscosity (mPa s) ⁇ 100-100

Abstract

The present invention addresses the problem of providing: a conductive pigment paste which exhibits excellent pigment dispersibility and excellent storage stability even in cases where the pigment concentration is high; a coating material; and a coating film which exhibits excellent finish properties and the like. The present invention provides, as a means for solving the problem, a conductive pigment paste which contains (A) a pigment dispersion resin, (B) a conductive pigment, (C) a solvent and (D) a fluororesin, wherein: the pigment dispersion resin (A) has at least one a polar functional group that is selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group and a cyano group; the polar functional group concentration in the pigment dispersion resin (A) is from 10 mmol/g to 23 mmol/g; the conductive pigment (B) has an average primary particle diameter of 10 nm to 80 nm and a BET specific surface area of 250 m2/g or less; the solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) satisfy the relational expression |δA - δC| < 2.0; and the viscosity at a shear rate of 0.1 s-1 is less than 5,000 mPa·s.

Description

導電性顔料ペースト、塗工材、及び塗工膜Conductive pigment paste, coating material, and coating film
 本発明は、高顔料濃度においても、顔料分散性及び貯蔵安定性に優れる導電性顔料ペースト及び塗工材、並びに、仕上がり性などに優れる塗工膜に関する。 The present invention relates to a conductive pigment paste and a coating material that are excellent in pigment dispersibility and storage stability even at high pigment concentrations, and a coating film that is excellent in finishing properties.
 従来、顔料を顔料分散樹脂及び溶媒等の混合物中に分散させたペースト状の顔料分散体が、塗料、塗工材、コーティング材、電磁波シールド、ディスプレイパネル、タッチスクリーンパネル、着色フィルム、着色シート、化粧材、保護材、磁石改質材、印刷用インキ、デバイス部材、二次電池の電極、電子機器部材、プリント配線板、太陽電池、機能性ゴム部材、樹脂成形膜等の分野で広く用いられている。さらに、これらの材料に静電塗装性、導電性、電磁波シールド性、帯電防止性、電池性能等の機能を付与するために導電性顔料や導電性高分子等を含有させている。
 これらの分野では、顔料分散性、貯蔵安定性、塗工性、導電性、仕上がり性、耐溶剤性等の性能向上がますます要求されており、そのため、優れた顔料分散能力と、形成された顔料分散体中の顔料粒子を再凝集させないだけの優れた貯蔵安定性を有する顔料分散樹脂及び顔料ペーストの開発がなされつつある。
Conventionally, a paste-like pigment dispersion in which a pigment is dispersed in a mixture of a pigment dispersion resin and a solvent is used as a paint, coating material, coating material, electromagnetic wave shield, display panel, touch screen panel, colored film, colored sheet, Widely used in fields such as decorative materials, protective materials, magnet modifiers, printing inks, device components, secondary battery electrodes, electronic device components, printed wiring boards, solar cells, functional rubber components, and resin molding films. ing. Furthermore, these materials contain conductive pigments, conductive polymers, and the like in order to impart functions such as electrostatic coating properties, conductivity, electromagnetic wave shielding properties, antistatic properties, and battery performance.
In these fields, there is an increasing demand for improved performance such as pigment dispersibility, storage stability, coatability, electrical conductivity, finish, and solvent resistance. Pigment dispersing resins and pigment pastes are being developed that have excellent storage stability to prevent reaggregation of the pigment particles in the pigment dispersion.
 顔料ペーストの設計にあたっては、顔料分散樹脂が塗工膜等の最終製品そのものの導電性能に悪い影響を及ぼさないように、あるいは溶媒及び顔料分散樹脂の使用量を低減することや乾燥時の使用エネルギーを低減する観点から、少量の顔料分散樹脂で高濃度かつ均一に分散された顔料ペーストを作製することが重要となっている。
 例えば、特許文献1には、芯材として金属粒子を用い、当該金属粒子の表面がカーボンで被覆されてなるカーボン被覆金属粒子と、バインダー樹脂と、溶剤とを含む導電性顔料ペーストが開示されている。しかしながら、銀や銅等の高価な導電性材料を使用することから汎用的な材料には用いることができなかった。
 また、特許文献2には、カーボンナノチューブ及びカーボンブラックが樹脂材料に分散され、カーボン複合フィラーを10~50重量%、及び前記樹脂材料を90~50重量%の比率で含む導電性シートが開示されている。しかしながら、このペーストは顔料濃度が低い(樹脂比率が高い)ため導電性が十分でない場合があった。
 また、特許文献3には、導電助剤として少なくとも2種以上の異なる炭素材料と、溶媒とを含有する導電助剤分散液であって、1種目の導電助剤が、平均一次粒子径20~50nm、BET比表面積300~1,400m/g、平均分散粒子径280~1,500nm、2種目の導電助剤が、平均一次粒子径20~70nm、BET比表面積10~200m/g、平均分散粒子径500~1,500nmであり、1種目の導電助剤と2種目の導電助剤との質量比が20~80:80~20である導電助剤分散液が開示されている。しかしながら、この分散液は比表面積が大きい炭素材料を20質量%以上含むために分散性が十分でない場合があった。
When designing the pigment paste, it is necessary to ensure that the pigment dispersion resin does not adversely affect the conductive performance of the final product itself, such as a coating film, or to reduce the amount of solvent and pigment dispersion resin used, and to reduce the energy used during drying. From the viewpoint of reducing
For example, Patent Document 1 discloses a conductive pigment paste containing carbon-coated metal particles obtained by using metal particles as a core material and coating the surfaces of the metal particles with carbon, a binder resin, and a solvent. there is However, since it uses an expensive conductive material such as silver or copper, it cannot be used as a general-purpose material.
Further, Patent Document 2 discloses a conductive sheet in which carbon nanotubes and carbon black are dispersed in a resin material, and which contains 10 to 50% by weight of a carbon composite filler and 90 to 50% by weight of the resin material. ing. However, since this paste has a low pigment concentration (high resin ratio), it may not have sufficient conductivity.
Further, Patent Document 3 discloses a conductive aid dispersion containing at least two or more different carbon materials as conductive aids and a solvent, wherein the first conductive aid has an average primary particle diameter of 20 to 50 nm, BET specific surface area of 300 to 1,400 m 2 /g, average dispersed particle size of 280 to 1,500 nm, the second conductive additive has an average primary particle size of 20 to 70 nm, BET specific surface area of 10 to 200 m 2 /g, Disclosed is a conductive aid dispersion having an average dispersed particle size of 500 to 1,500 nm and a weight ratio of the first conductive aid to the second conductive aid of 20 to 80:80 to 20. However, since this dispersion contains 20% by mass or more of a carbon material having a large specific surface area, the dispersibility may not be sufficient in some cases.
特開2018-22598号公報JP 2018-22598 A 国際公開第2015/064708号WO2015/064708 特開2019-61916号公報JP 2019-61916 A
 本発明が解決しようとする課題は、高顔料濃度においても顔料分散性と貯蔵安定性に優れる導電性顔料ペースト及び塗工材であって、さらに、仕上がり性などに優れる塗工膜を提供することである。 The problem to be solved by the present invention is to provide a conductive pigment paste and a coating material that are excellent in pigment dispersibility and storage stability even at a high pigment concentration, and to provide a coating film that is excellent in finishing properties. is.
 発明者等は、上記課題を解決するために鋭意検討した結果、特定の顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及びフッ素樹脂(D)を含有する導電性顔料ペーストによって、上記課題の解決が達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の導電性顔料ペースト、塗工材、及び塗工膜を提供するものである。
項1: 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及びフッ素樹脂(D)を含有する導電性顔料ペーストであって、
 顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、
 導電性顔料(B)が、平均1次粒子径10~80nm、かつBET比表面積が250m/g以下であり、
 顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、
 せん断速度0.1s-1での粘度が、5,000mPa・s未満である、
導電性顔料ペースト。
項2: 顔料分散樹脂(A)の固形分含有量が、導電性顔料ペーストの固形分総量中を基準として、0.1~20質量%である、項1に記載の導電性顔料ペースト。
項3: 導電性顔料(B)の含有量が、導電性顔料ペーストの固形分総量中を基準として、5~99.9質量%である、項1又は2に記載の導電性顔料ペースト。
項4: 顔料分散樹脂(A)の溶解性パラメーターδAが9.3以上であり、かつ溶媒(C)の溶解性パラメーターδCが10.4~15.0である、項1~3のいずれか1項に記載の導電性顔料ペースト。
項5: 導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が少なくとも2つのピークを有し、該ピークのピークトップが、粒子径150~550nmの範囲に少なくとも1つ、粒子径600~3,000nmの範囲に少なくとも1つあり、前記粒子径範囲におけるピーク面積比(粒子径150~550nmの範囲におけるピーク面積の合計/粒子径600~3,000nmの範囲におけるピーク面積の合計)が0.2~3である、項1~4のいずれか1項に記載の導電性顔料ペースト。
項6: 導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる平均粒子径(D50)が860~1,400nmである、項1~5のいずれか1項に記載の導電性顔料ペースト。
項7: 導電性顔料ペーストのせん断速度0.1s-1の粘度Xとせん断速度1,000s-1の粘度Yが、500mPa・s<X<5,000mPa・s、及び、X/Y>1.0の関係である、項1~6のいずれか1項に記載の導電性顔料ペースト。
項8: 前記導電性顔料(B)が、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも一種の導電性カーボンである、項1~7のいずれか1項に記載の導電性顔料ペースト。
項9: さらに、高極性低分子量成分(E)を含有する、項1~8のいずれか1項に記載の導電性顔料ペースト。
項10: 高極性低分子量成分(E)が、少なくとも1種のアミン化合物(E1)を含有する、項1~9のいずれか1項に記載の導電性顔料ペースト。
項11: フッ素樹脂(D)が、重量平均分子量10万以上、かつ溶解性パラメーターδDが9.3未満の樹脂である、項1~10のいずれか1項に記載の導電性顔料ペースト。
項12: 項1~11のいずれか1項に記載の導電性顔料ペーストとカーボンナノチューブ(F)とを含有する導電性顔料ペーストであって、導電性顔料ペースト中の導電性顔料(B)とカ-ボンナンチューブの固形分比率が1/99~99/1である導電性顔料ペースト。
項13: 顔料分散樹脂(A)、アセチレンブラック(B-2)、カーボンナノチューブ(F)、溶媒(C)、及びフッ素樹脂(D)を含有する導電性顔料ペーストであって、
 顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、
 アセチレンブラック(B-2)が、平均1次粒子径10~80nm、かつBET比表面積が250m/g以下であり、
 顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、
 せん断速度0.1s-1での粘度が、5,000mPa・s未満である、
導電性顔料ペースト。
項14: 項1~11のいずれか1項に記載の導電性顔料ペーストの製造に際し、実質的にメジアを用いずに導電性顔料ペーストを分散する、導電性顔料ペーストの顔料分散方法。
項15: 項1~13のいずれか1項に記載の導電性顔料ペーストと、少なくとも1種の金属元素を有する金属含有粒子(G)とを含有する、塗工材。
項16: 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び高極性低分子量成分(E)を含有する導電性顔料ペーストと、少なくとも1種の金属元素を有する金属含有粒子(G)とを含有する、塗工材であって、
 顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、
 導電性顔料(B)が、平均1次粒子径10~80nm、かつBET比表面積が250m/g以下であり、
 顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、
 せん断速度0.1s-1での粘度が、5,000mPa・s未満であり、
 高極性低分子量成分(E)が、導電性顔料(B)固形分100質量%を基準として3質量%以上含有する、
塗工材。
項17: 項1~13のいずれか1項に記載の導電性顔料ペーストに、少なくとも1種の金属元素を有する金属含有粒子(G)を添加する、塗工材の製造方法。
項18: 項15又は16に記載の塗工材を塗工して得られる塗工膜。
項19: 項15又は16に記載の塗工材を板状基材の両面に塗工して得られる塗工材料。
As a result of intensive studies to solve the above problems, the inventors have found a conductive pigment containing a specific pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D). The present inventors have found that the paste can solve the above problems, and have completed the present invention.
That is, the present invention provides the following conductive pigment paste, coating material, and coating film.
Item 1: A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D),
The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. , and the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g,
The conductive pigment (B) has an average primary particle diameter of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
The solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0,
Viscosity at a shear rate of 0.1 s −1 is less than 5,000 mPa s.
Conductive pigment paste.
Item 2: The conductive pigment paste according to Item 1, wherein the pigment dispersion resin (A) has a solid content of 0.1 to 20% by mass based on the total solid content of the conductive pigment paste.
Item 3: The conductive pigment paste according to Item 1 or 2, wherein the content of the conductive pigment (B) is 5 to 99.9% by mass based on the total solid content of the conductive pigment paste.
Item 4: Any one of Items 1 to 3, wherein the solubility parameter δA of the pigment dispersion resin (A) is 9.3 or more and the solubility parameter δC of the solvent (C) is 10.4 to 15.0. 2. The conductive pigment paste according to item 1.
Item 5: A frequency distribution curve obtained by diluting the conductive pigment paste with a solvent and measuring the volume-based particle size distribution by a laser diffraction scattering method has at least two peaks, and the peak top of the peak has a particle size of 150 to At least one in the range of 550 nm, at least one in the range of particle diameter 600 to 3,000 nm, and the peak area ratio in the particle diameter range (total peak area in the range of particle diameter 150 to 550 nm / particle diameter 600 to 3 5. The conductive pigment paste according to any one of items 1 to 4, wherein the total peak area in the range of 0.000 nm) is 0.2 to 3.
Item 6: Any one of Items 1 to 5, wherein the conductive pigment paste is diluted with a solvent and the average particle diameter (D50) obtained by volume-based particle size distribution measurement by a laser diffraction scattering method is 860 to 1,400 nm. 3. Conductive pigment paste according to paragraph.
Item 7: Viscosity X at a shear rate of 0.1 s -1 and viscosity Y at a shear rate of 1,000 s -1 of the conductive pigment paste are 500 mPa s < X < 5,000 mPa s and X/Y> 1 7. The conductive pigment paste according to any one of items 1 to 6, wherein the relationship is 0.0.
Item 8: Any one of Items 1 to 7, wherein the conductive pigment (B) is at least one type of conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. 2. The conductive pigment paste according to item 1.
Item 9: The conductive pigment paste according to any one of Items 1 to 8, further comprising a highly polar low molecular weight component (E).
Item 10: The conductive pigment paste according to any one of Items 1 to 9, wherein the highly polar low molecular weight component (E) contains at least one amine compound (E1).
Item 11: The conductive pigment paste according to any one of Items 1 to 10, wherein the fluororesin (D) is a resin having a weight average molecular weight of 100,000 or more and a solubility parameter δD of less than 9.3.
Item 12: A conductive pigment paste containing the conductive pigment paste according to any one of Items 1 to 11 and carbon nanotubes (F), wherein the conductive pigment (B) in the conductive pigment paste and A conductive pigment paste in which the carbonan tube has a solid content ratio of 1/99 to 99/1.
Item 13: A conductive pigment paste containing a pigment dispersion resin (A), acetylene black (B-2), carbon nanotubes (F), a solvent (C), and a fluororesin (D),
The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. , and the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g,
Acetylene black (B-2) has an average primary particle size of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
The solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0,
Viscosity at a shear rate of 0.1 s −1 is less than 5,000 mPa s.
Conductive pigment paste.
Item 14: A method for dispersing a conductive pigment paste, comprising dispersing the conductive pigment paste substantially without using media in the production of the conductive pigment paste according to any one of Items 1 to 11.
Item 15: A coating material containing the conductive pigment paste according to any one of Items 1 to 13 and metal-containing particles (G) having at least one metal element.
Item 16: A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a highly polar low molecular weight component (E), and at least one A coating material containing metal-containing particles (G) having a metal element,
The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. , and the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g,
The conductive pigment (B) has an average primary particle diameter of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
The solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0,
Viscosity at a shear rate of 0.1 s -1 is less than 5,000 mPa s,
The high polar low molecular weight component (E) contains 3% by mass or more based on 100% by mass of the solid content of the conductive pigment (B).
Coating material.
Item 17: A method for producing a coating material, comprising adding metal-containing particles (G) having at least one metal element to the conductive pigment paste according to any one of Items 1 to 13.
Item 18: A coating film obtained by coating the coating material according to Item 15 or 16.
Item 19: A coating material obtained by coating the coating material according to Item 15 or 16 on both sides of a plate-like substrate.
 本発明の導電性顔料ペースト及び塗工材は、高顔料濃度においても、顔料分散性、貯蔵安定性に優れ、比較的少ない配合量で充分にペーストの粘度を低下させることができる。また、その導電性塗工膜は、仕上がり性などに優れる。 The conductive pigment paste and coating material of the present invention are excellent in pigment dispersibility and storage stability even at high pigment concentrations, and can sufficiently reduce the viscosity of the paste with a relatively small amount. In addition, the conductive coating film is excellent in finish and the like.
 以下、本発明を実施するための形態について詳細に説明する。
 なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below.
It should be understood that the present invention is not limited to the following embodiments, but includes various modifications implemented without departing from the gist of the present invention.
 本発明の導電性顔料ペーストは、第一の態様に係る導電性顔料ペーストと、第二の態様に係る導電性顔料ペーストを含む。
 本発明の「塗工材」は、導電性顔料ペーストを含んだ液状の組成物である。
 本発明の「塗工膜」は、前記塗工材を塗工して乾燥した固形状の組成物である。
 本発明の「塗工材料」は、前記塗工材を板状基材の両面に塗工して得られるものである。
 ここで、溶解性パラメーターとは、一般にSP値(ソルビリティ・パラメーター)とも呼ばれるものであって、溶媒や樹脂の親水性又は疎水性の度合い(極性)を示す尺度である。また、溶媒と樹脂、樹脂間の溶解性や相溶性を判断する上で重要な尺度となるものであり、溶解性パラメーターの値が近い(溶解性パラメーターの差の絶対値が小さい)と、一般的に溶解性や相溶性が良好となる。
 本発明では、まず適度な分散状態の導電性顔料(B)を有する導電性顔料ペーストが調整される。さらに諸性能を満足する塗工膜を得るため、導電性顔料ペーストに金属含有粒子等の成分を追加して塗工材又は塗工材料が製造される。
The conductive pigment paste of the present invention includes the conductive pigment paste according to the first aspect and the conductive pigment paste according to the second aspect.
The "coating material" of the present invention is a liquid composition containing a conductive pigment paste.
The "coating film" of the present invention is a solid composition obtained by coating and drying the coating material.
The "coating material" of the present invention is obtained by applying the coating material on both sides of a plate-like substrate.
Here, the solubility parameter is generally called an SP value (solubility parameter), and is a scale indicating the degree of hydrophilicity or hydrophobicity (polarity) of a solvent or resin. In addition, it is an important measure for judging the solubility and compatibility between solvents and resins, and between resins. Solubility and compatibility are generally improved.
In the present invention, first, a conductive pigment paste having conductive pigment (B) in a moderately dispersed state is prepared. Furthermore, in order to obtain a coating film that satisfies various performances, a coating material or coating material is produced by adding components such as metal-containing particles to the conductive pigment paste.
[第一の態様に係る導電性顔料ペースト]
 本発明の第一の態様に係る導電性顔料ペーストは、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及びフッ素樹脂(D)を含有し、顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、導電性顔料(B)の平均1次粒子径が、10~80nmであり、顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、せん断速度0.1s-1での粘度が、5000mPa・s未満である。
[Conductive Pigment Paste According to First Aspect]
The conductive pigment paste according to the first aspect of the present invention contains a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D), and the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group, and a pigment dispersion resin ( A) has a polar functional group concentration of 10 to 23 mmol/g, the conductive pigment (B) has an average primary particle size of 10 to 80 nm, and the solubility parameter δA of the pigment dispersion resin (A) and the solvent ( The solubility parameter δC of C) satisfies |δA−δC|<2.0, and the viscosity at a shear rate of 0.1 s −1 is less than 5000 mPa·s.
<顔料分散樹脂(A)>
 本発明の第一の態様に係る導電性顔料ペーストの成分として用いることができる顔料分散樹脂(A)は、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を含有する。また、上記樹脂(A)の極性官能基濃度は、顔料分散性、貯蔵安定性、及び溶媒との相溶性の観点から、通常10~23mmol/gであり、好ましくは11~22.5mmol/gであり、より好ましくは12~22mmol/gであることが好適である。
<Pigment dispersion resin (A)>
The pigment dispersion resin (A) that can be used as a component of the conductive pigment paste according to the first aspect of the present invention includes an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, It contains at least one polar functional group selected from the group consisting of an amino group and a cyano group. The polar functional group concentration of the resin (A) is usually 10 to 23 mmol/g, preferably 11 to 22.5 mmol/g, from the viewpoint of pigment dispersibility, storage stability, and compatibility with solvents. and more preferably 12 to 22 mmol/g.
 また、顔料分散樹脂(A)の溶解性パラメーターδAとしては、顔料分散性、貯蔵安定性、及び溶媒との相溶性の観点から、9.3以上が好ましく、10.0~13.0がより好ましく、11.0~12.5がさらに好ましい。
 樹脂の溶解性パラメーターは、当業者に公知の濁度測定法をもとに数値定量化されるものであり、具体的には、K.W.SUH、J.M.CORBETTの式(Journal of Applied Polymer Science,12,2359,1968)に準じて求めることができる。
 顔料分散樹脂(A)が2種以上の場合の「顔料分散樹脂(A)の溶解性パラメーターδA」は、各樹脂の溶解性パラメーター値に質量分率を乗じたものを合計した値である。
Further, the solubility parameter δA of the pigment dispersion resin (A) is preferably 9.3 or more, more preferably 10.0 to 13.0, from the viewpoint of pigment dispersibility, storage stability, and compatibility with solvents. Preferably, 11.0 to 12.5 is more preferable.
The solubility parameter of the resin is numerically quantified based on a turbidity measurement method known to those skilled in the art. 1968).
When two or more pigment dispersion resins (A) are used, the "solubility parameter δA of the pigment dispersion resin (A)" is the sum of the solubility parameter values of each resin multiplied by the mass fraction.
 樹脂の種類としては、フッ素樹脂(D)以外の樹脂であり、具体的には、例えば、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ポリ酢酸ビニル、シリコーン樹脂、ポリカーボネート樹脂、シリケート樹脂、塩素系樹脂、及びこれらの複合樹脂等が挙げられる。これらの樹脂は、1種を単独で又は2種以上を併用して用いることができる。
 なかでも、該ペースト又は塗工材から形成される導電性塗工膜の優れた導電性を低下させることなく、導電性塗工膜に十分な造膜性を付与する観点から、顔料分散樹脂(A)としては、下記式(1)の重合性不飽和基含有モノマーを含むモノマーを重合又は共重合することにより得られるビニル(共)重合体(A-1)を含有することが好ましい。尚、本発明の「(共)重合体」とは、1種類のモノマーを重合した重合体と2種以上のモノマーを共重合した共重合体の両方を含むものである。
 C(-R)=C(-R) ・・・式(1)
〔上記式において、Rは、それぞれ同じでも異なってもよく、水素原子又は有機基である。〕
Types of resins include resins other than fluororesin (D), and specific examples include acrylic resins, polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, polyvinyl alcohol, polyvinyl acetal, and polyvinyl. Pyrrolidone, polyvinyl acetate, silicone resins, polycarbonate resins, silicate resins, chlorine-based resins, composite resins thereof, and the like. These resins can be used singly or in combination of two or more.
Among them, a pigment dispersion resin ( A) preferably contains a vinyl (co)polymer (A-1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer represented by the following formula (1). The "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
C(-R) 2 =C(-R) 2 Formula (1)
[In the above formula, each R may be the same or different and is a hydrogen atom or an organic group. ]
 上記ビニル(共)重合体(A-1)としては、その構造中に「-CH-CH(-X)-」で表される構造単位(ただし、Xは極性官能基を有する有機基である。)を含むものが好ましく、当該構造単位中の極性官能基Xとしては、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基である。
 上記ビニル(共)重合体(A-1)としては、例えば、水酸基含有ビニル(共)重合体、カルボキシル基含有ビニル(共)重合体、ピロリドン基含有ビニル(共)重合体、アミド基含有ビニル(共)重合体、スルホン酸基含有ビニル(共)重合体、リン酸基含有ビニル(共)重合体、アミノ基含有ビニル(共)重合体等が挙げられる。これらの(共)重合体は、単独で又は2種以上を組み合わせて用いることができる。
The vinyl (co)polymer (A-1) has a structural unit represented by “—CH 2 —CH(—X)—” in its structure (where X is an organic group having a polar functional group). ), and the polar functional group X in the structural unit includes an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. It is at least one polar functional group selected from the group.
Examples of the vinyl (co)polymer (A-1) include a hydroxyl group-containing vinyl (co)polymer, a carboxyl group-containing vinyl (co)polymer, a pyrrolidone group-containing vinyl (co)polymer, an amide group-containing vinyl Examples include (co)polymers, sulfonic acid group-containing vinyl (co)polymers, phosphoric acid group-containing vinyl (co)polymers, amino group-containing vinyl (co)polymers, and the like. These (co)polymers can be used alone or in combination of two or more.
 水酸基含有ビニル(共)重合体としては、例えば、ポリヒドロキシエチル(メタ)アクリレート、ポリビニルアルコール、ビニルアルコール-脂肪酸ビニル共重合体、ビニルアルコール-エチレン共重合体、ビニルアルコール-(N-ビニルホルムアミド)共重合体、ヒドロキシエチル(メタ)アクリレートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。(共)重合体中のビニルアルコール単位は脂肪酸ビニル単位を(共)重合した後に加水分解して得られたものでもよい。
 カルボキシル基含有ビニル(共)重合体としては、例えば、(メタ)アクリル酸の重合体、又はポリ(メタ)アクリル酸とその他の重合性不飽和モノマーとの共重合体等が挙げられる。
 ピロリドン基含有ビニル(共)重合体としては、例えば、ポリビニルピロリドン、N-ビニル-2-ピロリドン-エチレン共重合体、N-ビニル-2-ピロリドン-酢酸ビニル共重合体等が挙げられる。
 アミド基含有ビニル(共)重合体としては、例えば、(メタ)アクリルアミドの重合体、又は(メタ)アクリルアミドとその他の重合性不飽和モノマーとの共重合体等が挙げられる。
 スルホン酸基含有ビニル(共)重合体としては、例えば、アリルスルホン酸又はスチレンスルホン酸等の重合体、アリルスルホン酸及び/又はスチレンスルホン酸とその他の重合性不飽和モノマーとの共重合体等が挙げられる。
 リン酸基含有ビニル(共)重合体としては、例えば、(メタ)アクリロイルオキシアルキルアシッドホスフェートの重合体、又は(メタ)アクリロイルオキシアルキルアシッドホスフェートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。
 アミノ基含有ビニル(共)重合体としては、例えば、ポリビニルアミン、ポリアリルアミン、ジメチルアミノエチル(メタ)アクリレートの重合体、又はジメチルアミノエチル(メタ)アクリレートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。
 シアノ基含有ビニル(共)重合体としては、アクリロニトリルの重合体、又はアクリロニトリルとその他の重合性不飽和モノマーとの共重合体等が挙げられる。
Examples of hydroxyl group-containing vinyl (co)polymers include polyhydroxyethyl (meth)acrylate, polyvinyl alcohol, vinyl alcohol-fatty acid vinyl copolymer, vinyl alcohol-ethylene copolymer, vinyl alcohol-(N-vinylformamide). Examples include copolymers, copolymers of hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomers, and the like. The vinyl alcohol unit in the (co)polymer may be obtained by (co)polymerizing a fatty acid vinyl unit and then hydrolyzing it.
Carboxyl group-containing vinyl (co)polymers include, for example, polymers of (meth)acrylic acid, copolymers of poly(meth)acrylic acid and other polymerizable unsaturated monomers, and the like.
Examples of pyrrolidone group-containing vinyl (co)polymers include polyvinylpyrrolidone, N-vinyl-2-pyrrolidone-ethylene copolymer, N-vinyl-2-pyrrolidone-vinyl acetate copolymer and the like.
Amide group-containing vinyl (co)polymers include, for example, polymers of (meth)acrylamide, copolymers of (meth)acrylamide and other polymerizable unsaturated monomers, and the like.
Examples of sulfonic acid group-containing vinyl (co)polymers include polymers of allylsulfonic acid or styrenesulfonic acid, copolymers of allylsulfonic acid and/or styrenesulfonic acid with other polymerizable unsaturated monomers, and the like. is mentioned.
Phosphate group-containing vinyl (co)polymers include, for example, polymers of (meth)acryloyloxyalkyl acid phosphate, copolymers of (meth)acryloyloxyalkyl acid phosphate and other polymerizable unsaturated monomers, and the like. is mentioned.
Examples of amino group-containing vinyl (co)polymers include polyvinylamine, polyallylamine, polymers of dimethylaminoethyl (meth)acrylate, and copolymers of dimethylaminoethyl (meth)acrylate and other polymerizable unsaturated monomers. A polymer etc. are mentioned.
Examples of cyano group-containing vinyl (co)polymers include acrylonitrile polymers and copolymers of acrylonitrile and other polymerizable unsaturated monomers.
 これらのビニル(共)重合体(A-1)の中でも、顔料分散性を向上させる観点、及び導電性塗工膜の表面抵抗率を低減させる観点から、水酸基含有ポリビニル(共)重合体、カルボキシル基含有ポリビニル(共)重合体、ピロリドン基含有ポリビニル(共)重合体が好ましく、水酸基含有ポリビニル(共)重合体がより好ましく、ポリビニルアルコール(共)重合体がさらに好ましい。
 なお、上記ビニル(共)重合体(A-1)は、上記の「-CH-CH(-X)-」で表される構造単位以外に、必要に応じて、共重合可能な重合性不飽和基含有モノマー由来の構造単位を含んでいてもよい。共重合可能な重合性不飽和基含有モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酢酸イソプロペニル、バレリン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサティック酸ビニル、ピバリン酸ビニル等のカルボン酸ビニルエステル単量体;エチレン、プロピレン、ブチレン等のオレフィン類;スチレン、α-メチルスチレン等の芳香族ビニル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、フマル酸ジメチル、マレイン酸ジメチル、マレイン酸ジエチル、イタコン酸ジイソプロピル等のエチレン性不飽和カルボン酸アルキルエステル単量体;メチルビニルエーテル、n-プロピルビニルエーテル、イソブチルビニルエーテル、ドデシルビニルエーテル等のビニルエーテル単量体;(メタ)アクリロニトリル等のエチレン性不飽和ニトリル単量体;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル単量体又はビニリデン単量体;酢酸アリル、塩化アリル等のアリル化合物;3-(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド等の第四級アンモニウム基含有単量体;ビニルトリメトキシシラン、N-ビニルホルムアミド、メタアクリルアミド等が挙げられる。これらの単量体は、単独で又は2種以上を組み合わせて用いることができる。
Among these vinyl (co)polymers (A-1), hydroxyl group-containing polyvinyl (co)polymers, carboxyl Group-containing polyvinyl (co)polymers and pyrrolidone group-containing polyvinyl (co)polymers are preferred, hydroxyl group-containing polyvinyl (co)polymers are more preferred, and polyvinyl alcohol (co)polymers are even more preferred.
The vinyl (co)polymer (A-1) may, if necessary, have a copolymerizable polymerizable A structural unit derived from an unsaturated group-containing monomer may be included. Examples of copolymerizable polymerizable unsaturated group-containing monomers include vinyl formate, vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl valerate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, Carboxylic acid vinyl ester monomers such as vinyl benzoate, vinyl versatate and vinyl pivalate; olefins such as ethylene, propylene and butylene; aromatic vinyls such as styrene and α-methylstyrene; (meth)acrylic acid Ethylenically unsaturated carboxylic acids such as methyl, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dimethyl fumarate, dimethyl maleate, diethyl maleate, and diisopropyl itaconate Alkyl ester monomers; vinyl ether monomers such as methyl vinyl ether, n-propyl vinyl ether, isobutyl vinyl ether and dodecyl vinyl ether; ethylenically unsaturated nitrile monomers such as (meth)acrylonitrile; vinyl chloride, vinylidene chloride, vinyl fluoride , vinyl halide monomers such as vinylidene fluoride or vinylidene monomers; allyl compounds such as allyl acetate and allyl chloride; quaternary ammonium group-containing monomers such as 3-(meth)acrylamidopropyltrimethylammonium chloride; vinyltrimethoxysilane, N-vinylformamide, methacrylamide, and the like. These monomers can be used individually or in combination of 2 or more types.
 上記ビニル(共)重合体(A-1)の重合方法は、それ自体既知の重合方法で製造することができ、例えば溶液重合を用いることが好ましいが、これに限られるものではなく、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。
 溶液重合において使用する重合開始剤は、特に限定するものではないが、具体的には、例えば、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルパレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルパレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物;ジイソプピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシピバレート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用することができる。
 重合反応温度は、特に限定するものではないが、通常30~200℃程度の範囲で設定することができる。
The vinyl (co)polymer (A-1) can be produced by a polymerization method known per se. For example, solution polymerization is preferably used, but the method is not limited to bulk polymerization. Alternatively, emulsion polymerization, suspension polymerization, or the like may be used. When solution polymerization is carried out, it may be continuous polymerization or batch polymerization.
The polymerization initiator used in the solution polymerization is not particularly limited, but specific examples include azobisisobutyronitrile, azobis-2,4-dimethylpareronitrile, azobis(4-methoxy-2 ,4-dimethylpareronitrile) and other azo compounds; acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate and other peroxides Peroxydicarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, α-cumyl peroxyneodecanate , t-butylperoxypivalate, and other perester compounds; and known radical polymerization initiators, such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile.
Although the polymerization reaction temperature is not particularly limited, it can usually be set in the range of about 30 to 200°C.
 このようにして得ることができるビニル(共)重合体(A-1)は、重合度が100~4,000であることが好ましく、100~3,000、150~700であることがより好ましい。
 また、重量平均分子量としては、1,000~200,000であることが好ましく、2,000~100,000、7,000~30,000であることがより好ましい。
 上記ビニル(共)重合体(A-1)は、合成終了後に脱溶媒及び/又は溶媒置換することで、固体又は任意の溶媒に置き換えた樹脂溶液にすることができる。
 脱溶媒の方法としては、常圧で加熱により行ってもよいし、減圧下で脱溶媒してもよい。溶媒置換の方法としては、脱溶媒前、脱溶媒途中、又は脱溶媒後のいずれの段階で置換溶媒を投入してもよい。
The vinyl (co)polymer (A-1) thus obtained preferably has a degree of polymerization of 100 to 4,000, more preferably 100 to 3,000, more preferably 150 to 700. .
Also, the weight average molecular weight is preferably 1,000 to 200,000, more preferably 2,000 to 100,000, and more preferably 7,000 to 30,000.
The vinyl (co)polymer (A-1) can be made into a solid or a resin solution in which an arbitrary solvent is substituted by removing the solvent and/or replacing the solvent after completion of the synthesis.
As a method for removing the solvent, heating may be performed at normal pressure, or the solvent may be removed under reduced pressure. As a method for solvent replacement, the replacement solvent may be added at any stage before, during, or after solvent removal.
<導電性顔料(B)>
 本発明の第一の態様に係る導電性顔料ペーストで用いることができる導電性顔料(B)としては、形成される塗工膜に導電性を付与することができるものであって、後述するカーボンナノチューブ(F)以外のものであれば特に制限はない。その形状についても特に制限はなく、粒子状、フレーク状、ファイバー(ウィスカー含む)状の各種形状の顔料を挙げることができる。
 具体的には、例えば、導電性カーボン;銀、ニッケル、銅、グラファイト、アルミニウム等の金属粉を挙げることができ、さらに、アンチモンがドープされた酸化錫、リンがドープされた酸化錫、酸化錫/アンチモンで表面被覆された針状酸化チタン、酸化アンチモン、アンチモン酸亜鉛、インジウム錫オキシド、カーボン又はグラファイトのウィスカー表面に酸化錫等を被覆した顔料;フレーク状のマイカ表面に酸化錫、アンチモンドープ酸化錫、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、リンドープ酸化錫及び酸化ニッケルからなる群より選ばれる少なくとも1種の導電性金属酸化物を被覆した顔料;二酸化チタン粒子表面に酸化錫及びリンを含む導電性を有する顔料等を挙げることができる。上記導電性顔料(B)はそれぞれ単独で又は2種以上を組み合わせて使用することができる。
<Conductive Pigment (B)>
The conductive pigment (B) that can be used in the conductive pigment paste according to the first aspect of the present invention is capable of imparting conductivity to the coating film to be formed. There is no particular limitation as long as it is other than the nanotube (F). The shape of the pigment is not particularly limited, and various shapes such as particles, flakes, and fibers (including whiskers) can be used.
Specific examples include conductive carbon; metal powders such as silver, nickel, copper, graphite, and aluminum; furthermore, antimony-doped tin oxide, phosphorus-doped tin oxide, tin oxide / Acicular titanium oxide surface-coated with antimony, antimony oxide, zinc antimonate, indium tin oxide, carbon or graphite whisker surface coated with tin oxide, etc.; tin oxide, antimony-doped oxide on flake mica surface Pigment coated with at least one conductive metal oxide selected from the group consisting of tin, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), phosphorus-doped tin oxide and nickel oxide; oxidation on the surface of titanium dioxide particles Conductive pigments containing tin and phosphorus can be used. The conductive pigments (B) may be used alone or in combination of two or more.
 上記導電性顔料(B)の平均1次粒子径としては、粘度及び導電性の関係から、10~80nmの範囲内であることが好ましく、20~80nmの範囲内であることがより好ましく、31~80nmの範囲内であることがさらに好ましく、31より大きく52nm以下の範囲内であることが特に好ましい。
 ここで、本発明の平均1次粒子径とは、顔料を電子顕微鏡で観察し、100個の粒子について、それぞれ投影面積を求めてその面積に等しい円を仮定したときの直径を求め、100個の粒子の直径を単純平均して求めた1次粒子の平均径をいう。なお、顔料が凝集状態になっていた場合は、凝集粒子を構成している1次粒子で計算をする。
 上記導電性顔料(B)のBET比表面積としては、粘度及び導電性の関係から、通常250m/g以下であり、10~250m/gの範囲内であることが好ましく、20~200m/gの範囲内であることがより好ましく、30~150m/gの範囲内であることがさらに好ましく、30~110m/gの範囲内であることが特に好ましい。
 特に導電性顔料(B)中に比表面積250/g以下の導電性顔料が80%より多く含有することが好ましい。
 上記導電性顔料(B)のジブチルフタレート(DBP)吸油量としては、顔料分散性及び導電性の関係から、60~1,000ml/100gの範囲内であることが好ましく、150~800ml/100gの範囲内であることがさらに好ましい。
The average primary particle size of the conductive pigment (B) is preferably in the range of 10 to 80 nm, more preferably in the range of 20 to 80 nm, from the viewpoint of viscosity and conductivity. It is more preferably in the range of ~80 nm, and particularly preferably in the range of greater than 31 and 52 nm or less.
Here, the average primary particle size of the present invention is defined by observing the pigment with an electron microscope, determining the projected area of each of 100 particles, and determining the diameter when a circle equal to that area is assumed. means the average diameter of the primary particles obtained by simply averaging the diameters of the particles. In addition, when the pigment is in an aggregated state, the primary particles constituting the aggregated particles are used in the calculation.
The BET specific surface area of the conductive pigment (B) is usually 250 m 2 /g or less, preferably in the range of 10 to 250 m 2 /g, more preferably 20 to 200 m 2 , from the relationship between viscosity and conductivity. /g, more preferably 30 to 150 m 2 /g, particularly preferably 30 to 110 m 2 /g.
In particular, it is preferable that the conductive pigment (B) contains more than 80% of the conductive pigment having a specific surface area of 250 2 /g or less.
The dibutyl phthalate (DBP) oil absorption of the conductive pigment (B) is preferably in the range of 60 to 1,000 ml/100 g, and preferably 150 to 800 ml/100 g, in terms of pigment dispersibility and conductivity. It is more preferable to be within the range.
 上記導電性顔料(B)は、顔料分散性の関係から、塩基性であることが好ましく、具体的には、pHが7.5以上であることが好ましく、8.0~12.0であることがより好ましく、8.5~11.0であることがさらに好ましい。
 また、上記導電性顔料(B)は、導電性の観点から、1次粒子が鎖状構造(ストラクチャー)を形成している状態が好ましく、ストラクチャー指数が1.5~4.0の範囲内であることがより好ましく、1.7~3.2の範囲内であることが特に好ましい。
 ストラクチャー自体は電子顕微鏡で撮影した画像でも比較的容易に観察できるが、ストラクチャー指数はストラクチャーの度合いを定量化した数値である。ストラクチャー指数は一般的にDBP吸油量(ml/100g)を比表面積(m/g)で割った値で定義することができる。ストラクチャー指数が1.5未満であると、ストラクチャーが発達していないために、十分な導電性が得ることができず、また、4.0を超えるとDBP吸油量に対して粒子径が大きいために導電経路が減少し、十分な導電性を示さなくなるか、又は塗工材の粘度が高くなる恐れがある。
The conductive pigment (B) is preferably basic in terms of dispersibility of the pigment, and specifically, preferably has a pH of 7.5 or more, which is 8.0 to 12.0. is more preferable, and 8.5 to 11.0 is even more preferable.
In addition, from the viewpoint of conductivity, the conductive pigment (B) preferably has a state in which the primary particles form a chain structure (structure), and the structure index is within the range of 1.5 to 4.0. 1.7 to 3.2 is particularly preferred.
The structure itself can be observed relatively easily in an image taken with an electron microscope, but the structure index is a numerical value that quantifies the degree of structure. The structure index can generally be defined as a value obtained by dividing the DBP oil absorption (ml/100g) by the specific surface area (m 2 /g). If the structure index is less than 1.5, the structure is not developed and sufficient conductivity cannot be obtained, and if it exceeds 4.0, the particle size is large relative to the DBP oil absorption. There is a risk that the conductive path will be reduced and the coating will not be sufficiently conductive, or the viscosity of the coating material will be high.
 上記導電性顔料(B)の含有量としては、導電性と顔料分散性の観点から、導電性顔料ペーストの固形分総量を基準として、5~99.9質量%が好ましく、7~95質量%がより好ましく、10~90質量%が特に好ましい。
 上記導電性顔料(B)の種類としては、特に導電性カーボン(B-1)を好適に使用することができ、具体的には、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも1種であることが好ましい。これらの導電性顔料(B)は、1種を単独で又は2種以上組合せて用いることができる。
 なかでも、導電性カーボン(B-1)としては、アセチレンブラック(B-2)であることが好ましい。アセチレンブラック(B-2)を用いる場合、導電性顔料(B)中に、80質量%より多く含有することが好ましく、90質量%より多く含有することがより好ましく、95質量%より多く含有することがさらに好ましい。
 また、上記導電性顔料(B)としては、アセチレンブラック(B-2)1種のみを用いる、又はアセチレンブラック(B-2)2種以上を組み合わせて用いることができる。
The content of the conductive pigment (B) is preferably 5 to 99.9% by mass, preferably 7 to 95% by mass, based on the total solid content of the conductive pigment paste, from the viewpoint of conductivity and pigment dispersibility. is more preferred, and 10 to 90% by mass is particularly preferred.
As the type of the conductive pigment (B), conductive carbon (B-1) can be preferably used. Specific examples include acetylene black, ketjen black, furnace black, thermal black, It is preferably at least one selected from the group consisting of graphene and graphite. These conductive pigments (B) can be used singly or in combination of two or more.
Among them, the conductive carbon (B-1) is preferably acetylene black (B-2). When acetylene black (B-2) is used, it is preferably contained in the conductive pigment (B) in an amount of more than 80% by mass, more preferably more than 90% by mass, and more than 95% by mass. is more preferred.
As the conductive pigment (B), one type of acetylene black (B-2) can be used alone, or two or more types of acetylene black (B-2) can be used in combination.
 上記導電性カーボン(B-1)を含有する場合、その含有量としては、導電性と顔料分散性の観点から、導電性顔料ペーストの顔料分散樹脂(A)と導電性カーボン(B-1)の固形分質量を基準として、60質量%以上が好ましく、70~99質量%がより好ましく、80~99質量%がさらに好ましい。 When the conductive carbon (B-1) is contained, the content thereof is, from the viewpoint of conductivity and pigment dispersibility, the pigment dispersion resin (A) of the conductive pigment paste and the conductive carbon (B-1). 60% by mass or more, more preferably 70 to 99% by mass, and even more preferably 80 to 99% by mass, based on the solid content mass of.
<溶媒(C)>
 本発明の導電性顔料ペーストで用いることができる溶媒(C)としては、従来公知のものを特に制限なく使用することができる。具体的には、例えば、n-ブタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロブタン等の炭化水素系溶剤;トルエン、キシレン等の芳香族系溶剤;メチルイソブチルケトン等のケトン系溶剤;n-ブチルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール等のエーテル系溶剤;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤;エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール等の等のアルコール系溶剤;エクアミド(商品名、出光興産社製、アミド系溶剤)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N-メチルアセトアミド、N-メチルプロピオアミド、N-メチル-2-ピロリドン等のアミド系溶剤等を挙げることができ、なかでも、N-メチル-2-ピロリドンが好ましい。これらの溶剤は、1種を単独で又は2種以上を併用して用いることができる。
<Solvent (C)>
As the solvent (C) that can be used in the conductive pigment paste of the present invention, conventionally known solvents can be used without particular limitation. Specifically, for example, hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane and cyclobutane; aromatic solvents such as toluene and xylene; methyl isobutyl ketone and the like. Ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate , Ester-based solvents such as ethylene glycol monomethyl ether acetate, butyl carbitol acetate; Ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone; Alcohols such as ethanol, isopropanol, n-butanol, sec-butanol, isobutanol, etc. System solvent; Equamid (trade name, manufactured by Idemitsu Kosan Co., Ltd., amide solvent), N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide, N -Methyl-2-pyrrolidone and other amide solvents, among which N-methyl-2-pyrrolidone is preferred. These solvents can be used singly or in combination of two or more.
 本発明の導電性顔料ペーストで用いることができる溶媒(C)は、顔料分散樹脂(A)の溶解性及び導電性顔料ペーストの貯蔵安定性の観点から、水酸基、カルボキシル基、アミド基、アミノ基、エーテル基等の極性官能基を持つ溶媒を含有することが好ましい。
 また、導電性顔料ペーストの顔料分散性や樹脂を変質又は加水分解させない観点から、実質的に水を含まないことが好ましい。ここで「実質的に水を含まない」とは、導電性顔料ペーストの全量を基準として、水の含有量が、通常1質量%以下であり、好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であることをいう。
 本発明において、導電性顔料ペーストの水の分含有量は、カールフィッシャー電量滴定法にて測定することができる。具体的には、カールフィッシャー水分率計(京都電子工業社製、商品名:MKC-610)を用い、該装置に備えられた水分気化装置(京都電子社製、商品名ADP-611)の設定温度は130℃として測定することができる。
The solvent (C) that can be used in the conductive pigment paste of the present invention includes a hydroxyl group, a carboxyl group, an amide group, and an amino group from the viewpoint of the solubility of the pigment dispersion resin (A) and the storage stability of the conductive pigment paste. It is preferable to contain a solvent having a polar functional group such as an ether group.
In addition, it is preferable that the conductive pigment paste contains substantially no water from the viewpoint of dispersibility of the conductive pigment paste and prevention of deterioration or hydrolysis of the resin. Here, "substantially free of water" means that the water content is usually 1% by mass or less, preferably 0.5% by mass or less, based on the total amount of the conductive pigment paste. It means that it is preferably 0.1% by mass or less.
In the present invention, the content of water in the conductive pigment paste can be measured by Karl Fischer coulometric titration. Specifically, using a Karl Fischer moisture content meter (manufactured by Kyoto Electronics Industry Co., Ltd., trade name: MKC-610), the moisture vaporizer (manufactured by Kyoto Denshi Co., Ltd., trade name: ADP-611) provided in the device is set. The temperature can be measured as 130°C.
 また、顔料分散樹脂(A)の溶解性及び導電性顔料ペーストの貯蔵安定性の観点から、溶媒(C)の溶解性パラメーター(SP値)が、10.0(cal/cm1/2以上であることが好ましく、10.4~15.0(cal/cm1/2の範囲内であることがより好ましく、10.5~13.0(cal/cm1/2の範囲内であることがさらに好ましい。
 ここで、溶解性パラメーターとは、一般にSP値(ソルビリティ・パラメーター)とも呼ばれるものであって、溶媒や樹脂の親水性又は疎水性の度合い(極性)を示す尺度である。また、溶媒と樹脂、樹脂間の溶解性や相溶性を判断する上で重要な尺度となるものであり、溶解性パラメーターの値が近い(溶解性パラメーターの差の絶対値が小さい)と、一般的に溶解性や相溶性が良好となる。
Further, from the viewpoint of the solubility of the pigment dispersion resin (A) and the storage stability of the conductive pigment paste, the solubility parameter (SP value) of the solvent (C) is 10.0 (cal/cm 3 ) 1/2 more preferably 10.4 to 15.0 (cal/cm 3 ) 1/2 , more preferably 10.5 to 13.0 (cal/cm 3 ) 1/2 It is more preferable to be within the range.
Here, the solubility parameter is generally called an SP value (solubility parameter), and is a scale indicating the degree of hydrophilicity or hydrophobicity (polarity) of a solvent or resin. In addition, it is an important measure for judging the solubility and compatibility between solvents and resins, and between resins. Solubility and compatibility are generally improved.
 溶媒の溶解性パラメーターは、J.Brandrup及びE.H.Immergut編“Polymer Handbook” VII Solubility Parament Values,pp519-559(John Wiley& Sons社、第3版1989年発行)に記載される方法に従って求めることができる。2種以上の溶媒を組合せて混合溶媒として用いる場合、その混合溶媒の溶解性パラメーターは、実験的に求めることができ、また、簡便な方法として、個々の液状溶媒のモル分率と溶解性パラメーターとの積の総和により求めることもできる。
 本発明の「溶媒(C)の溶解性パラメーター」とは、導電性顔料ペーストに含まれる全ての溶媒(混合溶媒)の溶解性パラメーターのことである。
 本発明の導電性顔料ペーストにおいては、溶解性、粘性及び顔料分散性などの観点から、前記顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であることが好ましく、|δA-δC|<1.5の関係であることがより好ましい。
Solubility parameters of solvents can be determined according to the method described in "Polymer Handbook" VII Solubility Parament Values, Eds. When two or more solvents are used in combination as a mixed solvent, the solubility parameters of the mixed solvent can be determined experimentally. It can also be obtained by the sum of the products of
The "solubility parameter of the solvent (C)" in the present invention is the solubility parameter of all the solvents (mixed solvent) contained in the conductive pigment paste.
In the conductive pigment paste of the present invention, from the viewpoint of solubility, viscosity, pigment dispersibility, etc., the solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) are set to |δA The relationship -δC|<2.0 is preferable, and the relationship |δA-δC|<1.5 is more preferable.
<フッ素樹脂(D)>
 本発明の導電性顔料ペーストで用いることができるフッ素樹脂(D)は、塗工膜の膜形成を目的とする樹脂であり、顔料分散樹脂(A)が必須成分としている極性官能基を実質的に含有していない低極性の樹脂であり、例えば、極性官能基濃度としては10mmol/g未満であり、好ましくは5mmol/g以下であり、より好ましくは1mmol/g以下であることが好適である。
 フッ素樹脂(D)としては、特にポリフッ化ビニリデン(PVDF)が好ましく、1種を単独で又は2種以上を併用して用いることができる。
 フッ素樹脂(D)は、顔料分散時に含有していてもよく、あるいは顔料分散後に添加して含有してもよい。フッ素樹脂(D)の重量平均分子量としては、基材との密着性、塗膜物性の補強、及び耐溶剤性の観点から、10万以上であることが好ましく、50万~300万であることがより好ましく、65万~200万であることが特に好ましい。
<Fluororesin (D)>
The fluororesin (D) that can be used in the conductive pigment paste of the present invention is a resin for the purpose of forming a coating film, and substantially contains a polar functional group that is an essential component of the pigment dispersion resin (A). For example, the polar functional group concentration is less than 10 mmol/g, preferably 5 mmol/g or less, more preferably 1 mmol/g or less. .
Polyvinylidene fluoride (PVDF) is particularly preferable as the fluororesin (D), and one of them can be used alone or two or more of them can be used in combination.
The fluororesin (D) may be contained during pigment dispersion, or may be added and contained after pigment dispersion. The weight-average molecular weight of the fluororesin (D) is preferably 100,000 or more, preferably 500,000 to 3,000,000, from the viewpoints of adhesion to the substrate, reinforcement of physical properties of the coating film, and solvent resistance. is more preferable, and 650,000 to 2,000,000 is particularly preferable.
 フッ素樹脂(D)の溶解性パラメーターとしては、10未満であることが好ましく、9.3未満であることがより好ましい。
 また、樹脂の溶解性と貯蔵安定性の観点から、上記フッ素樹脂(D)の溶解性パラメーターδDと溶媒(C)の溶解性パラメーターδCとが、|δD-δC|<3.0の関係であることが好ましい。より好ましくは0≦|δD-δC|≦2.8、さらに好ましくは0.1≦|δD-δC|≦2.5の関係である。
The solubility parameter of the fluororesin (D) is preferably less than 10, more preferably less than 9.3.
Further, from the viewpoint of the solubility and storage stability of the resin, the solubility parameter δD of the fluororesin (D) and the solubility parameter δC of the solvent (C) are in the relationship |δD−δC|<3.0. Preferably. More preferably, 0≤|δD-δC|≤2.8, and more preferably 0.1≤|δD-δC|≤2.5.
<高極性低分子量成分(E)>
 本発明の導電性顔料ペーストは、導電性顔料の濡れ性及び/又は貯蔵安定性を上げる観点から、下記高極性低分子量成分(E)を含有することが好ましい。
 上記高極性低分子量成分(E)としては、塩基性又は酸性のものが好ましく、一部又は全部が塩であってもよい。
 なかでも、高極性低分子量成分(E)は、導電性顔料の濡れ性及び/又は貯蔵安定性を上げる観点から、少なくとも1種のアミン化合物(E1)を含有するものがより好ましい。上記アミン化合物(E1)としては、例えば、アンモニア、1級アミン、2級アミン、3級アミン等が挙げられる。
<Highly polar low molecular weight component (E)>
From the viewpoint of increasing the wettability and/or storage stability of the conductive pigment, the conductive pigment paste of the present invention preferably contains the following highly polar low molecular weight component (E).
The highly polar low-molecular-weight component (E) is preferably basic or acidic, and may be partly or wholly a salt.
Among them, the highly polar low molecular weight component (E) more preferably contains at least one amine compound (E1) from the viewpoint of increasing the wettability and/or storage stability of the conductive pigment. Examples of the amine compound (E1) include ammonia, primary amine, secondary amine, and tertiary amine.
 1級アミンとしては、例えば、エチルアミン、n-プロピルアミン、sec-プロピルアミン、n-ブチルアミン、sec-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミン、ミスチリルアミン、1,2-ジメチルヘキシルアミン、3-ペンチルアミン、2-エチルヘキシルアミン、アリルアミン、アミノエタノール、1-アミノプロパノール、2-アミノプロパノール、アミノブタノール、アミノペンタノール、アミノヘキサノール、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-(2-エチルヘキシロキシ)プロピルアミン、アミノシクロペンタン、アミノシクロヘキサン、アミノノルボルネン、アミノメチルシクロヘキサン、アミノベンゼン(アニリン)、ベンジルアミン、フェネチルアミン、α-フェニルエチルアミン、ナフチルアミン、フルフリルアミン等の1級モノアミン;エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ビス-(3-アミノプロピル)エーテル、1,2-ビス-(3-アミノプロポキシ)エタン、1,3-ビス-(3-アミノプロポキシ)-2,2’-ジメチルプロパン、アミノエチルエタノールアミン、1,2-ビスアミノシクロヘキサン、1,3-ビスアミノシクロヘキサン、1,4-ビスアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、1,3-ビスアミノエチルシクロヘキサン、1,4-ビスアミノエチルシクロヘキサン、1,3-ビスアミノプロピルシクロヘキサン、1,4-ビスアミノプロピルシクロヘキサン、水添4,4’-ジアミノジフェニルメタン、2-アミノピペリジン、4-アミノピペリジン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、2-アミノエチルピペリジン、4-アミノエチルピペリジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、イソホロンジアミン、メンタンジアミン、1,4-ビスアミノプロピルピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、2,4-トルエンジアミン、m-アミノベンジルアミン、4-クロロ-o-フェニレンジアミン、テトラクロロ-p-キシリレンジアミン、4-メトキシ-6-メチル-m-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ベンジジン、4,4’-ビス(o-トルイジン)、ジアニシジン、4,4’-ジアミノジフェニルメタン、2,2-(4,4’-ジアミノジフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-チオジアニリン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジトリルスルホン、メチレンビス(o-クロロアニリン)、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ジエチレントリアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、1,4-ビス(アミノエチルピペラジン)、1,4-ビス(アミノプロピルピペラジン)、2,6-ジアミノピリジン、ビス(3,4-ジアミノフェニル)スルホン等の1級ポリアミン等が挙げられる。 Examples of primary amines include ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, Laurylamine, Mystyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethylhexyloxy)propylamine, aminocyclopentane, aminocyclohexane , aminonorbornene, aminomethylcyclohexane, aminobenzene (aniline), benzylamine, phenethylamine, α-phenylethylamine, naphthylamine, primary monoamines such as furfurylamine; ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, dimethyl aminopropylamine, diethylaminopropylamine, bis-(3-aminopropyl)ether, 1,2-bis-(3-aminopropoxy)ethane, 1,3-bis-(3-aminopropoxy)-2,2'- dimethylpropane, aminoethylethanolamine, 1,2-bisaminocyclohexane, 1,3-bisaminocyclohexane, 1,4-bisaminocyclohexane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 1,3-bisaminoethylcyclohexane, 1,4-bisaminoethylcyclohexane, 1,3-bisaminopropylcyclohexane, 1,4-bisaminopropylcyclohexane, hydrogenated 4,4'-diaminodiphenylmethane, 2-aminopiperidine , 4-aminopiperidine, 2-aminomethylpiperidine, 4-aminomethylpiperidine, 2-aminoethylpiperidine, 4-aminoethylpiperidine, N-aminoethylpiperidine, N-aminopro pyrpiperidine, N-aminoethylmorpholine, N-aminopropylmorpholine, isophoronediamine, menthanediamine, 1,4-bisaminopropylpiperazine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-tri diamine, 2,6-tolylenediamine, 2,4-toluenediamine, m-aminobenzylamine, 4-chloro-o-phenylenediamine, tetrachloro-p-xylylenediamine, 4-methoxy-6-methyl- m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, benzidine, 4,4'-bis(o-toluidine), dianisidine, 4,4 '-diaminodiphenylmethane, 2,2-(4,4'-diaminodiphenyl)propane, 4,4'-diaminodiphenyl ether, 4,4'-thiodianiline, 4,4'-diaminodiphenylsulfone, 4,4'-diamino Ditolylsulfone, methylenebis(o-chloroaniline), 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro[5,5]undecane, diethylenetriamine, iminobispropylamine, methylimino Bispropylamine, bis(hexamethylene)triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-aminoethylpiperazine, N-aminopropylpiperazine, 1,4-bis(aminoethylpiperazine), 1,4 -primary polyamines such as bis(aminopropylpiperazine), 2,6-diaminopyridine and bis(3,4-diaminophenyl)sulfone;
 2級アミンとしては、例えば、ジエチルアミン、ジプロピルアミン、ジ-n-ブチルアミン、ジ-sec-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジ-3-ペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、メチルヘキシルアミン、ジアリルアミン、ピロリジン、ピペリジン、2,4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、ジフェニルアミン、N-メチルアニリン、N-エチルアニリン、ジベンジルアミン、メチルベンジルアミン、ジナフチルアミン、ピロール、インドリン、インドール、モルホリン等の2級モノアミン;N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,6-ジアミノヘキサン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)メタン、1,2-ジ-(4-ピペリジル)エタン、1,3-ジ-(4-ピペリジル)プロパン、1,4-ジ-(4-ピペリジル)ブタン等の2級ポリアミン等が挙げられる。 Examples of secondary amines include diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di (2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, diphenylamine, N-methylaniline, N-ethylaniline, dibenzylamine , methylbenzylamine, dinaphthylamine, pyrrole, indoline, indole, secondary monoamines such as morpholine; N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl- 1,3-diaminopropane, N,N'-dimethyl-1,2-diaminobutane, N,N'-dimethyl-1,3-diaminobutane, N,N'-dimethyl-1,4-diaminobutane, N , N′-dimethyl-1,5-diaminopentane, N,N′-dimethyl-1,6-diaminohexane, N,N′-dimethyl-1,7-diaminoheptane, N,N′-diethylethylenediamine, N , N'-diethyl-1,2-diaminopropane, N,N'-diethyl-1,3-diaminopropane, N,N'-diethyl-1,2-diaminobutane, N,N'-diethyl-1, 3-diaminobutane, N,N'-diethyl-1,4-diaminobutane, N,N'-diethyl-1,6-diaminohexane, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 2,6 -dimethylpiperazine, homopiperazine, 1,1-di-(4-piperidyl)methane, 1,2-di-(4-piperidyl)ethane, 1,3-di-(4-piperidyl)propane, 1,4- secondary polyamines such as di-(4-piperidyl)butane;
 3級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-iso-プロピルアミン、トリ-1,2-ジメチルプロピルアミン、トリ-3-メトキシプロピルアミン、トリ-n-ブチルアミン、トリ-iso-ブチルアミン、トリ-sec-ブチルアミン、トリ-ペンチルアミン、トリ-3-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、トリ-2-エチルヘキシルアミン、トリ-ドデシルアミン、トリ-ラウリルアミン、ジシクロヘキシルエチルアミン、シクロヘキシルジエチルアミン、トリ-シクロヘキシルアミン、N,N-ジメチルヘキシルアミン、N-メチルジヘキシルアミン、N,N-ジメチルシクロヘキシルアミン、N-メチルジシクロヘキシルアミン、N、N-ジエチルエタノールアミン、N、N-ジメチルエタノールアミン、N-エチルジエタノールアミン、トリエタノールアミン、トリベンジルアミン、N,N-ジメチルベンジルアミン、ジエチルベンジルアミン、トリフェニルアミン、N,N-ジメチルアミノ-p-クレゾール、N,N-ジメチルアミノメチルフェノール、2-(N,N-ジメチルアミノメチル)フェノール、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ピリジン、キノリン、N-メチルモルホリン、N-メチルピペリジン、2-(2-ジメチルアミノエトキシ)-4-メチル-1,3,2-ジオキサボルナン、2-、3-、4-ピコリン等の3級モノアミン;テトラメチルエチレンジアミン、ピラジン、N,N’-ジメチルピペラジン、N,N’-ビス((2-ヒドロキシ)プロピル)ピペラジン、ヘキサメチレンテトラミン、N,N,N’,N’-テトラメチル-1,3-ブタンアミン、2-ジメチルアミノ-2-ヒドロキシプロパン、ジエチルアミノエタノール、N,N,N-トリス(3-ジメチルアミノプロピル)アミン、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、ヘプタメチルイソビグアニド等の3級ポリアミン等が挙げられる。
 これらは1種を単独で、又は2種以上を併用して用いることができる。
Tertiary amines include, for example, trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanol amines, N,N-dimethylethanolamine, N-ethyldiethanolamine, triethanolamine, tribenzylamine, N,N-dimethylbenzylamine, diethylbenzylamine, triphenylamine, N,N-dimethylamino-p-cresol, N,N-dimethylaminomethylphenol, 2-(N,N-dimethylaminomethyl)phenol, N,N-dimethylaniline, N,N-diethylaniline, pyridine, quinoline, N-methylmorpholine, N-methylpiperidine, Tertiary monoamines such as 2-(2-dimethylaminoethoxy)-4-methyl-1,3,2-dioxabornane, 2-, 3-, 4-picoline; tetramethylethylenediamine, pyrazine, N,N'-dimethylpiperazine , N,N′-bis((2-hydroxy)propyl)piperazine, hexamethylenetetramine, N,N,N′,N′-tetramethyl-1,3-butanamine, 2-dimethylamino-2-hydroxypropane, tertiary polyamines such as diethylaminoethanol, N,N,N-tris(3-dimethylaminopropyl)amine, 2,4,6-tris(N,N-dimethylaminomethyl)phenol and heptamethylisobiguanide; .
These can be used individually by 1 type or in combination of 2 or more types.
 なかでも、酸基や水酸基などの他の官能基を含有しないことが好ましく、1級のアミン化合物が好ましく、1価のアミン化合物(モノアミン)が好ましい。
 上記アミン化合物(E1)としては、脂肪族アミン、脂環族アミン、芳香族アミン等が挙げられ、いずれも好適に使用できるが、芳香族アミンが好ましい。
 乾燥後の塗工膜にアミン化合物が残らないことが好ましいため、アミン化合物(E1)の重量平均分子量が1000未満であることが好ましく、800以下であることがより好ましく、500以下であることがさらに好ましく、200以下であることが特に好ましい。また同じ理由で、アミン化合物の沸点としては、400℃以下が好ましく、300℃以下がより好ましく、200℃以下がさらに好ましい。
 また、アミン化合物(E1)のアミン価としては、通常5~1000mgKOH/g、好ましくは50~1000mgKOH/g、より好ましくは105~1000mgKOH/gの範囲内であることが好適である。
Among them, it is preferable that they do not contain other functional groups such as acid groups and hydroxyl groups, primary amine compounds are preferable, and monovalent amine compounds (monoamines) are preferable.
Examples of the amine compound (E1) include aliphatic amines, alicyclic amines, and aromatic amines, any of which can be suitably used, but aromatic amines are preferred.
Since it is preferable that no amine compound remains in the coating film after drying, the weight average molecular weight of the amine compound (E1) is preferably less than 1000, more preferably 800 or less, and preferably 500 or less. More preferably, it is particularly preferably 200 or less. For the same reason, the boiling point of the amine compound is preferably 400° C. or lower, more preferably 300° C. or lower, and even more preferably 200° C. or lower.
Further, the amine value of the amine compound (E1) is generally 5 to 1000 mgKOH/g, preferably 50 to 1000 mgKOH/g, more preferably 105 to 1000 mgKOH/g.
 その他の高極性低分子量成分としては、例えば、有機酸及び無機酸から選ばれる酸性の高極性低分子量成分の1種又は2種以上を用いることができる。また、有機塩基及び無機塩基から選ばれる塩基性の高極性低分子量成分の1種又は2種以上を用いることができる。
 有機酸としては、例えば、有機カルボン酸(ギ酸、酢酸、プロピオン酸、安息香酸、フタル酸等)、有機スルホン酸(ベンゼンスルホン酸等)等が、無機酸としては、例えば、塩酸、硫酸、硝酸、リン酸等が、それぞれ挙げられる。
 有機塩基としては、アミン化合物以外の塩基成分や、無機塩基としては、例えば、金属水酸化物(水酸化ナトリウム、水酸化カリウム等)等が、それぞれ挙げられる。
As other highly polar low-molecular-weight components, for example, one or more acidic highly-polar low-molecular-weight components selected from organic acids and inorganic acids can be used. In addition, one or two or more basic, highly polar, low-molecular-weight components selected from organic bases and inorganic bases can be used.
Examples of organic acids include organic carboxylic acids (formic acid, acetic acid, propionic acid, benzoic acid, phthalic acid, etc.) and organic sulfonic acids (benzenesulfonic acid, etc.). Examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid. , phosphoric acid, etc., respectively.
Examples of organic bases include basic components other than amine compounds, and examples of inorganic bases include metal hydroxides (sodium hydroxide, potassium hydroxide, etc.).
 上記高極性低分子量成分(E)の含有量下限値としては、導電性顔料の濡れ性及び/又は貯蔵安定性を上げる観点から、導電性顔料(B)の固形分100質量%を基準として、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは3質量%以上、さらに好ましくは20質量%以上、特に好ましくは80質量%以上であり、含有量上限値としては、通常500質量%以下、好ましくは450質量%以下、より好ましくは400質量%以下、さらに好ましくは350質量%以下、特に好ましくは300質量%以下である。 From the viewpoint of increasing the wettability and/or storage stability of the conductive pigment, the lower limit of the content of the highly polar low molecular weight component (E) is based on 100% by mass of the solid content of the conductive pigment (B). It is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 3% by mass or more, still more preferably 20% by mass or more, and particularly preferably 80% by mass or more. It is usually 500% by mass or less, preferably 450% by mass or less, more preferably 400% by mass or less, still more preferably 350% by mass or less, and particularly preferably 300% by mass or less.
<その他の成分>
 本発明の第一の態様の導電性顔料ペーストとしては、上記の顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、高極性低分子量成分(E)の他に、必要に応じて、その他の成分を含有することができる。
 その他の成分としては、顔料分散樹脂(A)及びフッ素樹脂(D)以外の樹脂、高極性低分子量成分(E)以外の低分子量成分、中和剤、消泡剤、防腐剤、防錆剤、可塑剤、導電性顔料(B)及びカーボンナノチューブ(F)以外の顔料等を挙げることができる。
 顔料分散樹脂(A)及びフッ素樹脂(D)以外の樹脂としては、例えば、樹脂(A)及び樹脂(D)以外のアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、ポリカーボネート樹脂、シリケート樹脂、塩素系樹脂、ポリビニルピロリドン樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、スチレン系樹脂、ジエン系樹脂、ポリオレフィン系樹脂及びこれらの複合樹脂等が挙げられる。これらの樹脂は、1種を単独で又は2種以上を併用して用いることができる。
<Other ingredients>
As the conductive pigment paste of the first aspect of the present invention, in addition to the above pigment dispersion resin (A), conductive pigment (B), solvent (C), and highly polar low molecular weight component (E), if necessary Other ingredients may be included as required.
Other components include a resin other than the pigment dispersion resin (A) and the fluororesin (D), a low molecular weight component other than the highly polar low molecular weight component (E), a neutralizer, an antifoaming agent, a preservative, and an antirust agent. , plasticizers, conductive pigments (B), and pigments other than carbon nanotubes (F).
Resins other than the pigment dispersion resin (A) and the fluororesin (D) include, for example, acrylic resins other than the resins (A) and resins (D), polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, Examples include silicone resins, polycarbonate resins, silicate resins, chlorine resins, polyvinylpyrrolidone resins, polyvinyl alcohol resins, polyvinyl acetal resins, styrene resins, diene resins, polyolefin resins, composite resins thereof, and the like. These resins can be used singly or in combination of two or more.
 導電性顔料(B)及びカーボンナノチューブ(F)以外の顔料としては、例えば、チタン白、亜鉛華等の白色顔料;シアニンブルー、インダスレンブルー等の青色顔料;シアニングリーン、緑青等の緑色顔料;アゾ系やキナクリドン系等の有機赤色顔料、ベンガラ等の赤色顔料;ベンツイミダゾロン系、イソインドリノン系、イソインドリン系及びキノフタロン系等の有機黄色顔料、チタンイエロー、黄鉛等の黄色顔料等が挙げられる。これらの顔料は、1種を単独で又は2種以上を併用して用いることができる。これらの導電性顔料(B)及びカーボンナノチューブ(F)以外の顔料は、導電性を大きく損なわない範囲内で色調整や膜の物性補強等の目的で使用することができ、顔料分散樹脂(A)と導電性顔料(B)と共に同時に分散してもよく、また、顔料分散樹脂(A)と導電性顔料(B)を分散してペーストを作成した後に顔料又は顔料ペーストとして混ぜてもよい。
 上記導電性顔料(B)及びカーボンナノチューブ(F)以外の顔料の含有量としては、導電性顔料ペースト中の全顔料を基準として、10質量以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましく、実質的に含有しないことが特に好ましい。
Pigments other than the conductive pigment (B) and the carbon nanotube (F) include, for example, white pigments such as titanium white and zinc white; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and patina; Organic red pigments such as azo-based and quinacridone-based red pigments, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone-based, isoindolinone-based, isoindoline-based and quinophthalone-based yellow pigments; mentioned. These pigments can be used singly or in combination of two or more. Pigments other than these conductive pigments (B) and carbon nanotubes (F) can be used for purposes such as color adjustment and reinforcement of film physical properties within a range that does not significantly impair conductivity. ) and the conductive pigment (B) may be simultaneously dispersed, or the pigment dispersion resin (A) and the conductive pigment (B) may be dispersed to prepare a paste and then mixed as a pigment or a pigment paste.
The content of pigments other than the conductive pigment (B) and carbon nanotubes (F) is preferably 10% by mass or less, more preferably 5% by mass or less, and 1% by mass, based on the total pigments in the conductive pigment paste. % or less is more preferable, and substantially no content is particularly preferable.
 導電性顔料ペースト中の顔料分散樹脂(A)の固形分含有量は、ペーストの固形分総量を基準として、通常30質量%以下、好ましくは0.1~20質量%、より好ましくは0.5~10質量%であることが、顔料分散時の粘度、顔料分散性、貯蔵安定性、生産効率及び導電性等の面から好適である。 The solid content of the pigment dispersion resin (A) in the conductive pigment paste is usually 30% by mass or less, preferably 0.1 to 20% by mass, more preferably 0.5, based on the total solid content of the paste. From the standpoints of viscosity, pigment dispersibility, storage stability, production efficiency, electrical conductivity, etc., it is preferable that the amount is up to 10% by mass.
 上記組成で得られた導電性顔料ペースト中の導電性顔料(B)の粒度分布としては、導電性顔料ペーストを溶媒(C)で過希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が少なくとも2つのピークを有し、該ピークのピークトップが、粒子径150~550nmの範囲に少なくとも1つと、粒子径600~3000nmの範囲に少なくとも1つあるのが好ましい。前記粒子径範囲におけるピーク面積比(粒子径150~550nmの範囲におけるピーク面積の合計/粒子径600~3000nmの範囲におけるピーク面積の合計)は、0.2~3であることが好ましく、0.3~2.7であることがより好ましく、0.4~2.4であることがさらに好ましい。
 導電性顔料(B)の粒度分布が少なくとも2つのピークを有し、上記条件を満たすことで、導電性顔料ペースト中の導電性顔料は適度な流動性を有しながらストラクチャーを形成することができ、その導電性塗工膜又は導電性材料は良好な仕上がり性及び導電性を得ることができる。
The particle size distribution of the conductive pigment (B) in the conductive pigment paste obtained with the above composition was obtained by overdiluting the conductive pigment paste with the solvent (C) and measuring the volume-based particle size distribution by a laser diffraction scattering method. It is preferable that the resulting frequency distribution curve has at least two peaks, at least one of which has a particle size range of 150 to 550 nm and at least one of a particle size range of 600 to 3000 nm. The peak area ratio in the particle size range (the total peak area in the particle size range of 150 to 550 nm/the total peak area in the particle size range of 600 to 3000 nm) is preferably 0.2 to 3.0. It is more preferably 3 to 2.7, even more preferably 0.4 to 2.4.
When the particle size distribution of the conductive pigment (B) has at least two peaks and satisfies the above conditions, the conductive pigment in the conductive pigment paste can form a structure while having appropriate fluidity. , the conductive coating film or the conductive material can obtain good finish and conductivity.
 分散が弱く大粒子径側(粒子径600~3000nmの範囲)のピークトップの頻度(各ピーク面積の合計)が多くなり、小粒子径側(粒子径150~550nmの範囲)のピークトップの頻度(各ピーク面積の合計)が小さくなる又はなくなると、流動性が低下するおそれがある。また、分散が強く小粒子径側(粒子径150~550nmの範囲)のピークトップの頻度(各ピーク面積の合計)が多くなり、大粒子径側(粒子径600~3000nmの範囲)のピークトップの頻度(各ピーク面積の合計)が小さくなる又はなくなると、導電性が低下することになる。
 なお、本発明においては、レーザ回折散乱法による体積基準の粒度分布測定は、粒子径分布測定装置(マイクロトラック・ベル社製、商品名マイクロトラックMT3000)により行った。
Dispersion is weak and the frequency of peak tops on the large particle size side (particle size range of 600 to 3000 nm) (sum of each peak area) increases, and the peak top frequency on the small particle size side (particle size range of 150 to 550 nm) If (total of each peak area) becomes smaller or disappears, there is a risk that the fluidity will decrease. In addition, the dispersion is strong and the frequency of peak tops on the small particle size side (particle size range of 150 to 550 nm) (sum of each peak area) increases, and the peak top on the large particle size side (particle size range of 600 to 3000 nm) If the frequency of (the sum of each peak area) is reduced or eliminated, the conductivity will decrease.
In the present invention, the volume-based particle size distribution measurement by the laser diffraction scattering method was performed using a particle size distribution analyzer (Microtrac MT3000, trade name, manufactured by Microtrac Bell).
 また、導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる平均粒子径(D50)としては、400~1,500nmの範囲内であることが好ましく、860~1,400nmの範囲内であることがより好ましく、900~1,250nmの範囲内であることがさらに好ましい。 In addition, the conductive pigment paste is diluted with a solvent, and the average particle diameter (D50) obtained by volume-based particle size distribution measurement by a laser diffraction scattering method is preferably in the range of 400 to 1,500 nm. It is more preferably in the range of ~1,400 nm, more preferably in the range of 900 to 1,250 nm.
 また、導電性顔料(B)の1次粒子の平均粒子径(D50)を1とした場合、上記導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる平均粒子径(D50)は、15~30となるのが好ましく、18~25がより好ましい。
 すなわち、平均粒子径(D50)を2次粒子径として、導電性顔料の平均1次粒子径との比である「粒子径比」を、
 粒子径比=平均2次粒子径(nm)/平均1次粒子径(nm)
により算出した場合に、粒子径比は、15~30となるのが好ましく、18~25となるのがより好ましい。
 尚、上記粒度分布測定において、導電性顔料ペースト中に導電性顔料(B)以外の顔料が含有されていた場合、導電性顔料(B)のみを用いて作成した導電性顔料ペーストを測定するものとする。
Further, when the average particle diameter (D50) of the primary particles of the conductive pigment (B) is 1, the conductive pigment paste is diluted with a solvent, and the volume-based particle size distribution is measured by a laser diffraction scattering method. The average particle size (D50) is preferably 15-30, more preferably 18-25.
That is, the average particle diameter (D50) is the secondary particle diameter, and the "particle diameter ratio", which is the ratio to the average primary particle diameter of the conductive pigment, is
Particle size ratio = average secondary particle size (nm) / average primary particle size (nm)
The particle size ratio is preferably 15 to 30, more preferably 18 to 25, when calculated by
In the above particle size distribution measurement, if the conductive pigment paste contains a pigment other than the conductive pigment (B), the conductive pigment paste prepared using only the conductive pigment (B) is measured. and
 上記導電性顔料ペーストの粘度としては、顔料分散性や貯蔵安定性などの観点から、せん断速度0.1s-1での粘度が、5000mPa・s未満であり、10mPa・s以上かつ5000mPa・s未満であることが好ましく、50mPa・s以上かつ2500mPa・s未満であることがより好ましく、100mPa・s以上、かつ1100mPa・s未満であることが特に好ましい。
 粘度の測定は、例えば、コーン&プレート型粘度計(HAAKE社製、商品名Mars2、直径35mm、2°傾斜のコーン&プレート)を用いて測定する事ができる。
As the viscosity of the conductive pigment paste, from the viewpoint of pigment dispersibility and storage stability, the viscosity at a shear rate of 0.1 s −1 is less than 5000 mPa s, and is 10 mPa s or more and less than 5000 mPa s. is preferably 50 mPa·s or more and less than 2500 mPa·s, and particularly preferably 100 mPa·s or more and less than 1100 mPa·s.
The viscosity can be measured using, for example, a cone & plate type viscometer (manufactured by HAAKE, trade name Mars2, diameter 35 mm, 2° inclined cone & plate).
 本発明の導電性顔料ペーストは、以上に述べた各成分を、例えば、ペイントシェーカー、サンドミル、ボールミル、ペブルミル、LMZミル、DCPパールミル、遊星ボールミル、ホモジナイザー、二軸混練機、薄膜旋回型高速ミキサー(商品名:クレアミックス、フィルミックス等)等の従来公知の分散機を用いて均一に混合、分散させることにより調製することができる。
 また、分散としては、導電性塗工膜の導電性の観点から導電性顔料(B)の粒度分布が2つのピークを有することが好ましく、そのため1次粒子まで細かく分散しないことが好ましく、実質的にメジアを用いずに分散することが好適である。
 本発明においては、第一の態様に係る導電性顔料ペーストの製造に際し、実質的にメジアを用いずに導電性顔料ペーストを分散することで、導電性顔料ペーストの顔料分散方法を構成することができる。
The conductive pigment paste of the present invention can be prepared by mixing each component described above with, for example, a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin-film rotary high-speed mixer ( (trade names: CLEARMIX, FILMIX, etc.), etc.) by uniformly mixing and dispersing them.
In terms of dispersion, it is preferable that the particle size distribution of the conductive pigment (B) has two peaks from the viewpoint of the conductivity of the conductive coating film. It is preferred to disperse without using a media.
In the present invention, in the production of the conductive pigment paste according to the first aspect, the method for dispersing the conductive pigment paste may be configured by dispersing the conductive pigment paste substantially without using media. can.
<導電性顔料ペースト(第二の態様)>
 本発明の第二の態様に係る導電性顔料ペーストとしては、上記第一の態様に係る導電性顔料ペーストとカーボンナノチューブ(F)とを混合することにより、得ることができる。
 本発明の第二の態様に係る導電性顔料ペーストにおいて、導電性顔料(B)は、アセチレンブラック(B-2)の1種又は2種以上であることが好ましい。
 本発明の第二の態様に係る導電性顔料ペーストは、上記カ-ボンナンチューブ(F)を含有することにより、より優れた導電性が得られる。さらに、アセチレンブラック(B-2)を含有することにより、よりさらに優れた導電性が得られる。
 第一の態様に係る導電性顔料ペーストとカ-ボンナンチューブ(F)とを混合する方法は特に制限されない。例えば、カ-ボンナンチューブを用いて第一の態様に係る導電性顔料ペーストの調整方法と同様の方法で液状のカーボンナノチューブ分散ペーストを調整し、これと第一の態様に係る導電性顔料ペーストと混合してもよい。例えば、カ-ボンナンチューブそのものを、第一の態様に係る導電性顔料ペーストと混合してもよい。例えば、第一の態様に係る導電性顔料ペーストの顔料分散時において、導電性顔料(B)とカ-ボンナンチューブ(F)とを一緒に顔料分散してもよい。
 なお、前述した高極性低分子量成分(E)は、第二の態様に係る導電性顔料ペーストにおいても同様に含有することができ、混合する順番としては特に制限はない。
<Conductive Pigment Paste (Second Embodiment)>
The conductive pigment paste according to the second aspect of the present invention can be obtained by mixing the conductive pigment paste according to the first aspect and carbon nanotubes (F).
In the conductive pigment paste according to the second aspect of the present invention, the conductive pigment (B) is preferably one or more of acetylene black (B-2).
The conductive pigment paste according to the second aspect of the present invention can obtain more excellent conductivity by containing the above-mentioned carbonan tube (F). Furthermore, by containing acetylene black (B-2), even better conductivity can be obtained.
The method of mixing the conductive pigment paste according to the first aspect and the carbonan tube (F) is not particularly limited. For example, using a carbonan tube, a liquid carbon nanotube-dispersed paste is prepared in the same manner as the method for preparing the conductive pigment paste according to the first aspect, and this is combined with the conductive pigment paste according to the first aspect. may be mixed with For example, the carbonan tube itself may be mixed with the conductive pigment paste according to the first aspect. For example, when dispersing the conductive pigment paste of the first embodiment, the conductive pigment (B) and the carbon nanotube (F) may be dispersed together.
The above-described high-polarity low-molecular-weight component (E) can be similarly contained in the conductive pigment paste according to the second aspect, and the mixing order is not particularly limited.
 導電性顔料(B)とカ-ボンナンチューブ(F)の固形分比率としては、通常、導電性顔料(B)/カ-ボンナンチューブ(F)が1/99~99/1の範囲内であり、好ましくは50/50~99/1の範囲内である。また、導電性顔料(B)としては、アセチレンブラック(B-2)が好ましい。
 第二の態様に係る導電性顔料ペーストにおけるカーボンナノチューブ(F)の含有量としては、導電性と顔料分散性の観点から、導電性顔料ペーストの固形分総量を基準として、0.1~99質量%が好ましく、0.5~50質量%がより好ましい。
 また、第二の態様に係る導電性顔料ペーストにおいても、第一の態様に係る導電性顔料ペーストと同様に、せん断速度0.1s-1での粘度が、5000mPa・s未満であり、10mPa・s以上かつ5000mPa・s未満であることが好ましく、50mPa・s以上かつ2500mPa・s未満であることがより好ましく、100mPa・s以上、かつ1200mPa・s未満であることが特に好ましい。
The solid content ratio of the conductive pigment (B) and the carbonan tube (F) is usually in the range of 1/99 to 99/1 for the conductive pigment (B)/carbonan tube (F). and preferably in the range of 50/50 to 99/1. Acetylene black (B-2) is preferable as the conductive pigment (B).
The content of carbon nanotubes (F) in the conductive pigment paste according to the second aspect is 0.1 to 99 mass based on the total solid content of the conductive pigment paste from the viewpoint of conductivity and pigment dispersibility. %, more preferably 0.5 to 50% by mass.
Also, in the conductive pigment paste according to the second aspect, similarly to the conductive pigment paste according to the first aspect, the viscosity at a shear rate of 0.1 s −1 is less than 5000 mPa s and 10 mPa s. It is preferably at least 50 mPa·s and less than 5000 mPa·s, more preferably at least 50 mPa·s and less than 2500 mPa·s, and particularly preferably at least 100 mPa·s and less than 1200 mPa·s.
 上記カーボンナノチューブ(F)としては、単層カーボンナノチューブ、又は多層カーボンナノチューブをそれぞれ単独で、又は組合せて使用することができる。特に粘度、導電性及びコストの関係から、多層カーボンナノチューブを用いることが好ましい。
 上記カーボンナノチューブ(F)の外径としては、1~25nmであることが好ましく、3~20nmであることがより好ましく、5~15nmであることが特に好ましい。
 上記カーボンナノチューブ(F)の長さとしては、1~100μmであることが好ましく、5~80μmであることがより好ましく、10~60μmであることが特に好ましい。
 上記カーボンナノチューブ(F)の比表面積としては、粘度及び導電性の関係から、1~1000m/gの範囲内であることが好ましく、10~500m/gの範囲内であることがさらに好ましい。
 酸化処理等の表面処理が施されているカーボンナノチューブは、顔料分散性が高いが、表面処理を施す際に発生する表面欠陥等により導電性が劣る。したがって、導電性の観点から、上記カーボンナノチューブ(F)としては表面処理が施されていないものが好ましい。
Single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination as the carbon nanotubes (F). In particular, it is preferable to use multi-walled carbon nanotubes in terms of viscosity, conductivity and cost.
The outer diameter of the carbon nanotube (F) is preferably 1 to 25 nm, more preferably 3 to 20 nm, and particularly preferably 5 to 15 nm.
The length of the carbon nanotube (F) is preferably 1 to 100 μm, more preferably 5 to 80 μm, particularly preferably 10 to 60 μm.
The specific surface area of the carbon nanotube (F) is preferably in the range of 1 to 1000 m 2 /g, more preferably in the range of 10 to 500 m 2 /g, from the viewpoint of viscosity and conductivity. .
Carbon nanotubes that have undergone surface treatment such as oxidation treatment have high pigment dispersibility, but have poor electrical conductivity due to surface defects and the like that occur during the surface treatment. Therefore, from the viewpoint of conductivity, it is preferable that the carbon nanotube (F) is not surface-treated.
 また、第二の態様の導電性顔料ペーストにおいても前述の高極性低分子量成分(E)を含有する事が好ましく、該高極性低分子量成分(E)としては、少なくとも1種のアミン化合物(E1)を含有するものがより好ましい。
 第二の態様の導電性顔料ペーストにおける高極性低分子量成分(E)の含有量下限値としては、導電性顔料及びカーボンナノチューブ(F)の濡れ性及び/又は貯蔵安定性を上げる観点から、導電性顔料(B)及びカーボンナノチューブ(F)の固形分100質量%を基準として、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは3質量%以上、さらに好ましくは20質量%以上、特に好ましくは80質量%以上であり、含有量上限値としては、通常500質量%以下、好ましくは450質量%以下、より好ましくは400質量%以下、さらに好ましくは350質量%以下、特に好ましくは300質量%以下である。
Also, the conductive pigment paste of the second aspect preferably contains the above-described high polar low molecular weight component (E), and as the high polar low molecular weight component (E), at least one amine compound (E1 ) is more preferred.
From the viewpoint of increasing the wettability and/or storage stability of the conductive pigment and carbon nanotubes (F), the lower limit of the content of the highly polar low molecular weight component (E) in the conductive pigment paste of the second aspect is Based on 100% by mass of the solid content of the organic pigment (B) and the carbon nanotube (F), it is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 3% by mass or more, and still more preferably 20% by mass. It is at least 80% by mass, particularly preferably at least 80% by mass. Especially preferably, it is 300% by mass or less.
[塗工材]
 本発明の塗工材は、前記第一の態様に係る導電性顔料ペースト及び/又は第二の態様に係る導電性顔料ペーストと、少なくとも1種の金属元素を有する金属含有粒子(G)とを含有する。
 本発明の塗工材は、さらに必要に応じて、その他の樹脂、その他の顔料、溶媒、添加剤等の各種成分を導電性顔料ペーストと混合したものでもよい。
 その他の樹脂としては、導電性顔料ペーストに含まれていない樹脂であって、例えば、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、ポリカーボネート樹脂、シリケート樹脂、塩素系樹脂、ポリビニルピロリドン樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、及びこれらの複合樹脂等が挙げられる。これらの樹脂は、1種を単独で又は2種以上を併用して用いることができる。
[Coating material]
The coating material of the present invention comprises the conductive pigment paste according to the first aspect and/or the conductive pigment paste according to the second aspect, and metal-containing particles (G) having at least one metal element. contains.
If necessary, the coating material of the present invention may be obtained by mixing various components such as other resins, other pigments, solvents, additives, etc. with the conductive pigment paste.
Other resins include resins not contained in the conductive pigment paste, such as acrylic resins, polyester resins, epoxy resins, polyether resins, alkyd resins, urethane resins, silicone resins, polycarbonate resins, silicate resins, Examples include chlorine-based resins, polyvinylpyrrolidone resins, polyvinyl alcohol resins, polyvinyl acetal resins, composite resins thereof, and the like. These resins can be used singly or in combination of two or more.
 特に、本発明の塗工材においては、塗工材における貯蔵安定性(増粘抑制)の観点から、前述の高極性低分子量成分(E)を含有していることが好ましく、高極性低分子量成分(E)として、少なくとも1種のアミン化合物(E1)を含有していることがより好ましい。
 上記高極性低分子量成分(E)は、塗工材の原料となる導電性顔料ペーストに含まれていても良く、導電性顔料ペースト製造後に添加しても良く、また、導電性顔料ペーストと金属含有粒子とを混合して塗工材を製造する際に高極性低分子量成分(E)を添加してもよい。
 高極性低分子量成分(E)を導電性顔料(B)に接触させ(濡れさせ)、次いで金属顔料含有粒子を混合することで導電性顔料(B)と金属含有粒子との凝集が緩和される観点から、まず導電性顔料(B)と高極性低分子量成分(E)を混合する順序を含むことが好ましい。
In particular, the coating material of the present invention preferably contains the above-described high polar low molecular weight component (E) from the viewpoint of storage stability (suppression of thickening) in the coating material. More preferably, at least one amine compound (E1) is contained as component (E).
The highly polar low-molecular-weight component (E) may be contained in the conductive pigment paste that is a raw material for the coating material, or may be added after the conductive pigment paste is produced. The high-polarity low-molecular-weight component (E) may be added when the coating material is produced by mixing the contained particles.
Contacting (wetting) the highly polar low-molecular-weight component (E) with the conductive pigment (B) and then mixing the metal-pigment-containing particles reduces aggregation between the conductive pigment (B) and the metal-containing particles. From the point of view, it is preferable to include the order of mixing the conductive pigment (B) and the highly polar low molecular weight component (E) first.
 本発明の塗工材において、高極性低分子量成分(E)の好ましい含有量下限値としては、導電性顔料(B)〔第二の態様の場合は、導電性顔料(B)及びカーボンナノチューブ(F)〕の固形分100質量%を基準として、塗工材の貯蔵安定性(増粘抑制)の観点から、通常3質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは40質量%以上、特に好ましくは80質量%以上であり、含有量上限値としては、塗工膜中の成分(E)残存量の観点から、通常500質量%以下、好ましくは450質量%以下、より好ましくは400質量%以下、さらに好ましくは350質量%以下、特に好ましくは300質量%以下であることが好適である。 In the coating material of the present invention, the preferred lower limit of the content of the highly polar low molecular weight component (E) is the conductive pigment (B) [in the case of the second embodiment, the conductive pigment (B) and carbon nanotubes ( Based on 100% by mass of the solid content of F)], from the viewpoint of storage stability (suppression of thickening) of the coating material, usually 3% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, It is more preferably 40% by mass or more, particularly preferably 80% by mass or more, and the upper limit of the content is usually 500% by mass or less, preferably 450% by mass, from the viewpoint of the amount of component (E) remaining in the coating film. % or less, more preferably 400 mass % or less, still more preferably 350 mass % or less, and particularly preferably 300 mass % or less.
 また、塗工材として後述するアルカリ金属を有する複合金属粒子(G1)を含む場合、貯蔵により増粘する場合がある。その理由としては下記の2点のうち少なくとも1つ以上が考えられ、いずれもアミン化合物(E1)を一定量以上含有することにより塗工材の貯蔵増粘を抑制することができる。
(1)複合金属粒子(G1)は、原料由来のアルカリ金属の水酸化物(例えば、KOH、NaOH、LiOHなど)を塗工材中に溶出させる場合があり、この強塩基成分によって樹脂(顔料分散樹脂及び/又はフッ素樹脂)同士の反応が起こり増粘すると考えられる。
(2)複合金属粒子(G1)は、粒子表面にアルカリ金属の水酸化物を有することになる場合があるため、酸性表面を有する場合の導電性顔料(B)やカーボンナノチューブ(F)により、凝集(増粘)すると考えられる。
Moreover, when the coating material contains composite metal particles (G1) having an alkali metal, which will be described later, the viscosity may increase during storage. At least one of the following two points can be considered as the reason for this. In both cases, storage thickening of the coating material can be suppressed by containing a certain amount or more of the amine compound (E1).
(1) The composite metal particles (G1) may elute alkali metal hydroxides (e.g., KOH, NaOH, LiOH, etc.) derived from raw materials into the coating material, and the strong base component causes the resin (pigment It is thought that a reaction between the dispersion resin and/or the fluororesin occurs and the viscosity increases.
(2) Since the composite metal particles (G1) may have alkali metal hydroxides on the particle surface, the conductive pigment (B) and the carbon nanotube (F) in the case of having an acidic surface, It is considered to aggregate (thicken).
 本発明の塗工材において、その他の顔料としては、後述する金属含有粒子と導電性顔料ペーストに含まれる顔料以外の顔料であって、例えば、着色顔料、光輝性顔料、体質顔料、防錆顔料等が挙げられる。これらの顔料は、1種を単独で又は2種以上を併用して用いることができる。なかでも、少なくとも1種の金属元素を有する金属含有粒子を添加して含有させることが好ましい。 In the coating material of the present invention, other pigments include pigments other than the metal-containing particles and pigments contained in the conductive pigment paste described later, such as coloring pigments, luster pigments, extender pigments, and antirust pigments. etc. These pigments can be used singly or in combination of two or more. Above all, it is preferable to add and contain metal-containing particles having at least one metal element.
<金属含有粒子(G)>
 本発明の塗工材に含まれる金属含有粒子(G)は、塗工材の製造工程で導電性顔料ペーストと混合するものであり、前述した導電性顔料ペーストに含有される導電性顔料(B)やカーボンナノチューブ(F)とは異なる。
 上記金属含有粒子(G)は、少なくとも1種の金属元素を有するものである。
 上記金属含有粒子(G)は塗工膜の用途に応じて適宜選択でき、なかでも、少なくとも1種のアルカリ金属及び少なくとも1種の遷移金属元素を有する複合金属粒子(G1)であることが好ましく、これらの窒化物、酸化物、硫化物、及び/又は水酸化物においても好適に用いることができ、なかでも酸化物が好ましい。
上記遷移金属元素としては、例えば、Fe、Cu、Mn、Ni、Zr、Zn、Mo、Ag、Au、Pt、Ti、Crが挙げられる。
<Metal-containing particles (G)>
The metal-containing particles (G) contained in the coating material of the present invention are mixed with the conductive pigment paste in the manufacturing process of the coating material, and the conductive pigment (B ) and carbon nanotubes (F).
The metal-containing particles (G) contain at least one metal element.
The metal-containing particles (G) can be appropriately selected according to the application of the coating film, and among them, composite metal particles (G1) containing at least one alkali metal and at least one transition metal element are preferable. , their nitrides, oxides, sulfides and/or hydroxides can also be suitably used, with oxides being particularly preferred.
Examples of the transition metal elements include Fe, Cu, Mn, Ni, Zr, Zn, Mo, Ag, Au, Pt, Ti, and Cr.
 上記金属含有粒子の平均粒子径としては、塗工材を溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる平均粒子径(D50)において、1,501nm以上が好ましく、1,600~50,000nmがより好ましく、2,000~30,000nmがさらに好ましい。
 塗工材中の金属含有粒子の含有量は、塗工材中の固形分総量を基準として、通常10質量%以上、かつ99質量%以下、好ましくは15質量%以上、かつ95質量%以下であることが、導電性や塗膜物性等の面から好適である。
 本発明においては、前記第一の態様に係る導電性顔料ペースト及び/又は第二の態様に係る導電性顔料ペーストに、少なくとも1種の金属元素を有する金属含有粒子を添加することによる、塗工材の製造方法を構成することができる。
The average particle diameter of the metal-containing particles is preferably 1,501 nm or more in the average particle diameter (D50) obtained by diluting the coating material with a solvent and measuring the volume-based particle size distribution by a laser diffraction scattering method. , 600 to 50,000 nm, more preferably 2,000 to 30,000 nm.
The content of the metal-containing particles in the coating material is usually 10% by mass or more and 99% by mass or less, preferably 15% by mass or more and 95% by mass or less, based on the total solid content in the coating material. It is preferable from the viewpoint of electrical conductivity, physical properties of the coating film, and the like.
In the present invention, the conductive pigment paste according to the first aspect and / or the conductive pigment paste according to the second aspect, by adding metal-containing particles having at least one metal element, coating A method of manufacturing materials can be configured.
 溶媒としては、特に制限はないが、前述した溶媒(C)と同様の溶媒を好適に用いることができる。上記溶媒は、1種を単独で又は2種以上を併用して用いることができる。
 添加剤としては、中和剤、顔料分散剤、消泡剤、防腐剤、防錆剤、可塑剤、粘性調整剤等が挙げられる。
 塗工材中の顔料分散樹脂(A)の含有量は、塗工材中の固形分総量を基準として、通常0.01~80質量%、好ましくは0.02~50質量%、より好ましくは0.05~20質量%、特に好ましくは0.08~10質量%であることが、顔料分散時の粘度、顔料分散性、貯蔵安定性、生産効率、及び導電性等の面から好ましい。また、導電性顔料(B)100質量部に対する顔料分散樹脂(A)の含有量としては、固形分総量を基準として、通常0.01~400質量部、好ましくは0.02~50質量部、より好ましくは0.05~25質量部、さらに好ましくは0.05~7質量部、特に好ましくは0.05~4.5質量部であることが好適である。
The solvent is not particularly limited, but the same solvent as the solvent (C) described above can be preferably used. The above solvents may be used singly or in combination of two or more.
Additives include neutralizers, pigment dispersants, antifoaming agents, preservatives, rust preventives, plasticizers, viscosity modifiers and the like.
The content of the pigment dispersion resin (A) in the coating material is usually 0.01 to 80% by mass, preferably 0.02 to 50% by mass, more preferably 0.02 to 50% by mass, based on the total solid content in the coating material. 0.05 to 20% by mass, particularly preferably 0.08 to 10% by mass, is preferred from the viewpoints of viscosity, pigment dispersibility, storage stability, production efficiency, electrical conductivity, etc. when the pigment is dispersed. The content of the pigment dispersion resin (A) with respect to 100 parts by mass of the conductive pigment (B) is usually 0.01 to 400 parts by mass, preferably 0.02 to 50 parts by mass, based on the total solid content. It is more preferably 0.05 to 25 parts by mass, still more preferably 0.05 to 7 parts by mass, and particularly preferably 0.05 to 4.5 parts by mass.
 塗工材は、以上に述べた各成分を、例えば、ディスパー、ペイントシェーカー、サンドミル、ボールミル、ペブルミル、LMZミル、DCPパールミル、遊星ボールミル、ホモジナイザー、二軸混練機、薄膜旋回型高速ミキサー等の従来公知の撹拌機又は分散機を用いて均一に混合又は分散させることにより調製することができる。なかでも実質的にメジアを用いずに分散することが好適である。 The coating material is prepared by mixing each of the components described above with, for example, a disper, a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, a thin-film rotating high-speed mixer, and the like. It can be prepared by uniformly mixing or dispersing using a known stirrer or disperser. Above all, it is preferable to disperse without substantially using a media.
[塗工膜・塗工材料]
 本発明の塗工膜は、前述の塗工材を被塗物に塗布(塗工)することで得ることができる。
 本発明の塗工材料は、前述の塗工材を板状基材の両面に塗布(塗工)することで得ることができる
 本発明において、塗工膜とは、液状の塗工材を被塗物(基材)に塗布して加熱乾燥した固形状の膜のことであり、被塗物から剥がして導電性フィルムを得ることや、板状被塗物(基材)の両面に塗工して導電性材料を得ることもできる。
 被塗物の形状等は特に限定されるものではなく、例えば、板状、棒状、フィルム状、球状等の任意の形状が挙げられる。
 被塗物又は板状基材の材質は特に限定されるものではなく、例えば、金属材;各種プラスチック材;ガラス、セメント、コンクリート等の無機材料;木材;繊維材料(紙、布等)等を挙げることができ、これらの複合材料であってもよい。
 被塗物又は板状基材は、必要に応じて適宜、塗工面を脱脂処理、表面処理等することができる。
[Coating film/coating material]
The coating film of the present invention can be obtained by applying (coating) the coating material described above to an object to be coated.
The coating material of the present invention can be obtained by applying (coating) the above-described coating material on both sides of a plate-like substrate. It is a solid film that is applied to a substrate (substrate) and dried by heating. It is also possible to obtain a conductive material by
The shape and the like of the object to be coated are not particularly limited, and examples thereof include arbitrary shapes such as plate-like, rod-like, film-like, and spherical shapes.
The material of the object to be coated or the plate-shaped substrate is not particularly limited, and examples include metal materials; various plastic materials; inorganic materials such as glass, cement, and concrete; wood; and may be a composite material thereof.
The coated surface of the object to be coated or the plate-like substrate can be appropriately subjected to degreasing treatment, surface treatment, or the like as necessary.
 塗布方法としては、一定の膜厚範囲内で塗布できるものであれば特に限定されず、例えば、ローラー塗装、刷毛塗装、霧化塗装、ディッピング塗装、アプリケーター塗装、シャワーコート塗装、ロールコーター塗装、ダイコーター塗装等が挙げられる。
 膜厚としては、乾燥膜厚で1~200μmが好ましく、2~150μmがより好ましい。
 乾燥温度としては、60~300℃の温度が好ましく、80~200℃の温度がより好ましい。
 加熱乾燥することにより、塗工材に含まれる溶媒が80%以上消失することが好ましく、90%以上消失することがより好ましく、95%以上消失することが特に好ましい。また、高極性低分子量成分(E)を含有している場合、上記の加熱乾燥により、一部又は全部が消失することが好ましい。
The coating method is not particularly limited as long as it can be applied within a certain film thickness range. tar coating and the like.
The dry film thickness is preferably 1 to 200 μm, more preferably 2 to 150 μm.
The drying temperature is preferably 60 to 300°C, more preferably 80 to 200°C.
By heating and drying, the solvent contained in the coating material is preferably lost by 80% or more, more preferably by 90% or more, and particularly preferably by 95% or more. In addition, when the high-polarity low-molecular-weight component (E) is contained, it is preferable that part or all of it disappears by the above heat drying.
 以下、製造例、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。各例中の「部」は質量部、「%」は質量%を示す。 The present invention will be described in more detail below with production examples, working examples, and comparative examples, but the present invention is not limited thereto. "Parts" in each example means parts by mass, and "%" means % by mass.
[導電性顔料ペーストの製造]
<実施例1~32(第一の態様の導電性顔料ペースト)及び比較例1~5>
 表1~表3に記載した顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び高極性低分子量成分(E)を、それぞれ表3に記載される量(質量部)で混合し、続いてフィルミックス(プライミクス社製商品名:薄膜旋回型高速ミキサー)又はボールミルにて表1~表3に記載されている時間分散し、導電性顔料ペーストX-1~X-32及びX-39~X-43を得た。尚、表中の樹脂配合量と導電性顔料は固形分の値である。
[Production of conductive pigment paste]
<Examples 1 to 32 (conductive pigment paste of the first embodiment) and Comparative Examples 1 to 5>
The pigment dispersion resin (A), the conductive pigment (B), the solvent (C), the fluororesin (D), and the highly polar low molecular weight component (E) described in Tables 1 to 3 are described in Table 3, respectively. (parts by mass), and then dispersed for the time described in Tables 1 to 3 with Filmix (trade name: thin film swirling high-speed mixer manufactured by Primix Co., Ltd.) or ball mill, conductive pigment paste X -1 to X-32 and X-39 to X-43 were obtained. The amount of resin compounded and the conductive pigment in the table are the solid content values.
<実施例33~38(第二の態様の導電性顔料ペースト)>
 表3に記載した顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)及び高極性低分子量成分(E)を、それぞれ表3に記載される量(質量部)で混合し、続いてフィルミックス(プライミクス社製商品名:薄膜旋回型高速ミキサー)又はボールミルにて表3に記載されている時間分散した。その後、カーボンナノチューブ(F)を表3に記載される量(質量部)添加し、さらに薄膜旋回型高速ミキサー(プライミクス社製、商品名フィルミックス)で60分間分散し、導電性顔料ペーストX-33~X-38を得た。
<Examples 33 to 38 (second aspect of conductive pigment paste)>
The pigment dispersion resin (A), the conductive pigment (B), the solvent (C), the fluororesin (D) and the highly polar low molecular weight component (E) described in Table 3 are added to the amounts (mass ), and then dispersed for the time shown in Table 3 using Filmix (trade name: thin-film swirling high-speed mixer manufactured by Primix) or a ball mill. After that, carbon nanotubes (F) were added in the amount (parts by mass) shown in Table 3, and further dispersed for 60 minutes with a thin-film rotating high-speed mixer (manufactured by Primix, trade name Filmix). 33 to X-38 were obtained.
 表1~表4に、導電性顔料ペーストX-1~X43について、SP値差、粒度(ピーク数、ピーク面積比、平均粒子径(D50)、粒子径比)及び評価試験(初期粘度、分散性、貯蔵安定性、仕上がり性、導電性)をあわせて記載する。なお、X-33~38の粒度(ピーク数、ピーク面積比、平均粒子径(D50)、2次粒子/1次粒子比)の値はCNT(カーボンナノチューブ)を添加する前のペーストを測定した値である。
 なお、導電性顔料ペーストX-1~X-43の水分含有量を、カールフィッシャー電量滴定法にて測定したが、全て0.1質量%以下であった。
Tables 1 to 4 show the SP value difference, particle size (number of peaks, peak area ratio, average particle size (D50), particle size ratio) and evaluation test (initial viscosity, dispersion properties, storage stability, finish properties, conductivity) are also described. In addition, the particle size (number of peaks, peak area ratio, average particle size (D50), secondary particle / primary particle ratio) of X-33 to 38 was measured for the paste before adding CNT (carbon nanotube). value.
The water content of each of the conductive pigment pastes X-1 to X-43 was measured by Karl Fischer coulometric titration, and all of them were 0.1% by mass or less.
 本発明においては、評価試験における全項目の性能に優れていることが重要であり、いずれか1つに「D」の評価がある場合、その導電性顔料ペーストは不合格となる。
 尚、比較例1、2、3及び5に関しては、粘度、分散性及び貯蔵安定性の1つ以上の評価結果が不合格であったため、評価試験のうちの仕上がり性及び導電性についての試験を行わなかった。
In the present invention, it is important that the performance of all items in the evaluation test is excellent, and if any one of them is evaluated as "D", the conductive pigment paste is rejected.
Regarding Comparative Examples 1, 2, 3 and 5, one or more evaluation results of viscosity, dispersibility and storage stability were unacceptable. did not.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[導電性樹脂ペーストの構成成分]
<顔料分散樹脂(A)>
樹脂A:酢酸ビニル-ビニルアルコール共重合体(SP値12.0、水酸基濃度17.2mmol/g、重量平均分子量20,000、けん化度89.0mol%)
樹脂B:酢酸ビニル-ビニルアルコール共重合体(SP値12.6、水酸基濃度22.7mmol/g、重量平均分子量15,000、けん化度99.9mol%)
樹脂C:酢酸ビニル-ビニルアルコール共重合体(SP値10.8、水酸基濃度9.9mmol/g、重量平均分子量28,000、けん化度60.0mol%)
樹脂D:ポリアクリルアミド(SP値12.0、アミド基濃度14.1mmol/g、重量平均分子量18,000)
樹脂E:ヒドロキシエチルアクリレート-アクリル酸共重合体(SP値11.8、水酸基濃度4.3mmol/g、カルボキシル基濃度6.9mmol/g、重量平均分子量13,000)
樹脂F:ポリアクリル酸(SP値12.9、カルボキシル基濃度13.9mmol/g、重量平均分子量15,000)
樹脂G:ポリメタクリル酸メチル(SP値9.2、極性基濃度0mmol/g、重量平均分子量21,000)
樹脂H:ポリアクリロニトリル(SP値12.5、極性基濃度18.9mmol/g、重量平均分子量25,000)
[Components of conductive resin paste]
<Pigment dispersion resin (A)>
Resin A: vinyl acetate-vinyl alcohol copolymer (SP value 12.0, hydroxyl group concentration 17.2 mmol/g, weight average molecular weight 20,000, degree of saponification 89.0 mol%)
Resin B: vinyl acetate-vinyl alcohol copolymer (SP value 12.6, hydroxyl group concentration 22.7 mmol/g, weight average molecular weight 15,000, degree of saponification 99.9 mol%)
Resin C: vinyl acetate-vinyl alcohol copolymer (SP value 10.8, hydroxyl group concentration 9.9 mmol/g, weight average molecular weight 28,000, degree of saponification 60.0 mol%)
Resin D: polyacrylamide (SP value 12.0, amide group concentration 14.1 mmol/g, weight average molecular weight 18,000)
Resin E: hydroxyethyl acrylate-acrylic acid copolymer (SP value 11.8, hydroxyl group concentration 4.3 mmol/g, carboxyl group concentration 6.9 mmol/g, weight average molecular weight 13,000)
Resin F: polyacrylic acid (SP value 12.9, carboxyl group concentration 13.9 mmol/g, weight average molecular weight 15,000)
Resin G: Polymethyl methacrylate (SP value 9.2, polar group concentration 0 mmol/g, weight average molecular weight 21,000)
Resin H: polyacrylonitrile (SP value 12.5, polar group concentration 18.9 mmol/g, weight average molecular weight 25,000)
<導電性顔料(B)>
導電性顔料A:カーボンブラック(アセチレンブラック)(平均1次粒子径25nm、pH:9、BET比表面積115m/g)
導電性顔料B:カーボンブラック(アセチレンブラック)(平均1次粒子径35nm、pH:9、BET比表面積70m/g)
導電性顔料C:カーボンブラック(アセチレンブラック)(平均1次粒子径50nm、pH:9、BET比表面積36m/g)
導電性顔料D:カーボンブラック(アセチレンブラック)(平均1次粒子径55nm、pH:9、BET比表面積28m/g)
導電性顔料E:カーボンブラック(アセチレンブラック)(平均1次粒子径90nm、pH:9、BET比表面積9m/g)
<Conductive Pigment (B)>
Conductive pigment A: carbon black (acetylene black) (average primary particle size 25 nm, pH: 9, BET specific surface area 115 m 2 /g)
Conductive pigment B: carbon black (acetylene black) (average primary particle size 35 nm, pH: 9, BET specific surface area 70 m 2 /g)
Conductive pigment C: carbon black (acetylene black) (average primary particle diameter 50 nm, pH: 9, BET specific surface area 36 m 2 /g)
Conductive pigment D: carbon black (acetylene black) (average primary particle size 55 nm, pH: 9, BET specific surface area 28 m 2 /g)
Conductive pigment E: carbon black (acetylene black) (average primary particle size 90 nm, pH: 9, BET specific surface area 9 m 2 /g)
<溶媒(C)>
NMP:N-メチル-2-ピロリドン(SP値11.1)
DMAc:N,N-ジメチルアセトアミド(SP値11.2)
PGME:プロピレングリコールモノメチルエーテル(SP値10.4)
MEK:メチルエチルケトン(SP値9.3)
<Solvent (C)>
NMP: N-methyl-2-pyrrolidone (SP value 11.1)
DMAc: N,N-dimethylacetamide (SP value 11.2)
PGME: propylene glycol monomethyl ether (SP value 10.4)
MEK: methyl ethyl ketone (SP value 9.3)
<フッ素樹脂(D)>
PVDF:ポリフッ化ビニリデン(重量平均分子量:80万、SP値9.1)
<Fluororesin (D)>
PVDF: Polyvinylidene fluoride (weight average molecular weight: 800,000, SP value 9.1)
<高極性低分子量成分(E)>
NaOH:水酸化ナトリウム
HCOOH:ギ酸
Glu:グルタミン酸
Be-A:ベンジルアミン
ME-A:メチルエタノールアミン
<Highly polar low molecular weight component (E)>
NaOH: sodium hydroxide HCOOH: formic acid Glu: glutamic acid Be-A: benzylamine ME-A: methylethanolamine
<カーボンナノチューブ(F)>
CNT:カーボンナノチューブ(多層、平均外径9nm、平均長さ20μm)
<Carbon nanotube (F)>
CNT: carbon nanotube (multi-layer, average outer diameter 9 nm, average length 20 μm)
[|δA-δC|]
 顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとの関係|δA-δC|は、顔料分散樹脂(A)のδAであるSP値から溶媒(C)のSP値を引いた値の絶対値であって、下記の式により算出した。
 |δA-δC|=|顔料分散樹脂(A)のSP値-溶媒(C)のSP値|
[|δA−δC|]
The relationship between the solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) |δA-δC| is the SP value of δA of the pigment dispersion resin (A) to the SP of the solvent (C) It is the absolute value of the value obtained by subtracting the value, and was calculated by the following formula.
|δA−δC|=|SP value of pigment dispersion resin (A)−SP value of solvent (C)|
[粒度]
<ピーク数>
 導電性顔料ペーストを対応する溶媒で希釈し、レーザ回折散乱法を用いた粒子径分布測定装置(マイクロトラック・ベル社製、商品名マイクロトラックMT3000)で体積基準の粒度分布測定を行い、頻度分布曲線を得た。次いで該頻度分布曲線のピーク数を数えた。
[Granularity]
<Number of peaks>
Dilute the conductive pigment paste with a corresponding solvent, and measure the volume-based particle size distribution with a particle size distribution measuring device (manufactured by Microtrack Bell, trade name Microtrac MT3000) using a laser diffraction scattering method. got the curve. The number of peaks in the frequency distribution curve was then counted.
<ピーク面積比>
 上記該頻度分布曲線において、粒子径150~550nmの範囲と粒子径600~3,000nmの範囲におけるピーク面積比(粒子径150~550nmの範囲におけるピーク面積の合計/粒子径600~3,000nmの範囲におけるピーク面積の合計)を算出した。
 なお、X-32については、1山であることから、計算を行わず、表中においては※と記載した。
<Peak area ratio>
In the frequency distribution curve, the peak area ratio in the particle diameter range of 150 to 550 nm and the particle diameter range of 600 to 3,000 nm (total peak area in the particle diameter range of 150 to 550 nm / particle diameter of 600 to 3,000 nm) The sum of the peak areas in the range) was calculated.
As for X-32, since it has only one crest, it is not calculated and marked with * in the table.
<平均粒子径(D50)>
 導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法を用いて体積基準の平均粒子径(D50)を算出した。
<Average particle size (D50)>
The conductive pigment paste was diluted with a solvent, and the volume-based average particle diameter (D50) was calculated using a laser diffraction scattering method.
<粒子径比>
 上記平均粒子径(D50)を平均2次粒子径として、用いた導電性顔料の平均1次粒子径との比を下記の式で算出した。
 粒子径比=平均2次粒子径(nm)/平均1次粒子径(nm)
<Particle size ratio>
Using the average particle diameter (D50) as the average secondary particle diameter, the ratio to the average primary particle diameter of the conductive pigment used was calculated by the following formula.
Particle size ratio = average secondary particle size (nm) / average primary particle size (nm)
[評価試験]
<初期粘度>
 得られた導電性顔料ペーストをコーン&プレート型粘度計(HAAKE社製、商品名Mars2、直径35mm、2°傾斜のコーン&プレート)を用い、せん断速度0.1s-1で粘度(mPa・s)を測定した。
[Evaluation test]
<Initial viscosity>
The resulting conductive pigment paste was measured using a cone & plate viscometer (manufactured by HAAKE, trade name Mars2, diameter 35 mm, cone & plate inclined at 2°) at a shear rate of 0.1 s -1 to measure the viscosity (mPa s ) was measured.
<分散性>
 得られた導電性顔料ペーストをJIS K-5600-2-5の分散度試験に準じ、ツブゲージを用いて下記基準により分散性を評価した。
S:顔料が10μm未満で分散されている。分散性は非常に良好である。
A:顔料が10μm以上、かつ15μm未満で分散されている。分散性は良好である。
B:顔料が15μm以上、かつ20μm未満で分散されている。分散性はやや良好である。
C:顔料が20μm以上で分散されているが、目視で凝集物は確認できない。分散性はやや劣る。
D:目視で凝集物が確認される。分散性は非常に劣る。
<Dispersibility>
The resulting conductive pigment paste was subjected to the dispersibility test of JIS K-5600-2-5, and the dispersibility was evaluated using a grain gauge according to the following criteria.
S: The pigment is dispersed with a size of less than 10 µm. Dispersibility is very good.
A: The pigment is dispersed in a size of 10 μm or more and less than 15 μm. Dispersibility is good.
B: The pigment is dispersed in a size of 15 μm or more and less than 20 μm. Dispersibility is rather good.
C: The pigment is dispersed in a size of 20 μm or more, but no aggregates can be visually confirmed. Dispersibility is slightly inferior.
D: Aggregates are visually confirmed. Dispersibility is very poor.
<貯蔵安定性(導電性顔料ペースト)>
 得られた導電性顔料ペーストを50℃の温度で1ヶ月貯蔵を行い、初期粘度と貯蔵後の粘度の比較を行なった。粘度は、コーン&プレート型粘度計(HAAKE社製、商品名Mars2、直径35mm、2°傾斜のコーン&プレート)を用い、せん断速度1.0s-1で測定し、下記式により粘度上昇率を求め、下記の基準により貯蔵安定性を評価した。
 粘度上昇率(%)=貯蔵後粘度(mPa・s)/初期粘度(mPa・s)×100-100
S:貯蔵後の粘度上昇率(%)が、10%未満である。
A:貯蔵後の粘度上昇率(%)が、10%以上、かつ50%未満である。
B:貯蔵後の粘度上昇率(%)が、50%以上、かつ100%未満である。
C:貯蔵後の粘度上昇率(%)が、100%以上、かつ200%未満である。
D:貯蔵後の粘度上昇率(%)が、200%以上である。
<Storage stability (conductive pigment paste)>
The obtained conductive pigment paste was stored at a temperature of 50° C. for one month, and the initial viscosity and the viscosity after storage were compared. Viscosity is measured using a cone & plate type viscometer (HAAKE, trade name Mars2, diameter 35 mm, 2° inclined cone & plate) at a shear rate of 1.0 s -1 , and the viscosity increase rate is calculated by the following formula. The storage stability was evaluated according to the following criteria.
Viscosity increase rate (%) = viscosity after storage (mPa s) / initial viscosity (mPa s) × 100-100
S: Viscosity increase rate (%) after storage is less than 10%.
A: Viscosity increase rate (%) after storage is 10% or more and less than 50%.
B: Viscosity increase rate (%) after storage is 50% or more and less than 100%.
C: Viscosity increase rate (%) after storage is 100% or more and less than 200%.
D: Viscosity increase rate (%) after storage is 200% or more.
<仕上がり性>
 後述する導電性の評価試験で得られた試験板の外観を観察し、目視での仕上がり性を評価した。
S:極めて均一な外観を有している。
A:均一な外観を有している。
B:ややムラがあると視認される部分があるものの、ほぼ均一な外観を有している。
C:ムラが視認され、やや不良である。
D:外観が明らかに不均一であり、不良である。
<Finishability>
The appearance of the test plate obtained in the conductivity evaluation test described later was observed to visually evaluate the finish.
S: It has an extremely uniform appearance.
A: It has a uniform appearance.
B: It has a substantially uniform appearance, although there are some visible unevenness.
C: Slightly unsatisfactory with visible unevenness.
D: Appearance is apparently non-uniform and unsatisfactory.
<導電性>
 ポリプロピレン板(10cm×15cm×3mm)の上にアルミ箔テープ(住友3M社製、No.425)を3cm間隔で平行に2本貼り付けた。次いで、得られた導電性顔料ペーストをアルミ箔テープの間に長さ5cm、乾燥膜厚15μmになるようにアプリケーターで塗装し、室温で2分間放置してから、80℃で10分間加熱乾燥し、幅3cm×長さ5cm×膜厚15μmの乾燥塗膜を作成した。
 アルミ箔テープ間に塗装した乾燥塗膜の抵抗率を計測機(横河計測社製、商品名ディジタルマルチメーターMODEL73401)を用いて20℃、相対湿度65%の状態下で測定し、下記基準により導電性を評価した。
S:抵抗率が、0.005Ωm未満であり、導電性は最も良好である。
A:抵抗率が、0.005Ωm以上、かつ0.0065Ωm未満であり、導電性は非常に良好である。
B:抵抗率が、0.0065Ωm以上、かつ0.008Ωm未満であり、導電性は良好である。
C:抵抗率が、0.008Ωm以上、かつ0.01Ωm未満であり、導電性はやや劣る。
D:抵抗率が、0.01Ωm以上であり、導電性は非常に劣る。
<Conductivity>
Two aluminum foil tapes (No. 425, manufactured by Sumitomo 3M Co., Ltd.) were pasted in parallel on a polypropylene plate (10 cm x 15 cm x 3 mm) at intervals of 3 cm. Next, the resulting conductive pigment paste was applied between aluminum foil tapes with an applicator to a length of 5 cm and a dry film thickness of 15 μm, left at room temperature for 2 minutes, and then dried by heating at 80° C. for 10 minutes. , 3 cm wide by 5 cm long by 15 µm thick.
The resistivity of the dry coating film applied between the aluminum foil tapes was measured using a measuring device (manufactured by Yokogawa Keisoku Co., Ltd., trade name digital multimeter MODEL 73401) at 20 ° C. and a relative humidity of 65%. Conductivity was evaluated.
S: The resistivity is less than 0.005 Ωm, and the electrical conductivity is the best.
A: The resistivity is 0.005 Ωm or more and less than 0.0065 Ωm, and the electrical conductivity is very good.
B: The resistivity is 0.0065 Ωm or more and less than 0.008 Ωm, and the conductivity is good.
C: The resistivity is 0.008 Ωm or more and less than 0.01 Ωm, and the conductivity is slightly inferior.
D: The resistivity is 0.01 Ωm or more, and the electrical conductivity is very poor.
[実施例39~76]
<塗工材及び塗工膜の製造>
 実施例1~38で得られた導電性顔料ペースト(X-1~X-38)100部に、溶媒としてN-メチル-2-ピロリドンを50部、及び、複合金属粒子(G1)として、Na2/3Ni1/3Mn2/3(平均粒子径:5μm)を20部加え、ディスパーを用いて60分間混合攪拌し、実施例39~76となる塗工材Y-1~Y-38を得た。
 続いて、リン酸亜鉛処理剤(日本パーカライジング社製、商品名パルボンド#3020)による化成処理を施した冷延鋼板(150mm(縦)×70mm(横)×0.8mm(厚))を被塗物として、上記塗工材Y-1~Y-38をアプリケーターで乾燥膜厚50μmになるように塗工し、150℃の温度で40分乾燥し、塗工膜を得た。
 得られた塗工膜はいずれも残存溶媒量が1%未満であり、仕上がり性などが良好な塗工膜であった。
[Examples 39 to 76]
<Manufacture of coating material and coating film>
100 parts of the conductive pigment pastes (X-1 to X-38) obtained in Examples 1 to 38, 50 parts of N-methyl-2-pyrrolidone as a solvent, and Na as the composite metal particles (G1) 2/3 Ni 1/3 Mn 2/3 O 2 (average particle size: 5 μm) was added in 20 parts, mixed and stirred for 60 minutes using a disper, and coating materials Y-1 to Y for Examples 39 to 76 were obtained. -38 was obtained.
Subsequently, a cold-rolled steel sheet (150 mm (vertical) × 70 mm (horizontal) × 0.8 mm (thickness)) that has been chemically treated with a zinc phosphate treatment agent (manufactured by Nihon Parkerizing Co., Ltd., trade name Palbond #3020) is coated. As a product, the above coating materials Y-1 to Y-38 were applied with an applicator to a dry film thickness of 50 μm and dried at a temperature of 150° C. for 40 minutes to obtain a coating film.
All of the obtained coating films had a residual solvent amount of less than 1% and were excellent in finish and the like.
[実施例77~92]
<塗工材及び塗工膜の製造>
 下記表4の配合で上から順番にディスパーを用いて攪拌しながら加え、最後に60分間攪拌し、実施例77~92となる塗工材Z-1~Z-16を得た。
 続いて、アルミ箔(150mm(縦)×70mm(横))を被塗物として、上記塗工材Z-1~Z-16をアプリケーターで乾燥膜厚50μmになるように塗工し、150℃の温度で40分乾燥し、塗工膜を得た。
 得られた塗工膜はいずれも残存溶媒量が1%未満であり、仕上がり性などが良好な塗工膜であった。
 下記表5及び表6に、塗工材Z-1~Z-16における貯蔵安定性の評価結果をあわせて記載する。
[Examples 77 to 92]
<Manufacture of coating material and coating film>
The formulations shown in Table 4 below were added in order from the top while stirring using a disper, and finally stirred for 60 minutes to obtain coating materials Z-1 to Z-16 of Examples 77 to 92.
Subsequently, using an aluminum foil (150 mm (vertical) × 70 mm (horizontal)) as an object to be coated, the above coating materials Z-1 to Z-16 were applied with an applicator so that the dry film thickness was 50 μm, and 150 ° C. and dried for 40 minutes at a temperature of to obtain a coating film.
All of the obtained coating films had a residual solvent amount of less than 1% and were excellent in finish and the like.
Tables 5 and 6 below also show the evaluation results of the storage stability of the coating materials Z-1 to Z-16.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<導電性顔料ペースト>
実施例1、17、26、33、34で得られた導電性顔料ペースト(X-1、X-17、X-26、X-33、X-34)
<溶媒(C)>
NMP:N-メチル-2-ピロリドン
<高極性低分子量成分(E)>
Glu:グルタミン酸
Be-A:ベンジルアミン
ME-A:メチルエタノールアミン
TP-A:トリフェニルアミン
<金属含有粒子(G)>
複合金属粒子(G1):Na2/3Ni1/3Mn2/3(平均粒子径:5μm)
<Conductive pigment paste>
Conductive pigment pastes obtained in Examples 1, 17, 26, 33, 34 (X-1, X-17, X-26, X-33, X-34)
<Solvent (C)>
NMP: N-methyl-2-pyrrolidone <highly polar low molecular weight component (E)>
Glu: glutamic acid Be-A: benzylamine ME-A: methylethanolamine TP-A: triphenylamine <metal-containing particles (G)>
Composite metal particles (G1): Na 2/3 Ni 1/3 Mn 2/3 O 2 (average particle size: 5 μm)
<貯蔵安定性(塗工材)>
 得られた塗工材Z-1~Z-16を30℃の温度で2週間貯蔵を行い、初期粘度と貯蔵後の粘度の比較を行なった。粘度は、コーン&プレート型粘度計(HAAKE社製、商品名Mars2、直径35mm、2°傾斜のコーン&プレート)を用い、せん断速度1.0s-1で測定し、下記式により粘度上昇率を求め、下記の基準により貯蔵安定性を評価した。
 粘度上昇率(%)=貯蔵後粘度(mPa・s)/初期粘度(mPa・s)×100-100
A:貯蔵後の粘度上昇率(%)が、50%未満である。
B:貯蔵後の粘度上昇率(%)が、50%以上、かつ100%未満である。
C:貯蔵後の粘度上昇率(%)が、100%以上、かつ200%未満である。
D:貯蔵後の粘度上昇率(%)が、200%以上である。
 
<Storage stability (coating material)>
The obtained coating materials Z-1 to Z-16 were stored at a temperature of 30° C. for 2 weeks, and the initial viscosity and the viscosity after storage were compared. Viscosity is measured using a cone & plate type viscometer (HAAKE, trade name Mars2, diameter 35 mm, 2° inclined cone & plate) at a shear rate of 1.0 s -1 , and the viscosity increase rate is calculated by the following formula. The storage stability was evaluated according to the following criteria.
Viscosity increase rate (%) = viscosity after storage (mPa s) / initial viscosity (mPa s) × 100-100
A: Viscosity increase rate (%) after storage is less than 50%.
B: Viscosity increase rate (%) after storage is 50% or more and less than 100%.
C: Viscosity increase rate (%) after storage is 100% or more and less than 200%.
D: Viscosity increase rate (%) after storage is 200% or more.

Claims (19)

  1.  顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及びフッ素樹脂(D)を含有する導電性顔料ペーストであって、
     顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、
     導電性顔料(B)が、平均1次粒子径10~80nm、かつBET比表面積が250m/g以下であり、
     顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、
     せん断速度0.1s-1での粘度が、5,000mPa・s未満である、
    導電性顔料ペースト。
    A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D),
    The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. , and the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g,
    The conductive pigment (B) has an average primary particle diameter of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
    The solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0,
    Viscosity at a shear rate of 0.1 s −1 is less than 5,000 mPa s.
    Conductive pigment paste.
  2.  顔料分散樹脂(A)の固形分含有量が、導電性顔料ペーストの固形分総量中を基準として、0.1~20質量%である、請求項1に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1, wherein the solid content of the pigment dispersion resin (A) is 0.1 to 20% by mass based on the total solid content of the conductive pigment paste.
  3.  導電性顔料(B)の含有量が、導電性顔料ペーストの固形分総量中を基準として、5~99.9質量%である、請求項1又は2に記載の導電性顔料ペースト。 The conductive pigment paste according to claim 1 or 2, wherein the content of the conductive pigment (B) is 5 to 99.9% by mass based on the total solid content of the conductive pigment paste.
  4.  顔料分散樹脂(A)の溶解性パラメーターδAが9.3以上であり、かつ溶媒(C)の溶解性パラメーターδCが10.4~15.0である、請求項1~3のいずれか1項に記載の導電性顔料ペースト。 4. Any one of claims 1 to 3, wherein the solubility parameter δA of the pigment dispersion resin (A) is 9.3 or more, and the solubility parameter δC of the solvent (C) is 10.4 to 15.0. The conductive pigment paste described in .
  5.  導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が少なくとも2つのピークを有し、該ピークのピークトップが、粒子径150~550nmの範囲に少なくとも1つ、粒子径600~3,000nmの範囲に少なくとも1つあり、前記粒子径範囲におけるピーク面積比(粒子径150~550nmの範囲におけるピーク面積の合計/粒子径600~3,000nmの範囲におけるピーク面積の合計)が0.2~3である、請求項1~4のいずれか1項に記載の導電性顔料ペースト。 A frequency distribution curve obtained by diluting a conductive pigment paste with a solvent and measuring the volume-based particle size distribution by a laser diffraction scattering method has at least two peaks, and the peak top of the peak has a particle diameter in the range of 150 to 550 nm. There is at least one in the particle size range of 600 to 3,000 nm, and the peak area ratio in the particle size range (sum of peak areas in the particle size range of 150 to 550 nm / particle size of 600 to 3,000 nm) The conductive pigment paste according to any one of claims 1 to 4, wherein the sum of peak areas in the range) is from 0.2 to 3.
  6.  導電性顔料ペーストを溶媒で希釈し、レーザ回折散乱法による体積基準の粒度分布測定により得られる平均粒子径(D50)が860~1,400nmである、請求項1~5のいずれか1項に記載の導電性顔料ペースト。 Any one of claims 1 to 5, wherein the conductive pigment paste is diluted with a solvent and the average particle diameter (D50) obtained by volume-based particle size distribution measurement by a laser diffraction scattering method is 860 to 1,400 nm. Conductive pigment paste as described.
  7.  導電性顔料ペーストのせん断速度0.1s-1の粘度Xとせん断速度1,000s-1の粘度Yが、500mPa・s<X<5,000mPa・s、及び、X/Y>1.0の関係である、請求項1~6のいずれか1項に記載の導電性顔料ペースト。 The viscosity X at a shear rate of 0.1 s -1 and the viscosity Y at a shear rate of 1,000 s -1 of the conductive pigment paste are 500 mPa s < X < 5,000 mPa s and X / Y > 1.0 The conductive pigment paste according to any one of Claims 1 to 6, which is a relation.
  8.  前記導電性顔料(B)が、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも一種の導電性カーボンである、請求項1~7のいずれか1項に記載の導電性顔料ペースト。 8. Any one of claims 1 to 7, wherein the conductive pigment (B) is at least one type of conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene and graphite. The conductive pigment paste described in .
  9.  さらに、高極性低分子量成分(E)を含有する、請求項1~8のいずれか1項に記載の導電性顔料ペースト。 The conductive pigment paste according to any one of claims 1 to 8, further comprising a highly polar low molecular weight component (E).
  10. 高極性低分子量成分(E)が、少なくとも1種のアミン化合物(E1)を含有する、請求項1~9のいずれか1項に記載の導電性顔料ペースト。 The conductive pigment paste according to any one of claims 1 to 9, wherein the highly polar low molecular weight component (E) contains at least one amine compound (E1).
  11.  フッ素樹脂(D)が、重量平均分子量10万以上、かつ溶解性パラメーターδDが9.3未満の樹脂である、請求項1~10のいずれか1項に記載の導電性顔料ペースト。 The conductive pigment paste according to any one of claims 1 to 10, wherein the fluororesin (D) is a resin having a weight average molecular weight of 100,000 or more and a solubility parameter δD of less than 9.3.
  12.  請求項1~11のいずれか1項に記載の導電性顔料ペーストとカーボンナノチューブ(F)とを含有する導電性顔料ペーストであって、導電性顔料ペースト中の導電性顔料(B)とカ-ボンナンチューブの固形分比率が1/99~99/1である導電性顔料ペースト。 A conductive pigment paste containing the conductive pigment paste and carbon nanotubes (F) according to any one of claims 1 to 11, wherein the conductive pigment (B) and the carbon nanotube (F) in the conductive pigment paste A conductive pigment paste having a Bonnan tube solid content ratio of 1/99 to 99/1.
  13.  顔料分散樹脂(A)、アセチレンブラック(B-2)、カーボンナノチューブ(F)、溶媒(C)、及びフッ素樹脂(D)を含有する導電性顔料ペーストであって、
     顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、
     アセチレンブラック(B-2)が、平均1次粒子径10~80nm、かつBET比表面積が250m/g以下であり、
     顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、
     せん断速度0.1s-1での粘度が、5,000mPa・s未満である、
    導電性顔料ペースト。
    A conductive pigment paste containing a pigment dispersion resin (A), acetylene black (B-2), carbon nanotubes (F), a solvent (C), and a fluororesin (D),
    The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. , and the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g,
    Acetylene black (B-2) has an average primary particle size of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
    The solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0,
    Viscosity at a shear rate of 0.1 s −1 is less than 5,000 mPa s.
    Conductive pigment paste.
  14.  請求項1~11のいずれか1項に記載の導電性顔料ペーストの製造に際し、実質的にメジアを用いずに導電性顔料ペーストを分散する、導電性顔料ペーストの顔料分散方法。 A pigment dispersing method for a conductive pigment paste, comprising dispersing the conductive pigment paste substantially without using media in the production of the conductive pigment paste according to any one of claims 1 to 11.
  15.  請求項1~13のいずれか1項に記載の導電性顔料ペーストと、少なくとも1種の金属元素を有する金属含有粒子(G)とを含有する、塗工材。 A coating material containing the conductive pigment paste according to any one of claims 1 to 13 and metal-containing particles (G) having at least one metal element.
  16.  顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、フッ素樹脂(D)、及び高極性低分子量成分(E)を含有する導電性顔料ペーストと、少なくとも1種の金属元素を有する金属含有粒子(G)とを含有する、塗工材であって、
     顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、アミノ基、シアノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が10~23mmol/gであり、
     導電性顔料(B)が、平均1次粒子径10~80nm、かつBET比表面積が250m/g以下であり、
     顔料分散樹脂(A)の溶解性パラメーターδAと溶媒(C)の溶解性パラメーターδCとが、|δA-δC|<2.0の関係であり、
     せん断速度0.1s-1での粘度が、5,000mPa・s未満であり、
     高極性低分子量成分(E)が、導電性顔料(B)固形分100質量%を基準として3質量%以上含有する、
    塗工材。
    A conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), a fluororesin (D), and a highly polar low molecular weight component (E), and at least one metal element A coating material containing metal-containing particles (G) having
    The pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, an amino group, and a cyano group. , and the polar functional group concentration of the pigment dispersion resin (A) is 10 to 23 mmol / g,
    The conductive pigment (B) has an average primary particle diameter of 10 to 80 nm and a BET specific surface area of 250 m 2 /g or less,
    The solubility parameter δA of the pigment dispersion resin (A) and the solubility parameter δC of the solvent (C) have a relationship of |δA−δC|<2.0,
    Viscosity at a shear rate of 0.1 s -1 is less than 5,000 mPa s,
    The high polar low molecular weight component (E) contains 3% by mass or more based on 100% by mass of the solid content of the conductive pigment (B).
    Coating material.
  17.  請求項1~13のいずれか1項に記載の導電性顔料ペーストに、少なくとも1種の金属元素を有する金属含有粒子(G)を添加する、塗工材の製造方法。 A method for producing a coating material, comprising adding metal-containing particles (G) having at least one metal element to the conductive pigment paste according to any one of claims 1 to 13.
  18.  請求項15又は16に記載の塗工材を塗工して得られる塗工膜。 A coating film obtained by coating the coating material according to claim 15 or 16.
  19.  請求項15又は16に記載の塗工材を板状基材の両面に塗工して得られる塗工材料。
     
    A coating material obtained by coating the coating material according to claim 15 or 16 on both sides of a plate-like substrate.
PCT/JP2022/004186 2021-02-09 2022-02-03 Conductive pigment paste, coating material and coating film WO2022172847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022580592A JPWO2022172847A1 (en) 2021-02-09 2022-02-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021019141 2021-02-09
JP2021-019141 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172847A1 true WO2022172847A1 (en) 2022-08-18

Family

ID=82837818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004186 WO2022172847A1 (en) 2021-02-09 2022-02-03 Conductive pigment paste, coating material and coating film

Country Status (2)

Country Link
JP (1) JPWO2022172847A1 (en)
WO (1) WO2022172847A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132809A1 (en) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2016044275A (en) * 2014-08-26 2016-04-04 大日精化工業株式会社 Coating liquid, coated film and composite material
JP2016134217A (en) * 2015-01-16 2016-07-25 東洋インキScホールディングス株式会社 Conductive composition, current collector with ground layer for power storage device, and power storage device
JP2017165923A (en) * 2016-03-18 2017-09-21 関西ペイント株式会社 Conductive pigment paste and coating material
JP2018045820A (en) * 2016-09-13 2018-03-22 ライオン・スペシャリティ・ケミカルズ株式会社 Carbon conductive material slurry
JP2019061916A (en) * 2017-09-28 2019-04-18 東洋インキScホールディングス株式会社 Auxiliary conductive agent dispersion, application thereof and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132809A1 (en) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2016044275A (en) * 2014-08-26 2016-04-04 大日精化工業株式会社 Coating liquid, coated film and composite material
JP2016134217A (en) * 2015-01-16 2016-07-25 東洋インキScホールディングス株式会社 Conductive composition, current collector with ground layer for power storage device, and power storage device
JP2017165923A (en) * 2016-03-18 2017-09-21 関西ペイント株式会社 Conductive pigment paste and coating material
JP2018045820A (en) * 2016-09-13 2018-03-22 ライオン・スペシャリティ・ケミカルズ株式会社 Carbon conductive material slurry
JP2019061916A (en) * 2017-09-28 2019-04-18 東洋インキScホールディングス株式会社 Auxiliary conductive agent dispersion, application thereof and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2022172847A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP6831896B1 (en) Conductive pigment pastes, coating materials, and conductive coating films
US11203690B2 (en) Thin leaf-like indium particles and method for producing same, glitter pigment, and water-based paint and coating film
JP7301881B2 (en) CARBON NANOTUBE DISPERSION AND METHOD FOR MANUFACTURING SAME
TWI579242B (en) Silver nanoparticles, method of producing the same, silver nanoparticle dispersion, and substrate having silver element formed thereon
KR101772783B1 (en) Coatings having filler-polymer compositions with combined low dielectric constant, high resistivity, and optical density properties and controlled electrical resistivity, devices made therewith, and methods for making same
JP2023046395A (en) Conductive pigment paste, mixture paste, and electrode for lithium ion battery
TWI688624B (en) Antistatic powder coating composition
US9085673B2 (en) Aniline black having specific sulfur content, and resin composition and water-based and solvent-based dispersions using the aniline black
JP6718195B2 (en) Conductive pigment paste and coating material
JP2020163362A (en) Dispersion agent, dispersion body, electrode and resin composition
JP6718196B2 (en) Conductive pigment paste and coating material
TW201525021A (en) Polymer and dispersion
WO2022172847A1 (en) Conductive pigment paste, coating material and coating film
JP6850936B1 (en) Conductive pigment pastes, coating materials, and conductive coating films
JP2017226753A (en) Pigment dispersion paste
WO2023048203A1 (en) Conductive pigment paste, mixture paste, and electrode for lithium ion battery
JP2024018830A (en) Carbon material dispersion and its use
JP7453487B1 (en) Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries
JP2022122391A (en) Conductive pigment paste, mixture paste and coating film
WO2024063003A1 (en) Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries
KR20210121726A (en) Highly dispersed nano-carbon coating composition
JP7262068B1 (en) Carbon material dispersion and its use
JP7089099B1 (en) Conductive pigment pastes, coating materials, and coating films
JP2022176927A (en) Method for producing conductive pigment paste
CN117157358B (en) carbon material dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752674

Country of ref document: EP

Kind code of ref document: A1