WO2022166055A1 - 避免浊气自锁于室内的置换通风式建筑物及室内表面材料 - Google Patents

避免浊气自锁于室内的置换通风式建筑物及室内表面材料 Download PDF

Info

Publication number
WO2022166055A1
WO2022166055A1 PCT/CN2021/098795 CN2021098795W WO2022166055A1 WO 2022166055 A1 WO2022166055 A1 WO 2022166055A1 CN 2021098795 W CN2021098795 W CN 2021098795W WO 2022166055 A1 WO2022166055 A1 WO 2022166055A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal conductivity
low thermal
indoor
room
air
Prior art date
Application number
PCT/CN2021/098795
Other languages
English (en)
French (fr)
Inventor
沈景华
吴捷
陈守恭
彭旭辉
田雨
李东会
田真
韩冬辰
张洁
李晓晗
薛朝阳
徐樑
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022166055A1 publication Critical patent/WO2022166055A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect

Definitions

  • the invention belongs to the technical field of house construction, and in particular relates to a displacement ventilation type building and an indoor surface material for avoiding self-locking of turbid gas indoors.
  • displacement ventilation The principle of displacement ventilation is based on the rise of hot air and the fall of cold air due to the difference in air density.
  • the air is supplied from the bottom of the room at a wind speed of less than 0.2m/s, which is lower than the indoor air temperature.
  • Displacement ventilation systems have been used in industrial buildings with high heat loads in Europe for more than 40 years. In 1978, a foundry in Berlin, Germany, first adopted a displacement ventilation system. In the past 30 years, displacement ventilation systems have gradually become popular in non-industrial buildings in Nordic countries, such as office buildings, schools, theaters, etc., such as the Copenhagen Grand Theater in Denmark.
  • Tongji University established an airflow laboratory to conduct experimental analysis and research on the airflow characteristics of displacement ventilation, and briefly analyzed its impact on airflow organization by changing the heat transfer coefficient of the envelope structure, and provided reference data for evaluating the comfort of displacement ventilation methods; An analytical study of the displacement ventilation and cooling roof composite system was also carried out.
  • Donghua University has participated in the experimental research of the French LET laboratory on the disturbance factors of the displacement ventilation system, such as the effect of water vapor on the performance of the displacement ventilation system.
  • Scholars from Huazhong University of Science and Technology applied CFD technology to study the parameter design of displacement ventilation system, and proposed a method for determining the parameters of displacement ventilation system, so that the designed system can not only ensure high indoor air quality, but also prevent the occurrence of vertical temperature difference.
  • the indoor ceiling surface materials generally have high thermal conductivity, aluminum alloy panel 230W/(m ⁇ K), concrete floor 1.5W/(m ⁇ K), gypsum board 0.3W/(m ⁇ K), thermal insulation Gypsum 0.07W/(m ⁇ K), cork 0.05W/(m ⁇ K), the hot turbid gas will sink when it is cooled by the ceiling, so that the hot turbid gas cannot be discharged quickly, causing cross-contamination.
  • the purpose of the present invention is to provide a displacement ventilation type building and an indoor surface material which avoids the self-locking of turbid gas indoors. Avoid self-locking of turbid air in the indoor space.
  • a displacement ventilation type building that avoids the self-locking of turbid air in the room, comprising a room body, an air supply system for inputting fresh air into the room body, and the An exhaust system for discharging turbid air inside a house, characterized in that the upper surface of the indoor space of the house is a low thermal conductivity surface or the upper surface of the indoor space and the upper section of the side surface of the house are both low thermal conductivity surfaces , the thermal conductivity of the low thermal conductivity surface is less than or equal to 0.1W/(mK).
  • the low thermal conductivity surface is the surface of the low thermal conductivity material plate body or the surface of the low thermal conductivity material coating coated on the plate body or the surface of the low thermal conductivity material coating coated on the inner wall of the building.
  • the low thermal conductivity material board body is cork board, thermal insulation gypsum board or glass fiber board, and the low thermal conductivity material coating is polyphenyl particle thermal insulation mortar or aerogel thermal insulation material or inorganic fiber sprayed thermal insulation material.
  • the house body is a sealed thermal insulation house body.
  • the present invention also provides another technical solution: an indoor surface material for avoiding self-locking of turbid gas in the room, the indoor surface material has a low thermal conductivity surface for facing the indoor space, and the thermal conductivity of the low thermal conductivity surface is less than or equal to 0.1W/(mK).
  • the low thermal conductivity surface is the surface of the low thermal conductivity material plate body or the surface of the low thermal conductivity material coating coated on the plate body.
  • the low thermal conductivity material board body is cork board, thermal insulation gypsum board or glass fiber board, and the low thermal conductivity material coating is polyphenyl particle thermal insulation mortar or aerogel thermal insulation material or inorganic fiber sprayed thermal insulation material.
  • the interior surface material is a ceiling or a wall panel.
  • the present invention has the following advantages compared with the prior art: the replacement ventilation type building and the indoor surface material that avoid the self-locking of the turbid gas in the room disclosed by the invention, the low thermal conductivity surface prevents the hot turbid gas from being rapidly cooled It sinks, so that the hot and turbid air stays near the upper layer of the indoor space until it is discharged outdoors, thereby realizing real displacement ventilation and avoiding indoor cross-infection.
  • Fig. 1 is a schematic diagram of indoor smoke distribution during displacement ventilation in the prior art
  • Fig. 2 is the composition block diagram of the building in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the airflow flow of the building in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the airflow flow of the building in the second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the interior surface material in the third embodiment of the present invention.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only a relational word determined for the convenience of describing the structural relationship of each component or element of the present disclosure, and does not specifically refer to any component or element in the present disclosure, and should not be construed as a reference to the present disclosure. public restrictions.
  • terms such as “fixed connection”, “connected”, “connected”, etc. should be understood in a broad sense, indicating that it may be a fixed connection, an integral connection or a detachable connection; The medium is indirectly connected.
  • the specific meanings of the above terms in the present disclosure can be determined according to specific circumstances, and should not be construed as limitations on the present disclosure.
  • a building to avoid self-locking of turbid air in the room includes a room body 10 , an air supply system 20 for inputting fresh air into the room body 10 , and a room body 10 .
  • the upper surface of the indoor space of the house body 10 is a low thermal conductivity surface 17, and the thermal conductivity of the low thermal conductivity surface 17 is less than or equal to 0.1W/(mK).
  • the upper surface of the indoor space and the upper section of the side surface of the above-mentioned house body are both low thermal conductivity surfaces.
  • the above-mentioned low thermal conductivity surface 17 is a surface of a low thermal conductivity material coating coated on the inner wall of the building, and the low thermal conductivity material coating is polystyrene particle thermal insulation mortar or aerogel thermal insulation material or inorganic thermal insulation material. Fiber spray insulation.
  • the above-mentioned low thermal conductivity surface is the surface of a low thermal conductivity material board (ceiling or wall board), the low thermal conductivity material board is cork board or thermal insulation gypsum board or glass fiber board, or the above-mentioned low thermal conductivity surface is Low thermal conductivity material coating applied to panels (ceiling or wall panels).
  • the house body 10 is a sealed thermal insulation house body
  • the sealed thermal insulation house body includes a bottom, a wall and a top
  • the bottom of the sealed thermal insulation house body includes a ground 11 and a ground thermal insulation layer 12 disposed outside the ground 11
  • the walls of the sealed and thermally insulated house include a wall 13 and a wall thermal insulation layer 14 disposed outside the wall 13
  • the top of the sealed thermally insulated house includes a roof 15 and a roof thermal insulation layer 16 disposed outside the roof 15 .
  • the building is a displacement ventilation type low energy consumption building
  • the displacement ventilation type low energy consumption building further includes a ventilation heat recovery system 40, an environmental source heat exchange system 50 and a cooling and heating system.
  • the ventilation heat recovery system 40 includes an air supply conveying device 41 communicated with the inlet of the fresh air sending end of the air supply system 20 and an exhaust air conveying device 42 communicated with the outlet of the dirty gas receiving end of the exhaust air system 30.
  • the air supply conveying device 41 is connected with the exhaust air.
  • the air conveying device 42 performs heat exchange; the above-mentioned air supply conveying device 41 and the above-mentioned exhaust air conveying device 42 are pipes.
  • the environmental source heat exchange system includes a fluid conveying device 51 for exchanging heat with the natural environment.
  • the inlet of the above-mentioned fluid conveying device 51 is communicated with the closed inner circulating fluid 52.
  • the fluid output by the heat exchange and/or fluid conveying device 51 exchanges heat with the air sent into the sealed and insulated house 10, and the fluid conveying device 51 is a ground source heat pump, a water source heat pump or an air source heat pump.
  • the above-mentioned cooling and heating system includes an indoor cooling and heating device 61 for cooling or heating the air in the sealed thermal insulation room 10 to a set temperature, and an indoor cooling and heating device 61 for cooling or heating the fresh air sent by the air supply system 20 to a temperature lower than the set temperature.
  • the above-mentioned indoor cooling and heating device 61 is a cold and heat radiant floor, and the fluid output by the fluid conveying device 51 enters the coil of the cold and heat radiant floor.
  • the above-mentioned indoor cooling and heating device may include a radiant heating floor and a radiant cooling floor, which are respectively provided, or the above-mentioned indoor cooling and heating device is a cold and heat radiant ceiling, or the above-mentioned indoor cooling and heating device includes a separately arranged radiant heating floor and a radiant cooling floor. radiant heating ceiling and radiant cooling ceiling.
  • the air supply system 20 further includes an air supply fan 22 for feeding the air into the sealed and insulated house 10 under positive pressure, and the air exhaust system 30 also includes a negative pressure extraction of air out of the sealed and insulated house. Exhaust fan 32 outside 10.
  • the above-mentioned air supply fan is not provided, and only the exhaust fan is provided.
  • the air supply system further includes an air filter (not shown in the figure) for filtering the suspended particles in the fresh air sent by the air supply system, and used for sterilizing and disinfecting the fresh air sent by the air supply system.
  • a plurality of personnel gathering belts are distributed in the sealed thermal insulation room 10 , the position of the fresh air sending end 21 is lower than the position of the mouth and nose of the personnel gathering belt, and the position of the turbid air receiving end 31 is higher than the position of the personnel
  • One or more turbid gas receiving ends 31 are arranged above the side or directly above, and the sealed thermal insulation house 10 is divided into a first vertical column space and a second vertical column space alternately arranged in the horizontal direction.
  • the gathering belt is arranged in the first vertical cylindrical space, the fresh air sending end is arranged in the second vertical cylindrical space, and the dirty gas receiving end is arranged in the first vertical cylindrical space or the second vertical cylindrical space .
  • a personnel gathering belt is distributed in the sealed and insulated house, the fresh air sending end is set on the ground or the corner or the lower end of the wall of the sealed and insulated house, and the turbid gas receiving end is set on the top of the sealed and insulated house. wall or the top of the wall.
  • the set temperature is the indoor temperature
  • the set temperature is 20°C-26°C
  • the temperature of the fresh air sent from the fresh air outlet 21 is not more than 3°C lower than the set temperature.
  • the set temperature may be other temperatures, as long as the temperature is suitable.
  • the fresh air sending end 21 is a fiber cloth air duct.
  • a diffuser or the like may be used at the fresh air sending end.
  • the upper surface of the indoor space of the sealed thermal insulation house 10 is a low thermal conductivity surface 17, and the thermal conductivity of the low thermal conductivity surface 17 is less than or equal to 0.1W/(mK).
  • the upper surface of the indoor space and the upper section of the side surface of the sealed and insulated house body are both low thermal conductivity surfaces.
  • a plurality of personnel gathering belts are distributed in the sealed and insulated house 10 , the fresh air sending end 21 is arranged at the bottom of the sealed and insulated house 10 , and the dirty air receiving end 31 is arranged at the bottom of the sealed and insulated house 10 . top.
  • the fresh air sending end is arranged on the ground or the corner of the sealed thermal insulation room or the lower end of the wall, and the dirty gas receiving end is arranged on the bottom of the sealed thermal insulation room. Top wall or top of wall.
  • the low-energy building is a passive house or an ultra-low-energy building based on the passive house, a near-zero energy building, a zero-energy building, a zero-carbon building, a carbon-neutral building, and an energy-efficient building. one of the.
  • the air fed into the sealed and insulated house 10 is firstly distributed uniformly in the lower part, and then flows upward, encounters a heat source, is heated, flows upward slowly, and is pulled out from the upper part of the sealed and insulated house 10 .
  • a heat source in order to avoid the diffusion of hot and dirty gas in the room, choose to arrange the fresh air outlet from the bottom between the personnel gathering belts. , Do not let the hot and dirty gas on one side diffuse to the other side, through the floor heat radiation, and the heat provided by the indoor human body heat source, the cold air slowly rises and rises, and reaches the top area of the ceiling together with the hot pollution generated in the room.
  • the ceiling top area between different human bodies is discharged outdoors, and there is almost no polluting gas in the working area, avoiding indoor cross-infection and improving indoor environmental health. At the same time, it can improve the utilization rate of fresh air and reduce the demand for fresh air, thereby reducing energy consumption.
  • This method can use displacement ventilation in indoor winter, summer and plum rainy season (that is, the weather in southern China where dew condensation occurs in the room under natural conditions, also known as "Huangmeitian” or "Back to Nantian”), so that the fresh air and indoor hot polluted gas can be fed into the room. It will not mix and form a laminar flow, and the indoor hot dirty gas will rise to the ceiling area and be discharged into the room to avoid indoor cross-infection.
  • the fresh air In the summer cooling period, the fresh air is cooled (the temperature of the fresh air is less than 3°C lower than the room temperature) and sent in at a low speed from the bottom of the room. The fresh air slowly diffuses at the bottom of the room.
  • the outdoor fresh air is only filtered, and the heat exchanger (the fresh air temperature is less than 3°C lower than the room temperature) is directly fed into the indoor bottom at a low wind speed and slowly, forming a cold wind lake near the bottom, coupled with the floor heat radiation, the cold air is uniform Heated slowly rising, the formation of laminar flow.
  • the hot and turbid air exhaled by people also rises and is discharged outside the room above the room.
  • the purpose of adding thermal insulation coating on the surface of the ceiling is to prevent the hot and dirty gas from cooling down quickly and then mixing with other air after contacting the ceiling, reducing the residence time of the hot and dirty gas in the room and avoiding indoor cross-infection.
  • displacement ventilation the turbid air does not spread laterally in the bottom area of the room, and is directly brought to the upper part of the room by the updraft, creating a comfortable and healthy environment for the work area.
  • the rest is the same as the first embodiment, the difference is that there is a personnel gathering belt distributed in the sealed thermal insulation room, and the fresh air outlet end is set on the ground or the corner of the sealed thermal insulation room or the lower end of the wall
  • the turbid gas receiving end is arranged on the top wall or the upper end of the wall of the sealed thermal insulation room.
  • the cold air with a velocity of less than 0.2m/s is sent down from the bottom of the indoor side, and through the heat radiation from the bottom and the heat provided by the indoor human body heat source, the cold air slowly warms up and rises, and the indoor generation
  • the hot dirt reaches the ceiling top area together, and then exits the room over the other side.
  • There is almost no polluting gas in the working area avoiding indoor cross-infection and improving the health of the indoor environment, which can effectively reduce the demand for fresh air volume and reduce energy consumption.
  • the buildings in the first and second embodiments above can control and control various factors such as indoor temperature, wind direction and wind speed, that is, the factors that affect the airflow, especially the path of turbid air, to achieve indoor airflow control, and to discharge turbid air in time, thereby avoiding. cross infection.
  • the specific technical measures are as follows:
  • the lower part slowly sends cold air (fresh air slightly lower than room temperature) passing through the heat exchanger at a wind speed of no more than 0.2m/s.
  • cold air fresh air slightly lower than room temperature
  • ground radiant heating is used instead of hot air to avoid turbulence and form an indoor "cold wind lake”.
  • ground radiation cooling is used to ensure a comfortable room temperature, and fresh air cooling is used to provide fresh air slightly lower than room temperature, so as to avoid turbulence and form a "cold wind lake”.
  • the return air outlet (air outlet) is as close as possible to the source of the turbid gas, and the shortest path is exhausted, but the short circuit between the air supply end and the air exhaust end should be avoided.
  • an interior surface material to avoid self-locking of foul gas in the room has a low thermal conductivity surface 71 for facing the interior space, and the thermal conductivity of the low thermal conductivity surface 71 is less than or equal to 0.1W/(mK).
  • the low thermal conductivity surface 71 is the surface of the low thermal conductivity material board body 70 , and the low thermal conductivity material board body 70 is cork board, thermal insulation gypsum board, or glass fiber board.
  • the low thermal conductivity surface may be the surface of the low thermal conductivity material coating coated on the board, and the low thermal conductivity material coating may be polystyrene particle thermal insulation mortar or aerogel thermal insulation material or inorganic fiber spraying thermal insulation Material.
  • the interior surface material is a ceiling.
  • the ceiling of the interior space is provided with the above-mentioned low thermal conductivity ceiling.
  • the whole side wall of the indoor space is provided with the above-mentioned low thermal conductivity wall plate, or the above-mentioned low thermal conductivity wall plate is provided on the upper section of the side wall of the indoor space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Building Environments (AREA)

Abstract

本发明公开了一种避免浊气自锁于室内的置换通风式建筑物及室内表面材料装饰板,置换通风式建筑物包括房体、向房体内部输入新鲜空气的送风***以及将房体内部含有浊气的空气排出的排风***,房体的室内空间上表面为低导热表面或者房体的室内空间上表面和侧表面上段均为低导热表面,低导热表面的导热系数小于或等于0.1W/(mK)。室内表面材料具有用于朝向室内空间的低导热表面,低导热表面的导热系数小于或等于0.1W/(mK)。本发明阻止热浊气被迅速冷却而下沉,从而使热浊气停留在室内空间的上层附近,直至排出室外,由此实现真正的置换通风,从而避免室内交叉感染。

Description

避免浊气自锁于室内的置换通风式建筑物及室内表面材料 技术领域
本发明属于房屋建筑技术领域,具体涉及一种避免浊气自锁于室内的置换通风式建筑物及室内表面材料。
背景技术
置换通风的原理是基于空气密度差形成的热空气上升和冷空气下降。以小于0.2m/s风速,低于室内空气温度从房间底部送风。置换通风***应用于欧洲的高热负荷工业建筑已有40多年,1978年德国柏林的一家铸造车间首先采用了置换通风装置。近30年置换通风***在北欧国家的非工业建筑中也逐渐流行起来,如写字楼、学校、剧院等,例如丹麦哥本哈根大剧院。在我国,清华大学对置换通风与混合通风(稀释通风)在供冷季运行情况进行了研究,得出置换通风更节能;同时对置换通风不同风量下颗粒分布进行了研究,结果表明,风量对不同粒径的颗粒分部影响很大,小粒径颗粒(PM2.5)在房间上部区域浓度比较大,大粒径颗粒(PM10)在房间下部区域浓度比较大。同济大学建立气流实验室对置换通风气流特性进行了试验分析研究,并通过改变围护结构的传热系数,简要分析其对气流组织的影响,提供了评价置换通风方式舒适性的参考数据;同时也开展了置换通风和冷却顶板复合***的分析研究。东华大学多次参与法国LET实验室关于置换通风***干扰因素的实验研究,例如水蒸气对置换通风***性能的影响。华中科技大学学者应用CFD技术对置换通风***的参数设计进行了研究,提出置换通风***各项参数的确定方法,使得设计的***既能保证室内较高的空气品质,又能防止出现垂直温差过大及吹风感等现象。随着计算流体力学在暖通中的应用,相应开展了大量置换通风流场、温度场、浓度场和含湿量分布的数值模拟的研究,取得了不少重要成果。参见图1,为置换通风时室内烟雾分布图。置换通风用新风置换全屋空气,排出屋内原来的空气,即借助室内人体热源的热羽流形成近似活塞流进行室内空气的置换。
现有技术中,室内的天花板表面材料一般导热系数较高,铝合金面板230W/(m·K),混凝土楼板1.5W/(m·K),石膏板0.3W/(m·K),保温石膏0.07W/(m·K),软木0.05W/(m·K),热浊气遇天花板被冷却而下沉,导致热浊气不能迅速排出,引起交叉污染。
发明内容
本发明的目的在于提供一种避免浊气自锁于室内的置换通风式建筑物及室内表面材料。避免浊气自锁于室内空间。
为实现上述目的,本发明提供以下的技术方案:一种避免浊气自锁于室内的置换通风式建筑物,包括房体、向所述房体内部输入新鲜空气的送风***以及将所述房体内部含有浊气的空气排出的排风***,其特征在于,所述房体的室内空间上表面为低导热表面或者所述房体的室内空间上表面和侧表面上段均为低导热表面,所述低导热表面的导热系数小于或等于0.1W/(mK)。
进一步的,所述低导热表面为低导热材质板体的表面或涂覆于板体上的低导热材质涂层的表面或涂覆于建筑物内壁上的低导热材质涂层的表面。
进一步的,所述低导热材质板体为软木板或保温石膏板或玻璃纤维板,所述低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。
进一步的,所述房体为密封保温房体。
本发明还提供另外一个技术方案:一种避免浊气自锁于室内的室内表面材料,所述室内表面材料具有用于朝向室内空间的低导热表面,所述低导热表面的导热系数小于或等于0.1W/(mK)。
进一步的,所述低导热表面为低导热材质板体的表面或涂覆于板体上的低导热材质涂层的表面。
进一步的,所述低导热材质板体为软木板或保温石膏板或玻璃纤维板,所述低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。
进一步的,所述室内表面材料为天花板或墙壁板。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明公开的避免浊气自锁于室内的置换通风式建筑物及室内表面材料,低导热表面阻止热浊气被迅速冷却而下沉,从而使热浊气停留在室内空间的上层附近,直至排出室外,由此实现真正的置换通风,从而避免室内交叉感染。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为现有技术中置换通风时室内烟雾分布示意图;
图2为本发明实施例一中建筑物的组成方框图;
图3为本发明实施例一中建筑物的气流流动示意图;
图4为本发明实施例二中建筑物的气流流动示意图;
图5为本发明实施例三中室内表面材料的示意图。
其中,10、房体;11、地面;12、地面保温层;13、墙体;14、墙体保温层;15、屋顶;16、屋顶保温层;17、低导热表面;20、送风***;21、新风送出端;22、送风风机;30、排风***;31、浊气接收端;32、排风风机;40、通风热回收***;41、送风输送装置;42、排风输送装置;50、环境源热交换***;51、流体输送装置;52、封闭内循环流体;61、室内制冷制热装置;62、新风制冷制热装置;70、低导热材质板体;71、低导热表面。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
以下为用于说明本发明的一较佳实施例,但不用来限制本发明的范围。
实施例一
参见图2至图3,如其中的图例所示,一种避免浊气自锁于室内的建筑物,包括房体10、向房体10内部输入新鲜空气的送风***20以及将房体10内部含有浊气的空气排出的排风***30,上述房体10的室内空间上表面为低导热表面17,上述低导热表面17的导热系数小于或等于0.1W/(mK)。在其他实施例中还可以是:上述房体的室内空间上表面和侧表面上段均为低导热表面。
本实施例中优选的实施方式,上述低导热表面17为涂覆于建筑物内壁上的 低导热材质涂层的表面,低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。在其他实施例中还可以是:上述低导热表面为低导热材质板体(天花板或墙壁板)的表面,低导热材质板体为软木板或保温石膏板或玻璃纤维板,或上述低导热表面为涂覆于板体(天花板或墙壁板)上的低导热材质涂层。
本实施例中优选的实施方式,房体10为密封保温房体,密封保温房体包括底部、墙壁以及顶部,密封保温房体的底部包括地面11和设于地面11外侧的地面保温层12,密封保温房体的墙壁包括墙体13和设于墙体13外侧的墙体保温层14,密封保温房体的顶部包括屋顶15和设于屋顶15外侧的屋顶保温层16。
本实施例中优选的实施方式,建筑物为置换通风式低能耗建筑物,置换通风式低能耗建筑物还包括通风热回收***40、环境源热交换***50以及制冷制热***。
通风热回收***40包括与送风***20的新风送出端入口连通的送风输送装置41和与排风***30的浊气接收端出口连通的排风输送装置42,送风输送装置41与排风输送装置42进行热交换;上述送风输送装置41和上述排风输送装置42为管道。
环境源热交换***包括与自然环境进行热交换的流体输送装置51,上述流体输送装置51的入口与封闭内循环流体52连通,流体输送装置51输出的流体与密封保温房体10内的空气进行热交换和/或流体输送装置51输出的流体与送入密封保温房体10内的空气进行热交换,上述流体输送装置51为地源热泵或水源热泵或空气源热泵。
上述制冷制热***包括对密封保温房体10内的空气进行制冷或制热至设定温度的室内制冷制热装置61和用于将送风***20所送新风制冷或制热至低于设 定温度的新风制冷制热装置62。
本实施例中优选的实施方式,上述室内制冷制热装置61为冷热辐射地板,流体输送装置51输出的流体进入冷热辐射地板的盘管中。在其他实施例中还可以是:上述室内制冷制热装置包括分别设置的辐射采暖地板和辐射制冷地板,或者上述室内制冷制热装置为冷热辐射顶棚,或上述室内制冷制热装置包括分别设置的辐射采暖顶棚和辐射制冷顶棚。
本实施例中优选的实施方式,送风***20还包括用于将空气正压送入密封保温房体10内的送风风机22,排风***30还包括将空气负压抽出密封保温房体10外的排风风机32。在其他实施例中还可以是:不设置上述送风风机,仅设置排风风机。
本实施例中优选的实施方式,送风***还包括用于过滤送风***所送新风中悬浮微粒的空气过滤器(图中未示出)、用于对送风***所送新风进行杀菌消毒的消毒装置(图中未示出)以及用于出去送风***所送新风中湿气的除湿装置(图中未示出)。
本实施例中优选的实施方式,密封保温房体10内分布有多个人员聚集带,新风送出端21所在位置低于人员聚集带人体口鼻所在位置,浊气接收端31所在位置高于人员聚集带人体口鼻所在位置;每个人员聚集带的一侧下方布置有一个或多个新风送出端21且相邻两个人员聚集带之间布置有一个或多个新风送出端21,另一侧上方或正上方布置有一个或多个浊气接收端31,密封保温房体10内被划分为沿水平方向依次交替布置的第一竖立状柱形空间和第二竖立状柱形空间,人员聚集带布置在第一竖立状柱形空间中,新风送出端布置在第二竖立状柱形空间中,浊气接收端布置在第一竖立状柱形空间中或第二竖立状柱形空间中。在其他实施例中还可以是:密封保温房体中分布有一个人员聚集带,新风送出端设于密封保温房体的地面或墙角或墙壁下端,浊气接收端设于密封保温房体的顶壁或墙壁上端。
本实施例中优选的实施方式,上述设定温度为室内温度,上述设定温度为20℃-26℃,新风送出端21送出的新风温度低于设定温度不超过3℃。在其他实施例中还可以是:设定温度为其他温度,只要温度适宜即可。
本实施例中优选的实施方式,新风送出端21为纤维布风管。在其他实施例中还可以是:新风送出端采用散流器等。
本实施例中优选的实施方式,密封保温房体10的室内空间上表面为低导热表面17,低导热表面17的导热系数小于或等于0.1W/(mK)。在其他实施例中还可以是:密封保温房体的室内空间上表面和侧表面上段均为低导热表面。
本实施例中优选的实施方式,密封保温房体10中分布有多个人员聚集带,新风送出端21设于密封保温房体10的底部,浊气接收端31设于密封保温房体10的顶部。在其他实施例中还可以是:密封保温房体中分布有一个人员聚集带时,新风送出端设于密封保温房体的地面或墙角或墙壁下端,浊气接收端设于密封保温房体的顶壁或墙壁上端。
本实施例中优选的实施方式,低能耗建筑物为被动房或基于被动房基础上的超低能耗建筑、近零能耗建筑、零能耗建筑、零碳建筑、碳中和建筑、产能房中的一者。
本实施例中优选的实施方式中,送入密封保温房体10内的空气先在下部均匀分布,随后向上流动,遇到热源,受热,缓缓向上流动,并在上部抽出密封保温房体10。在体积大的办公室/房间,为了避免在热污浊气体在室内扩散,选择从人员聚集带之间的底部布置新风送出端,新风送出端均匀送出速度小于0.2m/s的冷风,新风向两边扩散,不让一侧的热污浊气体扩散到另一侧,经地板热辐射,以及室内人体热源提供的热量,冷风缓慢升温上升,和室内产生的热污浊一起到达天花板顶部区域,随之。在不同人体之间的天花板顶部区域排出室外,在工作区几乎无污染气体,避免室内交叉感染,提高室内环境健康。同时,可提高新风利用率,降低新风需求量,从而可降低能耗。本方法可以在室内冬夏季及 梅雨季节采用置换通风(即中国南方地区自然状态下室内会结露的天气,亦称“黄梅天”或“回南天”),使送入新风与室内热污浊气体不会混合,形成层流,室内热污浊气体上升至天花板区域,排出室内,避免室内交叉感染。在夏季供冷期,新风制冷(新风温度低于室温3℃以内)后从室内底部以低速送入,新鲜空气慢慢在室内底部弥散开,遇到室内人体热源,受热,缓缓上升。在冬季供暖期,室外新风仅经过过滤,和热交换器(新风温度低于室温3℃以内)直接在室内底部低风速徐徐送入,在底部附近形成冷风湖,加上地板热辐射,冷风均匀受热缓慢上升,形成层流。人呼出的热浊气也随着上升,在室内上方排出室外。天花板表面加保温涂层的目的是,在热浊气接触天花板后,不会迅速冷却再下沉与其他空气混合,减少热污浊气体在室内的滞留时间,避免室内交叉感染。运用置换通风,浊气在房间底部区域无横向扩散,被上升气流直接带到房间上部非人员停留区,为工作区创造了舒适又健康的环境。对于春秋季室外气温温和的季节,建议采用开窗自然通风,是避免室内交叉感染的最佳方法。
实施例二
参见图4,如其中的图例所示,其余与实施例一相同,不同之处在于,密封保温房体内分布有一个人员聚集带,新风送出端设于密封保温房体的地面或墙角或墙壁下端,浊气接收端设于密封保温房体的顶壁或墙壁上端。
本实施例中,在体积小的办公室/房间,从室内一侧底部下送速度小于0.2m/s的冷风,经底部热辐射,以及室内人体热源提供的热量,冷风缓慢升温上升,和室内产生的热污浊一起到达天花板顶部区域,随之在另一侧上方排出室内。在工作区几乎无污染气体,避免室内交叉感染提高室内环境健康,可有效减少新风量的需求,减少能耗。
上述实施例一和实施例二中的建筑物通过调控影响室内气温、风向和风速等各种因素,即调控影响气流尤其是浊气路径的因素,实现室内气流管控,及时排出浊气,从而避免交叉感染。具体技术措施如下:
1.排除外部环境对室内环境的影响和干扰,采用符合建筑物技术要求的高气密高保温以及机械通风(新风)***。普通建筑容易受外部环境影响:
①气密性不好的建筑会产生渗漏风,从而导致室内空气混合;
②未使用保温隔热效果好的外门窗,门窗表面温度低导致附近空气向下流动,室内空气易循环流动;
③没有机械通风时,开窗会对气流和温度有所影响;
④房间整体温差对气流所带来的影响。
2.避免天花板表面和上部墙面散热导致降低邻近浊气气温而使浊气下沉,避免浊气在中间层自锁而无法排出,采用低导热性表面材料或涂料。
3.下部以不超过0.2m/s的风速徐徐送经过热交换器的冷风(略低于室温的新风),冬季用地面辐射采暖代替送热风,避免紊流,形成室内“冷风湖”。夏季,用地面辐射制冷保证舒适室温,用新风制冷提供略低于室温的新风,从而避免紊流,形成“冷风湖”。
4.遵循冷空气下沉、热空气上升的自然规律,采用下送冷风(新风)上排浊气。
①在需要避免交叉感染的工况下实现只对新风制冷,不使用循环风;
②在需要避免交叉感染的工况下,四季维持略低于室温且可接受的温度,温差不超过3℃。
5.冬季采用地板大面积低温采暖,避免集中热源(如暖气片)或不均衡采暖(如一侧墙面采暖)干扰室内气流。同时可避免室内垂直温度梯度过大;
6.对开敞式大空间实施网格化分布式管控气流,遵循“新风-人体-浊气-排出”的气流路径,避免“人体-浊气-人体”的气流走向:
①回风口(排风口)尽可能靠近浊气源头,最短路径排走,但要避免送风端和排风端短路。
②人流密集的正上方建立回风口,气流走向尽可能垂直向上(回风和新风形成一个垂直走向,形成垂直气流管控)总之,原则一:避免浊气“人传人”,原则二“尽快排出”浊气。
实施例三
参见图5,如其中的图例所示,一种避免浊气自锁于室内的室内表面材料,室内表面材料具有用于朝向室内空间的低导热表面71,低导热表面71的导热系数小于或等于0.1W/(mK)。
本实施例中优选的实施方式,低导热表面71为低导热材质板体70的表面,低导热材质板体70为软木板或保温石膏板或玻璃纤维板。在其他实施例中还可以是:低导热表面为涂覆于板体上的低导热材质涂层的表面,低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。
本实施例中优选的实施方式,室内表面材料为天花板。室内空间的顶部设置上述低导热的天花板。在其他实施例中还可以是:室内表面材料为墙壁板。室内空间的侧壁整体设置上述低导热的墙壁板,或者室内空间的侧壁上段设置上述低导热的墙壁板。
通过在置换通风式建筑物的顶壁或侧壁上段设置室内表面材料,在热浊气接触室内表面材料后,不会迅速冷却再下沉与其他空气混合,减少热污浊气体在室内的滞留时间,避免室内交叉感染。
以上为对本发明实施例的描述,通过对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本 文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种避免浊气自锁于室内的置换通风式建筑物,包括房体、向所述房体内部输入新鲜空气的送风***以及将所述房体内部含有浊气的空气排出的排风***,其特征在于,所述房体的室内空间上表面为低导热表面或者所述房体的室内空间上表面和侧表面上段均为低导热表面,所述低导热表面的导热系数小于或等于0.1W/(mK)。
  2. 如权利要求1所述的避免浊气自锁于室内的置换通风式建筑物,其特征在于,所述低导热表面为低导热材质板体的表面或涂覆于板体上的低导热材质涂层的表面或涂覆于建筑物内壁上的低导热材质涂层的表面。
  3. 如权利要求2所述的避免浊气自锁于室内的置换通风式建筑物,其特征在于,所述低导热材质板体为软木板或保温石膏板或玻璃纤维板,所述低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。
  4. 如权利要求1所述的避免浊气自锁于室内的置换通风式建筑物,其特征在于,所述房体为密封保温房体。
  5. 一种避免浊气自锁于室内的室内表面材料,其特征在于,所述室内表面材料具有用于朝向室内空间的低导热表面,所述低导热表面的导热系数小于或等于0.1W/(mK)。
  6. 如权利要求5所述的避免浊气自锁于室内的室内表面材料,其特征在于,所述低导热表面为低导热材质板体的表面或涂覆于板体上的低导热材质涂层的表面。
  7. 如权利要求6所述的避免浊气自锁于室内的室内表面材料,其特征在于,所述低导热材质板体为软木板或保温石膏板或玻璃纤维板,所述低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。
  8. 如权利要求5所述的避免浊气自锁于室内的室内表面材料,其特征在于, 所述室内表面材料为天花板或墙壁板。
PCT/CN2021/098795 2021-02-08 2021-06-08 避免浊气自锁于室内的置换通风式建筑物及室内表面材料 WO2022166055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110179175.3A CN112814145A (zh) 2021-02-08 2021-02-08 避免浊气自锁于室内的置换通风式建筑物及室内表面材料
CN202110179175.3 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166055A1 true WO2022166055A1 (zh) 2022-08-11

Family

ID=75864857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098795 WO2022166055A1 (zh) 2021-02-08 2021-06-08 避免浊气自锁于室内的置换通风式建筑物及室内表面材料

Country Status (2)

Country Link
CN (1) CN112814145A (zh)
WO (1) WO2022166055A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781147A (zh) * 2021-02-08 2021-05-11 苏州大学 一种置换通风式被动房
CN112814145A (zh) * 2021-02-08 2021-05-18 苏州大学 避免浊气自锁于室内的置换通风式建筑物及室内表面材料
CN112781146A (zh) * 2021-02-08 2021-05-11 苏州大学 一种柔和送风的置换通风式建筑物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826625A1 (de) * 1998-06-17 1999-12-23 Lieselotte Glas Niedrigenergiegebäude
CN102434013A (zh) * 2011-08-31 2012-05-02 上海伯涵热能科技有限公司 一种以高焓浴宝为升温加湿装置的低热惯性集成卫浴房
CN202430927U (zh) * 2012-01-16 2012-09-12 上海英硕聚合材料股份有限公司 保温隔热装饰一体化板
CN203583691U (zh) * 2013-11-07 2014-05-07 北京建筑材料科学研究总院有限公司 一种用于建筑外墙的保温板
CN209310196U (zh) * 2018-12-25 2019-08-27 苏州恩基热能科技有限公司 热泵厂房结构
CN112781150A (zh) * 2021-02-08 2021-05-11 苏州大学 一种辐射式制冷制热的被动房
CN112781147A (zh) * 2021-02-08 2021-05-11 苏州大学 一种置换通风式被动房
CN112814420A (zh) * 2021-02-08 2021-05-18 苏州大学 一种通过室内浊气管控避免交叉感染的建筑物
CN112814145A (zh) * 2021-02-08 2021-05-18 苏州大学 避免浊气自锁于室内的置换通风式建筑物及室内表面材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826625A1 (de) * 1998-06-17 1999-12-23 Lieselotte Glas Niedrigenergiegebäude
CN102434013A (zh) * 2011-08-31 2012-05-02 上海伯涵热能科技有限公司 一种以高焓浴宝为升温加湿装置的低热惯性集成卫浴房
CN202430927U (zh) * 2012-01-16 2012-09-12 上海英硕聚合材料股份有限公司 保温隔热装饰一体化板
CN203583691U (zh) * 2013-11-07 2014-05-07 北京建筑材料科学研究总院有限公司 一种用于建筑外墙的保温板
CN209310196U (zh) * 2018-12-25 2019-08-27 苏州恩基热能科技有限公司 热泵厂房结构
CN112781150A (zh) * 2021-02-08 2021-05-11 苏州大学 一种辐射式制冷制热的被动房
CN112781147A (zh) * 2021-02-08 2021-05-11 苏州大学 一种置换通风式被动房
CN112814420A (zh) * 2021-02-08 2021-05-18 苏州大学 一种通过室内浊气管控避免交叉感染的建筑物
CN112814145A (zh) * 2021-02-08 2021-05-18 苏州大学 避免浊气自锁于室内的置换通风式建筑物及室内表面材料

Also Published As

Publication number Publication date
CN112814145A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022166055A1 (zh) 避免浊气自锁于室内的置换通风式建筑物及室内表面材料
WO2022166052A1 (zh) 一种网格化送风的置换通风式建筑物
WO2022166057A1 (zh) 一种通过室内浊气管控避免交叉感染的建筑物
WO2022166053A1 (zh) 一种柔和送风的置换通风式建筑物
WO2022166056A1 (zh) 一种辐射式制冷制热的被动房
WO2022166054A1 (zh) 一种置换通风式被动房
JP2009513925A (ja) エネルギー回収/湿度制御システム
CN105780943B (zh) 一种多层建筑辐射换热空调墙体
CN202769850U (zh) 太阳能烟囱复合露点间接蒸发冷却通风降温装置
JP2000291989A (ja) 空調設備および空調方法
CN103940010A (zh) 一种用于室内通风和净化的空气净化***
CN214307443U (zh) 一种辐射式制冷制热的被动房
Sekhar et al. Study of an integrated personalized ventilation and local fan-induced active chilled beam air conditioning system in hot and humid climate
CN214307435U (zh) 一种柔和送风的置换通风式建筑物
CN205957377U (zh) 洁净手术室用温湿度独立控制的恒温恒湿空调***
CN110260434A (zh) 一种基于太阳能与余热回收的屋顶式空调***
Elzaidabi Low energy, wind catcher assisted indirect-evaporative cooling system for building applications
CN204373110U (zh) 一种旁路式新风***
CN109974261A (zh) 一种空气换热器芯体
CN214891647U (zh) 一种置换通风式被动房
Li Numerical simulation and analysis for indoor air quality in different ventilation
CN214497845U (zh) 避免浊气自锁于室内的置换通风式建筑物及室内表面材料
CN204629868U (zh) 辐射制冷/热和新风制冷/热功能一体化换热装置
CN214498505U (zh) 一种通过室内浊气管控避免交叉感染的建筑物
CN106196378A (zh) 洁净手术室用温湿度独立控制的恒温恒湿空调***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924062

Country of ref document: EP

Kind code of ref document: A1