WO2022166364A1 - 配电***、配电***的控制方法及新能源汽车 - Google Patents

配电***、配电***的控制方法及新能源汽车 Download PDF

Info

Publication number
WO2022166364A1
WO2022166364A1 PCT/CN2021/135938 CN2021135938W WO2022166364A1 WO 2022166364 A1 WO2022166364 A1 WO 2022166364A1 CN 2021135938 W CN2021135938 W CN 2021135938W WO 2022166364 A1 WO2022166364 A1 WO 2022166364A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch unit
unit
detection point
voltage switch
Prior art date
Application number
PCT/CN2021/135938
Other languages
English (en)
French (fr)
Inventor
曲振宁
弭超
马云天
慈伟程
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022166364A1 publication Critical patent/WO2022166364A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the embodiments of the present application relate to the technical field of new energy, for example, to a power distribution system, a control method of the power distribution system, and a new energy vehicle.
  • the new energy vehicle dual-motor hybrid system is different from the previous Electric Vehicle (EV), Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV). Differently, there are two high-voltage power supplies, namely the power battery assembly and the dual-motor high-voltage generator assembly.
  • the high-voltage power distribution box is integrated in the power battery pack, which distributes the power of the power battery to different power loads of the vehicle, and is the core component of the high-voltage electrical system.
  • the BMS battery management system, battery management module
  • the motor controller can monitor the output voltage and current of the high-voltage generator in real time
  • the power battery in the dual-motor hybrid system The high-voltage generator and the high-voltage generator are powered on and off independently, and the power distribution system cannot support the coordinated work of the two sets of high-voltage power supply systems.
  • Embodiments of the present application provide a power distribution system, a control method for the power distribution system, and a new energy vehicle.
  • an embodiment of the present application provides a power distribution system, the power distribution system includes: a high-voltage power distribution device; the high-voltage power distribution device includes a first high-voltage switch unit, a second high-voltage switch unit, and a high-voltage power management unit ;
  • the control terminal of the first high-voltage switch unit and the control terminal of the second high-voltage switch unit are respectively connected to the high-voltage power management unit, the first terminal of the first high-voltage switch unit is connected to the power battery, and the first high-voltage switch unit is connected to the power battery.
  • the second end of a high-voltage switch unit is connected to the drive motor, the first end of the second high-voltage switch unit is connected to the high-voltage generator, and the second end of the second high-voltage switch unit is connected to the drive motor;
  • the high-voltage power management unit is configured to send a first switch control signal to the control terminal of the first high-voltage switch unit or the control terminal of the second high-voltage switch unit to control the first high-voltage switch unit or the second high-voltage switch unit. Two high-voltage switch units are turned on;
  • the first switch control signal is generated according to the driving control signal sent by the vehicle control unit; the vehicle control unit is set to be based on the control command obtained from the man-machine interface or according to the remaining capacity of the battery of the power battery The drive control signal is sent.
  • the embodiments of the present application also provide a new energy vehicle, the new energy vehicle includes: a human-machine interface, a vehicle control unit, a power battery, a high-voltage generator, a drive motor, and the power distribution described in the first aspect. system;
  • the vehicle control unit is respectively connected with the man-machine interface, the high-voltage generator, the power battery and the power distribution system;
  • the power distribution system is connected to the drive motor.
  • an embodiment of the present application further provides a control method for a power distribution system.
  • the control method for the power distribution system adopts the power distribution system described in the first aspect, and the control method for the power distribution system includes:
  • the high-voltage power management unit sends a first switch control signal to the control terminal of the first high-voltage switch unit or the control terminal of the second high-voltage switch unit to control the first high-voltage switch unit or the second high-voltage switch unit is turned on; wherein, the first switch control signal is generated according to the drive control signal sent by the vehicle control unit; the vehicle control unit is based on the control command obtained from the man-machine interface or Send the drive control signal according to the remaining battery capacity of the power battery;
  • the high-voltage power management unit controls the second high-voltage switch unit to be turned on, so that the high-voltage generator is turned on supplying power to the drive motor; or, in response to the second high-voltage switch unit being turned on and the high-voltage generator being faulty, the high-voltage power management unit controls the first high-voltage switch unit to be turned on, so that all The power battery supplies power to the drive motor.
  • FIG. 1 is a schematic structural diagram of a power distribution system provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a control method of a power distribution system provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another power distribution system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another power distribution system provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a power distribution system provided by an embodiment of the present application.
  • the power distribution system 100 provided by this embodiment includes: a high-voltage power distribution device 10 ; the high-voltage power distribution device 10 includes a first high-voltage power distribution device 10
  • the switch unit 11, the second high voltage switch unit 12 and the high voltage power management unit 13; the control terminal of the first high voltage switch unit 11 and the control terminal of the second high voltage switch unit 12 are respectively connected to the high voltage power management unit 13, and the first high voltage switch unit
  • the first end of 11 is connected to the power battery 20, the second end of the first high voltage switch unit 11 is electrically connected to the drive motor 30, the first end of the second high voltage switch unit 12 is connected to the high voltage generator 40, and the second high voltage switch unit
  • the second end of 12 is connected to the drive motor 30;
  • the high-voltage power management unit 13 is configured to send a first switch control signal to the control end of the first high-voltage switch unit 11 or the control end of the second high-volt
  • the high-voltage power management unit 13 is configured to send the first switch control signal to the control terminal of the first high-voltage switch unit 11 to control the first high-voltage switch unit 11 to be turned on, or to send the first switch control signal to the control terminal of the first high-voltage switch unit 11 .
  • the control terminal of the second high voltage switch unit 12 is used to control the conduction of the second high voltage switch unit 12 .
  • FIG. 2 is a flowchart of a control method of a power distribution system provided by an embodiment of the present application.
  • the control method of a power distribution system provided by an embodiment of the present application is implemented by using the power distribution system described above. As shown in FIG. 2 , this The control method of the power distribution system provided by the application embodiment includes:
  • Step 110 During the vehicle startup stage, the high-voltage power management unit sends a first switch control signal to the control terminal of the first high-voltage switch unit or the control terminal of the second high-voltage switch unit to control the first high-voltage switch unit or the second high-voltage switch The unit is turned on.
  • the first switch control signal is generated according to the drive control signal sent by the vehicle control unit; the vehicle control unit sends the drive control signal according to the control command obtained from the man-machine interface or according to the remaining battery capacity of the power battery.
  • the vehicle control unit 50 monitors the man-machine interface 60 , the power battery 20 , the high-voltage generator 40 and the high-voltage power management unit 13 in real time.
  • the vehicle control unit 50, the man-machine interface 60, the power battery 20, the high-voltage generator 40, and the high-voltage power management unit 13 can communicate with each other through CAN (Controller Area Network) communication, for example. transmission.
  • CAN Controller Area Network
  • both the first high-voltage switch unit 11 and the second high-voltage switch unit 12 may include, for example, a high-voltage relay, a contactor, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) and the like.
  • the first high-voltage switch unit 11 and the second high-voltage switch unit 12 include but are not limited to the above examples, and those skilled in the art can select them according to the integration scheme and location of a specific vehicle model.
  • the vehicle also includes a battery management module (BMS) and a motor controller (not shown in FIG. 1 ).
  • BMS battery management module
  • the BMS can monitor the charging and discharging status of the power battery 20 in real time, and feed this status back to the vehicle through CAN communication.
  • the control unit 50; the motor controller can monitor the output voltage and current of the high-voltage generator 40 in real time, and feed back the output voltage and current to the vehicle control unit 50 through CAN communication.
  • the vehicle control unit 50 selects the high-voltage power supply mode. For example, firstly, the power battery 20 is selected as the high-voltage power supply at the start-up stage of the whole vehicle.
  • the vehicle control unit 50 selects the high-voltage generator 40 as the high-voltage power supply in the vehicle startup phase. For example, when the remaining battery capacity of the power battery 20 is relatively large, the vehicle control unit 50 can send a driving control signal to the high-voltage power management unit 13 based on this condition. After receiving the driving control signal, the high-voltage power management unit 13 sends the first switch control signal.
  • the signal is sent to the control terminal of the first high-voltage switch unit 11, the first high-voltage switch unit 11 is turned on, and the power battery 20 provides power for the load, such as the drive motor 30, to complete the high-voltage power-on function of the entire vehicle.
  • the power battery 20 provides power for the load, such as the drive motor 30, to complete the high-voltage power-on function of the entire vehicle.
  • the vehicle control unit 50 starts the engine and sends a drive control signal to the high-voltage power management unit 13.
  • the high-voltage power management unit 13 After receiving the drive control signal, the high-voltage power management unit 13 sends the first switch control signal to the control terminal of the second high-voltage switch unit 12, the second high-voltage switch unit 12 is turned on, and the high-voltage generator 40 provides power for the load, and the completion of Vehicle high voltage power-on function.
  • the high-voltage power management unit 13 selects a specific loop and sequence for closing the high-voltage switch unit according to the driving control signal sent by the vehicle control unit 50 and the voltage value fed back by the load such as the driving motor 30, and the sequence includes pre-charging control. Wait.
  • each high-voltage switch unit is also connected in parallel with a switch unit, and this switch unit is connected in series with a large resistor to alleviate the damage to the load caused by the inrush current in the initial stage of power-on of the whole vehicle.
  • Step 120 During the vehicle driving stage, when the first high-voltage switch unit is turned on and the power battery fails, the high-voltage power management unit controls the second high-voltage switch unit to be turned on, so that the high-voltage generator supplies power to the drive motor; or, When the second high-voltage switch unit is turned on and the high-voltage generator fails, the high-voltage power management unit controls the first high-voltage switch unit to be turned on, so that the power battery supplies power to the drive motor.
  • the power battery 20 provides electrical energy for the load.
  • the BMS reports this information to the high-voltage power management unit.
  • the high-voltage power management unit 13 urgently cuts off the first high-voltage switch unit 11 of the faulty circuit according to the communication message, and reports the switching state of the vehicle control unit 50.
  • the vehicle control unit 50 starts the replacement high-voltage generator 40 through the communication command, At the same time, a drive control signal is sent to the high-voltage power management unit 13, and the high-voltage power management unit 13 sends a first switch control signal to the second high-voltage switch unit 12 based on the drive control signal, so that the second high-voltage switch unit 12 is turned on, so that the high-voltage generator is turned on.
  • 40 provides electrical energy for the load, and realizes the emergency switching of the high-voltage power supply during driving. Or, when the whole vehicle is running, the high-voltage generator 40 provides electrical energy for the load.
  • the motor controller reports the information to the high-voltage power management unit 13, and the high-voltage power supply
  • the power management unit 13 urgently cuts off the second high-voltage switch unit 12 of the faulty circuit according to the communication message, and reports the switching state of the vehicle control unit 50.
  • the vehicle control unit 50 starts the replacement power battery 20 through the communication command, and at the same time, the high-voltage power supply is switched on.
  • the management unit 13 sends a drive control signal, and the high-voltage power management unit 13 sends a first switch control signal to the first high-voltage switch unit 11 based on the drive control signal, so that the first high-voltage switch unit 11 is turned on, so that the power battery 20 provides power for the load , to realize the emergency switching of the high-voltage power supply during driving.
  • a high-voltage power distribution device includes a first high-voltage switch unit, a second high-voltage switch unit, and a high-voltage power management unit;
  • the battery remaining capacity of the power battery or the user-specified high-voltage power supply mode selects whether the power battery provides energy for the load (the first high-voltage switch unit is turned on and the second high-voltage switch unit is off) or the high-voltage generator provides energy (at this time
  • the second high-voltage switch unit is turned on, and the first high-voltage switch unit is off
  • the high-voltage power distribution device switches to the other high-voltage power supply unit in time,
  • the high-voltage power distribution device can effectively ensure the conduction and disconnection of any high-voltage power supply transmission path, realize the emergency switching of the high-voltage power supply during the driving process, and ensure that the two
  • FIG. 3 is a schematic structural diagram of another power distribution system provided by an embodiment of the present application.
  • the power distribution system 100 provided by an embodiment of the present application further includes a low-voltage power distribution device 70;
  • the power distribution device 70 includes: a low-voltage power management unit 71 and a low-voltage switch unit 72; the control end of the low-voltage switch unit 72 is connected to the low-voltage power management unit 71, and the first end of the low-voltage switch unit 72 is connected to the first end of the low-voltage battery 80,
  • the second end of the low voltage switch unit 72 is connected to the power supply end of the first high voltage switch unit 11 and the power supply end of the second high voltage switch unit 12 respectively;
  • the second end of the low voltage battery 80 is connected to the first end of the voltage conversion unit 90, and the voltage
  • the second end of the conversion unit 90 is connected to the second end of the first high-voltage switch unit 11 and the second end of the second high-voltage switch unit 12 respectively;
  • the low-voltage power management unit 71 is also configured to generate a power-supply signal to the vehicle control unit 50 based on the power loss signal sent by the battery sensor 91 when the vehicle is in a high-voltage power-off state, so that the vehicle control unit 50 controls
  • the high-voltage power management unit 13 sends the first switch control signal, so that the high-voltage generator 40 or the power battery 20 provides electrical energy for the voltage conversion unit 90 to charge the low-voltage battery 80 .
  • the control method of the power distribution system further includes: in the starting stage of the whole vehicle, the low-voltage power management unit sends a second switch control signal to the control terminal of the low-voltage switch unit to control the low-voltage switch unit to be turned on, so as to The low-voltage battery is used to provide power for the first high-voltage switch unit or the second high-voltage switch unit; wherein, the second switch control signal is generated according to the drive control signal sent by the vehicle control unit.
  • the low-voltage power management unit When the whole vehicle is in the high-voltage power-off stage, the low-voltage power management unit generates a supplementary power signal based on the power loss signal sent by the battery sensor to the vehicle control unit, so that the vehicle control unit controls the high-voltage power management unit to send the first switch control signal, and then Make the high-voltage generator or power battery provide power for the voltage conversion unit to charge the low-voltage battery.
  • the voltage conversion unit 90 may include, for example, a step-down DC/DC converter.
  • the low-voltage switch unit 72 may include, for example, a transistor or a MOS transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET), etc., which can be integrated on the circuit board with a switch function unit.
  • MOS transistor Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET
  • the low-voltage power management unit 71 closes the low-voltage switch unit 72 according to the control instruction of the vehicle control unit 50, so that the 12V power of the low-voltage battery 80 is transmitted to the first high-voltage switch unit 11 and the second high-voltage switch unit 11.
  • the switch unit 12 ensures that the 12V power supply required by the first high voltage switch unit 11 and the second high voltage switch unit 12 is normal and meets the working conditions of the first high voltage switch unit 11 and the second high voltage switch unit 12 .
  • the low-voltage power management unit 71 may indirectly control the forced disconnection of the first high-voltage switch unit 11 and the second high-voltage switch unit 12 .
  • the low-voltage power management unit 71 When the whole vehicle is in a high-voltage power-off state, such as when the key door is IG ON or the vehicle is powered off and dormant, in order to prevent the low-voltage battery from being too low to affect its life, the low-voltage power management unit 71 periodically monitors the state of the low-voltage battery 80 through the battery sensor 91. And monitor the status of the low-voltage battery 80 reported by the battery sensor 91 through the LIN (Local Interconnect Network) line, when it is found that the remaining battery power of the low-voltage battery 80 is insufficient, the low-voltage power management unit 71 sends the high-voltage compensation to the vehicle control unit 50 through the CAN line.
  • LIN Local Interconnect Network
  • the vehicle control unit 50 selects a suitable high-voltage power supply mode according to the state of the power battery, the engine and the high-voltage generator, and sends a drive control signal to the high-voltage power management unit 13, so that the high-voltage power management unit 13 closes the first high-voltage switch
  • the unit 11 or the second high-voltage switch unit 12 and at the same time, the voltage conversion unit 90 is activated to supplement the low-voltage battery 80 .
  • the high-voltage power distribution device by integrating the high-voltage power distribution device with the low-voltage power distribution device, the probability of the failure of the high-voltage power supply caused by the failure of the low-voltage power distribution device is reduced.
  • the low-voltage power distribution device can monitor the remaining power of the low-voltage battery in real time, and when an abnormality is found, the high-voltage power distribution device can close the high-voltage power supply transmission path, coordinate the voltage conversion unit to output 12V, and prolong the life of the low-voltage battery.
  • FIG. 4 is a schematic structural diagram of another power distribution system provided by an embodiment of the present application.
  • the power distribution system 100 provided by an embodiment of the present application further includes a first voltage detection point M1, The second voltage detection point M2 and the third voltage detection point M3;
  • the first voltage detection point M1 is located between the first high voltage switch unit 11 and the power battery 20 ;
  • the second voltage detection point M2 is located at the second voltage detection point of the first high voltage switch unit 11 terminal and the second terminal of the second high-voltage switch unit 12 and the drive motor 30;
  • the third voltage detection point M3 is located between the second high-voltage switch unit 12 and the high-voltage generator 40;
  • the high-voltage power management unit 13 is also set to collect The voltages of the first voltage detection point M1, the second voltage detection point M2 and the third voltage detection point M3.
  • control method of the power distribution system further includes:
  • the high-voltage power management unit collects the voltages of the first voltage detection point, the second voltage detection point and the third voltage detection point respectively, and determines when the first voltage detection point, the second voltage detection point and the third voltage When at least one of the voltages of the detection points exceeds the preset voltage, the first alarm information is sent to the vehicle control unit.
  • the high-voltage power management unit 13 determines the actual state of the high-voltage switch by collecting the voltage values of the first voltage detection point M1, the second voltage detection point M2 and the third voltage detection point M3, that is, to determine the first voltage detection point. Whether the first high-voltage switch unit 11 and the second high-voltage switch unit 12 have completed the closing action is reported to the vehicle control unit 50. At this time, the vehicle control unit 50 can determine that the high-voltage power supply is ready to be powered on.
  • the high-voltage power management unit 13 collects the first voltage detection point M1, the second voltage detection point M2 and the The voltage value of the third voltage detection point M3 is used to determine the actual state of the high-voltage switch, that is, to determine whether the first high-voltage switch unit 11 and the second high-voltage switch unit 12 have completed the closing action, that is, whether the switching is successful, and report it to the vehicle control unit 50 , at this time the vehicle control unit 50 can determine that the high-voltage power supply is ready to be powered on.
  • the power distribution system can monitor the risk of electrification of the high-voltage circuit in the following multiple intervals, for example, referring to FIG. Point M1), the interval between the high-voltage generator 40 and the high-voltage power distribution device 10 (the third voltage detection point M3), the interval between the driving motor 30 and the high-voltage power distribution device 10, and the interval between the voltage conversion unit 90 and the high-voltage power distribution device 10 (the second voltage detection point M2).
  • the first alarm information will be sent to the man-machine interface 60 to remind maintenance personnel to avoid electric shock accidents.
  • high-voltage detection is implemented during vehicle maintenance, that is, the voltage detection point in the high-voltage power distribution device is used to effectively determine whether the high-voltage power transmission path is live. Maintenance efficiency.
  • the power distribution system 100 provided by this embodiment of the present application further includes a first temperature detection point T1, a second temperature detection point T2 and a third temperature detection point T3;
  • the first temperature detection point T1 It is located between the first high voltage switch unit 11 and the power battery 20;
  • the second temperature detection point T2 is located between the second end of the first high voltage switch unit 11 and the second end of the second high voltage switch unit 12 and the drive motor 30;
  • the three temperature detection points T3 are located between the second high-voltage switch unit 12 and the high-voltage generator 40; the high-voltage power management unit 13 is also used to collect the first temperature detection point T1, the second temperature detection point T2 and the third temperature detection point T3 respectively temperature.
  • control method of the power distribution system further includes:
  • the high-voltage power management unit collects the temperatures of the first temperature detection point, the second temperature detection point and the third temperature detection point respectively in real time, and determines when the temperature of the first temperature detection point, the second temperature detection point and the third temperature detection point is in the temperature range. When at least one of the temperatures exceeds the preset temperature, a second alarm message is sent to the vehicle control unit.
  • the high-voltage power management unit 13 determines whether there is a risk of thermal runaway in the power distribution system 100 and the external branch by collecting the temperature values of the first temperature detection point T1, the second temperature detection point T2 and the third temperature detection point T3, Timely reporting (ie, sending the second alarm information) to the vehicle control unit 50 or disconnecting the corresponding high-voltage switch by itself, further improving the safety of vehicle power supply.
  • the embodiments of the present application also provide a new energy vehicle.
  • the new energy vehicle provided by the embodiment of the present application includes the man-machine interface, the vehicle control unit, the power battery, the high-voltage generator, the drive motor, and the power distribution system described in the above embodiments, wherein the vehicle control unit is respectively connected with the man-machine interface. , high-voltage generator, power battery and power distribution system connection; power distribution system is connected with the drive motor. Therefore, the new energy vehicle provided by the embodiments of the present application also has the beneficial effects described in the above embodiments, which will not be repeated here.
  • Embodiments of the present application provide a power distribution system, a control method for the power distribution system, and a new energy vehicle, so as to cope with the situation in which the power distribution system cannot support the coordinated work of two sets of high-voltage power supply systems in the related art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请实施例公开了一种配电***、配电***的控制方法及新能源汽车,该配电***包括:高压配电装置;高压配电装置包括第一高压开关单元、第二高压开关单元和高压电源管理单元;第一高压开关单元的控制端和第二高压开关单元的控制端与高压电源管理单元连接,第一高压开关单元的第一端与动力电池连接,第二高压开关单元的第一端与高压发电机连接,第一高压开关单元的第二端和第二高压开关单元的第二端与驱动电机连接;高压电源管理单元设置为发送第一开关控制信号至第一高压开关单元的控制端或第二高压开关单元的控制端,以控制第一高压开关单元或第二高压开关单元导通;第一开关控制信号是根据整车控制单元发送的驱动控制信号生成的。

Description

配电***、配电***的控制方法及新能源汽车
本申请要求在2021年02月07日提交中国专利局、申请号为202110169166.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及新能源技术领域,例如涉及一种配电***、配电***的控制方法及新能源汽车。
背景技术
新能源汽车双电机混动***与以往的电动汽车(Electric Vehicle,EV)、混合电动汽车(Hybrid Electric Vehicle,HEV)以及插电式混合动力汽车(Plug-in hybrid electric vehicle,PHEV)均有所不同,其高压供电电源有两个,即动力电池总成和双电机高压发电机总成。
高压配电盒绝大部分是集成在动力电池包内,将动力电池的电能分配给整车不同用电负载,是高压电气***中的核心部件。用户使用整车过程中,BMS(battery management system,电池管理模块)可以实时监测电池组充放电状态,电机控制器可以实时监测高压发电机输出电压与电流,而双电机混动***中的动力电池和高压发电机是独立上下电,配电***无法支持两套高压供电***协调工作。
发明内容
本申请实施例提供一种配电***、配电***的控制方法及新能源汽车。
第一方面,本申请实施例提供了一种配电***,该配电***包括:高压配电装置;所述高压配电装置包括第一高压开关单元、第二高压开关单元以及高压电源管理单元;
所述第一高压开关单元的控制端以及所述第二高压开关单元的控制端分别与所述高压电源管理单元连接,所述第一高压开关单元的第一端与动力电池连接,所述第一高压开关单元的第二端与驱动电机连接,所述第二高压开关单元的第一端与高压发电机连接,所述第二高压开关单元的第二端与所述驱动电机连接;
所述高压电源管理单元设置为发送第一开关控制信号至所述第一高压开关单元的控制端或所述第二高压开关单元的控制端,以控制所述第一高压开关单 元或所述第二高压开关单元导通;
其中,所述第一开关控制信号是根据整车控制单元发送的驱动控制信号生成的;所述整车控制单元设置为根据从人机界面获取的控制指令或根据所述动力电池的电池剩余容量发送所述驱动控制信号。
第二方面,本申请实施例还提供了一种新能源汽车,该新能源汽车包括:人机界面、整车控制单元、动力电池、高压发电机、驱动电机、第一方面所述的配电***;
所述整车控制单元分别与所述人机界面、所述高压发电机、所述动力电池以及所述配电***连接;
所述配电***与所述驱动电机连接。
第三方面,本申请实施例还提供了一种配电***的控制方法,该配电***的控制方法采用如第一方面所述的配电***,所述配电***的控制方法包括:
在整车启动阶段,所述高压电源管理单元发送第一开关控制信号至所述第一高压开关单元的控制端或所述第二高压开关单元的控制端,以控制所述第一高压开关单元或所述第二高压开关单元导通;其中,所述第一开关控制信号是根据整车控制单元发送的驱动控制信号生成的;所述整车控制单元根据从人机界面获取的控制指令或根据所述动力电池的电池剩余容量发送所述驱动控制信号;
在整车行驶阶段,响应于所述第一高压开关单元导通,且所述动力电池发生故障,所述高压电源管理单元控制所述第二高压开关单元导通,以使所述高压发电机为所述驱动电机供电;或者,响应于所述第二高压开关单元导通,且所述高压发电机发生故障,所述高压电源管理单元控制所述第一高压开关单元导通,以使所述动力电池为所述驱动电机供电。
附图说明
图1是本申请实施例提供的一种配电***的结构示意图;
图2是本申请实施例提供的一种配电***的控制方法的流程图;
图3是本申请实施例提供的又一种配电***的结构示意图;
图4是本申请实施例提供的又一种配电***的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
图1是本申请实施例提供的一种配电***的结构示意图,如图1所示,本实施例提供的配电***100包括:高压配电装置10;高压配电装置10包括第一高压开关单元11、第二高压开关单元12以及高压电源管理单元13;第一高压开关单元11的控制端以及第二高压开关单元12的控制端分别与高压电源管理单元13连接,第一高压开关单元11的第一端与动力电池20连接,第一高压开关单元11的第二端与驱动电机30电连接,第二高压开关单元12的第一端与高压发电机40连接,第二高压开关单元12的第二端与驱动电机30连接;高压电源管理单元13设置为发送第一开关控制信号至第一高压开关单元11的控制端或第二高压开关单元12的控制端,以控制第一高压开关单元11或第二高压开关单元12导通;其中,第一开关控制信号是根据整车控制单元50发送的驱动控制信号生成的;整车控制单元50设置为根据从人机界面60获取的控制指令或根据动力电池20的电池剩余容量发送驱动控制信号。
在一实施例中,高压电源管理单元13设置为发送第一开关控制信号至第一高压开关单元11的控制端,以控制第一高压开关单元11导通,或,发送第一开关控制信号至第二高压开关单元12的控制端,以控制第二高压开关单元12导通。
图2是本申请实施例提供的一种配电***的控制方法的流程图,本申请实施例提供的配电***的控制方法采用上述所述的配电***实施,如图2所示,本申请实施例提供的配电***的控制方法包括:
步骤110、在整车启动阶段,高压电源管理单元发送第一开关控制信号至第一高压开关单元的控制端或第二高压开关单元的控制端,以控制第一高压开关单元或第二高压开关单元导通。
其中,第一开关控制信号是根据整车控制单元发送的驱动控制信号生成的;整车控制单元根据从人机界面获取的控制指令或根据所述动力电池的电池剩余容量发送驱动控制信号。
其中,整车控制单元50实时监测人机界面60、动力电池20、高压发电机40以及高压电源管理单元13。在一实施例中,整车控制单元50、人机界面60、动力电池20、高压发电机40以及高压电源管理单元13之间例如可以通过CAN(Controller Area Network,控制器局域网络)通信实现信号的传输。
其中,第一高压开关单元11和第二高压开关单元12均例如可以包括高压继电器、接触器或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等。第一高压开关单元11和第二高压开关单元12包括但不限于上述示例,本 领域技术人员可以根据具体车型集成化方案以及位置进行选择。
示例性的,整车中还包括电池管理模块(BMS)和电机控制器(图1中未示出),BMS可以实时监测动力电池20充放电状态,并将此状态通过CAN通信反馈至整车控制单元50;电机控制器可以实时监测高压发电机40输出电压与电流,并将输出的电压与电流通过CAN通信反馈至整车控制单元50。整车控制单元50选择高压供电模式。例如,首先选择动力电池20作为整车启动阶段的高压供电电源。但是当动力电池20的电池剩余容量较低时,或用户通过人机界面60指定高压发电机40,则整车控制单元50选择高压发电机40作为整车启动阶段的高压供电电源。例如,当动力电池20的电池剩余容量较多,整车控制单元50可以基于此状况发送驱动控制信号至高压电源管理单元13,高压电源管理单元13接收到驱动控制信号后,发送第一开关控制信号至第一高压开关单元11的控制端,第一高压开关单元11导通,动力电池20为负载,如驱动电机30提供电能,完成整车高压的上电功能。或者,当动力电池20的电池剩余容量较少,或者,人机界面60指定高压发电机40为负载提供电能,此时,整车控制单元50启动发动机,且发送驱动控制信号至高压电源管理单元13,高压电源管理单元13接收到驱动控制信号后,发送第一开关控制信号至第二高压开关单元12的控制端,第二高压开关单元12导通,高压发电机40为负载提供电能,完成整车高压的上电功能。
在一实施例中,高压电源管理单元13根据整车控制单元50发送的驱动控制信号,根据驱动电机30等负载反馈的电压值,选择闭合高压开关单元的具体回路和顺序,顺序包括预充电控制等。
也就是说,每个高压开关单元还并联一个开关单元,此开关单元串联一个较大的电阻,在整车上电的初始阶段,缓解冲击电流对负载的损伤。
步骤120、在整车行驶阶段,当第一高压开关单元导通,且动力电池发生故障时,高压电源管理单元控制第二高压开关单元导通,以使高压发电机为驱动电机供电;或者,当第二高压开关单元导通,且高压发电机发生故障时,高压电源管理单元控制第一高压开关单元导通,以使动力电池为驱动电机供电。
例如,在整车行驶过程中,动力电池20为负载提供电能,此时当动力电池20发生故障或电池剩余容量不足等不具备高压供电条件时,BMS将此状况的信息上报至高压电源管理单元13,高压电源管理单元13根据通讯报文,紧急切断故障回路的第一高压开关单元11,并上报整车控制单元50切换状态,整车控制单元50通过通讯指令启动替代的高压发电机40,同时对高压电源管理单元13 发出驱动控制信号,高压电源管理单元13基于驱动控制信号发送第一开关控制信号至第二高压开关单元12,使第二高压开关单元12导通,以使高压发电机40为负载提供电能,实现行驶过程中的高压供电电源的紧急切换。或者,在整车行驶过程中,高压发电机40为负载提供电能,此时当高压发电机40发生故障等不具备高压供电条件时,电机控制器将此信息上报至高压电源管理单元13,高压电源管理单元13根据通讯报文,紧急切断故障回路的第二高压开关单元12,并上报整车控制单元50切换状态,整车控制单元50通过通讯指令启动替代的动力电池20,同时对高压电源管理单元13发出驱动控制信号,高压电源管理单元13基于驱动控制信号发送第一开关控制信号至第一高压开关单元11,使第一高压开关单元11导通,以使动力电池20为负载提供电能,实现行驶过程中的高压供电电源的紧急切换。
综上,本申请实施例通过设置高压配电装置,其中,高压配电装置包括第一高压开关单元、第二高压开关单元和高压电源管理单元;在整车启动阶段,高压电源管理单元可以根据动力电池的电池剩余容量或用户指定的高压供电模式选择是由动力电池为负载提供能量(此时第一高压开关单元导通,第二高压开关单元截止)还是由高压发电机提供能量(此时第二高压开关单元导通,第一高压开关单元截止);在整车行驶过程中,当动力电池或高压发电机中的一个发生故障时,高压配电装置及时切换到另一个高压供电单元,该高压配电装置可以有效保证任一高压供电源传输路径的导通与断开,实现行车过程中的高压供电电源紧急切换,且保证两个供电电源互不干扰、彼此独立,增加了整车供电安全性。
在一实施例中,图3是本申请实施例提供的又一种配电***的结构示意图,如图3所示,本申请实施例提供的配电***100还包括低压配电装置70;低压配电装置70包括:低压电源管理单元71和低压开关单元72;低压开关单元72的控制端与低压电源管理单元71连接,低压开关单元72的第一端与低压蓄电池80的第一端连接,低压开关单元72的第二端分别与第一高压开关单元11的供电端以及第二高压开关单元12的供电端连接;低压蓄电池80的第二端与电压转换单元90的第一端连接,电压转换单元90的第二端分别与第一高压开关单元11的第二端以及第二高压开关单元12的第二端连接;低压电源管理单元71设置为发送第二开关控制信号,第二开关控制信号是根据整车控制单元50发送的驱动控制信号生成的;低压开关单元72设置为根据第二开关控制信号导通,以使低压蓄电池80为第一高压开关单元11或第二高压开关单元12提供电源; 低压电源管理单元71,还设置为当整车处于高压断电状态时,基于电池传感器91发送的亏电信号生成补电信号至整车控制单元50,以使整车控制单元50控制高压电源管理单元13发送第一开关控制信号,进而使高压发电机40或动力电池20为电压转换单元90提供电能,以为低压蓄电池80充电。
基于此配电***,所述配电***的控制方法还包括:在整车启动阶段,低压电源管理单元发送第二开关控制信号至低压开关单元的控制端,以控制低压开关单元导通,以使低压蓄电池为第一高压开关单元或第二高压开关单元提供电源;其中,第二开关控制信号是根据整车控制单元发送的驱动控制信号生成的。
在整车处于高压断电阶段,低压电源管理单元基于电池传感器发送的亏电信号生成补电信号至整车控制单元,以使整车控制单元控制高压电源管理单元发送第一开关控制信号,进而使高压发电机或动力电池为电压转换单元提供电能,以为低压蓄电池充电。电压转换单元90例如可以包括降压型DC/DC转换器。
其中,低压开关单元72例如可以包括晶体管或MOS管(金属-氧化物半导体场效应晶体管,Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等可以在电路板上集成具有开关功能的单元。
示例性的,在整车启动阶段,低压电源管理单元71根据整车控制单元50的控制指令,闭合低压开关单元72,以使低压蓄电池80的12V电源传输给第一高压开关单元11和第二开关单元12,保证第一高压开关单元11和第二高压开关单元12所需12V供电正常,满足第一高压开关单元11和第二高压开关单元12工作条件。其中,低压电源管理单元71可以间接控制第一高压开关单元11和第二高压开关单元12的强制断开。
当整车处于高压断电状态时,例如钥匙门IG ON或整车下电休眠期间,为防止低压蓄电池电量过低影响寿命,低压电源管理单元71通过电池传感器91周期性监测低压蓄电池80状态,且通过LIN(Local Interconnect Network)线监测电池传感器91上报的低压蓄电池80的状态,当发现低压蓄电池80的电池剩余电量不足时,低压电源管理单元71通过CAN线向整车控制单元50发送高压补电请求,整车控制单元50根据动力电池状态、发动机和高压发电机状态,选择适合的高压供电模式,向高压电源管理单元13发送驱动控制信号,以使高压电源管理单元13闭合第一高压开关单元11或第二高压开关单元12,同时启动电压转换单元90为低压蓄电池80补电。
本实施例,通过将高压配电装置与低压配电装置集成在一起,降低了低压配电装置故障引发的高压供电失效的概率。且低压配电装置可以实时监测低压蓄电池剩余电量,发现异常时可通过高压配电装置闭合高压供电传输路径,协调电压转换单元输出12V,延长低压蓄电池寿命。
在一实施例中,图4是本申请实施例提供的又一种配电***的结构示意图,如图4所示,本申请实施例提供的配电***100还包括第一电压检测点M1、第二电压检测点M2和第三电压检测点M3;第一电压检测点M1位于第一高压开关单元11与动力电池20之间;第二电压检测点M2位于第一高压开关单元11的第二端和第二高压开关单元12的第二端与驱动电机30之间;第三电压检测点M3位于第二高压开关单元12与高压发电机40之间;高压电源管理单元13还设置为分别采集第一电压检测点M1、第二电压检测点M2和第三电压检测点M3的电压。
基于此配电***,所述配电***的控制方法还包括:
在维修阶段,高压电源管理单元分别采集第一电压检测点、第二电压检测点和第三电压检测点的电压,并确定当第一电压检测点、第二电压检测点和所述第三电压检测点的电压中的至少一个电压超过预设电压时,发送第一报警信息至整车控制单元。
示例性的,在整车启动阶段,高压电源管理单元13通过采集第一电压检测点M1、第二电压检测点M2和第三电压检测点M3的电压值,判断高压开关实际状态,即判断第一高压开关单元11和第二高压开关单元12是否已经完成闭合动作,并上报整车控制单元50,此时整车控制单元50可以确定高压供电上电就绪。当在整车行驶阶段由动力电池20或高压发电机40中的一个切换为另一个为负载供电时,同样,高压电源管理单元13通过采集第一电压检测点M1、第二电压检测点M2和第三电压检测点M3的电压值,判断高压开关实际状态,即判断第一高压开关单元11和第二高压开关单元12是否已经完成闭合动作,也即是否切换成功,并上报整车控制单元50,此时整车控制单元50可以确定高压供电上电就绪。
在车辆维修阶段,为了保证人员安全,要求整车高压回路全部断开。在整车正常高压断电后,本申请实施例提供的配电***可以监测如下多个区间高压回路带电风险,如:参见图4,动力电池20至高压配电装置10区间(第一电压检测点M1),高压发电机40至高压配电装置10区间(第三电压检测点M3)、驱动电机30至高压配电装置10区间以及电压转换单元90至高压配电装置10 区间(第二电压检测点M2)。当判断电压检测点的电压超过安全范围时,会发送第一报警信息至人机界面60,提醒维修人员避免触电事故。
本实施例,在车辆维修时实施高压检测,即通过高压配电装置内的电压检测点,有效判断高压电能传输路径是否带电,如有风险可通过人机界面准确报警,有利于提高人员安全和维修效率。
在一实施例中,继续参见图4,本申请实施例提供的配电***100还包括第一温度检测点T1、第二温度检测点T2和第三温度检测点T3;第一温度检测点T1位于第一高压开关单元11与动力电池20之间;第二温度检测点T2位于第一高压开关单元11的第二端和第二高压开关单元12的第二端与驱动电机30之间;第三温度检测点T3位于第二高压开关单元12与高压发电机40之间;高压电源管理单元13还用于分别采集第一温度检测点T1、第二温度检测点T2和第三温度检测点T3的温度。
基于此配电***,所述配电***的控制方法还包括:
高压电源管理单元分别实时采集第一温度检测点、第二温度检测点和第三温度检测点的温度,并确定当第一温度检测点、第二温度检测点和第三温度检测点的温度中的至少一个温度超过预设温度时,发送第二报警信息至整车控制单元。
示例性的,高压电源管理单元13通过采集第一温度检测点T1、第二温度检测点T2和第三温度检测点T3的温度值,判断配电***100及外部支路是否存在热失控风险,及时上报(即发送第二报警信息)至整车控制单元50或自行断开相应高压开关,进一步提高整车供电安全性。
基于同样的发明构思,本申请实施例还提供了一种新能源汽车。本申请实施例提供的新能源汽车包括上述实施例所述的人机界面、整车控制单元、动力电池、高压发电机、驱动电机以及配电***,其中,整车控制单元分别与人机界面、高压发电机、动力电池以及配电***连接;配电***与驱动电机连接。因此本申请实施例提供的新能源汽车也具备上述实施例所描述的有益效果,此处不再赘述。
本申请实施例提供一种配电***、配电***的控制方法及新能源汽车,以应对相关技术中配电***无法支持两套高压供电***协调工作的状况。
本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行多种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了说明,但是本申请不仅 仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种配电***,包括:高压配电装置(10);所述高压配电装置(10)包括第一高压开关单元(11)、第二高压开关单元(12)以及高压电源管理单元(13);
    所述第一高压开关单元(11)的控制端以及所述第二高压开关单元(12)的控制端分别与所述高压电源管理单元(13)连接,所述第一高压开关单元(11)的第一端与动力电池(20)连接,所述第一高压开关单元(11)的第二端与驱动电机(30)连接,所述第二高压开关单元(12)的第一端与高压发电机(40)连接,所述第二高压开关单元(12)的第二端与所述驱动电机(30)连接;
    所述高压电源管理单元(13)设置为发送第一开关控制信号至所述第一高压开关单元(11)的控制端或所述第二高压开关单元(12)的控制端,以控制所述第一高压开关单元(11)或所述第二高压开关单元(12)导通;
    其中,所述第一开关控制信号是根据整车控制单元(50)发送的驱动控制信号生成的;所述整车控制单元(50)设置为根据从人机界面(60)获取的控制指令或根据所述动力电池(20)的电池剩余容量发送所述驱动控制信号。
  2. 根据权利要求1所述的配电***,还包括低压配电装置(70);所述低压配电装置(70)包括:低压电源管理单元(71)和低压开关单元(72);
    所述低压开关单元(72)的控制端与所述低压电源管理单元(71)连接,所述低压开关单元(72)的第一端与低压蓄电池(80)的第一端连接,所述低压开关单元(72)的第二端分别与所述第一高压开关单元(11)的供电端以及所述第二高压开关单元(12)的供电端连接;所述低压蓄电池(80)的第二端与电压转换单元(90)的第一端连接,所述电压转换单元(90)的第二端分别与所述第一高压开关单元(11)的第二端以及所述第二高压开关单元(12)的第二端连接;
    所述低压电源管理单元(71)设置为发送第二开关控制信号,所述第二开关控制信号是根据所述整车控制单元(50)发送的所述驱动控制信号生成的;
    所述低压开关单元(72)设置为根据所述第二开关控制信号导通,以使所述低压蓄电池(80)为所述第一高压开关单元(11)或所述第二高压开关单元(12)提供电源;
    所述低压电源管理单元(71),还设置为响应于整车处于高压断电状态,基于电池传感器(91)发送的亏电信号生成补电信号至所述整车控制单元(50),以使所述整车控制单元(50)控制所述高压电源管理单元(13)发送所述第一开关控制信号,以使所述高压发电机(40)或所述动力电池(20)为所述电压转换单元(90)提供电能,以为所述低压蓄电池(80)充电。
  3. 根据权利要求1所述的配电***,还包括第一电压检测点(M1)、第二电 压检测点(M2)和第三电压检测点(M3);所述第一电压检测点(M1)位于所述第一高压开关单元(11)与所述动力电池(20)之间;所述第二电压检测点(M2)位于所述第一高压开关单元(11)的第二端和所述第二高压开关单元(12)的第二端与所述驱动电机(30)之间;所述第三电压检测点(M3)位于所述第二高压开关单元(12)与所述高压发电机(40)之间;
    所述高压电源管理单元(13)还设置为分别采集所述第一电压检测点(M1)、所述第二电压检测点(M2)和所述第三电压检测点(M3)的电压。
  4. 根据权利要求1所述的配电***,还包括第一温度检测点(T1)、第二温度检测点(T2)和第三温度检测点(T3);所述第一温度检测点(T1)位于所述第一高压开关单元(11)与所述动力电池(20)之间;所述第二温度检测点(T2)位于所述第一高压开关单元(11)的第二端和所述第二高压开关单元(12)的第二端与所述驱动电机(30)之间;所述第二温度检测点(T2)位于所述第二高压开关单元(12)与所述高压发电机(40)之间;
    所述高压电源管理单元(13)还设置为分别采集所述第一温度检测点(T1)、所述第二温度检测点(T2)和所述第三温度检测点(T3)的温度。
  5. 根据权利要求1所述的配电***,其中,所述第一高压开关单元(11)和所述第二高压开关单元(12)分别包括:高压继电器、接触器或绝缘栅双极型晶体管。
  6. 一种新能源汽车,包括:人机界面(60)、整车控制单元(50)、动力电池(20)、高压发电机(40)、驱动电机(30)、权利要求1-5任一项所述的配电***;
    所述整车控制单元(50)分别与所述人机界面(60)、所述高压发电机(40)、所述动力电池(20)以及所述配电***连接;
    所述配电***与所述驱动电机(30)连接。
  7. 一种配电***的控制方法,采用如权利要求1-5任一项所述的配电***,所述配电***的控制方法包括:
    在整车启动阶段,所述高压电源管理单元(13)发送第一开关控制信号至所述第一高压开关单元(11)的控制端或所述第二高压开关单元(12)的控制端,以控制所述第一高压开关单元(11)或所述第二高压开关单元(12)导通;其中,所述第一开关控制信号是根据整车控制单元(50)发送的驱动控制信号生成的;所述整车控制单元(50)根据从人机界面(60)获取的控制指令或根据所述动力电池(20)的电池剩余容量发送所述驱动控制信号;
    在整车行驶阶段,响应于所述第一高压开关单元(11)导通,且所述动力电池 (20)发生故障,所述高压电源管理单元(13)控制所述第二高压开关单元(12)导通,以使所述高压发电机(40)为所述驱动电机(30)供电;或者,响应于所述第二高压开关单元(12)导通,且所述高压发电机(40)发生故障,所述高压电源管理单元(13)控制所述第一高压开关单元(11)导通,以使所述动力电池(20)为所述驱动电机(30)供电。
  8. 根据权利要求7所述的配电***的控制方法,所述配电***还包括低压配电装置(70);所述低压配电装置(70)包括:低压电源管理单元(71)和低压开关单元(72);所述低压开关单元(72)的控制端与所述低压电源管理单元(71)连接,所述低压开关单元(72)的第一端与低压蓄电池(80)的第一端连接,所述低压开关单元(72)的第二端分别与所述第一高压开关单元(11)的供电端以及所述第二高压开关单元(12)的供电端连接;所述低压蓄电池(80)的第二端与电压转换单元(90)的第一端连接,所述电压转换单元(90)的第二端分别与所述第一高压开关单元(11)的第二端以及所述第二高压开关单元(12)的第二端连接;
    所述配电***的控制方法还包括:
    在整车启动阶段,所述低压电源管理单元(71)发送第二开关控制信号至所述低压开关单元(72)的控制端,以控制所述低压开关单元(72)导通,以使所述低压蓄电池(80)为所述第一高压开关单元(11)或所述第二高压开关单元(12)提供电源;其中,所述第二开关控制信号是根据所述整车控制单元(50)发送的所述驱动控制信号生成的;
    在所述整车处于高压断电阶段,所述低压电源管理单元(71)基于电池传感器(91)发送的亏电信号生成补电信号至整车控制单元(50),以使所述整车控制单元(50)控制所述高压电源管理单元(13)发送所述第一开关控制信号,以使所述高压发电机(40)或所述动力电池(20)为所述电压转换单元(90)提供电能,以为所述低压蓄电池(80)充电。
  9. 根据权利要求7所述的配电***的控制方法,所述配电***还包括第一电压检测点(M1)、第二电压检测点(M2)和第三电压检测点(M3);所述第一电压检测点(M1)位于所述第一高压开关单元(11)与所述动力电池(20)之间;所述第二电压检测点(M2)位于所述第一高压开关单元(11)的第二端和所述第二高压开关单元(12)的第二端与所述驱动电机(30)之间;所述第三电压检测点(M3)位于所述第二高压开关单元(12)与所述高压发电机(40)之间;
    所述配电***的控制方法还包括:
    在维修阶段,所述高压电源管理单元(13)分别采集所述第一电压检测点 (M1)、所述第二电压检测点(M2)和所述第三电压检测点(M3)的电压,并响应于确定所述第一电压检测点(M1)、第二电压检测点(M2)和所述第三电压检测点(M3)的电压中的至少一个电压超过预设电压,发送第一报警信息至所述整车控制单元(50)。
  10. 根据权利要求7所述的配电***的控制方法,所述配电***还包括第一温度检测点(T1)、第二温度检测点(T2)和第三温度检测点(T3);所述第一温度检测点(T1)位于所述第一高压开关单元(11)与所述动力电池(20)之间;所述第二温度检测点(T2)位于所述第一高压开关单元(11)的第二端和所述第二高压开关单元(12)的第二端与所述驱动电机(30)之间;所述第三温度检测点(T3)位于所述第二高压开关单元(12)与所述高压发电机(40)之间;
    所述配电***的控制方法还包括:
    所述高压电源管理单元(13)分别采集所述第一温度检测点(T1)、所述第二温度检测点(T2)和所述第三温度检测点(T3)的温度,并响应于确定所述第一温度检测点(T1)、所述第二温度检测点(T2)和所述第三温度检测点(T3)的温度中的至少一个温度超过预设温度,发送第二报警信息至所述整车控制单元(50)。
PCT/CN2021/135938 2021-02-07 2021-12-07 配电***、配电***的控制方法及新能源汽车 WO2022166364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169166.6A CN112895902B (zh) 2021-02-07 2021-02-07 一种配电***、配电***的控制方法及新能源汽车
CN202110169166.6 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022166364A1 true WO2022166364A1 (zh) 2022-08-11

Family

ID=76123743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135938 WO2022166364A1 (zh) 2021-02-07 2021-12-07 配电***、配电***的控制方法及新能源汽车

Country Status (2)

Country Link
CN (1) CN112895902B (zh)
WO (1) WO2022166364A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112895902B (zh) * 2021-02-07 2022-08-19 中国第一汽车股份有限公司 一种配电***、配电***的控制方法及新能源汽车
CN115158021A (zh) * 2022-06-23 2022-10-11 中国第一汽车股份有限公司 电动汽车高压上电的控制方法、控制装置和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098083A (zh) * 2006-06-27 2008-01-02 株式会社电装 车用发电机设备
US20100006360A1 (en) * 2008-07-11 2010-01-14 Toyota Jidosha Kabushiki Kaisha Control system and method for hybrid vehicle
CN109915298A (zh) * 2019-02-28 2019-06-21 武汉理工大学 一种混合动力汽车发动机快速启动的控制方法
CN110228369A (zh) * 2019-06-24 2019-09-13 三一汽车制造有限公司 电池动力***、车辆和控制方法
CN110228395A (zh) * 2019-06-14 2019-09-13 上海蔚来汽车有限公司 双电源电路***
CN209852087U (zh) * 2018-12-29 2019-12-27 东莞塔菲尔新能源科技有限公司 集线器及电动汽车的电池高压控制***
CN112895902A (zh) * 2021-02-07 2021-06-04 中国第一汽车股份有限公司 一种配电***、配电***的控制方法及新能源汽车

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331365B1 (en) * 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
JP3661630B2 (ja) * 2001-10-25 2005-06-15 トヨタ自動車株式会社 ハイブリッド車の駆動装置及びその制御方法
KR100844678B1 (ko) * 2006-10-25 2008-07-07 현대자동차주식회사 통합형 비엠에스 및 디씨/디씨 컨버터
WO2011105083A1 (ja) * 2010-02-25 2011-09-01 三洋電機株式会社 バッテリ制御装置、バッテリシステム、電動車両、充電制御装置、充電器、移動体、電源システム、電力貯蔵装置および電源装置
CN102278250B (zh) * 2011-06-01 2016-03-02 中国第一汽车集团公司 双蓄电池管理***
DE102013201563A1 (de) * 2013-01-30 2014-07-31 Bayerische Motoren Werke Aktiengesellschaft Personalisierung der Energieversorgung und des Energiemanagements in Fahrzeugen
EP2969638A1 (en) * 2013-03-11 2016-01-20 Volvo Truck Corporation Method and arrangement for operating a hybrid electrical vehicle
JP2015217919A (ja) * 2014-05-21 2015-12-07 オムロンオートモーティブエレクトロニクス株式会社 車両用電源装置、車両用回生システム
JP6252574B2 (ja) * 2015-09-25 2017-12-27 トヨタ自動車株式会社 ハイブリッド車両
US20170217318A1 (en) * 2016-01-29 2017-08-03 Faraday&Future Inc. Battery pack configuration
JP6467451B2 (ja) * 2017-03-28 2019-02-13 株式会社Subaru 車両用電源装置
CN108407618B (zh) * 2018-02-01 2021-03-05 中国第一汽车股份有限公司 基于行驶意图的智能高压断电控制装置及控制方法
CN108583302B (zh) * 2018-02-02 2020-09-08 威马智慧出行科技(上海)有限公司 电动汽车及其蓄电池亏电状态下的启动装置和方法
JP6646703B2 (ja) * 2018-03-27 2020-02-14 株式会社Subaru 車両用電源装置
US11015566B2 (en) * 2018-08-31 2021-05-25 N4 Innovations, Llc System for controlling power supplied to a starter motor
JP7189751B2 (ja) * 2018-12-10 2022-12-14 株式会社Subaru 車両用電源装置
CN109747423B (zh) * 2019-01-25 2022-03-29 中国第一汽车股份有限公司 一种电动汽车安全关断***和方法
KR20200143877A (ko) * 2019-06-17 2020-12-28 현대자동차주식회사 차량 시동 제어 방법 및 48v 차량
CN211032455U (zh) * 2019-09-19 2020-07-17 中国第一汽车股份有限公司 一种双蓄电池电能量管理***
KR102174990B1 (ko) * 2020-07-09 2020-11-05 정관옥 차량 시동 관리 장치
CN112078432A (zh) * 2020-09-22 2020-12-15 王晓东 一种电动能量控制方法及***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098083A (zh) * 2006-06-27 2008-01-02 株式会社电装 车用发电机设备
US20100006360A1 (en) * 2008-07-11 2010-01-14 Toyota Jidosha Kabushiki Kaisha Control system and method for hybrid vehicle
CN209852087U (zh) * 2018-12-29 2019-12-27 东莞塔菲尔新能源科技有限公司 集线器及电动汽车的电池高压控制***
CN109915298A (zh) * 2019-02-28 2019-06-21 武汉理工大学 一种混合动力汽车发动机快速启动的控制方法
CN110228395A (zh) * 2019-06-14 2019-09-13 上海蔚来汽车有限公司 双电源电路***
CN110228369A (zh) * 2019-06-24 2019-09-13 三一汽车制造有限公司 电池动力***、车辆和控制方法
CN112895902A (zh) * 2021-02-07 2021-06-04 中国第一汽车股份有限公司 一种配电***、配电***的控制方法及新能源汽车

Also Published As

Publication number Publication date
CN112895902B (zh) 2022-08-19
CN112895902A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US11338702B2 (en) Control system and method for battery pack heating system, and battery pack heating management system
TWI765084B (zh) 電動汽車高壓下電方法
US20230202343A1 (en) Low-voltage battery charging system and method
WO2022166364A1 (zh) 配电***、配电***的控制方法及新能源汽车
EP4199295A1 (en) Energy storage apparatus, control method for energy storage apparatus, and photovoltaic system
CN101951015A (zh) 用于数据中心的混合电源设备
CN103066556A (zh) 高压直流***的过压保护方法
CN108482154B (zh) 一种电动汽车控制***
CN104512275A (zh) 电动车辆电力转换***
US10252618B2 (en) Backup electrical supply for main capacitor discharge
CN110774937B (zh) 一种车载集中配电式并联电池管理***
US9570939B2 (en) Double-port energy storage system and control method thereof
CN108429453B (zh) 车载高压逆变转换装置及控制方法
CN107026503A (zh) 一种火箭发射车柔性不间断直流电源***及控制方法
KR20150008378A (ko) 절연 접촉기 천이 극성 제어
WO2020001265A1 (zh) 车辆的对外充电方法和装置
CN113910931B (zh) 一种用于电动汽车的无线充电***及方法
CN113555926A (zh) 一种多路充电dc柜及控制方法
CN212386323U (zh) 电动汽车上电的装置
CN103560558A (zh) 一种电梯停电应急电源
CN112234691A (zh) 一种用于换电柜的集成仓控功能的dcdc变换器
CN215897325U (zh) 一种多路充电dc柜
CN114312390B (zh) 充电装置、充电控制方法及车辆
CN213676386U (zh) 轨道车辆的控制电路和轨道车辆
CN113212167B (zh) 一种继电器闭合辅助***和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924357

Country of ref document: EP

Kind code of ref document: A1