WO2022168700A1 - Impact rotary tool - Google Patents

Impact rotary tool Download PDF

Info

Publication number
WO2022168700A1
WO2022168700A1 PCT/JP2022/002848 JP2022002848W WO2022168700A1 WO 2022168700 A1 WO2022168700 A1 WO 2022168700A1 JP 2022002848 W JP2022002848 W JP 2022002848W WO 2022168700 A1 WO2022168700 A1 WO 2022168700A1
Authority
WO
WIPO (PCT)
Prior art keywords
anvil
hammer
claw
rotary tool
claws
Prior art date
Application number
PCT/JP2022/002848
Other languages
French (fr)
Japanese (ja)
Inventor
尊大 植田
公孝 小沢
隆司 草川
亜紀子 本田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022168700A1 publication Critical patent/WO2022168700A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present disclosure relates generally to impact rotary tools, and more particularly to impact rotary tools that include a hammer and an anvil.
  • the impact rotary tool described in Patent Document 1 includes a drive shaft having a motor, an output section that outputs the rotational drive of the drive shaft, and a striking section that transmits the rotational drive of the drive shaft to the output section along with a striking operation.
  • the striking part comprises a hammer rotated by a drive shaft, an anvil having a surface to be struck by the hammer and transmitting rotational drive to the output part, and a buffer member attached to the anvil.
  • the buffer member can reduce noise generated when the hammer hits the anvil against the hit surface.
  • An object of the present disclosure is to provide an impact rotary tool capable of suppressing wear of the anvil.
  • An impact rotary tool includes a drive shaft, a hammer, an anvil, and a cushioning member.
  • the drive shaft is rotated by a drive.
  • the hammer is rotatable about the rotation axis of the drive shaft.
  • the anvil is rotatable about the rotation axis by being hit by the hammer.
  • the cushioning member is attached to the anvil.
  • the hammer has a plurality of hammer claws.
  • the anvil has a plurality of anvil claws. Each of the plurality of anvil claws has a side surface.
  • the plurality of anvil claws includes at least one first anvil claw and at least one second anvil claw.
  • the buffer member is attached to the side surface of the first anvil claw.
  • the buffer member of the first anvil claw When the buffer member of the first anvil claw is compressed by the first hammer claw of the plurality of hammer claws that hits the first anvil claw and shrinks by a predetermined amount, the buffer member of the first hammer claw of the plurality of hammer claws shrinks by a predetermined amount.
  • the second anvil claw is hit by a second hammer claw other than the first hammer claw.
  • FIG. 1 is an external perspective view of an impact rotary tool according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a cross-sectional view of the same impact rotary tool.
  • FIG. 3 is a perspective view of a main part of the impact rotary tool same as the above.
  • FIG. 4 is a front view of a main part of the impact rotary tool same as the above.
  • FIG. 5 is a front view of a main part of the impact rotary tool same as the above.
  • FIG. 6 is a side view of a main part of the impact rotary tool same as the above.
  • the impact rotary tool 1 of this embodiment includes a drive shaft 41, a hammer 42, an anvil 45, and a buffer member 9 attached to the anvil 45, as shown in FIGS.
  • a worker uses the impact rotary tool 1 for tightening work in which a tightening part (screw, bolt, nut, etc.) is tightened on a tightening object (mechanical product, electrical appliance, furniture, etc.).
  • the impact rotary tool 1 may be used for a removal work in which a worker loosens a tightened part from a tightened object.
  • the driving shaft 41 is rotated by the driving section 3, and the hammer 42 connected to the driving shaft 41 can rotate around the rotating shaft 411 of the driving shaft 41.
  • the anvil 45 is rotatable around the rotating shaft 411 by being hit by the hammer 42 .
  • the hammer 42 has a plurality of (two in this embodiment) hammer claws 425 as shown in FIG.
  • the anvil 45 also has a plurality of (two in this embodiment) anvil claws 455 , and each of the plurality of anvil claws 455 has a side surface 4550 .
  • each of the two anvil claws 455 is struck by the two hammer claws 425 by rotating the hammer 42 around the rotation shaft 411 .
  • the anvil 45 rotates about the rotating shaft 411, and a rotational impact force for turning a screw or the like is generated.
  • the two anvil claws 455 include at least one first anvil claw 4554 and at least one second anvil claw 4556, as shown in FIGS. 3-5. That is, in this embodiment, one anvil claw 455 of the two anvil claws 455 is the first anvil claw 4554 and the other anvil claw 455 is the second anvil claw 4556 .
  • the first anvil claw 4554 is the anvil claw 455 to which the buffer member 9 is attached to the side surface 4550 . That is, in this embodiment, the buffer member 9 is not attached to the side surface 4550 of the second anvil claw 4556 .
  • the hammer 42 rotates in the predetermined direction DR1 as shown in FIG. side 4550 of is hit through the cushioning member 9 .
  • the noise generated when the first anvil claw 4554 impacts the side surface 4550 can be reduced.
  • the buffer member 9 is not attached to the side surface 4550 of the second anvil claw 4556 , the side surface 4550 of the second anvil claw 4556 is directly hit by the second hammer claw 4254 .
  • the cushioning member 9 is contracted by a predetermined amount A1
  • the first hammer claw 4253 hits the portion of the side surface 4550 of the first anvil claw 4554 other than the groove into which the cushioning member 9 is inserted. This increases the contact area between the anvil 45 and the hammer 42 when the hammer 42 hits, compared to the case where the buffer member 9 is attached to the side surfaces 4550 of the first anvil claw 4554 and the second anvil claw 4556 .
  • the first hammer claw 4253 striking the first anvil claw 4554 and the second hammer claw 4254 striking the second anvil claw 4556 alternately. replaced by That is, after striking the first anvil claw 4554 , the first hammer claw 4253 climbs over the first anvil claw 4554 and strikes the second anvil claw 4556 , so that it becomes the second hammer claw 4254 . Also, after striking the second anvil claw 4556 , the second hammer claw 4254 climbs over the second anvil claw 4556 and strikes the first anvil claw 4554 , so that it becomes the first hammer claw 4253 .
  • the direction in which the drive unit 3 and the hammer 42 are aligned (the X direction in FIG. 2) is defined as the front-rear direction, and the front side as viewed from the drive unit 3 is defined as the front side. , the drive unit 3 side is defined as rear. Further, in the following description, the direction in which the second portion 22 (to be described later) and the grip portion 23 (to be described later) are aligned is defined as the vertical direction, and the second portion 22 side as viewed from the grip portion 23 is defined as the upper side. 2 The grip part 23 side as viewed from the part 22 is defined as the bottom. A direction orthogonal to the front-rear direction and the up-down direction is defined as the left-right direction. However, these regulations are not meant to define the usage direction of the impact rotary tool 1 .
  • the impact rotary tool 1 of this embodiment is a portable power tool. As described above, impact rotary tool 1 includes drive shaft 41 , hammer 42 , anvil 45 , and buffer member 9 attached to anvil 45 . 2, the impact rotary tool 1 further includes a housing 2, a drive section 3, a transmission mechanism 4, a drive circuit block 81, a control section 82, and an operation section 83.
  • the housing 2 accommodates the drive section 3, the transmission mechanism 4, the drive circuit block 81, and the control section 82, as shown in FIGS.
  • the housing 2 also has a first portion 21 , a second portion 22 , a grip portion 23 and a battery mounting portion 24 .
  • the first part 21 has a first bottom portion 211 and a first side portion 212 .
  • the shape of the first bottom portion 211 is disc-shaped.
  • the thickness direction of the first bottom portion 211 extends along the front-rear direction.
  • the first bottom portion 211 has a housing through hole 2110 formed in the front-rear direction.
  • a housing through-hole 2110 is provided in the center of the first bottom portion 211 .
  • An anvil shaft 453 of an anvil 45 which will be described later, is passed through the housing through hole 2110 .
  • the shape of the first side portion 212 is cylindrical. More specifically, the shape of the first side portion 212 is cylindrical. The first side portion 212 protrudes from the first bottom portion 211 . More specifically, the first side portion 212 protrudes from the peripheral portion of the first bottom portion 211 . The first side portion 212 protrudes rearward from the first bottom portion 211 .
  • the second part 22 has a second bottom portion 221 and a second side portion 222 .
  • the shape of the second bottom portion 221 is disc-shaped.
  • the thickness direction of the second bottom portion 221 extends along the front-rear direction.
  • the shape of the second side portion 222 is substantially cylindrical. More specifically, the shape of the second side portion 222 is generally cylindrical. The second side portion 222 protrudes from the second bottom portion 221 . More specifically, the second side portion 222 protrudes from the peripheral portion of the second bottom portion 221 . The second side portion 222 protrudes forward from the second bottom portion 221 .
  • the second part 22 accommodates the first part 21 . More specifically, the outer surface of the first side portion 212 is in close contact with the front portion of the inner surface of the second side portion 222 , and the front end portion of the second side portion 222 is in contact with the peripheral portion of the first bottom portion 211 .
  • the part 22 accommodates the first part 21 . Also, since the front-rear dimension of the second side portion 222 is longer than the front-rear dimension of the first side portion 212 , the rear end portion of the first side portion 212 does not touch the peripheral portion of the second bottom portion 221 . Therefore, the rear portion of the second side portion 222 does not adhere to the outer surface of the first side portion 212 .
  • a plurality of ventilation holes 223 are provided in the second side portion 222 of the second portion 22 . More specifically, the second part 22 has a plurality of ventilation holes 223 in a second side portion 222 that is not in close contact with the outer surface of the first side portion 212 .
  • the grip part 23 protrudes from the second part 22 . More specifically, the grip portion 23 protrudes downward from the second portion 22 . A worker can grip the grip portion 23 and perform operations such as screw tightening.
  • the shape of the battery mounting portion 24 is a rectangular parallelepiped. Battery mounting portion 24 is connected to the lower end of grip portion 23 .
  • a rechargeable battery pack B ⁇ b>1 is detachably attached to the battery mounting portion 24 .
  • the impact rotary tool 1 operates using the battery pack B1 as a power source. That is, the battery pack B ⁇ b>1 is a power source that supplies a current for driving the drive unit 3 . Battery pack B ⁇ b>1 is not a component of impact rotary tool 1 . However, the impact rotary tool 1 may include the battery pack B1.
  • the battery pack B1 includes an assembled battery configured by connecting a plurality of secondary batteries (for example, lithium ion batteries) in series, and a case accommodating the assembled battery.
  • the drive section 3 is not housed in the first portion 21 of the housing 2 but is housed in the rear portion of the second portion 22 .
  • the drive unit 3 is, for example, a brushless motor.
  • the drive unit 3 includes a rotor 31 having a rotating shaft 311 and permanent magnets, and a stator 32 having coils. Rotor 31 rotates relative to stator 32 due to electromagnetic interaction between the permanent magnets and the coils.
  • the drive unit 3 is a servomotor.
  • the torque and rotational speed of the drive section 3 change according to control by the control section 82 (servo driver). More specifically, the control unit 82 controls the operation of the drive unit 3 through feedback control that controls the torque and rotational speed of the drive unit 3 to approach target values.
  • the transmission mechanism 4 is housed in the first portion 21 of the housing 2 .
  • the transmission mechanism 4 has an impact mechanism 40 .
  • the impact rotary tool 1 of this embodiment is an electric impact driver that performs a tightening operation while performing an impact operation by an impact mechanism 40 .
  • the impact mechanism 40 generates an impact force based on the power of the drive unit 3 in the impact operation, and the impact force acts on the tip tool 62 .
  • the transmission mechanism 4 has a planetary gear mechanism 48 in addition to the impact mechanism 40 .
  • the impact mechanism 40 includes an elastic member 43 and a sphere (first sphere 49).
  • the impact mechanism 40 also includes a drive shaft 41 , a hammer 42 and an anvil 45 .
  • the anvil 45 faces the hammer 42 in the front-rear direction.
  • the planetary gear mechanism 48 converts the rotation speed and torque of the rotating shaft 311 of the drive unit 3 into the rotation speed and torque required for the screw driving operation.
  • the planetary gear mechanism 48 is a reduction gear. Torque of the rotating shaft 311 of the drive unit 3 is transmitted to the drive shaft 41 via the planetary gear mechanism 48 . Torque of the drive shaft 41 is transmitted to the hammer 42 . This causes the hammer 42 to rotate. Torque of hammer 42 is transmitted to anvil 45 . This causes the anvil 45 to rotate.
  • the drive shaft 41 is arranged between the drive portion 3 and the anvil 45 .
  • the hammer 42 moves relative to the anvil 45 and receives power from the drive unit 3 to apply a striking force to the anvil 45 .
  • the hammer 42 includes a hammer body 420 and two hammer claws 425.
  • the shape of the hammer body 420 is cylindrical.
  • the two hammer claws 425 protrude from the surface of the hammer body 420 on the anvil 45 side.
  • the hammer body 420 has a hammer through hole 421 through which the drive shaft 41 is passed.
  • the hammer body 420 has two grooves 423 (hereinafter referred to as first grooves) on the inner peripheral surface of the hammer through-hole 421 .
  • the drive shaft 41 has two grooves 413 (hereinafter referred to as second grooves) on its outer peripheral surface.
  • the two second grooves 413 are connected. Between the two first grooves 423 and the two second grooves 413, two spheres (first spheres 49) are accommodated.
  • the two first grooves 423, the two second grooves 413, and the two first spheres 49 constitute a cam mechanism.
  • the hammer 42 moves in the direction of the rotation axis 411 of the drive shaft 41 (forward and backward direction) with respect to the drive shaft 41. and rotatable about the rotation axis 411 of the drive shaft 41 .
  • the hammer 42 rotates with respect to the drive shaft 41 .
  • the anvil 45 includes an anvil body 450, an anvil shaft 453, a mounting portion 451, and two anvil claws 455.
  • the shape of the anvil body 450 is annular.
  • the anvil shaft 453 protrudes from the anvil body 450 in the axial direction of the anvil body 450 . That is, the anvil shaft 453 projects forward from the anvil body 450 .
  • the mounting part 451 is attached to the tip of the anvil shaft 453 .
  • a tip tool 62 (see FIG. 1) is connected to the mounting portion 451 . More specifically, the tip tool 62 can be attached to and detached from the attaching portion 451 .
  • the mounting portion 451 is connected with the tip tool 62 via the chuck 61 (see FIG. 1).
  • the anvil 45 receives torque from the drive unit 3 and rotates together with the chuck 61 and the tip tool 62 .
  • the chuck 61 and the tip tool 62 are not components of the impact rotary tool 1.
  • the impact rotary tool 1 may include at least one of the chuck 61 and the tip tool 62 .
  • the tip tool 62 may be directly connected to the mounting portion 451 .
  • the tip tool 62 is, for example, a driver bit.
  • the tip tool 62 is fitted with a screw (bolt, screw, or the like) to be worked. By rotating the tip tool 62 in a state where the tip tool 62 is engaged with the screw, it is possible to tighten or loosen the screw.
  • the tip tool 62 is not limited to a driver bit, and may be a socket bit or the like used for tightening a bolt or the like.
  • the two anvil claws 455 protrude from the anvil body 450 in the radial direction of the anvil body 450 .
  • the anvil body 450 and two anvil claws 455 are housed in the first portion 21 of the housing 2 .
  • the anvil shaft 453 is passed through a housing through hole 2110 provided in the housing 2 , and the mounting portion 451 is exposed to the outside of the housing 2 .
  • each of the two anvil claws 455 has a side surface 4550 that is struck by the two hammer claws 425 of the hammer 42.
  • One of the two anvil claws 455 is a first anvil claw 4554 having a side surface 4550 to which a cushioning member 9 described later is attached.
  • the other anvil claw 455 is a second anvil claw 4556 to which the buffer member 9 is not attached on the side surface 4550 .
  • side surface 4550 of first anvil claw 4554 includes first side surface 4553 and second side surface 4555 .
  • the side surface 4550 of the second anvil pawl 4556 includes a first side surface 4553 and a second side surface 4555 .
  • the first side surface 4553 is hit by the hammer claw 425 in order to rotate the anvil 45 in the predetermined direction DR1, which is the direction for tightening a screw or the like.
  • the second side surface 4555 is hit by the hammer claw 425 to rotate the anvil 45 in the direction opposite to the predetermined direction DR1.
  • the buffer member 9 is attached to at least the first side surface 4553 of the first anvil claw 4554 .
  • the cushioning member 9 is attached only to the first side surface 4553 of the first anvil claw 4554, but the cushioning member 9 may be attached to both the first side surface 4553 and the second side surface 4555. .
  • the elastic member 43 is sandwiched between the hammer 42 and the planetary gear mechanism 48, as shown in FIG.
  • the elastic member 43 of this embodiment is a conical coil spring.
  • the impact mechanism 40 further includes a plurality of (two in FIG. 2) spheres (second spheres 50 ) sandwiched between the hammer 42 and the elastic member 43 and a ring 51 .
  • the hammer 42 is rotatable with respect to the elastic member 43 .
  • the hammer 42 receives forward force from the elastic member 43 .
  • the elastic member 43 gives force to push the hammer 42 toward the anvil 45 side.
  • the impact mechanism 40 performs an impact operation when a torque condition regarding the magnitude of torque applied to the anvil 45 (hereinafter referred to as load torque) is satisfied.
  • the impact operation is an operation in which the hammer 42 applies a striking force to the anvil 45 .
  • the torque condition is that the load torque is equal to or greater than a predetermined value. That is, as the load torque increases, the component of the force generated between the hammer 42 and the anvil 45 that causes the hammer 42 to move backward also increases. When the load torque reaches or exceeds a predetermined value, the hammer 42 retreats while compressing the elastic member 43 .
  • the hammer 42 rotates while the two hammer claws 425 of the hammer 42 get over the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 by retreating the hammer 42 . After that, the hammer 42 moves forward by receiving the restoring force from the elastic member 43 . Then, when the drive shaft 41 rotates approximately halfway, the two hammer claws 425 of the hammer 42 collide with the side surfaces 4550 of the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 .
  • the two hammer claws 425 of the hammer 42 collide with the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 each time the drive shaft 41 rotates approximately halfway. That is, the hammer 42 applies an impact (rotational impact force) to the anvil 45 each time the drive shaft 41 makes approximately half a rotation.
  • the cushioning member 9 attached to the first side surface 4553 of the first anvil claw 4554 is, for example, a rectangular parallelepiped member having a lower rigidity than the anvil 45, such as rubber. It consists of an elastic body.
  • the shape of the cushioning member 9 is not limited to a rectangular parallelepiped, and may be a hemisphere or the like. Further, the material of the cushioning member 9 is not limited to rubber, and may be urethane or the like.
  • a mounting groove 4557 is provided on the first side surface 4553 of the first anvil claw 4554, and the cushioning member 9 is mounted in the mounting groove 4557. More specifically, the mounting groove 4557 is, for example, a groove having an oval bottom portion 4558, and the cushioning member 9 is adhered to the bottom portion 4558 of the mounting groove 4557 by, for example, an adhesive. At this time, as shown in FIG. 4 , one surface of the rectangular parallelepiped of the cushioning member 9 becomes the bonding surface 90 with the bottom surface portion 4558 . Further, in this embodiment, the mounting groove 4557 further has a side portion 4559 projecting from the bottom portion 4558 and an opening portion 4560 .
  • the hit part 91 which is part of the cushioning member 9, is exposed to the outside of the mounting groove 4557 through the opening 4560 when viewed in the front-rear direction.
  • the hit portion 91 has a hit surface 92 which is one surface of the rectangular parallelepiped of the cushioning member 9 and which is one surface facing the adhesive surface 90 .
  • the hit surface 92 of the cushioning member 9 first contacts the hammer claw 425 .
  • the impact of the impact is absorbed by the elastic deformation of the cushioning member 9, thereby suppressing noise generation.
  • the cushioning member 9 is attached to the attachment groove 4557, it is possible to suppress the positional movement of the cushioning member 9 due to the impact of hitting. Moreover, the size of the cushioning member 9 can be increased by the size of the attachment groove 4557, and deformation of the cushioning member 9 at the time of impact can be suppressed. Thereby, abrasion of the buffer member 9 can be suppressed.
  • the elastic deformation of the cushioning member 9 during impact lengthens the contact time between the hammer 42 and the anvil 45, improving the accuracy when measuring the torque of the anvil 45 when impacted by the hammer 42.
  • the size of the bottom portion 4558 is larger than the size of the bonding surface 90 of the cushioning member 9 .
  • the impact rotary tool 1 further includes a holding base 11 .
  • the holding table 11 is housed in the housing 2 .
  • the holding table 11 is held by the first portion 21 of the housing 2 .
  • the shape of the holding table 11 is a hollow columnar shape.
  • the holding base 11 holds a planetary gear mechanism 48 inside thereof. That is, the holding base 11 rotatably holds the gears of the planetary gear mechanism 48 .
  • a rotating shaft 311 of the drive unit 3 is inserted into a through hole formed in the rear surface of the holding base 11 and connected to the planetary gear mechanism 48 .
  • a drive shaft 41 protrudes from the front surface of the holding base 11 .
  • the impact rotary tool 1 further includes spacers 46 .
  • the spacer 46 has an annular shape.
  • a spacer 46 is attached to the rear end of the first portion 21 of the housing 2 .
  • Spacer 46 is arranged between first portion 21 and first anvil claw 4554 and second anvil claw 4556 of anvil 45 .
  • the first bearing 71 is held by the first portion 21 of the housing 2 .
  • the first bearing 71 is arranged inside the first portion 21 .
  • the first bearing 71 rotatably supports the anvil shaft 453 .
  • the second bearing 72 is held by the holding base 11 .
  • the second bearing 72 is attached to the front surface of the holding base 11 .
  • the second bearing 72 rotatably supports the drive shaft 41 .
  • the third bearing 73 is held by the holding base 11 .
  • the third bearing 73 is arranged inside the holding base 11 .
  • the third bearing 73 rotatably supports the drive shaft 41 .
  • the fourth bearing 74 is held by the holding table 11 .
  • the fourth bearing 74 is attached to the rear surface of the holding base 11 .
  • the fourth bearing 74 rotatably supports the rotating shaft 311 of the driving section 3 .
  • the fifth bearing 75 is held by the second portion 22 of the housing 2 .
  • the fifth bearing 75 rotatably supports the rotating shaft 311 of the driving section 3 .
  • the operation portion 83 protrudes from the grip portion 23 .
  • the operating portion 83 receives an operation for controlling the rotation of the rotating shaft 311 of the drive portion 3 .
  • the drive unit 3 can be turned on and off by pulling the operation unit 83 .
  • the rotation speed of the rotating shaft 311 can be adjusted by the amount of retraction of the operation of pulling the operation portion 83 .
  • the rotation speed of the rotary shaft 311 increases as the retraction amount increases.
  • Control Unit 82 rotates or stops the rotation shaft 311 and controls the rotation speed of the rotation shaft 311 according to the amount of retraction of the operation of pulling the operation unit 83 .
  • the control unit 82 includes, for example, a microcontroller.
  • the controller 82 can change the rotational speeds of the anvil 45 and the tip tool 62 by changing the rotational speed of the rotating shaft 311 .
  • the control unit 82 changes the rotation speed of the rotating shaft 311 by changing the electric power supplied to the drive unit 3, for example.
  • Drive circuit block 81 is arranged behind the drive section 3 .
  • Drive circuit block 81 includes a substrate 810 and a plurality of electronic components mounted on substrate 810 .
  • a plurality of electronic components includes a plurality of power elements forming an inverter circuit.
  • Each power element is, for example, a FET (Field Effect Transistor) element.
  • the control unit 82 controls the driving unit 3 via the driving circuit block 81. That is, the control unit 82 controls the power supplied to the driving unit 3 via multiple FET elements (inverter circuits) by switching the multiple FET elements of the driving circuit block 81 on and off.
  • the impact rotary tool 1 further includes a fan 14 .
  • Fan 14 is housed in second portion 22 of housing 2 .
  • the fan 14 is arranged between the driving section 3 and the holding base 11 .
  • the fan 14 is connected to the rotating shaft 311 of the drive unit 3.
  • the fan 14 rotates together with the rotating shaft 311 .
  • the fan 14 generates wind that flows forward. Thereby, the fan 14 air-cools the internal space of the housing 2 .
  • the impact rotary tool 1 rotates the hammer 42 about the rotation axis 411 so that each of the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 is doubled. It is hit by two hammer claws 425 .
  • the buffer member 9 is attached to the mounting groove 4557 provided in the first side surface 4553 of the first anvil claw 4554, and when the hammer claw 425 strikes, the buffer member 9 and the first hammer claw 4253 come into contact with each other, and the first anvil claw 4554 is struck. At this time, the portion of the first side surface 4553 of the first anvil claw 4554 other than the buffer member 9 is in a state of being close to the first hammer claw 4253 with the space S2 therebetween.
  • the first anvil claw 4554 and the second anvil claw 4556 are provided facing each other when viewed from the front-rear direction.
  • first hammer claw 4253 and the second hammer claw 4254 are provided facing each other when viewed from the front-rear direction. Therefore, at this time, the first side surface 4553 of the second anvil claw 4556 and the second hammer claw 4254 are in close proximity with the space S1 therebetween.
  • the first hammer claw 4253 rotates in the predetermined direction DR1 while compressing the buffer member 9. Then, as shown in FIG. 5, when the cushioning member 9 is shrunk by a predetermined amount A1 and the hit part 91 is accommodated inside the mounting groove 4557 (the space between the opening 4560 and the bottom part 4558), the second The first side surface 4553 of the anvil claw 4556 and the second hammer claw 4254 come into contact with each other, and the second anvil claw 4556 is hit by the second hammer claw 4254 .
  • the portion of the first side surface 4553 of the first anvil claw 4554 other than the buffer member 9 comes into contact with the first hammer claw 4253 and is hit by the first hammer claw 4253 . That is, in this embodiment, when the buffer member 9 is shrunk by a predetermined amount A1, the portion other than the buffer member 9 of the first side surface 4553 of the first anvil claw 4554 and the first side surface 4553 of the second anvil claw 4556 The first hammer claw 4253 and the second hammer claw 4254 strike simultaneously.
  • the number of anvil claws 455 is not limited to two, and may be three or more. When the number of anvil claws 455 is three or more, at least one anvil claw 455 among the three or more anvil claws 455 becomes the first anvil claw 4554 to which the cushioning member 9 is attached.
  • the number of hammer claws 425 is not limited to two, and may be three or more.
  • the cushioning member 9 is not limited to a viscoelastic body such as rubber, and may be a spring such as a leaf spring.
  • the cushioning member 9 may be attached to the hammer 42.
  • the impact rotary tool (1) of the first aspect includes the drive shaft (41), the hammer (42), the anvil (45), and the buffer member (9).
  • the drive shaft (41) is rotated by the drive (3).
  • the hammer (42) is rotatable around the axis of rotation (411) of the drive shaft (41).
  • the anvil (45) is rotatable about the axis of rotation (411) by being hit by the hammer (42).
  • the damping member (9) is attached to the anvil (45).
  • Hammer (42) has a plurality of hammer pawls (425).
  • Anvil (45) has a plurality of anvil claws (455). Each of the plurality of anvil claws (455) has a side surface (4550).
  • Plurality of anvil pawls (455) includes at least one first anvil pawl (4554) and at least one second anvil pawl (4556).
  • a buffer member (9) is attached to the side surface (4550) of the first anvil claw (4554).
  • the buffering member (9) of the first anvil claw (4554) is compressed by the first hammer claw (4253) among the plurality of hammer claws (425) that strikes the first anvil claw (4554) and is compressed by a predetermined amount (A1).
  • the second anvil claw (4556) is hit by the second hammer claw (4254) of the plurality of hammer claws (425) other than the first hammer claw (4253).
  • noise generated when the hammer (42) hits the anvil (45) can be reduced. Also, the wear of the anvil (45) can be suppressed.
  • the impact rotary tool (1) of the second aspect in the first aspect, further comprises an elastic member (43), a first groove (423), a second groove (413), and a sphere (49).
  • the elastic member (43) provides force to push the hammer (42) toward the anvil (45).
  • a first groove (423) is provided on the inner surface of the hammer (42).
  • a second groove (413) is provided on the outer surface of the drive shaft (41).
  • the sphere (49) is housed in the first groove (423) and the second groove (413).
  • the hammer (42) is movable in the direction of the rotation axis (411) by sliding the ball (49) in the first groove (423) and the second groove (413), and moves along the rotation axis (411). is rotatable around
  • an impact mechanism can be realized.
  • the side surface (4550) includes the first side surface (4553) and the second side surface (4555).
  • the first side (4553) is struck by a hammer pawl (425) to rotate the anvil (45) in a predetermined direction (DR1).
  • the second side (4555) is struck by a hammer pawl (425) to rotate the anvil (45) in a direction opposite to the predetermined direction (DR1).
  • a cushioning member (9) is attached to at least the first side surface (4553) of the first anvil pawl (4554).
  • noise generated when the hammer (42) hits the anvil (45) to rotate the anvil (45) in the predetermined direction (DR1) can be reduced.
  • the cushioning member (9) is made of a viscoelastic body having lower rigidity than the anvil (45).
  • the cushioning member (9) can be elastically deformed to absorb the impact at the time of hitting.
  • a mounting groove (4557) is provided on the side surface (4550) of the first anvil claw (4554) to provide a buffer.
  • Member (9) is mounted in mounting groove (4557).
  • the attachment groove (4557) has a bottom portion (4558) to which the cushioning member (9) is attached.
  • the size of the bottom portion (4558) is larger than the size of the bonding surface (90) of the cushioning member (9) with the bottom portion (4558).
  • the cushioning member (9) when the cushioning member (9) is hit by the hammer (42) and expands in the direction of the side surface (4559) of the mounting groove (4557), the cushioning member (9) moves toward the side surface (4559). contact can be prevented.
  • the side surface (4550) of the second anvil claw (4556) is struck by the second hammer claw (4254). At times, the first hammer claw (4253) hits the side surface (4550) of the first anvil claw (4554) other than the buffer member (9).
  • torque is applied to the anvil (45) by hitting the portion other than the buffer member (9) on the side surface (4550) of the first anvil claw (4554) with the first hammer claw (4253). be able to.
  • the second to seventh aspects are not essential configurations for the impact rotary tool (1), and can be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

The present disclosure addresses the problem of providing an impact rotary tool capable of suppressing wear of an anvil. This impact rotary tool (1) comprises a drive shaft (41), hammer (42), anvil (45), and cushioning member (9). The drive shaft (41) is rotated by a drive unit. The hammer (42) can rotate about the rotation axis of the drive shaft (41). The anvil (45) can rotate about the rotation axis by being hit by the hammer (42). The cushioning member (9) is attached to the anvil (45). The hammer (42) has a plurality of hammer claws (425). The anvil (45) has a plurality of anvil claws (455). Each of the plurality of anvil claws (455) has a side surface (4550). The plurality of anvil claws (455) include at least one first anvil claw (4554) and at least one second anvil claw (4556). The cushioning member (9) is attached to the side surface (4550) of the first anvil claw (4554).

Description

インパクト回転工具impact rotary tool
 本開示は一般にインパクト回転工具に関し、より詳細には、ハンマとアンビルとを備えるインパクト回転工具に関する。 The present disclosure relates generally to impact rotary tools, and more particularly to impact rotary tools that include a hammer and an anvil.
 特許文献1に記載のインパクト回転工具は、モータを有した駆動軸と、駆動軸の回転駆動を出力する出力部と、駆動軸の回転駆動を打撃動作を伴って出力部に伝達する打撃部とを有する。このインパクト回転工具は、打撃部が、駆動軸により回転するハンマと、ハンマに打撃される被打撃面を有し、出力部に回転駆動を伝達するアンビルと、アンビルに取り付けられる緩衝部材と、からなる。緩衝部材は、ハンマによるアンビルの被打撃面への打撃の際に発生する騒音を低減することができる。 The impact rotary tool described in Patent Document 1 includes a drive shaft having a motor, an output section that outputs the rotational drive of the drive shaft, and a striking section that transmits the rotational drive of the drive shaft to the output section along with a striking operation. have In this impact rotary tool, the striking part comprises a hammer rotated by a drive shaft, an anvil having a surface to be struck by the hammer and transmitting rotational drive to the output part, and a buffer member attached to the anvil. Become. The buffer member can reduce noise generated when the hammer hits the anvil against the hit surface.
 特許文献1に記載されたようなインパクト回転工具では、アンビルとハンマの接触面積が小さく、アンビルの摩耗の進行が早くなる可能性があった。 In the impact rotary tool as described in Patent Document 1, the contact area between the anvil and the hammer is small, and there is a possibility that the wear of the anvil will progress quickly.
特開2012-045670号公報JP 2012-045670 A
 本開示は、アンビルの摩耗を抑制することができるインパクト回転工具を提供することを目的とする。 An object of the present disclosure is to provide an impact rotary tool capable of suppressing wear of the anvil.
 本開示の一態様に係るインパクト回転工具は、駆動軸と、ハンマと、アンビルと、緩衝部材と、を備える。前記駆動軸は、駆動部によって回転する。前記ハンマは、前記駆動軸の回転軸を中心に回転可能である。前記アンビルは、前記ハンマに打撃されることによって前記回転軸を中心に回転可能である。前記緩衝部材は、前記アンビルに取り付けられる。前記ハンマは、複数のハンマ爪を有する。前記アンビルは、複数のアンビル爪を有する。前記複数のアンビル爪のそれぞれは、側面を有する。前記複数のアンビル爪は、少なくとも1つの第1アンビル爪と、少なくとも1つの第2アンビル爪とを含む。前記第1アンビル爪の前記側面には前記緩衝部材が取り付けられている。前記第1アンビル爪の前記緩衝部材が、前記複数のハンマ爪のうち前記第1アンビル爪を打撃する第1ハンマ爪に圧縮されて所定量縮んだときに、前記複数のハンマ爪のうち前記第1ハンマ爪以外の第2ハンマ爪によって前記第2アンビル爪が打撃される。 An impact rotary tool according to one aspect of the present disclosure includes a drive shaft, a hammer, an anvil, and a cushioning member. The drive shaft is rotated by a drive. The hammer is rotatable about the rotation axis of the drive shaft. The anvil is rotatable about the rotation axis by being hit by the hammer. The cushioning member is attached to the anvil. The hammer has a plurality of hammer claws. The anvil has a plurality of anvil claws. Each of the plurality of anvil claws has a side surface. The plurality of anvil claws includes at least one first anvil claw and at least one second anvil claw. The buffer member is attached to the side surface of the first anvil claw. When the buffer member of the first anvil claw is compressed by the first hammer claw of the plurality of hammer claws that hits the first anvil claw and shrinks by a predetermined amount, the buffer member of the first hammer claw of the plurality of hammer claws shrinks by a predetermined amount. The second anvil claw is hit by a second hammer claw other than the first hammer claw.
図1は、本開示の一実施形態に係るインパクト回転工具の外観斜視図である。1 is an external perspective view of an impact rotary tool according to an embodiment of the present disclosure; FIG. 図2は、同上のインパクト回転工具の断面図である。FIG. 2 is a cross-sectional view of the same impact rotary tool. 図3は、同上のインパクト回転工具の要部の斜視図である。FIG. 3 is a perspective view of a main part of the impact rotary tool same as the above. 図4は、同上のインパクト回転工具の要部の正面図である。FIG. 4 is a front view of a main part of the impact rotary tool same as the above. 図5は、同上のインパクト回転工具の要部の正面図である。FIG. 5 is a front view of a main part of the impact rotary tool same as the above. 図6は、同上のインパクト回転工具の要部の側面図である。FIG. 6 is a side view of a main part of the impact rotary tool same as the above.
 本開示の実施形態に係るインパクト回転工具1について、図面を参照して詳細に説明する。なお、以下に説明する実施形態及び変形例は、本開示の一例に過ぎず、本開示は、実施形態及び変形例に限定されない。この実施形態及び変形例以外であっても、本開示の技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。 The impact rotary tool 1 according to the embodiment of the present disclosure will be described in detail with reference to the drawings. Note that the embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is not limited to the embodiments and modifications. Other than this embodiment and modifications, various modifications can be made according to the design and the like within the scope of the technical idea of the present disclosure. Each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component in the drawing does not necessarily reflect the actual dimensional ratio. .
 (1)概要
 まず、本実施形態のインパクト回転工具1の概要について、図1~図5を参照して説明する。
(1) Overview First, an overview of the impact rotary tool 1 of the present embodiment will be described with reference to FIGS. 1 to 5. FIG.
 本実施形態のインパクト回転工具1は、図1~図3に示すように、駆動軸41と、ハンマ42と、アンビル45と、アンビル45に取り付けられる緩衝部材9と、を備える。本実施形態では、作業者が締付対象(機械製品、電化製品、家具等)に締付部品(ねじ、ボルト、ナット等)を締め付ける締付作業にインパクト回転工具1を用いる場合を想定する。また、インパクト回転工具1は、作業者が締付対象から締付部品を緩める取り外し作業に用いられてもよい。 The impact rotary tool 1 of this embodiment includes a drive shaft 41, a hammer 42, an anvil 45, and a buffer member 9 attached to the anvil 45, as shown in FIGS. In this embodiment, it is assumed that a worker uses the impact rotary tool 1 for tightening work in which a tightening part (screw, bolt, nut, etc.) is tightened on a tightening object (mechanical product, electrical appliance, furniture, etc.). Moreover, the impact rotary tool 1 may be used for a removal work in which a worker loosens a tightened part from a tightened object.
 駆動軸41は駆動部3によって回転し、駆動軸41に接続されたハンマ42は駆動軸41の回転軸411を中心に回転可能である。アンビル45は、ハンマ42に打撃されることによって回転軸411を中心に回転可能である。ハンマ42は、図3に示すように複数(本実施形態では2つ)のハンマ爪425を有する。またアンビル45は複数(本実施形態では2つ)のアンビル爪455を有し、複数のアンビル爪455のそれぞれは、側面4550を有する。ここで、インパクト回転工具1は、ハンマ42が回転軸411を中心に回転することによって、2つのアンビル爪455のそれぞれが、2つのハンマ爪425によって打撃される。これによって、アンビル45が回転軸411を中心に回転し、例えば、ねじ等を回すための回転打撃力が生じる。 The driving shaft 41 is rotated by the driving section 3, and the hammer 42 connected to the driving shaft 41 can rotate around the rotating shaft 411 of the driving shaft 41. The anvil 45 is rotatable around the rotating shaft 411 by being hit by the hammer 42 . The hammer 42 has a plurality of (two in this embodiment) hammer claws 425 as shown in FIG. The anvil 45 also has a plurality of (two in this embodiment) anvil claws 455 , and each of the plurality of anvil claws 455 has a side surface 4550 . Here, in the impact rotary tool 1 , each of the two anvil claws 455 is struck by the two hammer claws 425 by rotating the hammer 42 around the rotation shaft 411 . As a result, the anvil 45 rotates about the rotating shaft 411, and a rotational impact force for turning a screw or the like is generated.
 2つのアンビル爪455は、図3~図5に示すように、少なくとも1つの第1アンビル爪4554と、少なくとも1つの第2アンビル爪4556とを含む。つまり、本実施形態では、2つのアンビル爪455のうち、1つのアンビル爪455が第1アンビル爪4554であり、もう一方のアンビル爪455が第2アンビル爪4556である。ここで、第1アンビル爪4554とは、側面4550に緩衝部材9が取り付けられるアンビル爪455である。すなわち、本実施形態では、第2アンビル爪4556の側面4550には緩衝部材9は取り付けられない。 The two anvil claws 455 include at least one first anvil claw 4554 and at least one second anvil claw 4556, as shown in FIGS. 3-5. That is, in this embodiment, one anvil claw 455 of the two anvil claws 455 is the first anvil claw 4554 and the other anvil claw 455 is the second anvil claw 4556 . Here, the first anvil claw 4554 is the anvil claw 455 to which the buffer member 9 is attached to the side surface 4550 . That is, in this embodiment, the buffer member 9 is not attached to the side surface 4550 of the second anvil claw 4556 .
 上記の構成により、図4に示すようにハンマ42が所定方向DR1に回転することで、2つのハンマ爪425のうちの1つのハンマ爪425(第1ハンマ爪4253)によって、第1アンビル爪4554の側面4550が緩衝部材9を介して打撃される。これにより、第1アンビル爪4554の側面4550への打撃の際に発生する騒音を低減することができる。 With the above configuration, the hammer 42 rotates in the predetermined direction DR1 as shown in FIG. side 4550 of is hit through the cushioning member 9 . As a result, the noise generated when the first anvil claw 4554 impacts the side surface 4550 can be reduced.
 ここで、第1ハンマ爪4253が緩衝部材9に接触した瞬間は、2つのハンマ爪425のうちのもう一方のハンマ爪425(第2ハンマ爪4254)と第2アンビル爪4556の側面4550との間には空間S1が存在し、非接触状態となっている。そして、図4及び図5に示すように、第1ハンマ爪4253によって緩衝部材9が圧縮されて所定量A1縮んだときに、第2ハンマ爪4254によって第2アンビル爪4556の側面4550が打撃される。このとき、第2アンビル爪4556の側面4550には緩衝部材9が取り付けられていないため、第2アンビル爪4556の側面4550は第2ハンマ爪4254によって直接打撃される。また、緩衝部材9が所定量A1だけ縮むと、第1アンビル爪4554の側面4550において、緩衝部材9が挿入される溝以外の部位も第1ハンマ爪4253によって打撃される。これにより、第1アンビル爪4554及び第2アンビル爪4556の側面4550に緩衝部材9が取り付けられる場合と比較して、ハンマ42の打撃時にアンビル45とハンマ42の接触面積が大きくなり、アンビル45に加わる単位面積当たりの力が低減され、アンビル45の摩耗を抑制することができる。なお、本実施形態では、ハンマ42の回転方向が一定である場合は、第1アンビル爪4554を打撃する第1ハンマ爪4253と、第2アンビル爪4556を打撃する第2ハンマ爪4254とは交互に入れ替わる。つまり、第1ハンマ爪4253は第1アンビル爪4554を打撃した後、第1アンビル爪4554を乗り越えて第2アンビル爪4556を打撃するため、第2ハンマ爪4254となる。また、第2ハンマ爪4254は第2アンビル爪4556を打撃した後、第2アンビル爪4556を乗り越えて第1アンビル爪4554を打撃するため、第1ハンマ爪4253となる。 Here, at the moment when the first hammer claw 4253 contacts the buffer member 9, the contact between the other hammer claw 425 (the second hammer claw 4254) of the two hammer claws 425 and the side surface 4550 of the second anvil claw 4556 A space S1 exists between them and is in a non-contact state. 4 and 5, when the buffer member 9 is compressed by the first hammer claw 4253 and shrunk by a predetermined amount A1, the side surface 4550 of the second anvil claw 4556 is hit by the second hammer claw 4254. be. At this time, since the buffer member 9 is not attached to the side surface 4550 of the second anvil claw 4556 , the side surface 4550 of the second anvil claw 4556 is directly hit by the second hammer claw 4254 . Further, when the cushioning member 9 is contracted by a predetermined amount A1, the first hammer claw 4253 hits the portion of the side surface 4550 of the first anvil claw 4554 other than the groove into which the cushioning member 9 is inserted. This increases the contact area between the anvil 45 and the hammer 42 when the hammer 42 hits, compared to the case where the buffer member 9 is attached to the side surfaces 4550 of the first anvil claw 4554 and the second anvil claw 4556 . The applied force per unit area is reduced, and wear of the anvil 45 can be suppressed. In this embodiment, when the rotation direction of the hammer 42 is constant, the first hammer claw 4253 striking the first anvil claw 4554 and the second hammer claw 4254 striking the second anvil claw 4556 alternately. replaced by That is, after striking the first anvil claw 4554 , the first hammer claw 4253 climbs over the first anvil claw 4554 and strikes the second anvil claw 4556 , so that it becomes the second hammer claw 4254 . Also, after striking the second anvil claw 4556 , the second hammer claw 4254 climbs over the second anvil claw 4556 and strikes the first anvil claw 4554 , so that it becomes the first hammer claw 4253 .
 (2)詳細
 (2.1)全体構成
 以下、本実施形態のインパクト回転工具1について詳細に説明する。
(2) Details (2.1) Overall Configuration Hereinafter, the impact rotary tool 1 of the present embodiment will be described in detail.
 以下の説明では、駆動部3とハンマ42とが並んでいる方向(図2のX方向)を前後方向と規定し、駆動部3から見てハンマ42側を前と規定し、ハンマ42から見て駆動部3側を後と規定する。また、以下の説明では、後述する第2部位22と後述するグリップ部23とが並んでいる方向を上下方向と規定し、グリップ部23から見て第2部位22側を上と規定し、第2部位22から見てグリップ部23側を下と規定する。また、前後方向及び上下方向と直交する方向を、左右方向と規定する。ただし、これらの規定は、インパクト回転工具1の使用方向を規定する趣旨ではない。 In the following description, the direction in which the drive unit 3 and the hammer 42 are aligned (the X direction in FIG. 2) is defined as the front-rear direction, and the front side as viewed from the drive unit 3 is defined as the front side. , the drive unit 3 side is defined as rear. Further, in the following description, the direction in which the second portion 22 (to be described later) and the grip portion 23 (to be described later) are aligned is defined as the vertical direction, and the second portion 22 side as viewed from the grip portion 23 is defined as the upper side. 2 The grip part 23 side as viewed from the part 22 is defined as the bottom. A direction orthogonal to the front-rear direction and the up-down direction is defined as the left-right direction. However, these regulations are not meant to define the usage direction of the impact rotary tool 1 .
 本実施形態のインパクト回転工具1は、可搬型の電動工具である。上述したように、インパクト回転工具1は、駆動軸41と、ハンマ42と、アンビル45と、アンビル45に取り付けられる緩衝部材9と、を備える。また、図2に示すように、インパクト回転工具1は、ハウジング2と、駆動部3と、伝達機構4と、駆動回路ブロック81と、制御部82と、操作部83と、を更に備える。 The impact rotary tool 1 of this embodiment is a portable power tool. As described above, impact rotary tool 1 includes drive shaft 41 , hammer 42 , anvil 45 , and buffer member 9 attached to anvil 45 . 2, the impact rotary tool 1 further includes a housing 2, a drive section 3, a transmission mechanism 4, a drive circuit block 81, a control section 82, and an operation section 83.
 (2.2)ハウジング
 ハウジング2は、図1及び図2に示すように、駆動部3、伝達機構4、駆動回路ブロック81及び制御部82を収容している。また、ハウジング2は、第1部位21と、第2部位22と、グリップ部23と、電池装着部24と、を有する。
(2.2) Housing The housing 2 accommodates the drive section 3, the transmission mechanism 4, the drive circuit block 81, and the control section 82, as shown in FIGS. The housing 2 also has a first portion 21 , a second portion 22 , a grip portion 23 and a battery mounting portion 24 .
 (2.2.1)第1部位
 第1部位21は、第1底部211と、第1側部212と、を有する。第1底部211の形状は、円盤状である。第1底部211の厚さ方向は、前後方向に沿っている。第1底部211は、前後方向に形成されたハウジング貫通孔2110を有する。ハウジング貫通孔2110は、第1底部211の中心に設けられている。ハウジング貫通孔2110には、後述するアンビル45のアンビル軸453が通される。
(2.2.1) First Part The first part 21 has a first bottom portion 211 and a first side portion 212 . The shape of the first bottom portion 211 is disc-shaped. The thickness direction of the first bottom portion 211 extends along the front-rear direction. The first bottom portion 211 has a housing through hole 2110 formed in the front-rear direction. A housing through-hole 2110 is provided in the center of the first bottom portion 211 . An anvil shaft 453 of an anvil 45 , which will be described later, is passed through the housing through hole 2110 .
 第1側部212の形状は、筒状である。より詳細には、第1側部212の形状は、円筒状である。第1側部212は、第1底部211から突出している。より詳細には、第1側部212は、第1底部211の周縁部から突出している。第1側部212は、第1底部211から後方に突出している。 The shape of the first side portion 212 is cylindrical. More specifically, the shape of the first side portion 212 is cylindrical. The first side portion 212 protrudes from the first bottom portion 211 . More specifically, the first side portion 212 protrudes from the peripheral portion of the first bottom portion 211 . The first side portion 212 protrudes rearward from the first bottom portion 211 .
 (2.2.2)第2部位
 第2部位22は、第2底部221と、第2側部222と、を有する。第2底部221の形状は、円盤状である。第2底部221の厚さ方向は、前後方向に沿っている。
(2.2.2) Second Part The second part 22 has a second bottom portion 221 and a second side portion 222 . The shape of the second bottom portion 221 is disc-shaped. The thickness direction of the second bottom portion 221 extends along the front-rear direction.
 第2側部222の形状は、略筒状である。より詳細には、第2側部222の形状は、略円筒状である。第2側部222は、第2底部221から突出している。より詳細には、第2側部222は、第2底部221の周縁部から突出している。第2側部222は、第2底部221から前方に突出している。 The shape of the second side portion 222 is substantially cylindrical. More specifically, the shape of the second side portion 222 is generally cylindrical. The second side portion 222 protrudes from the second bottom portion 221 . More specifically, the second side portion 222 protrudes from the peripheral portion of the second bottom portion 221 . The second side portion 222 protrudes forward from the second bottom portion 221 .
 第2部位22は、第1部位21を収容する。より詳細には、第1側部212の外面が第2側部222の内面の前部に密着し、第2側部222の前端部が第1底部211の周縁部に接するように、第2部位22は、第1部位21を収容する。また、第2側部222の前後方向の寸法は、第1側部212の前後方向の寸法よりも長いため、第1側部212の後端部は第2底部221の周縁部に接しない。そのため、第2側部222の後部は第1側部212の外面に密着しない。 The second part 22 accommodates the first part 21 . More specifically, the outer surface of the first side portion 212 is in close contact with the front portion of the inner surface of the second side portion 222 , and the front end portion of the second side portion 222 is in contact with the peripheral portion of the first bottom portion 211 . The part 22 accommodates the first part 21 . Also, since the front-rear dimension of the second side portion 222 is longer than the front-rear dimension of the first side portion 212 , the rear end portion of the first side portion 212 does not touch the peripheral portion of the second bottom portion 221 . Therefore, the rear portion of the second side portion 222 does not adhere to the outer surface of the first side portion 212 .
 第2部位22は、第2側部222に複数の通気孔223が設けられている。より詳細には、第2部位22は、第1側部212の外面に密着していない第2側部222に複数の通気孔223が設けられている。 A plurality of ventilation holes 223 are provided in the second side portion 222 of the second portion 22 . More specifically, the second part 22 has a plurality of ventilation holes 223 in a second side portion 222 that is not in close contact with the outer surface of the first side portion 212 .
 (2.2.3)グリップ部
 グリップ部23は、第2部位22から突出している。より詳細には、グリップ部23は、第2部位22から下方に突出している。作業者は、グリップ部23を掴んでねじ締め等の作業を行うことができる。
(2.2.3) Grip Part The grip part 23 protrudes from the second part 22 . More specifically, the grip portion 23 protrudes downward from the second portion 22 . A worker can grip the grip portion 23 and perform operations such as screw tightening.
 (2.2.4)装着部
 電池装着部24の形状は、直方体状である。電池装着部24は、グリップ部23の下端につながっている。電池装着部24には、充電式の電池パックB1が着脱可能に取り付けられる。インパクト回転工具1は、電池パックB1を電源として動作する。すなわち、電池パックB1は、駆動部3を駆動する電流を供給する電源である。電池パックB1は、インパクト回転工具1の構成要素ではない。ただし、インパクト回転工具1は、電池パックB1を備えていてもよい。電池パックB1は、複数の二次電池(例えば、リチウムイオン電池)を直列接続して構成された組電池と、組電池を収容したケースと、を備えている。
(2.2.4) Mounting Portion The shape of the battery mounting portion 24 is a rectangular parallelepiped. Battery mounting portion 24 is connected to the lower end of grip portion 23 . A rechargeable battery pack B<b>1 is detachably attached to the battery mounting portion 24 . The impact rotary tool 1 operates using the battery pack B1 as a power source. That is, the battery pack B<b>1 is a power source that supplies a current for driving the drive unit 3 . Battery pack B<b>1 is not a component of impact rotary tool 1 . However, the impact rotary tool 1 may include the battery pack B1. The battery pack B1 includes an assembled battery configured by connecting a plurality of secondary batteries (for example, lithium ion batteries) in series, and a case accommodating the assembled battery.
 (2.3)駆動部
 図2に示すように、駆動部3は、ハウジング2の第1部位21に収容されておらず、第2部位22の後部に収容されている。駆動部3は、例えばブラシレスモータである。駆動部3は、回転軸311及び永久磁石を有する回転子31と、コイルを有する固定子32と、を含んでいる。永久磁石とコイルとの電磁的相互作用により、回転子31は、固定子32に対して回転する。
(2.3) Drive Section As shown in FIG. 2 , the drive section 3 is not housed in the first portion 21 of the housing 2 but is housed in the rear portion of the second portion 22 . The drive unit 3 is, for example, a brushless motor. The drive unit 3 includes a rotor 31 having a rotating shaft 311 and permanent magnets, and a stator 32 having coils. Rotor 31 rotates relative to stator 32 due to electromagnetic interaction between the permanent magnets and the coils.
 また、駆動部3は、サーボモータである。駆動部3のトルク及び回転速度は、制御部82(サーボドライバ)による制御に応じて変化する。より詳細には、制御部82は、駆動部3のトルク及び回転速度を目標値に近づけるように制御するフィードバック制御により駆動部3の動作を制御している。 Also, the drive unit 3 is a servomotor. The torque and rotational speed of the drive section 3 change according to control by the control section 82 (servo driver). More specifically, the control unit 82 controls the operation of the drive unit 3 through feedback control that controls the torque and rotational speed of the drive unit 3 to approach target values.
 (2.4)伝達機構
 図2に示すように、伝達機構4は、ハウジング2の第1部位21に収容されている。伝達機構4は、インパクト機構40を有している。本実施形態のインパクト回転工具1は、インパクト機構40によるインパクト動作を行いながら締付作業を行う、電動式のインパクトドライバである。インパクト機構40は、インパクト動作において、駆動部3の動力に基づいて打撃力を発生させ、その打撃力は先端工具62に作用する。
(2.4) Transmission Mechanism As shown in FIG. 2 , the transmission mechanism 4 is housed in the first portion 21 of the housing 2 . The transmission mechanism 4 has an impact mechanism 40 . The impact rotary tool 1 of this embodiment is an electric impact driver that performs a tightening operation while performing an impact operation by an impact mechanism 40 . The impact mechanism 40 generates an impact force based on the power of the drive unit 3 in the impact operation, and the impact force acts on the tip tool 62 .
 伝達機構4は、インパクト機構40に加えて、遊星歯車機構48を有している。インパクト機構40は、弾性部材43及び球体(第1球体49)を含んでいる。また、インパクト機構40は、駆動軸41と、ハンマ42と、アンビル45と、を含んでいる。ここで、アンビル45は、前後方向においてハンマ42と対向している。 The transmission mechanism 4 has a planetary gear mechanism 48 in addition to the impact mechanism 40 . The impact mechanism 40 includes an elastic member 43 and a sphere (first sphere 49). The impact mechanism 40 also includes a drive shaft 41 , a hammer 42 and an anvil 45 . Here, the anvil 45 faces the hammer 42 in the front-rear direction.
 遊星歯車機構48は、駆動部3の回転軸311の回転速度とトルクとを、ねじ回し動作に必要な回転速度とトルクとに変換する。遊星歯車機構48は、減速装置である。駆動部3の回転軸311のトルクは、遊星歯車機構48を介して、駆動軸41に伝達される。駆動軸41のトルクは、ハンマ42に伝達される。これにより、ハンマ42が回転する。ハンマ42のトルクは、アンビル45に伝達される。これにより、アンビル45が回転する。駆動軸41は、駆動部3とアンビル45との間に配置されている。 The planetary gear mechanism 48 converts the rotation speed and torque of the rotating shaft 311 of the drive unit 3 into the rotation speed and torque required for the screw driving operation. The planetary gear mechanism 48 is a reduction gear. Torque of the rotating shaft 311 of the drive unit 3 is transmitted to the drive shaft 41 via the planetary gear mechanism 48 . Torque of the drive shaft 41 is transmitted to the hammer 42 . This causes the hammer 42 to rotate. Torque of hammer 42 is transmitted to anvil 45 . This causes the anvil 45 to rotate. The drive shaft 41 is arranged between the drive portion 3 and the anvil 45 .
 ハンマ42は、アンビル45に対して移動し、駆動部3から動力を得てアンビル45に打撃力を加える。図3に示すように、ハンマ42は、ハンマ本体420と、2つのハンマ爪425と、を含んでいる。ハンマ本体420の形状は、円柱状である。2つのハンマ爪425は、ハンマ本体420のうちアンビル45側の面から突出している。ハンマ本体420は、駆動軸41が通されるハンマ貫通孔421を有している。 The hammer 42 moves relative to the anvil 45 and receives power from the drive unit 3 to apply a striking force to the anvil 45 . As shown in FIG. 3, the hammer 42 includes a hammer body 420 and two hammer claws 425. As shown in FIG. The shape of the hammer body 420 is cylindrical. The two hammer claws 425 protrude from the surface of the hammer body 420 on the anvil 45 side. The hammer body 420 has a hammer through hole 421 through which the drive shaft 41 is passed.
 ハンマ本体420は、ハンマ貫通孔421の内周面に、2つの溝部423(以下第1溝部と呼ぶ)を有している。駆動軸41は、その外周面に、2つの溝部413(以下第2溝部と呼ぶ)を有している。2つの第2溝部413は、つながっている。2つの第1溝部423と2つの第2溝部413との間には、2つの球体(第1球体49)が収容されている。2つの第1溝部423と2つの第2溝部413と2つの第1球体49とは、カム機構を構成している。第1溝部423内及び第2溝部413内を2つの第1球体49が摺動することにより、ハンマ42は、駆動軸41に対して、駆動軸41の回転軸411方向(前後方向)に移動可能であり、かつ、駆動軸41の回転軸411に対して回転可能である。ハンマ42が駆動軸41の回転軸411方向に沿ってアンビル45に近づく向き又はアンビル45から遠ざかる向きに移動するのに伴って、ハンマ42が駆動軸41に対して回転する。 The hammer body 420 has two grooves 423 (hereinafter referred to as first grooves) on the inner peripheral surface of the hammer through-hole 421 . The drive shaft 41 has two grooves 413 (hereinafter referred to as second grooves) on its outer peripheral surface. The two second grooves 413 are connected. Between the two first grooves 423 and the two second grooves 413, two spheres (first spheres 49) are accommodated. The two first grooves 423, the two second grooves 413, and the two first spheres 49 constitute a cam mechanism. As the two first spheres 49 slide in the first groove portion 423 and the second groove portion 413, the hammer 42 moves in the direction of the rotation axis 411 of the drive shaft 41 (forward and backward direction) with respect to the drive shaft 41. and rotatable about the rotation axis 411 of the drive shaft 41 . As the hammer 42 moves toward or away from the anvil 45 along the rotation axis 411 of the drive shaft 41 , the hammer 42 rotates with respect to the drive shaft 41 .
 図3に示すように、アンビル45は、アンビル本体450と、アンビル軸453と、装着部451と、2つのアンビル爪455と、を含んでいる。 As shown in FIG. 3, the anvil 45 includes an anvil body 450, an anvil shaft 453, a mounting portion 451, and two anvil claws 455.
 アンビル本体450の形状は、円環状である。 The shape of the anvil body 450 is annular.
 アンビル軸453は、アンビル本体450からアンビル本体450の軸方向に突出している。すなわち、アンビル軸453は、アンビル本体450から前方に突出している。 The anvil shaft 453 protrudes from the anvil body 450 in the axial direction of the anvil body 450 . That is, the anvil shaft 453 projects forward from the anvil body 450 .
 装着部451はアンビル軸453の先端に取り付けられる。装着部451には、先端工具62(図1参照)が連結される。より詳細には、装着部451には、先端工具62が着脱可能である。本実施形態では、装着部451には、チャック61(図1参照)を介して先端工具62が連結される。アンビル45は、駆動部3からトルクを受けてチャック61及び先端工具62と共に回転する。 The mounting part 451 is attached to the tip of the anvil shaft 453 . A tip tool 62 (see FIG. 1) is connected to the mounting portion 451 . More specifically, the tip tool 62 can be attached to and detached from the attaching portion 451 . In this embodiment, the mounting portion 451 is connected with the tip tool 62 via the chuck 61 (see FIG. 1). The anvil 45 receives torque from the drive unit 3 and rotates together with the chuck 61 and the tip tool 62 .
 チャック61及び先端工具62は、インパクト回転工具1の構成要素ではない。ただし、インパクト回転工具1は、チャック61及び先端工具62のうち少なくとも一方を備えていてもよい。また、装着部451に直接先端工具62が連結されてもよい。 The chuck 61 and the tip tool 62 are not components of the impact rotary tool 1. However, the impact rotary tool 1 may include at least one of the chuck 61 and the tip tool 62 . Alternatively, the tip tool 62 may be directly connected to the mounting portion 451 .
 先端工具62は、例えば、ドライバビットである。先端工具62は、作業対象のねじ(ボルト又はビス等)と嵌合する。先端工具62がねじと嵌合した状態で先端工具62が回転することにより、ねじを締め付ける又は緩めるといった作業が可能となる。なお、先端工具62はドライバビットに限定されず、ボルト等の締め付けに使用するソケットビット等でもよい。 The tip tool 62 is, for example, a driver bit. The tip tool 62 is fitted with a screw (bolt, screw, or the like) to be worked. By rotating the tip tool 62 in a state where the tip tool 62 is engaged with the screw, it is possible to tighten or loosen the screw. Note that the tip tool 62 is not limited to a driver bit, and may be a socket bit or the like used for tightening a bolt or the like.
 2つのアンビル爪455は、アンビル本体450からアンビル本体450の径方向に突出している。アンビル本体450及び2つのアンビル爪455は、ハウジング2の第1部位21に収容されている。アンビル軸453は、ハウジング2に設けられたハウジング貫通孔2110に通されており、装着部451は、ハウジング2の外部へ露出している。 The two anvil claws 455 protrude from the anvil body 450 in the radial direction of the anvil body 450 . The anvil body 450 and two anvil claws 455 are housed in the first portion 21 of the housing 2 . The anvil shaft 453 is passed through a housing through hole 2110 provided in the housing 2 , and the mounting portion 451 is exposed to the outside of the housing 2 .
 本実施形態では、2つのアンビル爪455のそれぞれは、ハンマ42の2つのハンマ爪425によって打撃される側面4550を有している。また2つのアンビル爪455のうちの一方は、側面4550に、後述する緩衝部材9が取り付けられる第1アンビル爪4554である。もう一方のアンビル爪455は側面4550に緩衝部材9が取り付けられない第2アンビル爪4556である。また、図4及び図5に示すように、本実施形態では、第1アンビル爪4554の側面4550は、第1側面4553と第2側面4555とを含む。また、第2アンビル爪4556の側面4550は、第1側面4553と第2側面4555とを含む。第1側面4553は、アンビル45を、例えばねじ等を締め付ける方向である所定方向DR1に回転させるために、ハンマ爪425によって打撃される。第2側面4555は、アンビル45を所定方向DR1と逆方向に回転させるために、ハンマ爪425によって打撃される。ここで、緩衝部材9は、少なくとも第1アンビル爪4554の第1側面4553に取り付けられる。なお、本実施形態では、緩衝部材9は、第1アンビル爪4554の第1側面4553のみに取り付けられるが、緩衝部材9は、第1側面4553及び第2側面4555の両方に取り付けられてもよい。 In this embodiment, each of the two anvil claws 455 has a side surface 4550 that is struck by the two hammer claws 425 of the hammer 42. One of the two anvil claws 455 is a first anvil claw 4554 having a side surface 4550 to which a cushioning member 9 described later is attached. The other anvil claw 455 is a second anvil claw 4556 to which the buffer member 9 is not attached on the side surface 4550 . Also, as shown in FIGS. 4 and 5 , in this embodiment, side surface 4550 of first anvil claw 4554 includes first side surface 4553 and second side surface 4555 . Also, the side surface 4550 of the second anvil pawl 4556 includes a first side surface 4553 and a second side surface 4555 . The first side surface 4553 is hit by the hammer claw 425 in order to rotate the anvil 45 in the predetermined direction DR1, which is the direction for tightening a screw or the like. The second side surface 4555 is hit by the hammer claw 425 to rotate the anvil 45 in the direction opposite to the predetermined direction DR1. Here, the buffer member 9 is attached to at least the first side surface 4553 of the first anvil claw 4554 . In this embodiment, the cushioning member 9 is attached only to the first side surface 4553 of the first anvil claw 4554, but the cushioning member 9 may be attached to both the first side surface 4553 and the second side surface 4555. .
 弾性部材43は、図2に示すように、ハンマ42と遊星歯車機構48との間に挟まれている。本実施形態の弾性部材43は、円錐コイルばねである。インパクト機構40は、ハンマ42と弾性部材43との間に挟まれた複数(図2では2つ)の球体(第2球体50)と、リング51と、を更に含んでいる。これにより、ハンマ42は、弾性部材43に対して回転可能となっている。ハンマ42は、前向きの力を弾性部材43から受けている。つまり弾性部材43は、ハンマ42をアンビル45側に押す力を与えている。 The elastic member 43 is sandwiched between the hammer 42 and the planetary gear mechanism 48, as shown in FIG. The elastic member 43 of this embodiment is a conical coil spring. The impact mechanism 40 further includes a plurality of (two in FIG. 2) spheres (second spheres 50 ) sandwiched between the hammer 42 and the elastic member 43 and a ring 51 . Thereby, the hammer 42 is rotatable with respect to the elastic member 43 . The hammer 42 receives forward force from the elastic member 43 . In other words, the elastic member 43 gives force to push the hammer 42 toward the anvil 45 side.
 インパクト機構40がインパクト動作を行っていない場合には、駆動軸41の回転方向において、ハンマ42の2つのハンマ爪425のそれぞれと、アンビル45の第1アンビル爪4554及び第2アンビル爪4556のそれぞれとが、接しながら回転する。すなわち、ハンマ42とアンビル45とが一体に回転する。そのため、このとき、駆動軸41と、ハンマ42と、アンビル45と、先端工具62と、が一体に回転する。 When the impact mechanism 40 is not performing an impact operation, each of the two hammer claws 425 of the hammer 42 and each of the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 in the rotation direction of the drive shaft 41. rotates while touching. That is, the hammer 42 and the anvil 45 rotate together. Therefore, at this time, the drive shaft 41, the hammer 42, the anvil 45, and the tip tool 62 rotate together.
 インパクト機構40は、アンビル45に加えられるトルク(以下、負荷トルクと呼ぶ)の大きさに関するトルク条件が満たされると、インパクト動作を行う。インパクト動作は、ハンマ42からアンビル45に打撃力を加える動作である。本実施形態では、トルク条件は、負荷トルクが所定値以上となることである。すなわち、負荷トルクが大きくなってくると、ハンマ42とアンビル45との間で発生する力のうち、ハンマ42を後退させる向きの分力も大きくなってくる。負荷トルクが所定値以上となると、ハンマ42は、弾性部材43を圧縮させながら後退する。そして、ハンマ42が後退することにより、ハンマ42の2つのハンマ爪425がアンビル45の第1アンビル爪4554及び第2アンビル爪4556を乗り越えつつ、ハンマ42が回転する。その後、ハンマ42が弾性部材43からの復帰力を受けて前進する。そして、駆動軸41が略半回転すると、ハンマ42の2つのハンマ爪425がアンビル45の第1アンビル爪4554及び第2アンビル爪4556の側面4550に衝突する。インパクト機構40では、駆動軸41が略半回転するごとにハンマ42の2つのハンマ爪425がアンビル45の第1アンビル爪4554及び第2アンビル爪4556に衝突する。つまり、駆動軸41が略半回転するごとにハンマ42がアンビル45に打撃(回転打撃力)を加える。 The impact mechanism 40 performs an impact operation when a torque condition regarding the magnitude of torque applied to the anvil 45 (hereinafter referred to as load torque) is satisfied. The impact operation is an operation in which the hammer 42 applies a striking force to the anvil 45 . In this embodiment, the torque condition is that the load torque is equal to or greater than a predetermined value. That is, as the load torque increases, the component of the force generated between the hammer 42 and the anvil 45 that causes the hammer 42 to move backward also increases. When the load torque reaches or exceeds a predetermined value, the hammer 42 retreats while compressing the elastic member 43 . Then, the hammer 42 rotates while the two hammer claws 425 of the hammer 42 get over the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 by retreating the hammer 42 . After that, the hammer 42 moves forward by receiving the restoring force from the elastic member 43 . Then, when the drive shaft 41 rotates approximately halfway, the two hammer claws 425 of the hammer 42 collide with the side surfaces 4550 of the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 . In the impact mechanism 40, the two hammer claws 425 of the hammer 42 collide with the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 each time the drive shaft 41 rotates approximately halfway. That is, the hammer 42 applies an impact (rotational impact force) to the anvil 45 each time the drive shaft 41 makes approximately half a rotation.
 このように、インパクト機構40では、ハンマ42とアンビル45との衝突が繰り返し発生する。この衝突によるトルクにより、衝突が無い場合と比較して、ねじ等の締付部品を強力に締め付けることができる。 Thus, in the impact mechanism 40, collisions between the hammer 42 and the anvil 45 occur repeatedly. The torque generated by this collision can tighten a tightening component such as a screw more strongly than when there is no collision.
 (2.5)緩衝部材
 本実施形態では、第1アンビル爪4554の第1側面4553に取り付けられる緩衝部材9は、例えば直方体の部材であり、アンビル45よりも剛性の低い、例えばゴム等の粘弾性体からなる。なお、緩衝部材9の形状は直方体に限定されず、半球等でもよい。また緩衝部材9の材料はゴムに限定されず、ウレタン等でもよい。
(2.5) Cushioning member In the present embodiment, the cushioning member 9 attached to the first side surface 4553 of the first anvil claw 4554 is, for example, a rectangular parallelepiped member having a lower rigidity than the anvil 45, such as rubber. It consists of an elastic body. The shape of the cushioning member 9 is not limited to a rectangular parallelepiped, and may be a hemisphere or the like. Further, the material of the cushioning member 9 is not limited to rubber, and may be urethane or the like.
 図6に示すように、第1アンビル爪4554の第1側面4553には、取付溝4557が設けられており、緩衝部材9は取付溝4557に取り付けられる。より詳細には、取付溝4557は例えば長円形の底面部4558を有する溝であり、緩衝部材9は、取付溝4557の底面部4558に例えば接着剤等によって接着される。このとき、図4に示すように、緩衝部材9の直方体の一面が、底面部4558との接着面90となる。また本実施形態では、取付溝4557は底面部4558から突出した側面部4559と、開口部4560とを更に有している。 As shown in FIG. 6, a mounting groove 4557 is provided on the first side surface 4553 of the first anvil claw 4554, and the cushioning member 9 is mounted in the mounting groove 4557. More specifically, the mounting groove 4557 is, for example, a groove having an oval bottom portion 4558, and the cushioning member 9 is adhered to the bottom portion 4558 of the mounting groove 4557 by, for example, an adhesive. At this time, as shown in FIG. 4 , one surface of the rectangular parallelepiped of the cushioning member 9 becomes the bonding surface 90 with the bottom surface portion 4558 . Further, in this embodiment, the mounting groove 4557 further has a side portion 4559 projecting from the bottom portion 4558 and an opening portion 4560 .
 図4に示すように、前後方向から見たときに、緩衝部材9の一部である被打撃部91は、開口部4560から、取付溝4557の外部に露出している。このとき、被打撃部91は、緩衝部材9の直方体の一面であり接着面90と対向する一面である被打撃面92を有している。これにより、ハンマ爪425による第1側面4553の打撃の際に、まず緩衝部材9の被打撃面92とハンマ爪425とが接触する。このとき、打撃の際の衝撃が、緩衝部材9が弾性変形することによって吸収されることで、騒音の発生を抑制することができる。また、緩衝部材9が取付溝4557に取り付けられていることにより、打撃の際の衝撃による緩衝部材9の位置の移動を抑制することができる。また、取付溝4557の分だけ、緩衝部材9の大きさを大きくすることができ、打撃の際の緩衝部材9の変形を抑制することができる。これにより、緩衝部材9の摩耗を抑制することができる。 As shown in FIG. 4, the hit part 91, which is part of the cushioning member 9, is exposed to the outside of the mounting groove 4557 through the opening 4560 when viewed in the front-rear direction. At this time, the hit portion 91 has a hit surface 92 which is one surface of the rectangular parallelepiped of the cushioning member 9 and which is one surface facing the adhesive surface 90 . As a result, when the hammer claw 425 hits the first side surface 4553 , the hit surface 92 of the cushioning member 9 first contacts the hammer claw 425 . At this time, the impact of the impact is absorbed by the elastic deformation of the cushioning member 9, thereby suppressing noise generation. In addition, since the cushioning member 9 is attached to the attachment groove 4557, it is possible to suppress the positional movement of the cushioning member 9 due to the impact of hitting. Moreover, the size of the cushioning member 9 can be increased by the size of the attachment groove 4557, and deformation of the cushioning member 9 at the time of impact can be suppressed. Thereby, abrasion of the buffer member 9 can be suppressed.
 さらに、打撃の際に緩衝部材9が弾性変形することによって、ハンマ42とアンビル45の接触時間が長くなり、ハンマ42によって打撃されたときのアンビル45のトルクを測定する際の精度が向上する。 Furthermore, the elastic deformation of the cushioning member 9 during impact lengthens the contact time between the hammer 42 and the anvil 45, improving the accuracy when measuring the torque of the anvil 45 when impacted by the hammer 42.
 ここで、底面部4558の大きさは、緩衝部材9の接着面90の大きさよりも大きい。これにより、緩衝部材9がハンマ爪425による打撃によって、取付溝4557の側面部4559方向に膨張した際に、緩衝部材9が側面部4559に接触するのを防止することができる。  Here, the size of the bottom portion 4558 is larger than the size of the bonding surface 90 of the cushioning member 9 . As a result, when the cushioning member 9 is hit by the hammer claw 425 and expands in the direction of the side surface portion 4559 of the mounting groove 4557 , the cushioning member 9 can be prevented from coming into contact with the side surface portion 4559 . 
 (2.6)保持台
 図2に示すように、インパクト回転工具1は、保持台11を更に備える。保持台11は、ハウジング2に収容されている。保持台11は、ハウジング2の第1部位21に保持されている。
(2.6) Holding Base As shown in FIG. 2 , the impact rotary tool 1 further includes a holding base 11 . The holding table 11 is housed in the housing 2 . The holding table 11 is held by the first portion 21 of the housing 2 .
 保持台11の形状は、中空の円柱状である。保持台11は、その内側に遊星歯車機構48を保持している。すなわち、保持台11は、遊星歯車機構48のギアを回転可能に保持している。駆動部3の回転軸311は、保持台11の後面に形成された貫通孔に挿入されており、遊星歯車機構48に連結されている。保持台11の前面からは、駆動軸41が突出している。 The shape of the holding table 11 is a hollow columnar shape. The holding base 11 holds a planetary gear mechanism 48 inside thereof. That is, the holding base 11 rotatably holds the gears of the planetary gear mechanism 48 . A rotating shaft 311 of the drive unit 3 is inserted into a through hole formed in the rear surface of the holding base 11 and connected to the planetary gear mechanism 48 . A drive shaft 41 protrudes from the front surface of the holding base 11 .
 (2.7)スペーサ
 図2に示すように、インパクト回転工具1は、スペーサ46を更に備える。スペーサ46の形状は、円環状である。スペーサ46は、ハウジング2の第1部位21の後端に取り付けられている。スペーサ46は、第1部位21と、アンビル45の第1アンビル爪4554及び第2アンビル爪4556との間に配置されている。
(2.7) Spacers As shown in FIG. 2 , the impact rotary tool 1 further includes spacers 46 . The spacer 46 has an annular shape. A spacer 46 is attached to the rear end of the first portion 21 of the housing 2 . Spacer 46 is arranged between first portion 21 and first anvil claw 4554 and second anvil claw 4556 of anvil 45 .
 (2.8)軸受
 図2に示すように、インパクト回転工具1は、第1軸受71と、第2軸受72と、第3軸受73と、第4軸受74と、第5軸受75と、を更に備える。
(2.8) Bearings As shown in FIG. Prepare more.
 第1軸受71は、ハウジング2の第1部位21に保持されている。第1軸受71は、第1部位21の内側に配置されている。第1軸受71は、アンビル軸453を回転可能に支持している。 The first bearing 71 is held by the first portion 21 of the housing 2 . The first bearing 71 is arranged inside the first portion 21 . The first bearing 71 rotatably supports the anvil shaft 453 .
 第2軸受72は、保持台11に保持されている。第2軸受72は、保持台11の前面に取り付けられている。第2軸受72は、駆動軸41を回転可能に支持している。 The second bearing 72 is held by the holding base 11 . The second bearing 72 is attached to the front surface of the holding base 11 . The second bearing 72 rotatably supports the drive shaft 41 .
 第3軸受73は、保持台11に保持されている。第3軸受73は、保持台11の内側に配置されている。第3軸受73は、駆動軸41を回転可能に支持している。 The third bearing 73 is held by the holding base 11 . The third bearing 73 is arranged inside the holding base 11 . The third bearing 73 rotatably supports the drive shaft 41 .
 第4軸受74は、保持台11に保持されている。第4軸受74は、保持台11の後面に取り付けられている。第4軸受74は、駆動部3の回転軸311を回転可能に支持している。 The fourth bearing 74 is held by the holding table 11 . The fourth bearing 74 is attached to the rear surface of the holding base 11 . The fourth bearing 74 rotatably supports the rotating shaft 311 of the driving section 3 .
 第5軸受75は、ハウジング2の第2部位22に保持されている。第5軸受75は、駆動部3の回転軸311を回転可能に支持している。 The fifth bearing 75 is held by the second portion 22 of the housing 2 . The fifth bearing 75 rotatably supports the rotating shaft 311 of the driving section 3 .
 (2.9)操作部
 図2に示すように、操作部83は、グリップ部23から突出している。操作部83は、駆動部3の回転軸311の回転を制御するための操作を受け付ける。操作部83を引く操作により、駆動部3のオンオフを切替可能である。また、操作部83を引く操作の引込み量で、回転軸311の回転速度を調整可能である。上記引込み量が大きいほど、回転軸311の回転速度が速くなる。
(2.9) Operation Portion As shown in FIG. 2 , the operation portion 83 protrudes from the grip portion 23 . The operating portion 83 receives an operation for controlling the rotation of the rotating shaft 311 of the drive portion 3 . The drive unit 3 can be turned on and off by pulling the operation unit 83 . Further, the rotation speed of the rotating shaft 311 can be adjusted by the amount of retraction of the operation of pulling the operation portion 83 . The rotation speed of the rotary shaft 311 increases as the retraction amount increases.
 (2.10)制御部
 制御部82は、操作部83を引く操作の引込み量に応じて、回転軸311を回転又は停止させ、また、回転軸311の回転速度を制御する。
(2.10) Control Unit The control unit 82 rotates or stops the rotation shaft 311 and controls the rotation speed of the rotation shaft 311 according to the amount of retraction of the operation of pulling the operation unit 83 .
 制御部82は、例えば、マイクロコントローラを含む。制御部82は、回転軸311の回転速度を変化させることにより、アンビル45及び先端工具62の回転速度を変化させることができる。制御部82は、例えば、駆動部3に供給する電力を変化させることで、回転軸311の回転速度を変化させる。 The control unit 82 includes, for example, a microcontroller. The controller 82 can change the rotational speeds of the anvil 45 and the tip tool 62 by changing the rotational speed of the rotating shaft 311 . The control unit 82 changes the rotation speed of the rotating shaft 311 by changing the electric power supplied to the drive unit 3, for example.
 (2.11)駆動回路ブロック
 図2に示すように、駆動回路ブロック81は、駆動部3の後方に配置されている。駆動回路ブロック81は、基板810と、基板810に実装された複数の電子部品と、を含む。複数の電子部品は、インバータ回路を構成する複数のパワー素子を含む。各パワー素子は、例えば、FET(Field Effect Transistor)素子である。
(2.11) Drive Circuit Block As shown in FIG. 2 , the drive circuit block 81 is arranged behind the drive section 3 . Drive circuit block 81 includes a substrate 810 and a plurality of electronic components mounted on substrate 810 . A plurality of electronic components includes a plurality of power elements forming an inverter circuit. Each power element is, for example, a FET (Field Effect Transistor) element.
 制御部82は、駆動回路ブロック81を介して、駆動部3を制御する。すなわち、制御部82は、複数のFET素子(インバータ回路)を経由して駆動部3に供給される電力を、駆動回路ブロック81の複数のFET素子のオンオフを切り替えることで制御する。 The control unit 82 controls the driving unit 3 via the driving circuit block 81. That is, the control unit 82 controls the power supplied to the driving unit 3 via multiple FET elements (inverter circuits) by switching the multiple FET elements of the driving circuit block 81 on and off.
 (2.12)ファン
 図2に示すように、インパクト回転工具1は、ファン14を更に備えている。ファン14は、ハウジング2の第2部位22に収容されている。ファン14は、駆動部3と保持台11との間に配置されている。
(2.12) Fan As shown in FIG. 2 , the impact rotary tool 1 further includes a fan 14 . Fan 14 is housed in second portion 22 of housing 2 . The fan 14 is arranged between the driving section 3 and the holding base 11 .
 ファン14は、駆動部3の回転軸311に連結されている。ファン14は、回転軸311と共に回転する。ファン14は、前方へ流れる風を発生させる。これにより、ファン14は、ハウジング2の内部空間を空冷する。 The fan 14 is connected to the rotating shaft 311 of the drive unit 3. The fan 14 rotates together with the rotating shaft 311 . The fan 14 generates wind that flows forward. Thereby, the fan 14 air-cools the internal space of the housing 2 .
 (3)打撃動作
 上述したように、インパクト回転工具1は、ハンマ42が回転軸411を中心に回転することによって、アンビル45が有する第1アンビル爪4554及び第2アンビル爪4556のそれぞれが、2つのハンマ爪425によって打撃される。
(3) Striking operation As described above, the impact rotary tool 1 rotates the hammer 42 about the rotation axis 411 so that each of the first anvil claw 4554 and the second anvil claw 4556 of the anvil 45 is doubled. It is hit by two hammer claws 425 .
 本実施形態では、図4に示すように、第1アンビル爪4554の第1側面4553に設けられた取付溝4557に緩衝部材9が取り付けられており、ハンマ爪425による打撃の際、まず緩衝部材9の被打撃面92と第1ハンマ爪4253が接触し、第1アンビル爪4554が打撃される。このとき、第1アンビル爪4554の第1側面4553の緩衝部材9以外の部分は、第1ハンマ爪4253とは空間S2を隔てた状態で近接した状態となる。なお、本実施形態では、第1アンビル爪4554と第2アンビル爪4556とは、前後方向から見て、互いに対向して設けられる。また、第1ハンマ爪4253と第2ハンマ爪4254とは、前後方向から見て、互いに対向して設けられる。よってこのとき、第2アンビル爪4556の第1側面4553と、第2ハンマ爪4254とは空間S1を隔てた状態で近接した状態となる。 In this embodiment, as shown in FIG. 4, the buffer member 9 is attached to the mounting groove 4557 provided in the first side surface 4553 of the first anvil claw 4554, and when the hammer claw 425 strikes, the buffer member 9 and the first hammer claw 4253 come into contact with each other, and the first anvil claw 4554 is struck. At this time, the portion of the first side surface 4553 of the first anvil claw 4554 other than the buffer member 9 is in a state of being close to the first hammer claw 4253 with the space S2 therebetween. Note that, in the present embodiment, the first anvil claw 4554 and the second anvil claw 4556 are provided facing each other when viewed from the front-rear direction. Also, the first hammer claw 4253 and the second hammer claw 4254 are provided facing each other when viewed from the front-rear direction. Therefore, at this time, the first side surface 4553 of the second anvil claw 4556 and the second hammer claw 4254 are in close proximity with the space S1 therebetween.
 第1ハンマ爪4253は、緩衝部材9の被打撃面92と接触した後、緩衝部材9を圧縮しながら所定方向DR1に回転する。そして、図5に示すように、緩衝部材9が所定量A1縮み、被打撃部91が取付溝4557の内部(開口部4560と底面部4558との間の空間)に収容されたとき、第2アンビル爪4556の第1側面4553と、第2ハンマ爪4254とが接触し、第2アンビル爪4556は第2ハンマ爪4254によって打撃される。このとき、第1アンビル爪4554の第1側面4553の緩衝部材9以外の部位は、第1ハンマ爪4253と接触し、第1ハンマ爪4253によって打撃される。つまり本実施形態では、緩衝部材9が所定量A1縮んだとき、第1アンビル爪4554の第1側面4553の緩衝部材9以外の部分と、第2アンビル爪4556の第1側面4553とは、第1ハンマ爪4253及び第2ハンマ爪4254によってそれぞれ同時に打撃される。 After coming into contact with the hit surface 92 of the buffer member 9, the first hammer claw 4253 rotates in the predetermined direction DR1 while compressing the buffer member 9. Then, as shown in FIG. 5, when the cushioning member 9 is shrunk by a predetermined amount A1 and the hit part 91 is accommodated inside the mounting groove 4557 (the space between the opening 4560 and the bottom part 4558), the second The first side surface 4553 of the anvil claw 4556 and the second hammer claw 4254 come into contact with each other, and the second anvil claw 4556 is hit by the second hammer claw 4254 . At this time, the portion of the first side surface 4553 of the first anvil claw 4554 other than the buffer member 9 comes into contact with the first hammer claw 4253 and is hit by the first hammer claw 4253 . That is, in this embodiment, when the buffer member 9 is shrunk by a predetermined amount A1, the portion other than the buffer member 9 of the first side surface 4553 of the first anvil claw 4554 and the first side surface 4553 of the second anvil claw 4556 The first hammer claw 4253 and the second hammer claw 4254 strike simultaneously.
 (4)変形例 
 以下、上記実施形態の変形例に係るインパクト回転工具1を列挙する。ただし上記実施形態のインパクト回転工具1と共通する構成要素については同じ参照符号を付して、適宜その説明を省略する。また、以下に説明する変形例の各構成は、上記実施形態で説明した各構成と適宜組み合わせて適用可能である。
(4) Modification
Hereinafter, impact rotary tools 1 according to modifications of the above embodiment will be listed. However, the same reference numerals are given to the components common to the impact rotary tool 1 of the above-described embodiment, and the description thereof will be omitted as appropriate. Moreover, each configuration of the modified example described below can be applied in appropriate combination with each configuration described in the above embodiment.
 アンビル爪455の数は2つに限定されず、3つ以上であってもよい。アンビル爪455の数が3つ以上である場合は、3つ以上のアンビル爪455のうち、少なくとも1つのアンビル爪455が、緩衝部材9が取り付けられる第1アンビル爪4554となる。 The number of anvil claws 455 is not limited to two, and may be three or more. When the number of anvil claws 455 is three or more, at least one anvil claw 455 among the three or more anvil claws 455 becomes the first anvil claw 4554 to which the cushioning member 9 is attached.
 ハンマ爪425の数は2つに限定されず、3つ以上であってもよい。 The number of hammer claws 425 is not limited to two, and may be three or more.
 緩衝部材9は、ゴム等の 粘弾性体に限定されず、板ばね等のばねであってもよい。 The cushioning member 9 is not limited to a viscoelastic body such as rubber, and may be a spring such as a leaf spring.
 緩衝部材9は、ハンマ42に取り付けられてもよい。 The cushioning member 9 may be attached to the hammer 42.
 (5)まとめ
 以上説明したように、第1の態様のインパクト回転工具(1)は、駆動軸(41)と、ハンマ(42)と、アンビル(45)と、緩衝部材(9)と、を備える。駆動軸(41)は、駆動部(3)によって回転する。ハンマ(42)は、駆動軸(41)の回転軸(411)を中心に回転可能である。アンビル(45)は、ハンマ(42)に打撃されることによって回転軸(411)を中心に回転可能である。緩衝部材(9)は、アンビル(45)に取り付けられる。ハンマ(42)は、複数のハンマ爪(425)を有する。アンビル(45)は、複数のアンビル爪(455)を有する。複数のアンビル爪(455)のそれぞれは、側面(4550)を有する。複数のアンビル爪(455)は、少なくとも1つの第1アンビル爪(4554)と、少なくとも1つの第2アンビル爪(4556)とを含む。第1アンビル爪(4554)の側面(4550)には緩衝部材(9)が取り付けられている。第1アンビル爪(4554)の緩衝部材(9)が、複数のハンマ爪(425)のうち第1アンビル爪(4554)を打撃する第1ハンマ爪(4253)に圧縮されて所定量(A1)縮んだときに、複数のハンマ爪(425)のうち第1ハンマ爪(4253)以外の第2ハンマ爪(4254)によって第2アンビル爪(4556)が打撃される。
(5) Summary As described above, the impact rotary tool (1) of the first aspect includes the drive shaft (41), the hammer (42), the anvil (45), and the buffer member (9). Prepare. The drive shaft (41) is rotated by the drive (3). The hammer (42) is rotatable around the axis of rotation (411) of the drive shaft (41). The anvil (45) is rotatable about the axis of rotation (411) by being hit by the hammer (42). The damping member (9) is attached to the anvil (45). Hammer (42) has a plurality of hammer pawls (425). Anvil (45) has a plurality of anvil claws (455). Each of the plurality of anvil claws (455) has a side surface (4550). Plurality of anvil pawls (455) includes at least one first anvil pawl (4554) and at least one second anvil pawl (4556). A buffer member (9) is attached to the side surface (4550) of the first anvil claw (4554). The buffering member (9) of the first anvil claw (4554) is compressed by the first hammer claw (4253) among the plurality of hammer claws (425) that strikes the first anvil claw (4554) and is compressed by a predetermined amount (A1). When contracted, the second anvil claw (4556) is hit by the second hammer claw (4254) of the plurality of hammer claws (425) other than the first hammer claw (4253).
 この態様によれば、ハンマ(42)のアンビル(45)への打撃の際に発生する騒音を低減することができる。またアンビル(45)の摩耗を抑制することができる。 According to this aspect, noise generated when the hammer (42) hits the anvil (45) can be reduced. Also, the wear of the anvil (45) can be suppressed.
 第2の態様のインパクト回転工具(1)は、第1の態様において、弾性部材(43)と、第1溝部(423)と、第2溝部(413)と、球体(49)と、を更に備える。弾性部材(43)は、ハンマ(42)をアンビル(45)側に押す力を与える。第1溝部(423)は、ハンマ(42)の内面に設けられる。第2溝部(413)は、駆動軸(41)の外面に設けられる。球体(49)は、第1溝部(423)及び第2溝部(413)に収容される。ハンマ(42)は、球体(49)が第1溝部(423)及び第2溝部(413)を摺動することにより、回転軸(411)方向に移動可能であり、かつ、回転軸(411)を中心に回転可能である。 The impact rotary tool (1) of the second aspect, in the first aspect, further comprises an elastic member (43), a first groove (423), a second groove (413), and a sphere (49). Prepare. The elastic member (43) provides force to push the hammer (42) toward the anvil (45). A first groove (423) is provided on the inner surface of the hammer (42). A second groove (413) is provided on the outer surface of the drive shaft (41). The sphere (49) is housed in the first groove (423) and the second groove (413). The hammer (42) is movable in the direction of the rotation axis (411) by sliding the ball (49) in the first groove (423) and the second groove (413), and moves along the rotation axis (411). is rotatable around
 この態様によれば、インパクト機構を実現できる。 According to this aspect, an impact mechanism can be realized.
 第3の態様のインパクト回転工具(1)では、第1及び第2の態様において、側面(4550)は、第1側面(4553)と、第2側面(4555)とを含む。第1側面(4553)は、アンビル(45)を所定方向(DR1)に回転させるためにハンマ爪(425)によって打撃される。第2側面(4555)は、アンビル(45)を所定方向(DR1)と逆方向に回転させるためにハンマ爪(425)によって打撃される。緩衝部材(9)は、少なくとも第1アンビル爪(4554)の第1側面(4553)に取り付けられる。 In the impact rotary tool (1) of the third aspect, in the first and second aspects, the side surface (4550) includes the first side surface (4553) and the second side surface (4555). The first side (4553) is struck by a hammer pawl (425) to rotate the anvil (45) in a predetermined direction (DR1). The second side (4555) is struck by a hammer pawl (425) to rotate the anvil (45) in a direction opposite to the predetermined direction (DR1). A cushioning member (9) is attached to at least the first side surface (4553) of the first anvil pawl (4554).
 この態様によれば、アンビル(45)を所定方向(DR1)に回転させるための、ハンマ(42)のアンビル(45)への打撃の際に発生する騒音を低減することができる。 According to this aspect, noise generated when the hammer (42) hits the anvil (45) to rotate the anvil (45) in the predetermined direction (DR1) can be reduced.
 第4の態様のインパクト回転工具(1)では、第1~第3の態様のいずれか1つにおいて、緩衝部材(9)は、アンビル(45)よりも剛性の低い粘弾性体からなる。  In the impact rotary tool (1) of the fourth aspect, in any one of the first to third aspects, the cushioning member (9) is made of a viscoelastic body having lower rigidity than the anvil (45).
 この態様によれば、緩衝部材(9)が弾性変形することによって、打撃の際の衝撃を吸収することができる。 According to this aspect, the cushioning member (9) can be elastically deformed to absorb the impact at the time of hitting.
 第5の態様のインパクト回転工具(1)では、第1~第4の態様のいずれか1つにおいて、第1アンビル爪(4554)の側面(4550)に取付溝(4557)が設けられ、緩衝部材(9)は、取付溝(4557)に取り付けられる。 In the impact rotary tool (1) of the fifth aspect, in any one of the first to fourth aspects, a mounting groove (4557) is provided on the side surface (4550) of the first anvil claw (4554) to provide a buffer. Member (9) is mounted in mounting groove (4557).
 この態様によれば、打撃の際の衝撃による緩衝部材(9)の位置の移動を抑制することができる。 According to this aspect, it is possible to suppress the positional movement of the cushioning member (9) due to the impact at the time of hitting.
 第6の態様のインパクト回転工具(1)では、第5の態様において、取付溝(4557)は、緩衝部材(9)が取り付けられる底面部(4558)を有する。底面部(4558)の大きさは、緩衝部材(9)の底面部(4558)との接着面(90)の大きさよりも大きい。 In the impact rotary tool (1) of the sixth aspect, in the fifth aspect, the attachment groove (4557) has a bottom portion (4558) to which the cushioning member (9) is attached. The size of the bottom portion (4558) is larger than the size of the bonding surface (90) of the cushioning member (9) with the bottom portion (4558).
 この態様によれば、緩衝部材(9)がハンマ(42)による打撃によって、取付溝(4557)の側面部(4559)方向に膨張した際に、緩衝部材(9)が側面部(4559)に接触するのを防止することができる。 According to this aspect, when the cushioning member (9) is hit by the hammer (42) and expands in the direction of the side surface (4559) of the mounting groove (4557), the cushioning member (9) moves toward the side surface (4559). contact can be prevented.
 第7の態様のインパクト回転工具(1)では、第1~第6の態様のいずれか1つにおいて、第2アンビル爪(4556)の側面(4550)が第2ハンマ爪(4254)によって打撃されるときに、第1アンビル爪(4554)の側面(4550)における緩衝部材(9)以外の部位が、第1ハンマ爪(4253)によって打撃される。 In the impact rotary tool (1) of the seventh aspect, in any one of the first to sixth aspects, the side surface (4550) of the second anvil claw (4556) is struck by the second hammer claw (4254). At times, the first hammer claw (4253) hits the side surface (4550) of the first anvil claw (4554) other than the buffer member (9).
 この態様によれば、第1ハンマ爪(4253)によって、第1アンビル爪(4554)の側面(4550)における緩衝部材(9)以外の部分を打撃することで、アンビル(45)にトルクを与えることができる。 According to this aspect, torque is applied to the anvil (45) by hitting the portion other than the buffer member (9) on the side surface (4550) of the first anvil claw (4554) with the first hammer claw (4253). be able to.
 なお、第2~第7の態様はインパクト回転工具(1)に必須の構成ではなく、適宜省略が可能である。 It should be noted that the second to seventh aspects are not essential configurations for the impact rotary tool (1), and can be omitted as appropriate.
 1 インパクト回転工具
 9 緩衝部材
 41 駆動軸
 42 ハンマ
 43 弾性部材
 45 アンビル
 49 球体
 411 回転軸
 413 溝部(第2溝部)
 423 溝部(第1溝部)
 425 ハンマ爪
 455 アンビル爪
 4253 第1ハンマ爪
 4254 第2ハンマ爪
 4550 側面
 4553 第1側面
 4554 第1アンビル爪
 4555 第2側面
 4556 第2アンビル爪
 4557 取付溝
 4558 底面部
 4559 側面部
 A1 所定量
 DR1 所定方向
Reference Signs List 1 Impact rotary tool 9 Cushioning member 41 Drive shaft 42 Hammer 43 Elastic member 45 Anvil 49 Sphere 411 Rotating shaft 413 Groove (second groove)
423 groove (first groove)
425 Hammer claw 455 Anvil claw 4253 First hammer claw 4254 Second hammer claw 4550 Side surface 4553 First side surface 4554 First anvil claw 4555 Second side surface 4556 Second anvil claw 4557 Mounting groove 4558 Bottom surface portion 4559 Side portion A1 predetermined amount DR1 predetermined direction

Claims (7)

  1.  駆動部によって回転する駆動軸と、
     前記駆動軸の回転軸を中心に回転可能なハンマと、
     前記ハンマに打撃されることによって前記回転軸を中心に回転可能なアンビルと、
     前記アンビルに取り付けられる緩衝部材と、を備え、
     前記ハンマは複数のハンマ爪を有し、
     前記アンビルは複数のアンビル爪を有し、
     前記複数のアンビル爪のそれぞれは、側面を有し、
     前記複数のアンビル爪は、少なくとも1つの第1アンビル爪と、少なくとも1つの第2アンビル爪とを含み、
     前記第1アンビル爪の前記側面には前記緩衝部材が取り付けられており、
     前記第1アンビル爪の前記緩衝部材が、前記複数のハンマ爪のうち前記第1アンビル爪を打撃する第1ハンマ爪に圧縮されて所定量縮んだときに、前記複数のハンマ爪のうち前記第1ハンマ爪以外の第2ハンマ爪によって前記第2アンビル爪が打撃される
     インパクト回転工具。
    a drive shaft rotated by the drive;
    a hammer rotatable about the rotation axis of the drive shaft;
    an anvil rotatable about the rotation axis by being hit by the hammer;
    a cushioning member attached to the anvil;
    The hammer has a plurality of hammer claws,
    the anvil having a plurality of anvil claws,
    each of the plurality of anvil claws has a side surface;
    the plurality of anvil claws includes at least one first anvil claw and at least one second anvil claw;
    The buffer member is attached to the side surface of the first anvil claw,
    When the shock-absorbing member of the first anvil claw is compressed by the first hammer claw of the plurality of hammer claws striking the first anvil claw and shrinks by a predetermined amount, the buffer member of the first hammer claw of the plurality of hammer claws shrinks by a predetermined amount. An impact rotary tool in which the second anvil claw is struck by a second hammer claw other than the first hammer claw.
  2.  前記ハンマを前記アンビル側に押す力を与える弾性部材と、
     前記ハンマの内面に設けられる第1溝部と、
     前記駆動軸の外面に設けられる第2溝部と、
     前記第1溝部及び前記第2溝部に収容される球体と、を更に備え、
     前記ハンマは、前記球体が前記第1溝部及び前記第2溝部を摺動することにより、前記回転軸方向に移動可能であり、かつ、前記回転軸を中心に回転可能である
     請求項1に記載のインパクト回転工具。
    an elastic member that applies a force to push the hammer toward the anvil;
    a first groove provided on the inner surface of the hammer;
    a second groove provided on the outer surface of the drive shaft;
    a sphere accommodated in the first groove and the second groove,
    2. The hammer according to claim 1, wherein the ball slides in the first groove and the second groove, so that the hammer can move in the direction of the rotation axis and can rotate about the rotation axis. impact rotary tool.
  3.  前記側面は、前記アンビルを所定方向に回転させるために前記ハンマ爪によって打撃される第1側面と、前記アンビルを前記所定方向と逆方向に回転させるために前記ハンマ爪によって打撃される第2側面とを含み、
     前記緩衝部材は、少なくとも前記第1アンビル爪の前記第1側面に取り付けられる
     請求項1又は2に記載のインパクト回転工具。
    The side surfaces are a first side surface that is hit by the hammer claw to rotate the anvil in a predetermined direction, and a second side surface that is hit by the hammer claw to rotate the anvil in a direction opposite to the predetermined direction. and
    The impact rotary tool according to claim 1 or 2, wherein the buffer member is attached to at least the first side surface of the first anvil claw.
  4.  前記緩衝部材は、前記アンビルよりも剛性の低い粘弾性体を含む
     請求項1~3のいずれか1項に記載のインパクト回転工具。
    The impact rotary tool according to any one of claims 1 to 3, wherein the cushioning member includes a viscoelastic body having a rigidity lower than that of the anvil.
  5.  前記第1アンビル爪の前記側面に取付溝が設けられ、
     前記緩衝部材は、前記取付溝に取り付けられる
     請求項1~4のいずれか1項に記載のインパクト回転工具。
    A mounting groove is provided on the side surface of the first anvil claw,
    The impact rotary tool according to any one of claims 1 to 4, wherein the cushioning member is attached to the attachment groove.
  6.  前記取付溝は、前記緩衝部材が取り付けられる底面部を有し、
     前記底面部の大きさは、前記緩衝部材の前記底面部との接着面の大きさよりも大きい
     請求項5に記載のインパクト回転工具。
    The mounting groove has a bottom portion to which the cushioning member is mounted,
    The impact rotary tool according to claim 5, wherein the size of the bottom portion is larger than the size of the bonding surface of the cushioning member to the bottom portion.
  7.  前記第2アンビル爪の前記側面が前記第2ハンマ爪によって打撃されるときに、前記第1アンビル爪の前記側面における前記緩衝部材以外の部位が、前記第1ハンマ爪によって打撃される
     請求項1~6のいずれか1項に記載のインパクト回転工具。
    2. When said side surface of said second anvil claw is struck by said second hammer claw, a portion of said side surface of said first anvil claw other than said buffer member is struck by said first hammer claw. 7. The impact rotary tool according to any one of 1 to 6.
PCT/JP2022/002848 2021-02-08 2022-01-26 Impact rotary tool WO2022168700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-018541 2021-02-08
JP2021018541A JP2022121274A (en) 2021-02-08 2021-02-08 impact rotary tool

Publications (1)

Publication Number Publication Date
WO2022168700A1 true WO2022168700A1 (en) 2022-08-11

Family

ID=82741624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002848 WO2022168700A1 (en) 2021-02-08 2022-01-26 Impact rotary tool

Country Status (2)

Country Link
JP (1) JP2022121274A (en)
WO (1) WO2022168700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI841378B (en) 2023-05-09 2024-05-01 何全政 Torque module for power tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559174B2 (en) * 1998-05-25 2004-08-25 リョービ株式会社 Impact tool impact structure
JP2012045670A (en) * 2010-08-26 2012-03-08 Panasonic Electric Works Power Tools Co Ltd Impact rotary tool
JP5611465B2 (en) * 2010-07-19 2014-10-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Hand-held machine tool with mechanical striking mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559174B2 (en) * 1998-05-25 2004-08-25 リョービ株式会社 Impact tool impact structure
JP5611465B2 (en) * 2010-07-19 2014-10-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Hand-held machine tool with mechanical striking mechanism
JP2012045670A (en) * 2010-08-26 2012-03-08 Panasonic Electric Works Power Tools Co Ltd Impact rotary tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI841378B (en) 2023-05-09 2024-05-01 何全政 Torque module for power tools

Also Published As

Publication number Publication date
JP2022121274A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
JP6849088B2 (en) Electrical equipment
US20170036327A1 (en) Electric tool
US20130284480A1 (en) Power tool
JP2013000846A (en) Impact tool
GB2454873A (en) Power Hand Tool
JP2018161731A (en) Rotary impact tool
JP6429120B2 (en) Impact rotary tool
JP2023023691A (en) impact tool
WO2022168710A1 (en) Impact rotary tool
WO2022168700A1 (en) Impact rotary tool
US20230166387A1 (en) Impact tool
WO2022168863A1 (en) Impact tool
JP2009172732A (en) Impact rotary tool
JP7462276B2 (en) Impact Tools
JP2013063494A (en) Power tool
JP2018051661A (en) Rotary impact tool
WO2022168512A1 (en) Impact tool
JP2012139767A (en) Driving tool
JP2021532998A (en) Hand-held tool machines, especially impact drivers
JP6638856B2 (en) Screw tightening tool
US20230364751A1 (en) Impact tool
JP2023180164A (en) Impact rotating tool
JP2023180163A (en) Impact rotating tool
WO2023199811A1 (en) Electric tool
US20230364750A1 (en) Impact tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749574

Country of ref document: EP

Kind code of ref document: A1