WO2022163845A1 - Inspection system, inspection method, program, and computer-readable storage medium - Google Patents

Inspection system, inspection method, program, and computer-readable storage medium Download PDF

Info

Publication number
WO2022163845A1
WO2022163845A1 PCT/JP2022/003467 JP2022003467W WO2022163845A1 WO 2022163845 A1 WO2022163845 A1 WO 2022163845A1 JP 2022003467 W JP2022003467 W JP 2022003467W WO 2022163845 A1 WO2022163845 A1 WO 2022163845A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
target
target microorganism
microorganisms
specimen
Prior art date
Application number
PCT/JP2022/003467
Other languages
French (fr)
Japanese (ja)
Inventor
美幸 徳田
Original Assignee
株式会社バランス・イースト
能登 晴子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バランス・イースト, 能登 晴子 filed Critical 株式会社バランス・イースト
Priority to JP2022524067A priority Critical patent/JP7286070B2/en
Publication of WO2022163845A1 publication Critical patent/WO2022163845A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to an inspection system, inspection method, program, and computer-readable storage medium, and more particularly to an inspection system, inspection method, program, and computer-readable storage medium for inspecting microorganisms.
  • the present invention has been made in view of such circumstances, and aims to provide an inspection system, an inspection method, a program, and a computer-readable storage medium that can quickly and accurately inspect microorganisms. aim.
  • the measuring apparatus is a test system for testing microorganisms, wherein target microorganisms among microorganisms in a predetermined sample are reacted with antibodies that produce antibody reactions.
  • the apparatus is characterized by comprising a fluorescence processing unit that performs fluorescence processing on the specimen.
  • the fluorescence processing unit performs fluorescence processing at a predetermined wavelength to fluoresce the target microorganism among the microorganisms in the predetermined sample and the antibody that causes the target microorganism to react with the antibody that causes the antibody reaction. Since it was decided to have a It is possible to distinguish target microorganisms from other microorganisms by, for example, fluorescing the microorganisms. As a result, it is possible to quickly test microorganisms, for example, it is possible to test for target microorganisms without depending on the culture method.
  • the antibody is an antibody that causes an antibody reaction with the target microorganism, it can be reliably reacted with the target microorganism, and the fluorescence of the target microorganism can be reliably suppressed to accurately detect the microorganism. inspection can be performed.
  • the fluorescence processing unit further performs fluorescence processing to fluoresce the sample before the antibody reacts with the target microorganism, the target microorganism in the sample before the target microorganism reacts with the antibody It is possible to fluoresce, including the target microorganism, and to grasp the change before and after the antibody reaction of the target microorganism.
  • the fluorescence processing unit further removes the target microorganism and the target in the specimen after reacting any one of the target microorganism and other microorganisms other than the target microorganism with the antibody.
  • the fluorescence treatment is performed so as not to cause any one of the microorganisms other than the microorganism to fluoresce, and to cause the other of the target microorganism and the other microorganism other than the target microorganism to fluoresce.
  • neither the target microorganism nor the other microorganism other than the target microorganism does not cause fluorescence in the sample after the target microorganism reacts with the antibody, and the target microorganism and the other microorganism other than the target microorganism
  • Fluorescence treatment can be performed to generate fluorescence in either one of the other microorganisms, and changes in the target microorganism before and after the antibody reaction can be grasped.
  • the fluorescence processing unit does not cause the target microorganisms to emit fluorescence in the specimen after the reaction between the target microorganisms and the antibody, and causes fluorescence to be emitted to microorganisms other than the target microorganisms. If fluorescence treatment is performed to cause fluorescence, it is possible to prevent the target microorganism from generating fluorescence in the sample after the target microorganism reacts with the antibody, and the change in the target microorganism before and after the antibody reaction can be grasped.
  • the apparatus has an image processing unit that performs image processing of the fluorescent sample, it becomes possible to grasp changes in target microorganisms after antibody reaction from images.
  • An image processing unit that performs image processing of the fluorescent specimen before the reaction between the target microorganism and the antibody and image processing of the fluorescent specimen after the target microorganism and the antibody react. Then, it becomes possible to grasp the change before and after the antibody reaction of the target microorganism by the image.
  • the image processing unit determines whether or not the image of the fluorescent specimen is included in the range of the reference data of the microorganism, and determines the range of the reference data of the microorganism in the image of the fluorescent specimen. If the image contained in is specified, it is possible to extract the image of the microorganism after the antibody reaction of the target microorganism from which foreign substances other than the microorganism have been removed, and the microorganism can be inspected with higher accuracy. .
  • the image processing unit compares the reference data of the microorganism with the image of the fluorescent specimen before the reaction and the image of the fluorescent specimen after the reaction, and corresponds to the reference data of the microorganism. If the image of the fluorescent specimen before the reaction and the image of the fluorescent specimen after the reaction are specified, the image of the microorganism from which foreign substances other than the microorganism have been removed before and after the antibody reaction of the target microorganism Images can be extracted, and microorganisms can be inspected with higher accuracy. If the reference data for the microorganisms includes the reference data for the target microorganisms, microorganisms other than the target microorganisms can be excluded from the microorganisms, and the microorganisms can be tested more accurately. can be done.
  • target microorganism count counting unit for counting the number of the target microorganism, more specifically, the fluorescent specimen before the antibody reacts and the target microorganism reacted with the antibody.
  • the number of target microorganisms can be counted by providing a target microorganism count counting unit for counting the number of target microorganisms from the later fluorescent sample.
  • the target microorganism number counting unit counts the number of microorganisms counted from the fluorescent specimen after the reaction between the target microorganism and the antibody from the number of microorganisms counted from the fluorescent specimen before the antibody reacts.
  • the number of target microorganisms can be counted by subtracting the .
  • the target microorganism count counting unit detects the target from an image of the fluorescent specimen before reaction with the antibody and an image of the fluorescent specimen after reaction between the target microorganism and the antibody. You can count the number of microorganisms that For example, the target microorganism number counting unit determines whether the target microorganism reacts with the antibody based on the number of microorganisms counted from the image of the fluorescent specimen image processed by the image processing unit before the antibody reacts. The number of target organisms can be counted by subtracting the number of organisms counted from the image of the fluorescent specimen after irradiating.
  • the target microorganism identification unit for identifying the type of target microorganism, the type of target microorganism can be identified. More specifically, the number of the target microorganisms in the fluorescent sample before the reaction with the antibody counted by the target microorganism counting unit and the fluorescence after the reaction between the target microorganism and the antibody after the target microorganism and the antibody react with the number of the target microorganism in the fluorescent specimen before the antibody reacts, and and a target microorganism identification unit that identifies the type of the target microorganism by assuming that the target microorganism has generated the antibody reaction when the number of the target microorganism in the fluorescent sample has decreased. can be done.
  • the target microorganism identification unit determines the number of the target microorganisms in the image of the fluorescent sample before the antibody reacts, which is counted by the target microorganism count counting unit, and the number of the target microorganisms and the antibody reacts. comparing the number of the target microorganisms in the image of the fluorescent specimen after the reaction with the target microorganisms, and comparing the number of the target microorganisms in the image of the fluorescent specimen before the reaction with the antibody. When the number of the target microorganisms in the image of the fluorescent specimen after the reaction with the antibody decreases, the target microorganism is considered to have caused the antibody reaction, and the type of the target microorganism can be specified.
  • An image capturing unit having a predetermined lens is provided, and the image capturing unit can capture an image of the specimen through the predetermined lens.
  • the image capturing unit has a plurality of lenses with different magnifications, and is configured to change the magnification of the lenses to a predetermined value by changing the selection and/or combination of the plurality of lenses with different magnifications. Then, the magnification of the image can be appropriately changed.
  • It has a predetermined stage on which the specimen is placed, and a position control unit that controls the position of the stage, and the position control unit controls the position of the stage to control the If the focal position is controlled, the focal position can be controlled.
  • the position control unit changes the position of the fluorescent sample, and the image processing unit captures a plurality of images of the fluorescent sample, aggregates the captured images, and performs image processing. As a result, even if the concentration of the target microorganisms in the sample is uneven, it is possible to prevent the measurement accuracy from deteriorating.
  • the fluorescence processing unit performs the fluorescence processing on the target microorganisms in the specimen by fluorescent staining using a predetermined reagent, the target microorganisms are dyed to reliably distinguish them from other microorganisms. can be done.
  • the target microorganisms include at least one of bacteria and viruses, and at least one mode of a bacteria inspection mode for inspecting the bacteria and a virus inspection mode for inspecting the viruses is provided. For example, at least one of a bacterial test and a viral test can be performed.
  • the fluorescence processing unit has a band-pass filter that limits the range of wavelengths of light to a predetermined range, it is possible to more accurately inspect target microorganisms. If the specimen is filtered using a predetermined filter medium, and a filtering unit for removing foreign matter from the specimen is provided, the foreign matter is removed from the specimen, and target microorganisms can be tested with higher accuracy. .
  • the measurement method according to the present invention is an inspection method for inspecting microorganisms, which comprises a target microorganism among microorganisms in a predetermined sample and an antibody reaction with the target microorganism.
  • the method is characterized by comprising a fluorescence treatment step of performing a fluorescence treatment at a predetermined wavelength to fluoresce the specimen reacted with the generated antibody.
  • the fluorescence treatment step may be a step of performing fluorescence treatment to fluoresce the specimen before the target microorganism reacts with the antibody.
  • the target microorganism and the target in the specimen after reacting any one of the target microorganism and other microorganisms other than the target microorganism with the antibody A step of performing a fluorescence treatment in which either one of the microorganisms other than the target microorganism does not fluoresce, and the other of the target microorganism and the other microorganism other than the target microorganism fluoresces. can be done.
  • the target microorganism in the specimen after the reaction between the target microorganism and the antibody, the target microorganism does not emit fluorescence, and microorganisms other than the target microorganism emit fluorescence. It can be a step of performing a fluorescence treatment that causes the reaction to occur.
  • the antibody can be an antibody that does not cause the target microorganism to fluoresce when an antibody reaction is caused in the target microorganism.
  • fluorescent staining is performed using a predetermined reagent to fluoresce the microorganisms in the specimen, and the reagent causes the target microorganisms to react with the antibody. It can be a reagent that does not cause the target microorganism to fluoresce.
  • the reagent can be a fluorescein-based compound and/or a propidium-based compound. Said reagent can be FDA (fluorescein diacetate) and/or PI (propidium iodide).
  • a program according to the present invention causes a computer of an inspection system for inspecting microorganisms to react with a target microorganism in a predetermined sample and an antibody that produces an antibody reaction with the target microorganism. It is characterized by functioning as a fluorescence processing unit that performs fluorescence processing on the sample that has been processed using a predetermined wavelength.
  • a computer-readable storage medium stores the above program.
  • microorganisms can be tested quickly and accurately.
  • FIG. 2 is a diagram schematically showing the configuration of a specimen according to the embodiment of the present invention
  • FIG. It is a figure showing the whole inspection system composition concerning the embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a state in which foreign matter is removed from the same sample;
  • FIG. 4 is a diagram schematically showing a state in which the same specimen reacts with an antibody.
  • FIG. 10 is a diagram showing an image of a sample before antibody reaction;
  • FIG. 10 is a diagram showing an image of a specimen after antibody reaction; It is a flow chart for explaining the inspection method of the present invention.
  • FIG. 1 is a diagram schematically showing the configuration of a sample according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the overall configuration of an inspection system according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • Another diagram showing the overall configuration of the inspection system according to FIG. 4 is a diagram showing the configuration of the computer of the inspection system
  • FIG. 7 is a diagram showing the configuration of the fluorescence processing unit and the image capturing unit of the inspection system
  • FIG. 8 is an image of the specimen before antibody reaction.
  • FIG. 9 shows an image of the sample after antibody reaction.
  • the inspection system 1 is an apparatus for measuring target microorganisms 102 among microorganisms 101 in a predetermined specimen 100 (sample 100 to be inspected) shown in FIG. is.
  • the target microorganisms 102 can include, for example, bacteria and viruses.
  • Bacteria can include various types of bacteria such as general bacteria and E. coli, and viruses include various types of viruses such as influenza viruses and coronaviruses. be able to. As shown in FIG.
  • the inspection system 1 includes a filtering unit 10, a fluorescence processing unit 20, an image capturing unit 30, a position control unit 40, an image processing unit 50, a reference data storage unit 60, a target microorganism counting unit 70, a target It has a microorganism identification unit 80 .
  • the inspection system 1 has a bacteria inspection mode 2 for inspecting bacteria and a virus inspection mode 3 for inspecting viruses.
  • the inspection system 1 has a general configuration as a computer. As shown in FIG. 4, a central processing unit (CPU, GPU, DSP) 1B, storage devices (ROM, RAM, hard disk, cache memory) 1C, input device (keyboard, touch panel, mouse) 1D, display device (liquid crystal display) 1E, and the like.
  • the storage device 1C functions as a computer-readable storage medium.
  • the functional units 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 can mutually generate and input/output signal information by the computer functions of the inspection system 1 .
  • the filtering unit 10 has a predetermined filtering filter. That is, the filtering unit 10 can filter the specimen 100 using the filtration filter and remove the foreign matter 100' from the specimen 100 as shown in FIG.
  • the filtration filter can be a syringe filter.
  • the fluorescence processing unit 20 can perform fluorescence processing to fluoresce the microorganisms 101 in the specimen 100 at a predetermined wavelength. That is, the fluorescence processing unit 20 can perform the fluorescence processing to fluoresce the specimen 100 before the target microorganism 102 reacts with the predetermined antibody 110 at a predetermined wavelength. In addition, as shown in FIG. 6, the fluorescence processing unit 20 can perform fluorescence processing at a predetermined wavelength to fluoresce the specimen 100 after reacting the target microorganism 102 with the predetermined antibody 110 .
  • the fluorescence processing unit 20 does not cause the target microorganisms 102 to emit fluorescence at a predetermined wavelength in the sample 100 after the target microorganisms 102 and the antibody 110 have reacted with each other. Fluorescence treatment may be performed to cause other microorganisms 103 to emit fluorescence.
  • the antibody 110 is a glycoprotein molecule produced by B cells among lymphocytes, and has the function of recognizing and binding to a molecule (antigen) such as a specific protein.
  • Antibodies 110 mainly exist in blood and body fluids, and recognize and bind to, for example, bacteria, viruses, and cells infected with microorganisms that have invaded the body as antigens.
  • phagocytic cells such as white blood cells and microphages recognize and phagocytize the complex of the antigen and the antibody 110 and work to remove it from the body, and immune cells such as lymphocytes bind to become immune. It is something that provokes a reaction.
  • the predetermined antibody 110 of the present invention is an antibody that causes an antibody response to the target microorganism 102 .
  • the predetermined antibody 110 is an antibody that does not cause the target microorganism 102 to fluoresce at a predetermined wavelength when the target microorganism 102 is caused to react with an antibody.
  • the fluorescence processing unit 20 can detect the target microorganism 102 at a predetermined wavelength in the specimen 100 after the target microorganism 102 and the antibody 110 have reacted. Fluorescence treatment may be performed so that the microbes 103 other than the target microbes 102 do not fluoresce, and the microbes 103 other than the target microbes 102 fluoresce.
  • the antibody 110 is an antibody that causes an antibody reaction in the target microorganism 102, and an antibody that does not cause the target microorganism 102 to fluoresce at a predetermined wavelength when the target microorganism 102 produces an antibody reaction. Whether or not it is is confirmed in advance by various tests.
  • the antibody 110 includes various antibodies such as an antibody that causes an antibody reaction against E. coli, an antibody that causes an antibody reaction against general bacteria, an antibody that causes an antibody reaction against influenza virus, an antibody that causes an antibody reaction against coronavirus, and so on. can be used.
  • the fluorescence processing unit 20 performs fluorescent staining using a predetermined reagent to fluoresce the microorganisms 101 in the specimen 100 before antibody reaction and fluorescence treatment to fluoresce the microorganisms 101 in the specimen 100 after antibody reaction. It can be carried out.
  • This reagent can be a reagent that does not cause the target microorganism 102 to fluoresce at a predetermined wavelength when the antibody 110 causes the target microorganism 102 to elicit an antibody response. That is, the fluorescence processing unit 20 performs fluorescent staining using a predetermined reagent to fluoresce the microorganisms 101 in the specimen 100 at a predetermined wavelength.
  • a reagent used for fluorescent staining can be a fluorescein-based compound and/or a propidium-based compound. More specifically, the reagent used for fluorescent staining can be FDA (Fluorescein Diacetate) and/or PI (Propidium Iodide). According to the present inventors, FDA (Fluorescein Diacetate) and PI (Propidium Iodide) are targeted at predetermined wavelengths when the antibody 110 causes the target microorganism 102 to generate an antibody response. It has been clarified that the reagent does not cause the microorganism 102 to fluoresce.
  • the fluorescence processing section 20 has an excitation light irradiation section 21 and a wavelength measurement section 22, as shown in FIG.
  • the excitation light irradiation unit 21 can irradiate the specimen 100 with excitation light having a predetermined wavelength.
  • the wavelength measurement unit 22 can measure the wavelength of fluorescence from the specimen 100 that has absorbed the excitation light. More specifically, the fluorescence processing unit 20 can measure the wavelength of fluorescence from the specimen 100 before antibody reaction and the wavelength of fluorescence from the specimen 100 after antibody reaction.
  • the light emitted by the excitation light irradiation unit 21 is 488 nm
  • the wavelength measured by the wavelength measurement unit 22 is around 512 nm in bacteria inspection mode 2
  • the fluorescence processing unit 20 further has a bandpass filter 23 that limits the wavelength range of light to a predetermined range. That is, the band-pass filter 23 has a wavelength range of the excitation light irradiated onto the specimen 100 by the excitation light irradiation unit 21, a wavelength range of fluorescence from the specimen 100 before antibody reaction measured by the wavelength measurement unit 22, and The wavelength range of fluorescence from the specimen 100 after antibody reaction can be restricted to a predetermined range.
  • the light irradiated by the excitation light irradiation unit 21 is 488 ⁇ 10 nm by the band-pass filter 23, the wavelength measured by the wavelength measurement unit 22 is 512 ⁇ 10 nm by the band-pass filter 23 in the bacteria inspection mode 2, and the virus inspection Mode 3 is limited to 512 ⁇ 10 nm or 620 ⁇ 10 nm, respectively.
  • the image photographing unit 30 has an optical lens 31 and a photographing device 32 in more detail than the predetermined lens.
  • the image capturing unit 30 can magnify and capture an image of the specimen 100 including fluorescent spots via a predetermined optical lens 31 and an image capturing device 32 .
  • the image capturing unit 30 has a plurality of optical lenses 31 with different magnifications. That is, the image capturing unit 30 can change the magnification of the optical lens 31 to a predetermined value by selecting and/or changing the combination of the plurality of optical lenses 31 having different magnifications.
  • the optical lens 31 is an optical element for refracting light to diverge or converge, and a convex lens and/or a concave lens can be used.
  • the imaging device 32 has functions of a CCD camera and a CMOS camera, and can capture an image of the specimen 100 .
  • the target microorganism 102 is a bacterium
  • the size of the bacterium is about 1 to 5 ⁇ m.
  • magnification is set to 50 times or more to take an image. Note that the magnification of the image may be arbitrarily set by the function of a computer such as a CPU of the inspection system 1 .
  • the image capturing unit 30 can capture an image of the fluorescent sample 100 by placing the sample 100 on a predetermined stage 33 (mounting table 33 on which the sample 100 is placed). That is, the image capturing unit 30 performs first capturing of the surface of the membrane filter A capturing the foreign matter 100' containing the microorganism 101, and second capturing of the surface of the slide glass B onto which the sample 100 is directly dropped. A photograph can be taken (the second photographing is carried out with the cover glass placed on the slide glass B). The first imaging and the second imaging can be performed with the membrane filter A and the slide glass B placed on the stage 33 .
  • the position control unit 40 can control the position of the stage 33 on which the specimen 100 is placed.
  • the position control unit 40 can control the movement of the stage 33 in the vertical direction and the horizontal direction.
  • the position control unit 40 can control the focus position in the image capturing unit 30 by controlling the vertical movement of the stage 33 . That is, the position control unit 40 controls the movement of the stage 33 in the vertical direction so that the focal positions in the first imaging and the second imaging are the surface positions of the membrane filter A and the surface positions of the slide glass B, for example. can do.
  • the position control unit 40 can horizontally change the position of the fluorescent specimen 100 before antibody reaction and the position of the fluorescent specimen 100 after antibody reaction. While changing the position of the sample 100 in the horizontal direction by the position control unit 40, the image capturing unit 30 captures a plurality of images of the fluorescent sample 100 before the antibody reaction and the fluorescent sample 100 after the antibody reaction. You can shoot.
  • the image processing unit 50 can perform image processing of the fluorescent specimen 100 photographed by the image photographing unit 30 . That is, the image processing unit 30 performs image processing of the fluorescent specimen 100 before the antibody reaction between the target microorganism 102 and the antibody 110 and processing of the fluorescent specimen 100 after the antibody reaction between the target microorganism 102 and the antibody 110. Image processing can be performed.
  • the image processing unit 50 can perform image processing based on reference data of the microorganism 101 . That is, the image processing unit 50 determines whether or not the image of the fluorescent specimen 100 before the antibody reaction and the fluorescent specimen 100 after the antibody reaction are included in the reference data range of the microorganism 101. 8 and 9, an image portion 104a included in the reference data range of the microorganism 101 in the image of the fluorescent specimen 100 before antibody reaction and the fluorescent specimen 100 after antibody reaction. of the image, the image portion 104b included in the reference data range of the microorganism 101 is specified. Further, the image processing section 50 can extract the specified image portions 104a and 104b.
  • the image portion 104a specified and extracted from the image of the fluorescent specimen 100 before antibody reaction includes the image of the target microorganism 102 and the image of the other microorganism 103, as shown in FIG. 9, the image portion 104b specified and extracted from the image of the fluorescent specimen 100 after antibody reaction does not contain the target microorganism 102 because it reacts with the antibody. Only images of other microorganisms 103 will be included.
  • the number N1 of microorganisms 101 is counted from the image portion 104a identified and extracted from the image of the fluorescent specimen 100 before antibody reaction, and the number N1 of microorganisms 101 is identified and extracted from the image of the fluorescent specimen 100 after antibody reaction.
  • the number N2 of microorganisms 101 is counted from the image portion 104b, and as shown in Equation 1, the number N2 of microorganisms 101 counted from the image portion 104b is subtracted from the number N1 of microorganisms 101 counted from the image portion 104a. ), the number N of the target microorganisms 102 can be counted.
  • N N1-N2
  • the reference data of the microorganism 101 is the data of the target microorganism 102 and the data of the other microorganism 103 so that both the target microorganism 102 and the other microorganism 103 are extracted by the image processing unit 50. Both are included and set.
  • the reference data of the microorganism 101 are the size of the target microorganism 102 and the other microorganism 103, the shape of the target microorganism 102 and the other microorganism 103, the fluorescence of the target microorganism 102 and the other microorganism 103.
  • the image processing unit 50 uses the image of the fluorescent specimen 100 before antibody reaction and the image of the fluorescent specimen 100 after antibody reaction as a reference data, and the corresponding size and Images of the microorganisms 102 and 103 in shape, and images of fluorescent portions of the microorganisms 102 and 103 having shades corresponding to reference data can be identified and extracted.
  • the reference data can include, for example, general bacteria data, E. coli data, virus data, and the like.
  • the image processing unit 50 generates an image of the fluorescent specimen 100 before the antibody reaction, which is obtained by changing the position of the specimen 100 photographed by the image photographing unit 30, in the horizontal direction, and an image of the fluorescent specimen 100 after the antibody reaction. images can be aggregated and processed.
  • the reference data storage unit 60 can store reference data for the microorganism 101 .
  • the reference data is based on at least one of the size of the microorganisms 101 and 102, the shape of the microorganisms 101 and 102, and the intensity of the fluorescence of the microorganisms 101 and 102.
  • the reference data can include data on various bacteria such as data on general bacteria and data on E. coli.
  • the reference data can include virus data and the like, and the virus data can include coronavirus and influenza virus data.
  • the target microorganism count counting unit 70 can count the number of target microorganisms 102 . That is, the target microorganism count counting unit 70 generates an image of the fluorescent sample 100 before the reaction of the antibody 110 image-processed by the image processing unit 50 and a fluorescent sample after the reaction between the target microorganism 102 and the antibody 110. The number N of target microorganisms 102 from 100 images can be counted.
  • the target microorganism number counting unit 70 counts the number N1 of the microorganisms 101 from the image portion 104a specified and extracted from the image of the fluorescent specimen 100 before the antibody reaction, and the fluorescent specimen 100 after the antibody reaction.
  • the number N2 of microorganisms 101 is counted from the image portion 104b specified and extracted from the image of , and as shown in Equation 1, the number N1 of microorganisms 101 counted from the image portion 104b is calculated from the number N1 of microorganisms 101 counted from the image portion 104b.
  • the number N of target microorganisms 102 can be counted by subtracting (subtracting) N2.
  • the number of target microorganisms 102 counted by the target microorganism number counting unit 70 is based on the image of the fluorescent specimen 100 before the reaction of the antibody 110, which has been image-processed by the image processing unit 50, and the target microorganism 102 and the antibody. This is done based on the number of fluorescent spots appearing in the image of the fluorescent specimen 100 after the reaction with 110 .
  • the target microorganism identifying unit 80 can identify the type of target microorganism 102 . That is, the target microorganism identification unit 80 determines the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts, counted by the target microorganism number counting unit 70, and the number of target microorganisms 102 and the antibody. The number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction is compared with the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts with the target microorganisms.
  • the target microorganism 102 When the number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between 102 and the antibody 110 decreases, the target microorganism 102 is considered to have generated an antibody reaction, and the type of the target microorganism 102 is determined. can be specified.
  • each functional unit of the inspection system 1 described above can function by executing a predetermined program 200 .
  • the program 200 causes the computer of the inspection system 1 to perform the fluorescence processing section 20, the image capturing section 30, the position control section 40, the image processing section 50, the reference data storage section 60, the target microorganism counting section 70, and the target microorganism identifying section. 80.
  • the program 200 is stored in the storage device 1C of the inspection system 1. FIG.
  • step 1 the sample 100 is adjusted.
  • the object to be inspected such as food, hands, mouth, floor, etc.
  • the swab that has been wiped off is washed away with purified water.
  • the rinsed purified water is filtered by the filtering unit 10 to remove the foreign matter 100', and the specimen 100 is prepared.
  • the prepared specimen 100 is divided into at least two test tubes (eg, 1 ml) to perform fluorescence treatment in the fluorescence treatment step of step 2 before and after antibody reaction. .
  • the antibody 110 is added to one sample 100 out of the separately prepared samples 100 to generate an antibody reaction (the other sample 100 out of the separately adjusted samples 100 is not supplied with the antibody 110).
  • the antibody 110 can be an antibody 110 that does not cause the target microbe 102 to fluoresce when the target microbe 102 provokes an antibody response.
  • a reagent for fluorescent staining is added to each of the separately prepared specimens 100 .
  • the reagent can be a reagent that does not cause the target microorganism 102 to fluoresce when the antibody 110 causes the target microorganism 102 to react with an antibody.
  • the reagent can be a fluorescein-based compound and/or a propidium-based compound. More specifically, the reagent can be FDA (fluorescein diacetate) and/or PI (propidium iodide).
  • each of the specimens 100 divided and adjusted in step 1 is subjected to fluorescence processing as a fluorescence processing step by the fluorescence processing unit 20 .
  • This fluorescence treatment is performed by setting the wavelengths of the excitation light irradiation unit 21 and the wavelength measurement unit 22 to predetermined values. Also, the wavelength range of the band-pass filter 23 is set to a predetermined value.
  • Specimen 100 before antibody reaction in step 2 (other specimen 100 without antibody 110 in step 1) and specimen 100 after antibody reaction (specimen 100 in which antibody 110 was added in step 1 to cause antibody reaction) ) can fluoresce in a predetermined wavelength range.
  • step 3 the image capturing unit 30 captures an image while placing the specimen 100 fluorescently processed in step 2 on the stage 33 .
  • the image capturing unit 30 sets the focal position by moving the stage 33 vertically by the position control unit 40 while setting a predetermined magnification. Further, the image capturing unit 30 moves the stage 33 in the horizontal direction by the position control unit 40, and captures a plurality of images of the fluorescent specimen 100 before antibody reaction and a plurality of images of the fluorescent specimen 100 after antibody reaction. . It is preferable that the image capturing unit 30 scans the entire surface of the membrane filter A and the entire surface of the slide glass B using the position control unit 40 .
  • step 4 the image processing unit 50 processes the image captured in step 3.
  • FIG. This image processing is performed based on reference data of the microorganism 101 . That is, the image processing unit 50 determines whether or not the image of the fluorescent specimen 100 before the antibody reaction and the fluorescent specimen 100 after the antibody reaction are included in the reference data range of the microorganism 101. Then, image portions 104a and 104b included in the reference data range of the microorganism 101 in the image of the fluorescent specimen 100 before the antibody reaction and the fluorescent specimen 100 after the antibody reaction were identified and identified. Image portions 104a, 104b are extracted. This identification and extraction of the image portions 104a, 104b is based on the horizontal images taken in step 3 (the data of the multiple images are averaged).
  • the target microorganism counting unit 70 counts the number of target microorganisms 102 . That is, the target microorganism count counting unit 70 generates an image of the fluorescent sample 100 before the reaction of the antibody 110 image-processed by the image processing unit 50 and a fluorescent sample after the reaction between the target microorganism 102 and the antibody 110. From the 100 images, the number N of target microorganisms 102 is counted according to Equation 1.
  • the target microorganism identifying unit 80 identifies the type of target microorganism 102 . That is, the target microorganism identification unit 80 determines the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts, counted by the target microorganism number counting unit 70, and the number of target microorganisms 102 and the antibody. The number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction is compared with the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts with the target microorganisms.
  • the target microorganism 102 When the number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between 102 and the antibody 110 decreases, the target microorganism 102 is considered to have generated an antibody reaction, and the type of the target microorganism 102 is determined. identify.
  • the inspection system 1 reacts the target microorganism 102 among the microorganisms 101 in the predetermined specimen 100 with the antibody that causes the target microorganism 102 to react with the antibody.
  • the fluorescence processing unit 20 performs fluorescence processing to fluoresce the sample 100
  • the inspection method causes an antibody reaction between the target microorganism 102 among the microorganisms 101 in the predetermined sample 100 and the target microorganism 102. Since it has a fluorescence treatment step of performing fluorescence treatment at a predetermined wavelength to fluoresce the specimen 100 reacted with the antibody 110, the target microorganism 102 among the microorganisms 100 in the specimen 100 is reacted with the antibody.
  • the target microorganisms 102 By performing fluorescence treatment to fluoresce the specimen 100 at a predetermined wavelength, the target microorganisms 102 can be distinguished from the other microorganisms 103 by, for example, causing the other microorganisms 103 to fluoresce while not fluorescing the target microorganisms 102 in the specimen 100. It becomes possible to As a result, the target microorganism 102 can be tested without depending on the culture method, and the microorganism 102 can be quickly tested.
  • the antibody 110 is the antibody 100 that causes an antibody reaction with the target microorganism 102, it can be reliably reacted with the target microorganism 102, and the fluorescence of the target microorganism 102 can be reliably suppressed. Then, the microorganism 102 can be inspected with high accuracy.
  • the fluorescence processing step further includes the target microorganism 102 and the antibody 100. Since the fluorescence treatment is performed to fluoresce the specimen 100 before the reaction with the target microorganism 102, the target microorganism 102 can also be fluorescent in the specimen 100 before the target microorganism 102 reacts with the antibody. It becomes possible to grasp the change before and after the antibody reaction of the target microorganism 102 .
  • the fluorescence processing unit 20 does not cause the target microorganism 102 to emit fluorescence in the sample 100 after the target microorganism 102 and the antibody 110 have been further reacted, and the other microorganisms 103 other than the target microorganism 102 are detected.
  • the fluorescence treatment step does not cause the target microorganism 102 to emit fluorescence in the specimen 100 after further reacting the target microorganism 102 and the antibody 110, Since the fluorescent treatment is performed to cause the microorganisms 103 other than the target microorganisms 102 to emit fluorescence, the target microorganisms 102 in the specimen 100 after the target microorganisms 102 have reacted with antibodies are subjected to fluorescence. Therefore, it is possible to grasp the change before and after the antibody reaction of the target microorganism 102 .
  • the antibody 110 is an antibody 110 that does not cause the target microorganism 102 to fluoresce when causing the target microorganism 102 to generate an antibody reaction.
  • the target microbe 102 may not fluoresce when the target microbe 102 is activated.
  • the fluorescence processing unit 20 and the fluorescence processing step perform fluorescence processing to fluoresce the microorganisms 101 in the specimen 100 by fluorescence staining using a predetermined reagent, and the reagent reacts with the target microorganisms 102 by the antibody 110. Since it was decided to use a reagent that does not cause fluorescence in the target microorganism 102 when causing can do.
  • the image processing unit 50 compares the data serving as the reference of the microorganism 101 with the image of the fluorescent specimen 100 before the reaction and the image of the fluorescent specimen 100 after the reaction to obtain the reference of the microorganism 101. Since the image of the fluorescent specimen 100 before the reaction corresponding to the data and the image of the fluorescent specimen 100 after the reaction were identified and extracted, the identified images were extracted. It is possible to extract an image of the microorganism 101 from which the foreign matter 100' other than the 101 is removed and the inspection noise is removed, and the target microorganism 102 can be inspected with higher accuracy.
  • the specimen 100 may contain far more foreign matter 100' than the microorganisms 101, and eliminating the noise in the inspection by removing the foreign matter 100' leads to a significant improvement in the accuracy of the inspection. (If the test noise is not removed by removing the foreign object 100', the decrease in the fluorescence score of the target microorganism 102 due to the antibody reaction may fall within the margin of error).
  • the image capturing unit 30 has a plurality of optical lenses 31 with different magnifications, and by changing the selection and/or combination of the plurality of optical lenses 31 with different magnifications, the magnification of the optical lenses 31 can be changed to a predetermined value. Since the configuration is such that the magnification of the image can be appropriately changed.
  • the position control unit 40 controls the movement of the stage 33.
  • the focal position in the image capturing section 30 is controlled, so that the focal position can be controlled.
  • the position control unit 40 changes the position of the fluorescent specimen 100 before the reaction and the position of the fluorescent specimen 100 after the reaction
  • the image processing unit 50 controls the position of the fluorescent specimen 100 before the reaction.
  • a plurality of images of the specimen 100 that was fluorescent after the reaction and the image of the specimen 100 after the reaction were taken, and the images that were taken were aggregated and subjected to image processing. Even if the concentration of the microorganisms 102 to be measured has unevenness, it is possible to suppress the deterioration of the measurement accuracy.
  • the fluorescence processing unit 20 performs fluorescent processing to fluoresce the microorganisms 101 in the specimen 100 before the reaction and the microorganisms 101 in the specimen 100 after the reaction by fluorescent staining using a predetermined reagent. Fluorescent treatment can be performed.
  • the target microorganism 102 includes at least one of bacteria and viruses, and has a bacteria inspection mode 2 for inspecting bacteria and a virus inspection mode 3 for inspecting viruses. Inspection and virus inspection can be performed.
  • the fluorescence processing unit 20 has a band-pass filter 23 that limits the range of wavelengths of light to a predetermined range, the wavelengths that cause noise in the inspection are removed, and the target microorganisms 102 are detected with greater accuracy. can be inspected well.
  • the filtering unit 10 removes the foreign matter 100' from the specimen 100, the physically large foreign matter 100 can be removed from the specimen 100 before the fluorescence treatment. ' can be removed to reduce the noise of the test, and the target microorganism 102 can be tested more accurately.
  • the present invention is not limited to the above-described embodiments and can be applied and modified in various ways. That is, for example, in the above-described embodiment, the inspection system 1 has both the bacteria inspection mode 2 and the virus inspection mode 3, but the desired effect can be obtained even if only one mode is used. can play. In other words, if the inspection system 1 has at least one mode of the bacteria inspection mode 2 and the virus inspection mode 2, the desired effects can be obtained.
  • the fluorescence processing unit 20, the image processing unit 50, the target microorganism counting unit 70, and the target microorganism identifying unit 80 perform various processes before and after the antibody reaction of the target microorganism 102, Although counting and identification are performed, the necessary effects can also be achieved by performing only various treatments, counting, and identification after antibody reaction.
  • the fluorescence processing unit 20, the image processing unit 50, the target microorganism number counting unit 70, and the target microorganism identification unit 80 do not only perform various processing, counting, and identification after antibody reaction, but rather Of course, it is a more preferable embodiment to perform various processing, counting, and identification both before and after the reaction of 102 antibodies.
  • the fluorescence processing unit 20 and the fluorescence processing step cause the target microorganisms 102 in the specimen 100 after the reaction between the target microorganisms 102 and the antibodies 110 to generate fluorescence.
  • the fluorescence treatment is performed to cause the microorganisms 103 other than the target microorganisms 102 to emit fluorescence.
  • the microorganism 103 other than the target microorganism 102 does not emit fluorescence, and the target microorganism 102 emits fluorescence.
  • a desired effect can also be obtained by performing a fluorescent treatment.
  • the fluorescence processing unit 20 and the fluorescence processing step are performed in the specimen 100 after the antibody 110 is reacted with either the target microorganism 102 or the other microorganism 103 other than the target microorganism 102.
  • 102 and other microorganisms 103 other than the target microorganism 102 are not caused to fluoresce, and the other of the target microorganism 102 and the other microorganisms 103 other than the target microorganism 102 is caused to fluoresce.
  • a desired effect can also be obtained by performing a fluorescent treatment.
  • the target microorganism count counting unit 70 includes an image of the fluorescent specimen 100 before the antibody 110 reacts, which has been image-processed by the image processing unit 50, and the target microorganism 102 and the antibody.
  • the number of target microorganisms 102 is counted from the image of the fluorescent specimen 100 after the reaction with 110, it is possible to count the number of target microorganisms 102 by another method without using the image. also has the desired effect.
  • the target microorganism identification unit 80 counts the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts with the target microorganism counted by the target microorganism counting unit 70, and The number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between the target microorganism 102 and the antibody 110 is compared with the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts.
  • the target microorganisms 102 react with antibodies.
  • the type of the target microorganism 102 is identified as having been generated, the desired effect can also be achieved by identifying the type of the target microorganism 102 by another method without using the image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

[Problem] To provide an inspection system, an inspection method, a program, and a computer-readable storage medium with which it is possible to perform inspection of microbes in a speedy and accurate manner. [Solution] An inspection system 1 for performing inspection of microbes 100, the inspection system 1 having a fluorescence processing unit 20 for performing, at a prescribed wavelength, fluorescence processing of a prescribed specimen 100 in which a reaction is produced between target microbes 102 from among microbes 100 in the specimen 100 and antibodies 110 that produce an antibody reaction with the target microbes 102. The fluorescence processing unit 20 is also able to perform fluorescence processing of the specimen 100 before the target microbes 102 and the antibodies have reacted.

Description

検査システム、検査方法、プログラム、およびコンピュータが読み取り可能な記憶媒体Inspection system, inspection method, program, and computer-readable storage medium
 本発明は、検査システム、検査方法、プログラム、およびコンピュータが読み取り可能な記憶媒体に関し、特に微生物を検査するための検査システム、検査方法、プログラム、およびコンピュータが読み取り可能な記憶媒体に関する。 The present invention relates to an inspection system, inspection method, program, and computer-readable storage medium, and more particularly to an inspection system, inspection method, program, and computer-readable storage medium for inspecting microorganisms.
過去より食品の微生物管理は、トータルの品質管理の中でも中心的ファクターとなっている。食品衛生法でも、食品や食材事に一般細菌数と大腸菌数等の微生物数は基準値として定められている。よって各種食品関連事業所では日々、食品や、食材からサンプルを抜き取り、一般細菌数と大腸菌数等の微生物数の検査を行っている。食品の細菌数等を検査する技術は、例えば特許文献1に開示される技術を参照することができる。 From the past, microbial control of food has become a central factor in total quality control. The Food Sanitation Law also stipulates standard values for the number of general bacteria and the number of microorganisms such as E. coli for each food item. Therefore, various food-related business establishments take samples from foods and ingredients every day, and inspect the number of general bacteria and the number of microorganisms such as the number of E. coli. The technique disclosed in Patent Document 1, for example, can be referred to for the technique of testing the number of bacteria in food.
特開2014-52976号公報JP 2014-52976 A
検査の現状は国が定める培養法に頼らざるを得ない状況で48時間の時間と、それに伴い膨大なコストが計上されている。自社検査体制が無い企業は、検査をすべて外部依頼している。しかしながら、これら検査体制は大きな問題を抱えている。それは、検査に要する時間である。食品の大半は、鮮度が重要で有るため、製造後はすぐに出荷される。つまり当日の生産品の微生物検査結果は48時間の判定であるにもかかわらず、検査結果が出る前に、出荷され食されてしまうのである。万一、先に出荷された食品の微生物汚染により食中毒が発生したとしても、原因があとから分かると言う事である。この問題は、世界的にも共通のテーマとなっている。求められているニーズは、検査結果が出てから安心して出荷出来る事である。近年、培養法以外の簡易判定キットも各種販売はされているものの、2時間以上は、かかる上、簡易で有るため精度に問題がある。 The current state of testing is that we have no choice but to rely on the culture method stipulated by the government, which takes 48 hours and entails a huge cost. Companies that do not have their own inspection system outsource all inspections. However, these inspection systems have serious problems. It is the time required for inspection. Freshness is important for most foods, so they are shipped immediately after production. In other words, even though the microbiological test result of the product on the day is determined after 48 hours, the product is shipped and eaten before the test result is available. Even if food poisoning occurs due to microbial contamination of the food shipped first, the cause will be found later. This problem has become a common theme all over the world. What is needed is to be able to ship products with peace of mind after inspection results are available. In recent years, various simple determination kits other than the culture method have been sold, but they take more than 2 hours and are simple, so there is a problem in accuracy.
 本発明はこのような事情に鑑みてなされたものであり、迅速にかつ精度よく微生物の検査を行うことができる検査システム、検査方法、プログラム、およびコンピュータが読み取り可能な記憶媒体を提供することを目的とする。 The present invention has been made in view of such circumstances, and aims to provide an inspection system, an inspection method, a program, and a computer-readable storage medium that can quickly and accurately inspect microorganisms. aim.
 上記目的を達成するため、本発明に係る測定装置は、微生物の検査を行うための検査システムであって、所定の検体における微生物のうち標的とする微生物と抗体反応を生じる抗体とを反応させた前記検体の蛍光処理を行う蛍光処理部を有することを特徴とする。 In order to achieve the above object, the measuring apparatus according to the present invention is a test system for testing microorganisms, wherein target microorganisms among microorganisms in a predetermined sample are reacted with antibodies that produce antibody reactions. The apparatus is characterized by comprising a fluorescence processing unit that performs fluorescence processing on the specimen.
 本発明によれば、所定の検体における微生物のうち標的とする微生物と前記標的とする微生物と抗体反応を生じる抗体とを反応させた前記検体を蛍光させる蛍光処理を所定の波長で行う蛍光処理部を有することとしたので、検体における微生物のうち標的とする微生物と抗体とを反応させて検体を蛍光させる蛍光処理を所定の波長で行うことにより、検体において標的とする微生物を蛍光させずに他の微生物を蛍光させる等、標的とする微生物を他の微生物と区別することが可能となる。これにより、培養法によらず標的とする微生物の検査を行うことができる等、迅速な微生物の検査を行うことができる。また、抗体は、標的とする微生物と抗体反応を生じる抗体とすることとしたので、標的とする微生物と確実に反応させることができ、標的とする微生物の蛍光を確実に抑制して精度よく微生物の検査を行うことができる。 According to the present invention, the fluorescence processing unit performs fluorescence processing at a predetermined wavelength to fluoresce the target microorganism among the microorganisms in the predetermined sample and the antibody that causes the target microorganism to react with the antibody that causes the antibody reaction. Since it was decided to have a It is possible to distinguish target microorganisms from other microorganisms by, for example, fluorescing the microorganisms. As a result, it is possible to quickly test microorganisms, for example, it is possible to test for target microorganisms without depending on the culture method. In addition, since the antibody is an antibody that causes an antibody reaction with the target microorganism, it can be reliably reacted with the target microorganism, and the fluorescence of the target microorganism can be reliably suppressed to accurately detect the microorganism. inspection can be performed.
前記蛍光処理部は、更に前記標的とする微生物と前記抗体が反応する前の前記検体を蛍光させる蛍光処理を行うこととすれば、標的とする微生物が抗体反応する前の検体において標的とする微生物も含めて蛍光させることができ、標的とする微生物の抗体反応の前後における変化を把握することが可能となる。
前記蛍光処理部は、更に前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方と前記抗体とを反応させた後の前記検体において前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方に蛍光を生じさせず、前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか他方に蛍光を生じさせる蛍光処理を行うこととすれば、標的とする微生物が抗体反応した後の検体において標的とする微生物および標的とする微生物以外の他の微生物のいずれか一方に蛍光を生じさせず、標的とする微生物および標的とする微生物以外の他の微生物のいずれか他方に蛍光を生じさせる蛍光処理を行うことができ、標的とする微生物の抗体反応の前後における変化を把握することが可能となる。
If the fluorescence processing unit further performs fluorescence processing to fluoresce the sample before the antibody reacts with the target microorganism, the target microorganism in the sample before the target microorganism reacts with the antibody It is possible to fluoresce, including the target microorganism, and to grasp the change before and after the antibody reaction of the target microorganism.
The fluorescence processing unit further removes the target microorganism and the target in the specimen after reacting any one of the target microorganism and other microorganisms other than the target microorganism with the antibody. If the fluorescence treatment is performed so as not to cause any one of the microorganisms other than the microorganism to fluoresce, and to cause the other of the target microorganism and the other microorganism other than the target microorganism to fluoresce. , neither the target microorganism nor the other microorganism other than the target microorganism does not cause fluorescence in the sample after the target microorganism reacts with the antibody, and the target microorganism and the other microorganism other than the target microorganism Fluorescence treatment can be performed to generate fluorescence in either one of the other microorganisms, and changes in the target microorganism before and after the antibody reaction can be grasped.
前記蛍光処理部は、更に前記標的とする微生物と前記抗体とを反応させた後の前記検体において前記標的とする微生物に蛍光を生じさせず、前記標的とする微生物以外の他の微生物に蛍光を生じさせる蛍光処理を行うこととすれば、標的とする微生物が抗体反応した後の検体において標的とする微生物に蛍光を生じさせないこととすることができ、標的とする微生物の抗体反応の前後における変化を把握することが可能となる。 Further, the fluorescence processing unit does not cause the target microorganisms to emit fluorescence in the specimen after the reaction between the target microorganisms and the antibody, and causes fluorescence to be emitted to microorganisms other than the target microorganisms. If fluorescence treatment is performed to cause fluorescence, it is possible to prevent the target microorganism from generating fluorescence in the sample after the target microorganism reacts with the antibody, and the change in the target microorganism before and after the antibody reaction can be grasped.
前記抗体は、前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない抗体とすることとすれば、標的とする微生物に抗体反応を生じさせたときに標的とする微生物に蛍光を生じさせないこととすることができる。
前記蛍光処理部は、所定の試薬を用いた蛍光染色により、前記検体における微生物を蛍光させる蛍光処理を行い、前記試薬は、前記抗体により前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない試薬とすることとすれば、標的とする微生物に抗体反応を生じさせたときに標的とする微生物に蛍光を生じさせないこととすることができる。
前記試薬は、フルオレセイン系化合物および/またはプロピディウム系化合物とすることができる。より詳しくは、前記試薬は、FDA (フルオレセイン・ジアセテート)および/またはPI(プロピディウムイオダイド)とすることが好ましい。
If the antibody is an antibody that does not cause the target microorganism to fluoresce when an antibody reaction is induced in the target microorganism, when the target microorganism is induced to generate an antibody reaction, the target It can be made not to cause fluorescence in the microorganisms to be used.
The fluorescence processing unit performs fluorescence processing to fluoresce the microorganisms in the specimen by fluorescent staining using a predetermined reagent, and the reagent causes the target microorganisms to react with the antibody. By using a reagent that does not cause the target microorganism to fluoresce, it is possible to prevent the target microorganism from generating fluorescence when an antibody reaction is induced in the target microorganism.
The reagent can be a fluorescein-based compound and/or a propidium-based compound. More specifically, the reagent is preferably FDA (fluorescein diacetate) and/or PI (propidium iodide).
前記蛍光した検体の画像処理を行う画像処理部を有することとすれば、標的とする微生物の抗体反応後における変化を画像により把握することが可能となる。
前記標的とする微生物と前記抗体が反応する前の前記蛍光した検体の画像処理および前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像処理を行う画像処理部を有することとすれば、標的とする微生物の抗体反応の前後における変化を画像により把握することが可能となる。
If the apparatus has an image processing unit that performs image processing of the fluorescent sample, it becomes possible to grasp changes in target microorganisms after antibody reaction from images.
An image processing unit that performs image processing of the fluorescent specimen before the reaction between the target microorganism and the antibody and image processing of the fluorescent specimen after the target microorganism and the antibody react. Then, it becomes possible to grasp the change before and after the antibody reaction of the target microorganism by the image.
前記画像処理部は、前記蛍光した検体の画像が前記微生物の基準となるデータの範囲に含まれるか否かを判断して、前記蛍光した検体の画像のうち前記微生物の基準となるデータの範囲に含まれる画像を特定することとすれば、標的とする微生物の抗体反応後における微生物以外の異物が除かれた微生物の画像を抽出することができ、更に精度よく微生物の検査を行うことができる。 The image processing unit determines whether or not the image of the fluorescent specimen is included in the range of the reference data of the microorganism, and determines the range of the reference data of the microorganism in the image of the fluorescent specimen. If the image contained in is specified, it is possible to extract the image of the microorganism after the antibody reaction of the target microorganism from which foreign substances other than the microorganism have been removed, and the microorganism can be inspected with higher accuracy. .
前記画像処理部は、前記微生物の基準となるデータと前記反応する前の蛍光した検体の画像および前記反応した後の蛍光した検体の画像とを比較して、前記微生物の基準となるデータと対応する前記反応する前の蛍光した検体の画像および前記反応した後の蛍光した検体の画像を特定することとすれば、標的とする微生物の抗体反応の前後における微生物以外の異物が除かれた微生物の画像を抽出することができ、更に精度よく微生物の検査を行うことができる。
前記微生物の基準となるデータは、前記標的とする微生物の基準となるデータを含むこととすれば、微生物のうち標的とする微生物以外の微生物を除くことができ更に精度よく微生物の検査を行うことができる。
The image processing unit compares the reference data of the microorganism with the image of the fluorescent specimen before the reaction and the image of the fluorescent specimen after the reaction, and corresponds to the reference data of the microorganism. If the image of the fluorescent specimen before the reaction and the image of the fluorescent specimen after the reaction are specified, the image of the microorganism from which foreign substances other than the microorganism have been removed before and after the antibody reaction of the target microorganism Images can be extracted, and microorganisms can be inspected with higher accuracy.
If the reference data for the microorganisms includes the reference data for the target microorganisms, microorganisms other than the target microorganisms can be excluded from the microorganisms, and the microorganisms can be tested more accurately. can be done.
前記標的とする微生物の数を計数する標的微生物数計数部を有することとすれば、より詳しくは、前記抗体が反応する前の前記蛍光した検体および前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体から前記標的とする微生物の数を計数する標的微生物数計数部を有することとすれば、標的とする微生物の数を計数することができる。
前記標的微生物数計数部は、前記抗体が反応する前の前記蛍光した検体から計数した微生物の数から前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体から計数した微生物の数を差し引くことにより前記標的とする微生物の数を計数することができる。
より詳しくは、前記標的微生物数計数部は、前記抗体が反応する前の前記蛍光した検体の画像および前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像から前記標的とする微生物の数を計数することができる。
前記標的微生物数計数部は、例えば、前記画像処理部により画像処理された前記抗体が反応する前の前記蛍光した検体の画像から計数した微生物の数から前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像から計数した微生物の数を差し引くことにより標的とする微生物の数を計数することができる。
If it has a target microorganism count counting unit for counting the number of the target microorganism, more specifically, the fluorescent specimen before the antibody reacts and the target microorganism reacted with the antibody. The number of target microorganisms can be counted by providing a target microorganism count counting unit for counting the number of target microorganisms from the later fluorescent sample.
The target microorganism number counting unit counts the number of microorganisms counted from the fluorescent specimen after the reaction between the target microorganism and the antibody from the number of microorganisms counted from the fluorescent specimen before the antibody reacts. The number of target microorganisms can be counted by subtracting the .
More specifically, the target microorganism count counting unit detects the target from an image of the fluorescent specimen before reaction with the antibody and an image of the fluorescent specimen after reaction between the target microorganism and the antibody. You can count the number of microorganisms that
For example, the target microorganism number counting unit determines whether the target microorganism reacts with the antibody based on the number of microorganisms counted from the image of the fluorescent specimen image processed by the image processing unit before the antibody reacts. The number of target organisms can be counted by subtracting the number of organisms counted from the image of the fluorescent specimen after irradiating.
前記標的とする微生物の種類を特定する標的微生物特定部を有することとすれば、標的とする微生物の種類を特定することができる。
より詳しくは、前記標的微生物数計数部により計数された前記抗体が反応する前の前記蛍光した検体における前記標的とする微生物の数と前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体における前記標的とする微生物の数とを比較し、前記抗体が反応する前の前記蛍光した検体における前記標的とする微生物の数に対して前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体における前記標的とする微生物の数が減少したときに、前記標的とする微生物が前記抗体反応を生じたとみなして前記標的とする微生物の種類を特定する標的微生物特定部を有することができる。
By providing the target microorganism identification unit for identifying the type of target microorganism, the type of target microorganism can be identified.
More specifically, the number of the target microorganisms in the fluorescent sample before the reaction with the antibody counted by the target microorganism counting unit and the fluorescence after the reaction between the target microorganism and the antibody after the target microorganism and the antibody react with the number of the target microorganism in the fluorescent specimen before the antibody reacts, and and a target microorganism identification unit that identifies the type of the target microorganism by assuming that the target microorganism has generated the antibody reaction when the number of the target microorganism in the fluorescent sample has decreased. can be done.
前記標的微生物特定部は、前記標的微生物数計数部により計数された前記抗体が反応する前の前記蛍光した検体の画像における前記標的とする微生物の数と前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像における前記標的とする微生物の数とを比較し、前記抗体が反応する前の前記蛍光した検体の画像における前記標的とする微生物の数に対し前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像における前記標的とする微生物の数が減少したときに、前記標的とする微生物が前記抗体反応を生じたとみなして前記標的とする微生物の種類を特定することができる。 The target microorganism identification unit determines the number of the target microorganisms in the image of the fluorescent sample before the antibody reacts, which is counted by the target microorganism count counting unit, and the number of the target microorganisms and the antibody reacts. comparing the number of the target microorganisms in the image of the fluorescent specimen after the reaction with the target microorganisms, and comparing the number of the target microorganisms in the image of the fluorescent specimen before the reaction with the antibody. When the number of the target microorganisms in the image of the fluorescent specimen after the reaction with the antibody decreases, the target microorganism is considered to have caused the antibody reaction, and the type of the target microorganism can be specified.
所定のレンズを有する画像撮影部を有し、前記画像撮影部は、前記所定のレンズを介して前記検体の画像を撮影することができる。
前記画像撮影部は、倍率の異なる複数の前記レンズを有し、前記倍率の異なる複数のレンズの選定および/または組み合わせを変更することにより、前記レンズの倍率を所定に変更する構成とすることとすれば、画像の倍率を適宜に変更することができる。
An image capturing unit having a predetermined lens is provided, and the image capturing unit can capture an image of the specimen through the predetermined lens.
The image capturing unit has a plurality of lenses with different magnifications, and is configured to change the magnification of the lenses to a predetermined value by changing the selection and/or combination of the plurality of lenses with different magnifications. Then, the magnification of the image can be appropriately changed.
前記検体を載置するための所定のステージを有するとともに、前記ステージの位置を制御する位置制御部を有し、前記位置制御部は、前記ステージの位置を制御することにより、前記画像撮影部における焦点位置を制御することとすれば、焦点位置を制御することができる。 It has a predetermined stage on which the specimen is placed, and a position control unit that controls the position of the stage, and the position control unit controls the position of the stage to control the If the focal position is controlled, the focal position can be controlled.
前記位置制御部は、前記蛍光した検体の位置を変更して行うとともに、前記画像処理部は、前記蛍光した検体の画像を複数撮影し、該複数撮影した画像を集計して画像処理を行うこととすれば、検体において標的とする微生物の濃度に斑がある場合にあっても、測定精度が低下することを抑制することができる。 The position control unit changes the position of the fluorescent sample, and the image processing unit captures a plurality of images of the fluorescent sample, aggregates the captured images, and performs image processing. As a result, even if the concentration of the target microorganisms in the sample is uneven, it is possible to prevent the measurement accuracy from deteriorating.
前記蛍光処理部は、所定の試薬を用いた蛍光染色により前記検体における標的とする微生物の前記蛍光処理を行うこととすれば、標的とする微生物を染色して他の微生物と確実に区別することができる。 If the fluorescence processing unit performs the fluorescence processing on the target microorganisms in the specimen by fluorescent staining using a predetermined reagent, the target microorganisms are dyed to reliably distinguish them from other microorganisms. can be done.
前記標的とする微生物は、細菌およびウィルスのうち少なくともいずれかを含むこととし、前記細菌の検査を行う細菌検査モードおよび前記ウィルスの検査を行うウィルス検査モードの少なくともいずれかのモードを有することとすれば、細菌の検査およびウィルスの検査の少なくともいずれかを行うことができる。 The target microorganisms include at least one of bacteria and viruses, and at least one mode of a bacteria inspection mode for inspecting the bacteria and a virus inspection mode for inspecting the viruses is provided. For example, at least one of a bacterial test and a viral test can be performed.
前記蛍光処理部は、光の波長の範囲を所定の範囲に制限するバンドパスフィルタを有することとすれば、標的とする微生物を更に精度よく検査することができる。
所定の濾材を用いて、前記検体の濾過を行い、前記検体から異物を除去する濾過部を有することとすれば、検体から異物が除去されて標的とする微生物を更に精度よく検査することができる。
If the fluorescence processing unit has a band-pass filter that limits the range of wavelengths of light to a predetermined range, it is possible to more accurately inspect target microorganisms.
If the specimen is filtered using a predetermined filter medium, and a filtering unit for removing foreign matter from the specimen is provided, the foreign matter is removed from the specimen, and target microorganisms can be tested with higher accuracy. .
上記目的を達成するため、本発明に係る測定方法は、微生物の検査を行うための検査方法であって、所定の検体における微生物のうち標的とする微生物と、前記標的とする微生物と抗体反応を生じる抗体と、を反応させた前記検体を蛍光させる蛍光処理を所定の波長で行う蛍光処理ステップを有することを特徴とする。
前記蛍光処理ステップは、更に前記標的とする微生物と前記抗体とが反応する前の前記検体を蛍光させる蛍光処理を行うステップとすることができる。
前記蛍光処理ステップは、更に前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方と前記抗体とを反応させた後の前記検体において前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方に蛍光を生じさせず、前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか他方に蛍光を生じさせる蛍光処理を行うステップとすることができる。
前記蛍光処理ステップは、更に前記標的とする微生物と前記抗体とを反応させた後の前記検体において前記標的とする微生物に蛍光を生じさせず、前記標的とする微生物以外の他の微生物に蛍光を生じさせる蛍光処理を行うステップとすることができる。
In order to achieve the above object, the measurement method according to the present invention is an inspection method for inspecting microorganisms, which comprises a target microorganism among microorganisms in a predetermined sample and an antibody reaction with the target microorganism. The method is characterized by comprising a fluorescence treatment step of performing a fluorescence treatment at a predetermined wavelength to fluoresce the specimen reacted with the generated antibody.
The fluorescence treatment step may be a step of performing fluorescence treatment to fluoresce the specimen before the target microorganism reacts with the antibody.
In the fluorescence treatment step, the target microorganism and the target in the specimen after reacting any one of the target microorganism and other microorganisms other than the target microorganism with the antibody A step of performing a fluorescence treatment in which either one of the microorganisms other than the target microorganism does not fluoresce, and the other of the target microorganism and the other microorganism other than the target microorganism fluoresces. can be done.
In the fluorescence treatment step, in the specimen after the reaction between the target microorganism and the antibody, the target microorganism does not emit fluorescence, and microorganisms other than the target microorganism emit fluorescence. It can be a step of performing a fluorescence treatment that causes the reaction to occur.
前記抗体は、前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない抗体とすることができる。
前記蛍光処理ステップは、所定の試薬を用いた蛍光染色により、前記検体における微生物を蛍光させる蛍光処理を行い、前記試薬は、前記抗体により前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない試薬とすることができる。
前記試薬は、フルオレセイン系化合物および/またはプロピディウム系化合物とすることができる。
前記試薬は、FDA (フルオレセイン・ジアセテート)および/またはPI(プロピディウムイオダイド)とすることができる。
The antibody can be an antibody that does not cause the target microorganism to fluoresce when an antibody reaction is caused in the target microorganism.
In the fluorescence treatment step, fluorescent staining is performed using a predetermined reagent to fluoresce the microorganisms in the specimen, and the reagent causes the target microorganisms to react with the antibody. It can be a reagent that does not cause the target microorganism to fluoresce.
The reagent can be a fluorescein-based compound and/or a propidium-based compound.
Said reagent can be FDA (fluorescein diacetate) and/or PI (propidium iodide).
上記目的を達成するため、本発明に係るプログラムは、微生物の検査を行うための検査システムのコンピュータを、所定の検体における標的とする微生物と前記標的とする微生物と抗体反応を生じる抗体とを反応させた前記検体の蛍光処理を所定の波長で行う蛍光処理部として機能させることを特徴とする。
上記目的を達成するため、本発明に係るコンピュータが読み取り可能な記憶媒体は、上記プログラムを記憶することを特徴とする。
In order to achieve the above object, a program according to the present invention causes a computer of an inspection system for inspecting microorganisms to react with a target microorganism in a predetermined sample and an antibody that produces an antibody reaction with the target microorganism. It is characterized by functioning as a fluorescence processing unit that performs fluorescence processing on the sample that has been processed using a predetermined wavelength.
To achieve the above object, a computer-readable storage medium according to the present invention stores the above program.
 以上説明したように、本発明によれば、迅速にかつ精度よく微生物の検査を行うことができる。 As explained above, according to the present invention, microorganisms can be tested quickly and accurately.
本発明の実施形態に係る検体の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the configuration of a specimen according to the embodiment of the present invention; FIG. 本発明の実施形態に係る検査システムの全体構成を示す図である。It is a figure showing the whole inspection system composition concerning the embodiment of the present invention. 本発明の実施形態に係る検査システムの全体構成を示す別の図である。It is another figure which shows the whole structure of the test|inspection system which concerns on embodiment of this invention. 同検査システムのコンピュータの構成を示す図である。It is a figure which shows the structure of the computer of the same inspection system. 同検体から異物を除去した状態を模式的に示す図である。FIG. 4 is a diagram schematically showing a state in which foreign matter is removed from the same sample; 同検体と抗体が反応した状態を模式的に示す図である。FIG. 4 is a diagram schematically showing a state in which the same specimen reacts with an antibody. 同検査システムの蛍光処理部および画像撮影部の構成を示す図である。It is a figure which shows the structure of the fluorescence processing part of the inspection system, and an image photography part. 抗体反応する前の検体の画像を示す図である。FIG. 10 is a diagram showing an image of a sample before antibody reaction; 抗体反応した後の検体の画像を示す図である。FIG. 10 is a diagram showing an image of a specimen after antibody reaction; 本発明の検査方法を説明するためのフローチャートである。It is a flow chart for explaining the inspection method of the present invention.
本発明の実施形態を図面を参照して詳細に説明する。図1は、本発明の実施形態に係る検体の構成を模式的に示す図、図2は、本発明の実施形態に係る検査システムの全体構成を示す図、図3は、本発明の実施形態に係る検査システムの全体構成を示す別の図、図4は、同検査システムのコンピュータの構成を示す図、図5は、同検体から異物を除去した状態を模式的に示す図、図6は、同検体と抗体が反応した状態を模式的に示す図、図7は、同検査システムの蛍光処理部および画像撮影部の構成を示す図、図8は、抗体反応する前の検体の画像を示す図、図9は、抗体反応した後の検体の画像を示す図である。 Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram schematically showing the configuration of a sample according to an embodiment of the present invention, FIG. 2 is a diagram showing the overall configuration of an inspection system according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. Another diagram showing the overall configuration of the inspection system according to FIG. 4 is a diagram showing the configuration of the computer of the inspection system, FIG. , a diagram schematically showing the state in which the same specimen reacts with the antibody, FIG. 7 is a diagram showing the configuration of the fluorescence processing unit and the image capturing unit of the inspection system, and FIG. 8 is an image of the specimen before antibody reaction. FIG. 9 shows an image of the sample after antibody reaction.
本発明の検査システム1の概要を説明すると、検査システム1は、図1に示す所定の検体100(検査対象となるサンプル100)における微生物101のうち標的とする微生物102の測定を行うための装置である。標的とする微生物102は、例えば、細菌およびウィルスを含むことができ、細菌は、一般細菌や大腸菌等、各種の細菌を含むことができ、ウィルスはインフルエンザウィルスやコロナウィルス等、各種のウィルスを含むことができる。検査システム1は、図2に示すように、濾過部10、蛍光処理部20、画像撮影部30、位置制御部40、画像処理部50、基準データ記憶部60、標的微生物数計数部70、標的微生物特定部80を有している。検査システム1は、図3に示すように、細菌の検査を行うための細菌検査モード2およびウィルスの検査を行うためのウィルス検査モード3を有している。 To explain the outline of the inspection system 1 of the present invention, the inspection system 1 is an apparatus for measuring target microorganisms 102 among microorganisms 101 in a predetermined specimen 100 (sample 100 to be inspected) shown in FIG. is. The target microorganisms 102 can include, for example, bacteria and viruses. Bacteria can include various types of bacteria such as general bacteria and E. coli, and viruses include various types of viruses such as influenza viruses and coronaviruses. be able to. As shown in FIG. 2, the inspection system 1 includes a filtering unit 10, a fluorescence processing unit 20, an image capturing unit 30, a position control unit 40, an image processing unit 50, a reference data storage unit 60, a target microorganism counting unit 70, a target It has a microorganism identification unit 80 . As shown in FIG. 3, the inspection system 1 has a bacteria inspection mode 2 for inspecting bacteria and a virus inspection mode 3 for inspecting viruses.
検査システム1は、コンピュータとしての一般的構成を備えており、図4に示すように、相互にバス1Aを介して接続された中央処理装置(CPU、GPU、DSP)1B、記憶装置(ROM、RAM、ハードディスク、キャッシュメモリ)1C、入力装置(キーボード、タッチパネル、マウス)1D、表示装置(液晶ディスプレー)1E等を有している。記憶装置1Cは、コンピュータが読み取り可能な記憶媒体として機能する。各機能部10,20,30,40,50,60,70,80は、検査システム1のコンピュータの機能により相互に信号情報の生成や入出力を行うことができる。 The inspection system 1 has a general configuration as a computer. As shown in FIG. 4, a central processing unit (CPU, GPU, DSP) 1B, storage devices (ROM, RAM, hard disk, cache memory) 1C, input device (keyboard, touch panel, mouse) 1D, display device (liquid crystal display) 1E, and the like. The storage device 1C functions as a computer-readable storage medium. The functional units 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 can mutually generate and input/output signal information by the computer functions of the inspection system 1 .
 濾過部10は、所定の濾過フィルタを有している。すなわち、濾過部10は、濾過フィルタを用いて、検体100の濾過を行い、図5に示すように検体100から異物100´を除去することができる。濾過フィルタは、シリジンフィルタとすることができる。 The filtering unit 10 has a predetermined filtering filter. That is, the filtering unit 10 can filter the specimen 100 using the filtration filter and remove the foreign matter 100' from the specimen 100 as shown in FIG. The filtration filter can be a syringe filter.
 蛍光処理部20は、検体100における微生物101を蛍光させる蛍光処理を所定の波長で行うことができる。すなわち、蛍光処理部20は、標的とする微生物102と所定の抗体110とが反応する前の検体100を蛍光させる蛍光処理を所定の波長で行うことができる。また、蛍光処理部20は、図6に示すように、標的とする微生物102と所定の抗体110とを反応させた後の検体100を蛍光させる蛍光処理を所定の波長で行うことができる。より詳しくは、蛍光処理部20は、標的とする微生物102と抗体110とを反応させた後の検体100において所定の波長で標的とする微生物102に蛍光を生じさせず、標的とする微生物102以外の他の微生物103に蛍光を生じさせる蛍光処理を行う構成とすることができる。 The fluorescence processing unit 20 can perform fluorescence processing to fluoresce the microorganisms 101 in the specimen 100 at a predetermined wavelength. That is, the fluorescence processing unit 20 can perform the fluorescence processing to fluoresce the specimen 100 before the target microorganism 102 reacts with the predetermined antibody 110 at a predetermined wavelength. In addition, as shown in FIG. 6, the fluorescence processing unit 20 can perform fluorescence processing at a predetermined wavelength to fluoresce the specimen 100 after reacting the target microorganism 102 with the predetermined antibody 110 . More specifically, the fluorescence processing unit 20 does not cause the target microorganisms 102 to emit fluorescence at a predetermined wavelength in the sample 100 after the target microorganisms 102 and the antibody 110 have reacted with each other. Fluorescence treatment may be performed to cause other microorganisms 103 to emit fluorescence.
 ここで、抗体(例えば、免疫グロブリン)110とは、リンパ球のうちB細胞の産生する糖タンパク分子で、特定のタンパク質などの分子(抗原)を認識して結合する働きをもつ。抗体110は主に血液中や体液中に存在し、例えば、体内に侵入してきた細菌やウィルス、微生物に感染した細胞を抗原として認識して結合する。抗体110が抗原へ結合すると、その抗原と抗体110の複合体を白血球やマイクロファージといった食細胞が認識・貧食して体内から除去するように働いたり、リンパ球などの免疫細胞が結合して免疫反応を引き起こしたりするものである。 Here, the antibody (for example, immunoglobulin) 110 is a glycoprotein molecule produced by B cells among lymphocytes, and has the function of recognizing and binding to a molecule (antigen) such as a specific protein. Antibodies 110 mainly exist in blood and body fluids, and recognize and bind to, for example, bacteria, viruses, and cells infected with microorganisms that have invaded the body as antigens. When the antibody 110 binds to an antigen, phagocytic cells such as white blood cells and microphages recognize and phagocytize the complex of the antigen and the antibody 110 and work to remove it from the body, and immune cells such as lymphocytes bind to become immune. It is something that provokes a reaction.
また、本発明の所定の抗体110は、標的とする微生物102に抗体反応を生じさせる抗体である。また、所定の抗体110は、標的とする微生物102に抗体反応を生じさせたときに所定の波長において標的とする微生物102に蛍光を生じさせない抗体である。このような抗体110を用いて標的とする微生物102に抗体反応を生じさせることにより、蛍光処理において蛍光しない標的とする微生物102を蛍光する他の微生物103と区別することが可能となる。すなわち、このような抗体110を用いることで、上述したように、蛍光処理部20は、標的とする微生物102と抗体110とを反応させた後の検体100において所定の波長で標的とする微生物102に蛍光を生じさせず、標的とする微生物102以外の他の微生物103に蛍光を生じさせる蛍光処理を行う構成とすることができる。抗体110が、標的とする微生物102に抗体反応を生じさせる抗体であり、かつ、標的とする微生物102に抗体反応を生じさせたときに所定の波長において標的とする微生物102に蛍光を生じさせない抗体であるか否かは予め各種の試験により確認される。 Also, the predetermined antibody 110 of the present invention is an antibody that causes an antibody response to the target microorganism 102 . Further, the predetermined antibody 110 is an antibody that does not cause the target microorganism 102 to fluoresce at a predetermined wavelength when the target microorganism 102 is caused to react with an antibody. By causing an antibody reaction in the target microorganism 102 using such an antibody 110, it becomes possible to distinguish the target microorganism 102 that does not fluoresce from other fluorescing microorganisms 103 in fluorescence treatment. That is, by using such an antibody 110, as described above, the fluorescence processing unit 20 can detect the target microorganism 102 at a predetermined wavelength in the specimen 100 after the target microorganism 102 and the antibody 110 have reacted. Fluorescence treatment may be performed so that the microbes 103 other than the target microbes 102 do not fluoresce, and the microbes 103 other than the target microbes 102 fluoresce. The antibody 110 is an antibody that causes an antibody reaction in the target microorganism 102, and an antibody that does not cause the target microorganism 102 to fluoresce at a predetermined wavelength when the target microorganism 102 produces an antibody reaction. Whether or not it is is confirmed in advance by various tests.
ここで、例えば、標的とする微生物102を大腸菌とし、抗体110を大腸菌に抗体反応を生じさせる抗体としたときは、検体100において標的とする微生物102である大腸菌を蛍光させないようにすることができる。すなわち、抗体反応する前の検体100を蛍光させる蛍光処理により大腸菌を含めた細菌の蛍光を行うことができるとともに、抗体反応した後の検体100を蛍光させる蛍光処理により大腸菌を除いた細菌の蛍光を行うことができる。 Here, for example, when the target microorganism 102 is Escherichia coli and the antibody 110 is an antibody that causes an antibody reaction against Escherichia coli, it is possible to prevent the Escherichia coli, which is the target microorganism 102, from fluorescing in the sample 100. . That is, the fluorescence treatment for causing the sample 100 to fluoresce before reacting with the antibody can fluoresce bacteria including E. coli, and the fluorescence treatment for causing the sample 100 after the antibody reaction to fluoresce can fluoresce bacteria other than E. coli. It can be carried out.
これにより、抗体反応する前の細菌数から抗体反応した後の細菌数を差し引く(減算する)ことで大腸菌の数を把握することができる等、標的とする微生物102の種類ごとに微生物102の数を把握することができる。抗体110は、大腸菌に抗体反応を生じさせる抗体の他、一般細菌に抗体反応を生じさせる抗体、インフルエンザウィルスに抗体反応を生じさせる抗体、コロナウィルスに抗体反応を生じさせる抗体等、各種の抗体を用いることができる。 As a result, the number of bacteria 102 for each type of target microorganism 102 can be grasped by subtracting (subtracting) the number of bacteria after antibody reaction from the number of bacteria before antibody reaction. can be grasped. The antibody 110 includes various antibodies such as an antibody that causes an antibody reaction against E. coli, an antibody that causes an antibody reaction against general bacteria, an antibody that causes an antibody reaction against influenza virus, an antibody that causes an antibody reaction against coronavirus, and so on. can be used.
また、蛍光処理部20は、所定の試薬を用いた蛍光染色により、抗体反応する前の検体100における微生物101を蛍光させる蛍光処理および抗体反応した後の検体100における微生物101を蛍光させる蛍光処理を行うことができる。この試薬は、抗体110により標的とする微生物102に抗体反応を生じさせたときに所定の波長で標的とする微生物102に蛍光を生じさせない試薬とすることができる。すなわち、蛍光処理部20は、所定の試薬を用いた蛍光染色により、所定の波長で検体100における微生物101を蛍光させる蛍光処理を行い、試薬は、抗体110により標的とする微生物102に抗体反応を生じさせたときに所定の波長で標的とする微生物102に蛍光を生じさせない試薬とする構成とすることができる。これにより、蛍光処理を効率よく行うことができる。蛍光染色に用いる試薬は、フルオレセイン系化合物および/またはプロピディウム系化合物とすることができる。より詳しくは、蛍光染色に用いる試薬は、FDA (Fluorescein Diacetate、フルオレセイン・ジアセテート)および/またはPI(Propidium Iodide、プロピディウムイオダイド)とすることができる。本発明者により、FDA (Fluorescein Diacetate、フルオレセイン・ジアセテート)およびPI(Propidium Iodide、プロピディウムイオダイド)が抗体110により標的とする微生物102に抗体反応を生じさせたときに所定の波長で標的とする微生物102に蛍光を生じさせない試薬であることが明らかとされている。 In addition, the fluorescence processing unit 20 performs fluorescent staining using a predetermined reagent to fluoresce the microorganisms 101 in the specimen 100 before antibody reaction and fluorescence treatment to fluoresce the microorganisms 101 in the specimen 100 after antibody reaction. It can be carried out. This reagent can be a reagent that does not cause the target microorganism 102 to fluoresce at a predetermined wavelength when the antibody 110 causes the target microorganism 102 to elicit an antibody response. That is, the fluorescence processing unit 20 performs fluorescent staining using a predetermined reagent to fluoresce the microorganisms 101 in the specimen 100 at a predetermined wavelength. It can be configured to be a reagent that, when induced, does not cause the target microorganism 102 to fluoresce at a predetermined wavelength. Thereby, fluorescence treatment can be performed efficiently. A reagent used for fluorescent staining can be a fluorescein-based compound and/or a propidium-based compound. More specifically, the reagent used for fluorescent staining can be FDA (Fluorescein Diacetate) and/or PI (Propidium Iodide). According to the present inventors, FDA (Fluorescein Diacetate) and PI (Propidium Iodide) are targeted at predetermined wavelengths when the antibody 110 causes the target microorganism 102 to generate an antibody response. It has been clarified that the reagent does not cause the microorganism 102 to fluoresce.
FDAは、細胞内のエステラーゼを蛍光染色させることができ512nm前後の波長の蛍光染色に特に有効となる。また、PIは、核酸を蛍光染色させることができ620nm前後の波長の蛍光染色に特に有効となる。細菌は、FDAを用いて512nm前後の波長の蛍光染色を行い、ウィルスは、エンベローブのあるものは、FDAを用いて512nm前後の波長の蛍光染色を行い、エンベローブのないものは、PIを用いて620nm前後の波長の蛍光染色を行う。これらの波長についても、本発明者により、抗体110により標的とする微生物102に抗体反応を生じさせたときに上記の試薬を用いたときに標的とする微生物102に蛍光を生じさせない波長であることが明らかとされている。 FDA can fluorescently stain intracellular esterase, and is particularly effective for fluorescent staining at a wavelength of around 512 nm. In addition, PI can fluorescently stain nucleic acids, and is particularly effective for fluorescent staining with a wavelength of around 620 nm. Bacteria are fluorescently stained with a wavelength of around 512 nm using FDA, viruses with an envelope are fluorescently stained with a wavelength of around 512 nm using FDA, and those without an envelope are stained with PI. Fluorescent staining with a wavelength around 620 nm is performed. These wavelengths are also determined by the present inventor to be wavelengths that do not cause the target microorganisms 102 to fluoresce when the above reagents are used when the antibody 110 causes the target microorganisms 102 to react with antibodies. is made clear.
ここで、蛍光処理部20は、図7に示すように、励起光照射部21および波長測定部22を有している。励起光照射部21は、検体100に所定の波長の励起光を照射することができる。波長測定部22は、励起光を吸収した検体100からの蛍光の波長を測定することができる。より詳しくは、蛍光処理部20は、抗体反応する前の検体100からの蛍光の波長および抗体反応した後の検体100からの蛍光の波長を測定することができる。例えば、励起光照射部21により照射される光は、488nm、波長測定部22により測定される波長は、細菌検査モード2では512nm前後、ウィルス検査モード3では512nm前後または620nm前後となる。 Here, the fluorescence processing section 20 has an excitation light irradiation section 21 and a wavelength measurement section 22, as shown in FIG. The excitation light irradiation unit 21 can irradiate the specimen 100 with excitation light having a predetermined wavelength. The wavelength measurement unit 22 can measure the wavelength of fluorescence from the specimen 100 that has absorbed the excitation light. More specifically, the fluorescence processing unit 20 can measure the wavelength of fluorescence from the specimen 100 before antibody reaction and the wavelength of fluorescence from the specimen 100 after antibody reaction. For example, the light emitted by the excitation light irradiation unit 21 is 488 nm, the wavelength measured by the wavelength measurement unit 22 is around 512 nm in bacteria inspection mode 2, and around 512 nm or around 620 nm in virus inspection mode 3.
蛍光処理部20は、更に光の波長の範囲を所定の範囲に制限するバンドパスフィルタ23を有している。すなわち、バンドパスフィルタ23は、励起光照射部21により検体100に照射される励起光の波長の範囲、波長測定部22により測定される抗体反応する前の検体100からの蛍光の波長の範囲および抗体反応した後の検体100からの蛍光の波長の範囲をそれぞれ所定の範囲に制限することができる。例えば、励起光照射部21により照射される光は、バンドパスフィルタ23により488±10nm、波長測定部22により測定される波長は、バンドパスフィルタ23により細菌検査モード2では512±10nm、ウィルス検査モード3では512±10nmまたは620±10nmにそれぞれ制限される。 The fluorescence processing unit 20 further has a bandpass filter 23 that limits the wavelength range of light to a predetermined range. That is, the band-pass filter 23 has a wavelength range of the excitation light irradiated onto the specimen 100 by the excitation light irradiation unit 21, a wavelength range of fluorescence from the specimen 100 before antibody reaction measured by the wavelength measurement unit 22, and The wavelength range of fluorescence from the specimen 100 after antibody reaction can be restricted to a predetermined range. For example, the light irradiated by the excitation light irradiation unit 21 is 488 ± 10 nm by the band-pass filter 23, the wavelength measured by the wavelength measurement unit 22 is 512 ± 10 nm by the band-pass filter 23 in the bacteria inspection mode 2, and the virus inspection Mode 3 is limited to 512±10 nm or 620±10 nm, respectively.
画像撮影部30は、図7に示すように、所定のレンズより詳しくは光学レンズ31と撮影装置32を有している。画像撮影部30は、所定の光学レンズ31と撮影装置32を介して蛍光点を含む検体100の画像を拡大して撮影することができる。 As shown in FIG. 7, the image photographing unit 30 has an optical lens 31 and a photographing device 32 in more detail than the predetermined lens. The image capturing unit 30 can magnify and capture an image of the specimen 100 including fluorescent spots via a predetermined optical lens 31 and an image capturing device 32 .
画像撮影部30は、倍率の異なる複数の光学レンズ31を有している。すなわち、画像撮影部30は、倍率の異なる複数の光学レンズ31の選定および/または組み合わせを変更することにより、光学レンズ31の倍率を所定に変更することができる。光学レンズ31は、光を屈折させて発散または収束させるための光学素子であり、凸レンズおよび/または凹レンズを用いることができる。撮影装置32は、CCDカメラやCMOSカメラの機能を有しており、検体100の画像を撮影することができる。標的とする微生物102が細菌である場合は、細菌のサイズが1~5μm程度であるため、細菌検査モード2では倍率を5倍以上、標的とする微生物102がウィルスである場合は、ウィルスのサイズが0.1μm程度であるため、ウィルス検査モード3では倍率を50倍以上に設定して画像の撮影を行う。なお、画像の倍率は、検査システム1の有するCPU等のコンピュータの機能により任意に設定することとしてもよい。 The image capturing unit 30 has a plurality of optical lenses 31 with different magnifications. That is, the image capturing unit 30 can change the magnification of the optical lens 31 to a predetermined value by selecting and/or changing the combination of the plurality of optical lenses 31 having different magnifications. The optical lens 31 is an optical element for refracting light to diverge or converge, and a convex lens and/or a concave lens can be used. The imaging device 32 has functions of a CCD camera and a CMOS camera, and can capture an image of the specimen 100 . When the target microorganism 102 is a bacterium, the size of the bacterium is about 1 to 5 μm. is about 0.1 μm, in the virus inspection mode 3, the magnification is set to 50 times or more to take an image. Note that the magnification of the image may be arbitrarily set by the function of a computer such as a CPU of the inspection system 1 .
画像撮影部30は、所定のステージ33(検体100を載置する載置台33)に検体100を載置して蛍光した検体100の画像の撮影を行うことができる。すなわち、画像撮影部30は、微生物101を含む異物100´を捕捉したメンブレンフィルタAの表面の撮影を行う第1の撮影および検体100を直接滴下したスライドガラスBの表面の撮影を行う第2の撮影を行うことができる(第2の撮影は、スライドガラスB上にカバーガラスを載置して行う)。第1の撮影および第2の撮影は、メンブレンフィルタAおよびスライドガラスBをステージ33上に載置して行うことができる。 The image capturing unit 30 can capture an image of the fluorescent sample 100 by placing the sample 100 on a predetermined stage 33 (mounting table 33 on which the sample 100 is placed). That is, the image capturing unit 30 performs first capturing of the surface of the membrane filter A capturing the foreign matter 100' containing the microorganism 101, and second capturing of the surface of the slide glass B onto which the sample 100 is directly dropped. A photograph can be taken (the second photographing is carried out with the cover glass placed on the slide glass B). The first imaging and the second imaging can be performed with the membrane filter A and the slide glass B placed on the stage 33 .
位置制御部40は、検体100を載置するためのステージ33の位置を制御することができる。位置制御部40は、ステージ33の位置を上下方向および水平方向に移動制御することができる。位置制御部40は、ステージ33の位置を上下方向に移動制御することにより、画像撮影部30における焦点位置を制御することができる。すなわち、位置制御部40は、例えば、第1の撮影および第2の撮影における焦点位置がメンブレンフィルタAの表面位置およびスライドガラスBの表面位置となるようにステージ33の位置を上下方向に移動制御することができる。 The position control unit 40 can control the position of the stage 33 on which the specimen 100 is placed. The position control unit 40 can control the movement of the stage 33 in the vertical direction and the horizontal direction. The position control unit 40 can control the focus position in the image capturing unit 30 by controlling the vertical movement of the stage 33 . That is, the position control unit 40 controls the movement of the stage 33 in the vertical direction so that the focal positions in the first imaging and the second imaging are the surface positions of the membrane filter A and the surface positions of the slide glass B, for example. can do.
また、位置制御部40は、抗体反応する前の蛍光した検体100の位置および抗体反応した後の蛍光した検体100の位置を水平方向に変更することができる。上記した画像撮影部30は、位置制御部40により検体100の位置を水平方向に変更しつつ、抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像を複数撮影することができる。 In addition, the position control unit 40 can horizontally change the position of the fluorescent specimen 100 before antibody reaction and the position of the fluorescent specimen 100 after antibody reaction. While changing the position of the sample 100 in the horizontal direction by the position control unit 40, the image capturing unit 30 captures a plurality of images of the fluorescent sample 100 before the antibody reaction and the fluorescent sample 100 after the antibody reaction. You can shoot.
画像処理部50は、画像撮影部30により撮影された蛍光した検体100の画像処理を行うことができる。すなわち、画像処理部30は、標的とする微生物102と抗体110が抗体反応する前の蛍光した検体100の画像処理および標的とする微生物102と抗体110とが抗体反応した後の蛍光した検体100の画像処理を行うことができる。 The image processing unit 50 can perform image processing of the fluorescent specimen 100 photographed by the image photographing unit 30 . That is, the image processing unit 30 performs image processing of the fluorescent specimen 100 before the antibody reaction between the target microorganism 102 and the antibody 110 and processing of the fluorescent specimen 100 after the antibody reaction between the target microorganism 102 and the antibody 110. Image processing can be performed.
また、画像処理部50は、微生物101の基準となるデータに基づいて画像処理を行うことができる。すなわち、画像処理部50は、抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像が微生物101の基準となるデータの範囲に含まれるか否かを判断して、図8および図9に示すように、抗体反応する前の蛍光した検体100の画像のうち微生物101の基準となるデータの範囲に含まれる画像部分104aおよび抗体反応した後の蛍光した検体100の画像のうち微生物101の基準となるデータの範囲に含まれる画像部分104bを特定する。また、画像処理部50は、前記特定した画像部分104a,104bを抽出することができる。 Further, the image processing unit 50 can perform image processing based on reference data of the microorganism 101 . That is, the image processing unit 50 determines whether or not the image of the fluorescent specimen 100 before the antibody reaction and the fluorescent specimen 100 after the antibody reaction are included in the reference data range of the microorganism 101. 8 and 9, an image portion 104a included in the reference data range of the microorganism 101 in the image of the fluorescent specimen 100 before antibody reaction and the fluorescent specimen 100 after antibody reaction. of the image, the image portion 104b included in the reference data range of the microorganism 101 is specified. Further, the image processing section 50 can extract the specified image portions 104a and 104b.
つまり、抗体反応する前の蛍光した検体100の画像から特定され抽出された画像部分104aには、図8に示すように、標的とする微生物102の画像および他の微生物103の画像が含まれるのに対して、抗体反応した後の蛍光した検体100の画像から特定され抽出された画像部分104bには、図9に示すように、標的とする微生物102は抗体と抗体反応を生じるため含まれず、他の微生物103の画像のみが含まれることとなる。 In other words, the image portion 104a specified and extracted from the image of the fluorescent specimen 100 before antibody reaction includes the image of the target microorganism 102 and the image of the other microorganism 103, as shown in FIG. 9, the image portion 104b specified and extracted from the image of the fluorescent specimen 100 after antibody reaction does not contain the target microorganism 102 because it reacts with the antibody. Only images of other microorganisms 103 will be included.
したがって、抗体反応する前の蛍光した検体100の画像から特定され抽出された画像部分104aから微生物101の数N1を計数するとともに、抗体反応した後の蛍光した検体100の画像から特定され抽出された画像部分104bから微生物101の数N2を計数し、数式1に示すように、画像部分104aから計数された微生物101の数N1から画像部分104bから計数された微生物101の数N2を差し引く(減算する)ことにより標的とする微生物102の数Nを計数することができる。
[数式1]
N=N1-N2
Therefore, the number N1 of microorganisms 101 is counted from the image portion 104a identified and extracted from the image of the fluorescent specimen 100 before antibody reaction, and the number N1 of microorganisms 101 is identified and extracted from the image of the fluorescent specimen 100 after antibody reaction. The number N2 of microorganisms 101 is counted from the image portion 104b, and as shown in Equation 1, the number N2 of microorganisms 101 counted from the image portion 104b is subtracted from the number N1 of microorganisms 101 counted from the image portion 104a. ), the number N of the target microorganisms 102 can be counted.
[Formula 1]
N=N1-N2
ここで、微生物101の基準となるデータは、画像処理部50により標的とする微生物102および他の微生物103のいずれも抽出されるように標的とする微生物102のデータおよび他の微生物103のデータのいずれも含んで設定される。 Here, the reference data of the microorganism 101 is the data of the target microorganism 102 and the data of the other microorganism 103 so that both the target microorganism 102 and the other microorganism 103 are extracted by the image processing unit 50. Both are included and set.
すなわち、微生物101の基準となるデータは、標的とする微生物102および他の微生物103の大きさ、標的とする微生物102および他の微生物103の形状、標的とする微生物102および他の微生物103の蛍光の濃淡の少なくともいずれかをファクターとしており、画像処理部50は、抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像から基準となるデータと対応する大きさや形状の微生物102,103の画像、基準となるデータと対応する濃淡を有する微生物102,103の蛍光部分の画像を特定して抽出することができる。基準となるデータは、例えば一般細菌のデータ、大腸菌のデータ、ウィルスのデータ等を含むことができる。 That is, the reference data of the microorganism 101 are the size of the target microorganism 102 and the other microorganism 103, the shape of the target microorganism 102 and the other microorganism 103, the fluorescence of the target microorganism 102 and the other microorganism 103. The image processing unit 50 uses the image of the fluorescent specimen 100 before antibody reaction and the image of the fluorescent specimen 100 after antibody reaction as a reference data, and the corresponding size and Images of the microorganisms 102 and 103 in shape, and images of fluorescent portions of the microorganisms 102 and 103 having shades corresponding to reference data can be identified and extracted. The reference data can include, for example, general bacteria data, E. coli data, virus data, and the like.
更に、画像処理部50は、上記した画像撮影部30により複数撮影された検体100の位置を水平方向に変更した抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像を集計して画像処理を行うことができる。 Further, the image processing unit 50 generates an image of the fluorescent specimen 100 before the antibody reaction, which is obtained by changing the position of the specimen 100 photographed by the image photographing unit 30, in the horizontal direction, and an image of the fluorescent specimen 100 after the antibody reaction. images can be aggregated and processed.
基準データ記憶部60は、微生物101の基準となるデータを記憶することができる。基準となるデータは、上記のように、微生物101,102の大きさ、微生物101,102の形状、および微生物101,102の蛍光の濃淡の少なくともいずれかをファクターとしている。基準となるデータは、例えば一般細菌のデータ、大腸菌のデータ等、各種の細菌のデータを含むことができる。また、基準となるデータは、ウィルスのデータ等を含むことができ、ウィルスのデータはコロナウィルス、インフルエンザウィルスのデータを含むことができる。 The reference data storage unit 60 can store reference data for the microorganism 101 . As described above, the reference data is based on at least one of the size of the microorganisms 101 and 102, the shape of the microorganisms 101 and 102, and the intensity of the fluorescence of the microorganisms 101 and 102. The reference data can include data on various bacteria such as data on general bacteria and data on E. coli. Also, the reference data can include virus data and the like, and the virus data can include coronavirus and influenza virus data.
標的微生物数計数部70は、標的とする微生物102の数を計数することができる。すなわち、標的微生物数計数部70は、画像処理部50により画像処理された抗体110が反応する前の蛍光した検体100の画像および標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像から標的とする微生物102の数Nを計数することができる。 The target microorganism count counting unit 70 can count the number of target microorganisms 102 . That is, the target microorganism count counting unit 70 generates an image of the fluorescent sample 100 before the reaction of the antibody 110 image-processed by the image processing unit 50 and a fluorescent sample after the reaction between the target microorganism 102 and the antibody 110. The number N of target microorganisms 102 from 100 images can be counted.
つまり、標的微生物数計数部70は、抗体反応する前の蛍光した検体100の画像から特定され抽出された画像部分104aから微生物101の数N1を計数するとともに、抗体反応した後の蛍光した検体100の画像から特定され抽出された画像部分104bから微生物101の数N2を計数し、数式1に示すように、画像部分104aから計数した微生物101の数N1から画像部分104bから計数した微生物101の数N2を差し引く(減算する)ことにより標的とする微生物102の数Nを計数することができる。 That is, the target microorganism number counting unit 70 counts the number N1 of the microorganisms 101 from the image portion 104a specified and extracted from the image of the fluorescent specimen 100 before the antibody reaction, and the fluorescent specimen 100 after the antibody reaction. The number N2 of microorganisms 101 is counted from the image portion 104b specified and extracted from the image of , and as shown in Equation 1, the number N1 of microorganisms 101 counted from the image portion 104b is calculated from the number N1 of microorganisms 101 counted from the image portion 104b. The number N of target microorganisms 102 can be counted by subtracting (subtracting) N2.
なお、標的微生物数計数部70による標的とする微生物102の数の計数は、画像処理部50により画像処理された抗体110が反応する前の蛍光した検体100の画像および標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像に映し出された蛍光点の数に基づいて行われる。 The number of target microorganisms 102 counted by the target microorganism number counting unit 70 is based on the image of the fluorescent specimen 100 before the reaction of the antibody 110, which has been image-processed by the image processing unit 50, and the target microorganism 102 and the antibody. This is done based on the number of fluorescent spots appearing in the image of the fluorescent specimen 100 after the reaction with 110 .
標的微生物特定部80は、標的とする微生物102の種類を特定することができる。すなわち、標的微生物特定部80は、標的微生物数計数部70により計数された抗体110が反応する前の蛍光した検体100の画像における標的とする微生物102の数と標的とする微生物102と抗体とが反応した後の蛍光した検体100の画像における標的とする微生物102の数とを比較し、抗体110が反応する前の蛍光した検体100の画像における標的とする微生物102の数に対し標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像における標的とする微生物102の数が減少したときに、標的とする微生物102が抗体反応を生じたとみなして標的とする微生物102の種類を特定することができる。 The target microorganism identifying unit 80 can identify the type of target microorganism 102 . That is, the target microorganism identification unit 80 determines the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts, counted by the target microorganism number counting unit 70, and the number of target microorganisms 102 and the antibody. The number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction is compared with the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts with the target microorganisms. When the number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between 102 and the antibody 110 decreases, the target microorganism 102 is considered to have generated an antibody reaction, and the type of the target microorganism 102 is determined. can be specified.
ここで、上記した検査システム1の各機能部は、所定のプログラム200を実行させることにより機能をさせることができる。 Here, each functional unit of the inspection system 1 described above can function by executing a predetermined program 200 .
すなわち、プログラム200は、検査システム1のコンピュータを、蛍光処理部20、画像撮影部30、位置制御部40、画像処理部50、基準データ記憶部60、標的微生物数計数部70、標的微生物特定部80として機能させることができる。プログラム200は、検査システム1の記憶装置1Cに記憶されている。 That is, the program 200 causes the computer of the inspection system 1 to perform the fluorescence processing section 20, the image capturing section 30, the position control section 40, the image processing section 50, the reference data storage section 60, the target microorganism counting section 70, and the target microorganism identifying section. 80. The program 200 is stored in the storage device 1C of the inspection system 1. FIG.
 次に、本発明の検査システム1による検査方法を図10のフローチャートに基づいて説明する。
まず初めに工程1として、検体100の調整を行う。例えば、綿棒等で食品や手、口、床等の検査対象物を拭き取る。そして、拭き取った綿棒を精製水で洗い流す。次いで、洗い流した精製水を濾過部10により濾過して異物100´を除去して検体100が調整される。調整された検体100は、抗体反応する前と抗体反応させた後でそれぞれ工程2の蛍光処理ステップにおける蛍光処理を行うため同一検体100を少なくとも2本の試験管(例えば1ml)に分けて調整する。続いて、分けて調整した検体100のうち一の検体100に抗体110を入れ抗体反応を生じさせる(分けて調整した検体100のうち他の検体100には抗体110は入れない)。抗体110は、標的とする微生物102に抗体反応を生じさせたときに標的とする微生物102に蛍光を生じさせない抗体110とすることができる。次に、分けて調整した検体100のそれぞれに蛍光染色を行うための試薬を入れる。試薬は、抗体110により標的とする微生物102に抗体反応を生じさせたときに標的とする微生物102に蛍光を生じさせない試薬とすることができる。試薬は、フルオレセイン系化合物および/またはプロピディウム系化合物とすることができる。より詳しくは、試薬は、FDA (フルオレセイン・ジアセテート)および/またはPI(プロピディウムイオダイド)とすることができる。
Next, the inspection method by the inspection system 1 of the present invention will be explained based on the flow chart of FIG.
First, as step 1, the sample 100 is adjusted. For example, the object to be inspected such as food, hands, mouth, floor, etc. is wiped off with a cotton swab or the like. Then, the swab that has been wiped off is washed away with purified water. Next, the rinsed purified water is filtered by the filtering unit 10 to remove the foreign matter 100', and the specimen 100 is prepared. The prepared specimen 100 is divided into at least two test tubes (eg, 1 ml) to perform fluorescence treatment in the fluorescence treatment step of step 2 before and after antibody reaction. . Subsequently, the antibody 110 is added to one sample 100 out of the separately prepared samples 100 to generate an antibody reaction (the other sample 100 out of the separately adjusted samples 100 is not supplied with the antibody 110). The antibody 110 can be an antibody 110 that does not cause the target microbe 102 to fluoresce when the target microbe 102 provokes an antibody response. Next, a reagent for fluorescent staining is added to each of the separately prepared specimens 100 . The reagent can be a reagent that does not cause the target microorganism 102 to fluoresce when the antibody 110 causes the target microorganism 102 to react with an antibody. The reagent can be a fluorescein-based compound and/or a propidium-based compound. More specifically, the reagent can be FDA (fluorescein diacetate) and/or PI (propidium iodide).
続いて工程2として、工程1で分けて調整した検体100のそれぞれについて蛍光処理部20により蛍光処理ステップとして蛍光処理を行う。この蛍光処理は、励起光照射部21および波長測定部22の波長を所定に設定して行う。また、バンドパスフィルタ23の波長の範囲を所定に設定して行う。工程2により抗体反応する前の検体100(工程1において抗体110を入れていない他の検体100)および抗体反応した後の検体100(工程1において抗体110を入れて抗体反応を生じさせた検体100)のそれぞれを所定の波長範囲で蛍光させることができる。 Subsequently, in step 2, each of the specimens 100 divided and adjusted in step 1 is subjected to fluorescence processing as a fluorescence processing step by the fluorescence processing unit 20 . This fluorescence treatment is performed by setting the wavelengths of the excitation light irradiation unit 21 and the wavelength measurement unit 22 to predetermined values. Also, the wavelength range of the band-pass filter 23 is set to a predetermined value. Specimen 100 before antibody reaction in step 2 (other specimen 100 without antibody 110 in step 1) and specimen 100 after antibody reaction (specimen 100 in which antibody 110 was added in step 1 to cause antibody reaction) ) can fluoresce in a predetermined wavelength range.
次に工程3として、画像撮影部30が工程2で蛍光処理された検体100をステージ33上に載置しつつ画像の撮影を行う。画像撮影部30は、倍率を所定に設定しつつ位置制御部40によりステージ33を上下方向に移動して焦点位置を設定する。また、画像撮影部30は、位置制御部40によりステージ33を水平方向に移動して抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像をそれぞれ複数撮影する。この画像撮影部30による撮影は、メンブレンフィルタAの全表面、スライドガラスBの全表面を位置制御部40により走査して行うことが好ましい。 Next, in step 3, the image capturing unit 30 captures an image while placing the specimen 100 fluorescently processed in step 2 on the stage 33 . The image capturing unit 30 sets the focal position by moving the stage 33 vertically by the position control unit 40 while setting a predetermined magnification. Further, the image capturing unit 30 moves the stage 33 in the horizontal direction by the position control unit 40, and captures a plurality of images of the fluorescent specimen 100 before antibody reaction and a plurality of images of the fluorescent specimen 100 after antibody reaction. . It is preferable that the image capturing unit 30 scans the entire surface of the membrane filter A and the entire surface of the slide glass B using the position control unit 40 .
次いで工程4として画像処理部50が工程3で撮影された画像の処理を行う。この画像処理は、微生物101の基準となるデータに基づいて行う。すなわち、画像処理部50は、抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像が微生物101の基準となるデータの範囲に含まれるか否かを判断して、抗体反応する前の蛍光した検体100の画像および抗体反応した後の蛍光した検体100の画像のうち微生物101の基準となるデータの範囲に含まれる画像部分104a,104bを特定し、特定した画像部分104a,104bを抽出する。この画像部分104a,104bの特定および抽出は、工程3で撮影された水平方向における複数の画像に基づいて行う(複数の画像のデータを平均化する)。 Next, in step 4, the image processing unit 50 processes the image captured in step 3. FIG. This image processing is performed based on reference data of the microorganism 101 . That is, the image processing unit 50 determines whether or not the image of the fluorescent specimen 100 before the antibody reaction and the fluorescent specimen 100 after the antibody reaction are included in the reference data range of the microorganism 101. Then, image portions 104a and 104b included in the reference data range of the microorganism 101 in the image of the fluorescent specimen 100 before the antibody reaction and the fluorescent specimen 100 after the antibody reaction were identified and identified. Image portions 104a, 104b are extracted. This identification and extraction of the image portions 104a, 104b is based on the horizontal images taken in step 3 (the data of the multiple images are averaged).
続いて工程5として標的微生物数計数部70が、標的とする微生物102の数を計数する。すなわち、標的微生物数計数部70は、画像処理部50により画像処理された抗体110が反応する前の蛍光した検体100の画像および標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像から数式1により標的とする微生物102の数Nを計数する。 Subsequently, in step 5, the target microorganism counting unit 70 counts the number of target microorganisms 102 . That is, the target microorganism count counting unit 70 generates an image of the fluorescent sample 100 before the reaction of the antibody 110 image-processed by the image processing unit 50 and a fluorescent sample after the reaction between the target microorganism 102 and the antibody 110. From the 100 images, the number N of target microorganisms 102 is counted according to Equation 1.
次いで工程6として標的微生物特定部80が、標的とする微生物102の種類を特定する。すなわち、標的微生物特定部80は、標的微生物数計数部70により計数された抗体110が反応する前の蛍光した検体100の画像における標的とする微生物102の数と標的とする微生物102と抗体とが反応した後の蛍光した検体100の画像における標的とする微生物102の数とを比較し、抗体110が反応する前の蛍光した検体100の画像における標的とする微生物102の数に対し標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像における標的とする微生物102の数が減少したときに、標的とする微生物102が抗体反応を生じたとみなして標的とする微生物102の種類を特定する。 Next, in step 6, the target microorganism identifying unit 80 identifies the type of target microorganism 102 . That is, the target microorganism identification unit 80 determines the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts, counted by the target microorganism number counting unit 70, and the number of target microorganisms 102 and the antibody. The number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction is compared with the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts with the target microorganisms. When the number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between 102 and the antibody 110 decreases, the target microorganism 102 is considered to have generated an antibody reaction, and the type of the target microorganism 102 is determined. identify.
以上説明したように、本発明によれば、検査システム1は、所定の検体100における微生物101のうち標的とする微生物102と、標的とする微生物102と抗体反応を生じる抗体と、を反応させた検体100を蛍光させる蛍光処理を行う蛍光処理部20を有することとしたので、検査方法は、所定の検体100における微生物101のうち標的とする微生物102と、標的とする微生物102と抗体反応を生じる抗体110と、を反応させた検体100を蛍光させる蛍光処理を所定の波長で行う蛍光処理ステップを有することとしたので、検体100における微生物100のうち標的とする微生物102と抗体とを反応させて検体100を蛍光させる蛍光処理を所定の波長で行うことにより、検体100において標的とする微生物102を蛍光させずに他の微生物103を蛍光させる等、標的とする微生物102を他の微生物103と区別することが可能となる。これにより、培養法によらず標的とする微生物102の検査を行うことができる等、迅速な微生物102の検査を行うことができる。また、抗体110は、標的とする微生物102と抗体反応を生じる抗体100とすることとしたので、標的とする微生物102と確実に反応させることができ、標的とする微生物102の蛍光を確実に抑制して精度よく微生物102の検査を行うことができる。 As described above, according to the present invention, the inspection system 1 reacts the target microorganism 102 among the microorganisms 101 in the predetermined specimen 100 with the antibody that causes the target microorganism 102 to react with the antibody. Since the fluorescence processing unit 20 performs fluorescence processing to fluoresce the sample 100, the inspection method causes an antibody reaction between the target microorganism 102 among the microorganisms 101 in the predetermined sample 100 and the target microorganism 102. Since it has a fluorescence treatment step of performing fluorescence treatment at a predetermined wavelength to fluoresce the specimen 100 reacted with the antibody 110, the target microorganism 102 among the microorganisms 100 in the specimen 100 is reacted with the antibody. By performing fluorescence treatment to fluoresce the specimen 100 at a predetermined wavelength, the target microorganisms 102 can be distinguished from the other microorganisms 103 by, for example, causing the other microorganisms 103 to fluoresce while not fluorescing the target microorganisms 102 in the specimen 100. It becomes possible to As a result, the target microorganism 102 can be tested without depending on the culture method, and the microorganism 102 can be quickly tested. In addition, since the antibody 110 is the antibody 100 that causes an antibody reaction with the target microorganism 102, it can be reliably reacted with the target microorganism 102, and the fluorescence of the target microorganism 102 can be reliably suppressed. Then, the microorganism 102 can be inspected with high accuracy.
また、蛍光処理部20は、標的とする微生物102と抗体110が反応する前の検体110を蛍光させる蛍光処理を行うこととしたので、蛍光処理ステップは、更に標的とする微生物102と抗体100とが反応する前の検体100を蛍光させる蛍光処理を行うステップとすることとしたので、標的とする微生物102が抗体反応する前の検体100において標的とする微生物102も含めて蛍光させることができ、標的とする微生物102の抗体反応の前後における変化を把握することが可能となる。 In addition, since the fluorescence processing unit 20 performs the fluorescence processing to fluoresce the sample 110 before the reaction between the target microorganism 102 and the antibody 110, the fluorescence processing step further includes the target microorganism 102 and the antibody 100. Since the fluorescence treatment is performed to fluoresce the specimen 100 before the reaction with the target microorganism 102, the target microorganism 102 can also be fluorescent in the specimen 100 before the target microorganism 102 reacts with the antibody. It becomes possible to grasp the change before and after the antibody reaction of the target microorganism 102 .
また、蛍光処理部20は、更に標的とする微生物102と抗体110とを反応させた後の検体100において標的とする微生物102に蛍光を生じさせず、標的とする微生物102以外の他の微生物103に蛍光を生じさせる蛍光処理を行うこととしたので、蛍光処理ステップは、更に標的とする微生物102と抗体110とを反応させた後の検体100において標的とする微生物102に蛍光を生じさせず、標的とする微生物102以外の他の微生物103に蛍光を生じさせる蛍光処理を行うステップとすることとしたので、標的とする微生物102が抗体反応した後の検体100において標的とする微生物102に蛍光を生じさせないこととすることができ、標的とする微生物102の抗体反応の前後における変化を把握することが可能となる。 In addition, the fluorescence processing unit 20 does not cause the target microorganism 102 to emit fluorescence in the sample 100 after the target microorganism 102 and the antibody 110 have been further reacted, and the other microorganisms 103 other than the target microorganism 102 are detected. Since it was decided to perform fluorescence treatment to cause fluorescence to occur, the fluorescence treatment step does not cause the target microorganism 102 to emit fluorescence in the specimen 100 after further reacting the target microorganism 102 and the antibody 110, Since the fluorescent treatment is performed to cause the microorganisms 103 other than the target microorganisms 102 to emit fluorescence, the target microorganisms 102 in the specimen 100 after the target microorganisms 102 have reacted with antibodies are subjected to fluorescence. Therefore, it is possible to grasp the change before and after the antibody reaction of the target microorganism 102 .
更にまた、抗体110は、標的とする微生物102に抗体反応を生じさせたときに標的とする微生物に蛍光を生じさせない抗体110とすることとしたので、標的とする微生物102に抗体反応を生じさせたときに標的とする微生物102に蛍光を生じさせないこととすることができる。 Furthermore, the antibody 110 is an antibody 110 that does not cause the target microorganism 102 to fluoresce when causing the target microorganism 102 to generate an antibody reaction. The target microbe 102 may not fluoresce when the target microbe 102 is activated.
また更に、蛍光処理部20および蛍光処理ステップは、所定の試薬を用いた蛍光染色により、検体100における微生物101を蛍光させる蛍光処理を行い、試薬は、抗体110により標的とする微生物102に抗体反応を生じさせたときに標的とする微生物102に蛍光を生じさせない試薬とすることとしたので、標的とする微生物102に抗体反応を生じさせたときに標的とする微生物102に蛍光を生じさせないこととすることができる。 Furthermore, the fluorescence processing unit 20 and the fluorescence processing step perform fluorescence processing to fluoresce the microorganisms 101 in the specimen 100 by fluorescence staining using a predetermined reagent, and the reagent reacts with the target microorganisms 102 by the antibody 110. Since it was decided to use a reagent that does not cause fluorescence in the target microorganism 102 when causing can do.
更に、標的とする微生物102と抗体110が反応する前の蛍光した検体110の画像処理および標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像処理を行う画像処理部50を有することとしたので、標的とする微生物102の抗体反応の前後における変化を画像により把握することが可能となる。 Furthermore, an image processing unit 50 that performs image processing of the fluorescent specimen 110 before the target microorganism 102 reacts with the antibody 110 and image processing of the fluorescent specimen 100 after the target microorganism 102 and the antibody 110 react. , it is possible to grasp the change before and after the antibody reaction of the target microorganism 102 from the image.
更にまた、画像処理部50は、微生物101の基準となるデータと反応する前の蛍光した検体100の画像および反応した後の蛍光した検体100の画像とを比較して、微生物101の基準となるデータと対応する反応する前の蛍光した検体100の画像および反応した後の蛍光した検体100の画像を特定し特定した画像を抽出することとしたので、標的とする微生物の抗体反応の前後における微生物101以外の異物100´が除かれて検査のノイズが除去された微生物101の画像を抽出することができ、更に精度よく標的とする微生物102の検査を行うことができる。つまり、検体100には、微生物101よりも遥かに多くの異物100´が含まれていることがあり、異物100´を除いて検査のノイズを除去することは、検査精度の大幅な向上に繋がる(異物100´を除いて検査のノイズを除去しなければ、抗体反応による標的となる微生物102の蛍光点数の減少は誤差範囲となることがある)。 Furthermore, the image processing unit 50 compares the data serving as the reference of the microorganism 101 with the image of the fluorescent specimen 100 before the reaction and the image of the fluorescent specimen 100 after the reaction to obtain the reference of the microorganism 101. Since the image of the fluorescent specimen 100 before the reaction corresponding to the data and the image of the fluorescent specimen 100 after the reaction were identified and extracted, the identified images were extracted. It is possible to extract an image of the microorganism 101 from which the foreign matter 100' other than the 101 is removed and the inspection noise is removed, and the target microorganism 102 can be inspected with higher accuracy. In other words, the specimen 100 may contain far more foreign matter 100' than the microorganisms 101, and eliminating the noise in the inspection by removing the foreign matter 100' leads to a significant improvement in the accuracy of the inspection. (If the test noise is not removed by removing the foreign object 100', the decrease in the fluorescence score of the target microorganism 102 due to the antibody reaction may fall within the margin of error).
また更に、標的とする微生物102の数を計数する標的微生物数計数部70を有することとしたので、標的とする微生物102の数を計数することができる。
また、標的とする微生物102の種類を特定する標的微生物特定部80を有することとしたので、標的とする微生物102の種類を特定することができる。
Furthermore, since the target microorganism number counting unit 70 for counting the number of target microorganisms 102 is provided, the number of target microorganisms 102 can be counted.
Moreover, since the target microorganism identification unit 80 is provided for identifying the type of the target microorganism 102, the type of the target microorganism 102 can be identified.
更にまた、画像撮影部30は、倍率の異なる複数の光学レンズ31を有し、倍率の異なる複数の光学レンズ31の選定および/または組み合わせを変更することにより、光学レンズ31の倍率を所定に変更する構成とすることとしたので、画像の倍率を適宜に変更することができる。 Furthermore, the image capturing unit 30 has a plurality of optical lenses 31 with different magnifications, and by changing the selection and/or combination of the plurality of optical lenses 31 with different magnifications, the magnification of the optical lenses 31 can be changed to a predetermined value. Since the configuration is such that the magnification of the image can be appropriately changed.
また更に、検体100を載置するための所定のステージ33を有するとともに、ステージ33の位置を制御する位置制御部40を有し、位置制御部40は、ステージ33の位置を移動制御することにより、画像撮影部30における焦点位置を制御することとしたので、焦点位置を制御することができる。 Furthermore, it has a predetermined stage 33 for placing the specimen 100 and a position control unit 40 that controls the position of the stage 33. The position control unit 40 controls the movement of the stage 33. , the focal position in the image capturing section 30 is controlled, so that the focal position can be controlled.
また、位置制御部40は、反応する前の蛍光した検体100の位置および反応した後の蛍光した検体100の位置を変更して行うとともに、画像処理部50は、反応する前の蛍光した検体100の画像および反応した後の蛍光した検体100の画像を複数撮影し、該複数撮影した画像を集計して画像処理を行うこととしたので、標的とする微生物の抗体反応の前後における検体100において標的とする微生物102の濃度に斑がある場合にあっても、測定精度が低下することを抑制することができる。 Further, the position control unit 40 changes the position of the fluorescent specimen 100 before the reaction and the position of the fluorescent specimen 100 after the reaction, and the image processing unit 50 controls the position of the fluorescent specimen 100 before the reaction. A plurality of images of the specimen 100 that was fluorescent after the reaction and the image of the specimen 100 after the reaction were taken, and the images that were taken were aggregated and subjected to image processing. Even if the concentration of the microorganisms 102 to be measured has unevenness, it is possible to suppress the deterioration of the measurement accuracy.
更に、蛍光処理部20は、所定の試薬を用いた蛍光染色により反応する前の検体100における微生物101および反応した後の検体100における微生物101を蛍光させる蛍光処理を行うこととしたので、効率よく蛍光処理を行うことができる。 Furthermore, the fluorescence processing unit 20 performs fluorescent processing to fluoresce the microorganisms 101 in the specimen 100 before the reaction and the microorganisms 101 in the specimen 100 after the reaction by fluorescent staining using a predetermined reagent. Fluorescent treatment can be performed.
更にまた、標的とする微生物102は、細菌およびウィルスの少なくともいずれかを含むこととし、細菌の検査を行う細菌検査モード2およびウィルスの検査を行うウィルス検査モード3を有することとしたので、細菌の検査およびウィルスの検査を行うことができる。 Furthermore, the target microorganism 102 includes at least one of bacteria and viruses, and has a bacteria inspection mode 2 for inspecting bacteria and a virus inspection mode 3 for inspecting viruses. Inspection and virus inspection can be performed.
また更に、蛍光処理部20は、光の波長の範囲を所定の範囲に制限するバンドパスフィルタ23を有することとしたので、検査のノイズとなる波長が除去されて標的とする微生物102を更に精度よく検査することができる。 Furthermore, since the fluorescence processing unit 20 has a band-pass filter 23 that limits the range of wavelengths of light to a predetermined range, the wavelengths that cause noise in the inspection are removed, and the target microorganisms 102 are detected with greater accuracy. can be inspected well.
また、所定の濾材を用いて、検体100の濾過を行い、検体100から異物100´を除去する濾過部10を有することとしたので、蛍光処理を行う前に検体100から物理的に大きな異物100´が除去されて検査のノイズを減らすことができ標的とする微生物102を更に精度よく検査することができる。 In addition, since the specimen 100 is filtered using a predetermined filter medium and the filtering unit 10 removes the foreign matter 100' from the specimen 100, the physically large foreign matter 100 can be removed from the specimen 100 before the fluorescence treatment. ' can be removed to reduce the noise of the test, and the target microorganism 102 can be tested more accurately.
なお、本発明は上述した実施形態に限定されることなく種々の応用実施、変形実施が可能であることは勿論である。
 すなわち、例えば、上述した実施形態にあっては、検査システム1は、細菌検査モード2およびウィルス検査モード3のいずれのモードも有することとしているが、いずれか一方のモードのみとしても所要の効果を奏することができる。つまり、検査システム1は、細菌検査モード2およびウィルス検査モード2の少なくともいずれかのモードを有することとすれば、所要の効果を奏する。
It is needless to say that the present invention is not limited to the above-described embodiments and can be applied and modified in various ways.
That is, for example, in the above-described embodiment, the inspection system 1 has both the bacteria inspection mode 2 and the virus inspection mode 3, but the desired effect can be obtained even if only one mode is used. can play. In other words, if the inspection system 1 has at least one mode of the bacteria inspection mode 2 and the virus inspection mode 2, the desired effects can be obtained.
 更に、上述した実施形態にあっては、蛍光処理部20、画像処理部50、標的微生物数計数部70、および標的微生物特定部80は、標的とする微生物102の抗体反応の前後における各種処理、計数、特定を行うこととしているが、抗体反応後における各種処理、計数、特定のみを行うこととしても所要の効果を奏する。ただし、蛍光処理部20、画像処理部50、標的微生物数計数部70、および標的微生物特定部80は、抗体反応後における各種処理、計数、特定のみを行うこととするよりも、標的とする微生物102の抗体反応の前後のいずれにおいても各種処理、計数、特定を行うこととする方がより好ましい実施形態となることは勿論である。 Furthermore, in the above-described embodiment, the fluorescence processing unit 20, the image processing unit 50, the target microorganism counting unit 70, and the target microorganism identifying unit 80 perform various processes before and after the antibody reaction of the target microorganism 102, Although counting and identification are performed, the necessary effects can also be achieved by performing only various treatments, counting, and identification after antibody reaction. However, the fluorescence processing unit 20, the image processing unit 50, the target microorganism number counting unit 70, and the target microorganism identification unit 80 do not only perform various processing, counting, and identification after antibody reaction, but rather Of course, it is a more preferable embodiment to perform various processing, counting, and identification both before and after the reaction of 102 antibodies.
更にまた、上述した実施形態にあっては、蛍光処理部20および蛍光処理ステップは、標的とする微生物102と抗体110とを反応させた後の検体100において標的とする微生物102に蛍光を生じさせず、標的とする微生物102以外の他の微生物103に蛍光を生じさせる蛍光処理を行うこととしているが、適宜の抗体110および試薬を用いることにより、蛍光処理部20および蛍光処理ステップは、標的とする微生物102以外の他の微生物103と抗体110とを反応させた後の検体100において標的とする微生物102以外の他の微生物103に蛍光を生じさせず、標的とする微生物102に蛍光を生じさせる蛍光処理を行うこととしても所要の効果を奏することができる。 Furthermore, in the above-described embodiment, the fluorescence processing unit 20 and the fluorescence processing step cause the target microorganisms 102 in the specimen 100 after the reaction between the target microorganisms 102 and the antibodies 110 to generate fluorescence. First, the fluorescence treatment is performed to cause the microorganisms 103 other than the target microorganisms 102 to emit fluorescence. In the sample 100 after reacting the antibody 110 with the microorganism 103 other than the microorganism 102 to be targeted, the microorganism 103 other than the target microorganism 102 does not emit fluorescence, and the target microorganism 102 emits fluorescence. A desired effect can also be obtained by performing a fluorescent treatment.
すなわち、蛍光処理部20および蛍光処理ステップは、標的とする微生物102および標的とする微生物102以外の他の微生物103のいずれか一方と抗体110とを反応させた後の検体100において標的とする微生物102および標的とする微生物102以外の他の微生物103のいずれか一方に蛍光を生じさせず、標的とする微生物102および標的とする微生物102以外の他の微生物103のいずれか他方に蛍光を生じさせる蛍光処理を行うこととしても所要の効果を奏することができる。 That is, the fluorescence processing unit 20 and the fluorescence processing step are performed in the specimen 100 after the antibody 110 is reacted with either the target microorganism 102 or the other microorganism 103 other than the target microorganism 102. 102 and other microorganisms 103 other than the target microorganism 102 are not caused to fluoresce, and the other of the target microorganism 102 and the other microorganisms 103 other than the target microorganism 102 is caused to fluoresce. A desired effect can also be obtained by performing a fluorescent treatment.
また更に、上述した実施形態にあっては、標的微生物数計数部70は、画像処理部50により画像処理された抗体110が反応する前の蛍光した検体100の画像および標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像から標的とする微生物102の数を計数することとしているが、画像を介さずに他の方法により標的とする微生物102の数を計数することとしても所要の効果を奏する。 Furthermore, in the above-described embodiment, the target microorganism count counting unit 70 includes an image of the fluorescent specimen 100 before the antibody 110 reacts, which has been image-processed by the image processing unit 50, and the target microorganism 102 and the antibody. Although the number of target microorganisms 102 is counted from the image of the fluorescent specimen 100 after the reaction with 110, it is possible to count the number of target microorganisms 102 by another method without using the image. also has the desired effect.
また、上述した実施形態にあっては、標的微生物特定部80は、標的微生物数計数部70により計数された抗体110が反応する前の蛍光した検体100の画像における標的とする微生物102の数と標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像における標的とする微生物102の数とを比較し、抗体110が反応する前の蛍光した検体100の画像における標的とする微生物102の数に対して標的とする微生物102と抗体110とが反応した後の蛍光した検体100の画像における標的とする微生物102の数が減少したときに、標的とする微生物102が抗体反応を生じたとみなして標的とする微生物102の種類を特定することとしているが、画像を介さずに他の方法により標的とする微生物102の種類を特定することとしても所要の効果を奏する。 Further, in the above-described embodiment, the target microorganism identification unit 80 counts the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts with the target microorganism counted by the target microorganism counting unit 70, and The number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between the target microorganism 102 and the antibody 110 is compared with the number of target microorganisms 102 in the image of the fluorescent specimen 100 before the antibody 110 reacts. When the number of target microorganisms 102 in the image of the fluorescent specimen 100 after the reaction between the target microorganisms 102 and the antibody 110 decreases with respect to the number of the target microorganisms 102, the target microorganisms 102 react with antibodies. Although the type of the target microorganism 102 is identified as having been generated, the desired effect can also be achieved by identifying the type of the target microorganism 102 by another method without using the image.
A:メンブレンフィルタ
B:スライドガラス
1:検査システム
1A:バス
1B:中央処理装置
1C:記憶装置
1D:入力装置
1E:表示装置
2:細菌検査モード
3:ウィルス検査モード
10:濾過部
20:蛍光処理部
21:励起光照射部
22:波長測定部
23:バンドパスフィルタ
30:画像撮影部 
31:レンズ(光学レンズ)
32:撮影装置
33:ステージ
40:位置制御部
50:画像処理部
60:基準データ記憶部
70:標的微生物数計数部
80:標的微生物特定部
100:検体
100´:異物
101:微生物
102:標的とする微生物
103:他の微生物
104a,104b:画像部分
110:抗体
200:プログラム
A: Membrane filter B: Slide glass 1: Inspection system 1A: Bus 1B: Central processing unit 1C: Storage device 1D: Input device 1E: Display device 2: Bacteria inspection mode 3: Virus inspection mode 10: Filtration unit 20: Fluorescence processing Unit 21: excitation light irradiation unit 22: wavelength measurement unit 23: bandpass filter 30: image capturing unit
31: Lens (optical lens)
32: Imaging device 33: Stage 40: Position control unit 50: Image processing unit 60: Reference data storage unit 70: Target microorganism number counting unit 80: Target microorganism identification unit 100: Specimen 100': Foreign matter 101: Microorganism 102: Target microorganism 103: other microorganisms 104a, 104b: image portion 110: antibody 200: program

Claims (39)

  1. 微生物の検査を行うための検査システムであって、
    所定の検体における微生物のうち標的とする微生物と、前記標的とする微生物と抗体反応を生じる抗体と、を反応させた前記検体を蛍光させる蛍光処理を所定の波長で行う蛍光処理部を有することを特徴とする検査システム。
    An inspection system for inspecting microorganisms,
    A fluorescence processing unit that performs fluorescence processing at a predetermined wavelength to fluoresce the specimen obtained by reacting the target microorganism among the microorganisms in the predetermined specimen with an antibody that causes an antibody reaction with the target microorganism. Characterized inspection system.
  2. 前記蛍光処理部は、更に前記標的とする微生物と前記抗体とが反応する前の前記検体を蛍光させる蛍光処理を行うことを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, wherein the fluorescence processing unit further performs fluorescence processing to fluoresce the specimen before reaction between the target microorganism and the antibody.
  3. 前記蛍光処理部は、更に前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方と前記抗体とを反応させた後の前記検体において前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方に蛍光を生じさせず、前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか他方に蛍光を生じさせる蛍光処理を行うことを特徴とする請求項2に記載の検査システム。 The fluorescence processing unit further removes the target microorganism and the target in the specimen after reacting any one of the target microorganism and other microorganisms other than the target microorganism with the antibody. Fluorescence treatment is carried out so that either one of the microorganisms other than the target microorganism does not fluoresce, and the other of the target microorganism and the other microorganism other than the target microorganism fluoresces. The inspection system according to claim 2.
  4. 前記蛍光処理部は、更に前記標的とする微生物と前記抗体とを反応させた後の前記検体において前記標的とする微生物に蛍光を生じさせず、前記標的とする微生物以外の他の微生物に蛍光を生じさせる蛍光処理を行うことを特徴とする請求項2に記載の検査システム。 Further, the fluorescence processing unit does not cause the target microorganisms to emit fluorescence in the specimen after the reaction between the target microorganisms and the antibody, and causes fluorescence to be emitted to microorganisms other than the target microorganisms. 3. An inspection system according to claim 2, characterized in that it performs a fluorescence treatment that causes the fluorescence.
  5. 前記抗体は、前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない抗体とすることを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, wherein the antibody is an antibody that does not cause the target microorganism to fluoresce when causing an antibody reaction in the target microorganism.
  6. 前記蛍光処理部は、所定の試薬を用いた蛍光染色により、前記検体における微生物を蛍光させる蛍光処理を行い、前記試薬は、前記抗体により前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない試薬とすることを特徴とする請求項1に記載の検査システム。 The fluorescence processing unit performs fluorescence processing to fluoresce the microorganisms in the specimen by fluorescent staining using a predetermined reagent, and the reagent causes the target microorganisms to react with the antibody. 2. The inspection system according to claim 1, wherein the reagent is a reagent that does not cause the target microorganism to fluoresce.
  7. 前記試薬は、フルオレセイン系化合物および/またはプロピディウム系化合物とする請求項6に記載の検査システム。 The inspection system according to claim 6, wherein the reagent is a fluorescein-based compound and/or a propidium-based compound.
  8. 前記試薬は、FDA (フルオレセイン・ジアセテート)および/またはPI(プロピディウムイオダイド)とする請求項6に記載の検査システム。 The inspection system according to claim 6, wherein the reagent is FDA (fluorescein diacetate) and/or PI (propidium iodide).
  9. 前記蛍光した検体の画像処理を行う画像処理部を有することを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, further comprising an image processing unit that performs image processing of the fluorescent sample.
  10. 前記標的とする微生物と前記抗体が反応する前の前記蛍光した検体の画像処理および前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像処理を行う画像処理部を有することを特徴とする請求項2に記載の検査システム。 An image processing unit that performs image processing of the fluorescent specimen before the reaction between the target microorganism and the antibody and image processing of the fluorescent specimen after the target microorganism and the antibody react. The inspection system according to claim 2, characterized by:
  11. 前記画像処理部は、前記蛍光した検体の画像が前記微生物の基準となるデータの範囲に含まれるか否かを判断して、前記蛍光した検体の画像のうち前記微生物の基準となるデータの範囲に含まれる画像を特定することを特徴とする請求項9または請求項10に記載の検査システム。 The image processing unit determines whether or not the image of the fluorescent specimen is included in the range of the reference data of the microorganism, and determines the range of the reference data of the microorganism in the image of the fluorescent specimen. 11. The inspection system according to claim 9 or 10, wherein the image included in the is specified.
  12. 前記画像処理部は、前記反応する前の蛍光した検体の画像および前記反応した後の蛍光した検体の画像が前記微生物の基準となるデータの範囲に含まれるか否かを判断して、前記反応する前の蛍光した検体の画像および前記反応した後の蛍光した検体の画像のうち前記微生物の基準となるデータの範囲に含まれる画像を特定することを特徴とする請求項9または請求項10に記載の検査システム。 The image processing unit determines whether the image of the fluorescent specimen before the reaction and the image of the fluorescent specimen after the reaction are included in the reference data range of the microorganism, 11. The method according to claim 9 or 10, wherein an image included in the reference data range of the microorganism is specified from among the image of the fluorescent specimen before the reaction and the image of the fluorescent specimen after the reaction. Inspection system as described.
  13. 前記微生物の基準となるデータは、前記標的とする微生物の基準となるデータを含むことを特徴とする請求項11または請求項12に記載の検査システム。 13. The inspection system according to claim 11 or 12, wherein the reference data for the microorganism includes reference data for the target microorganism.
  14. 前記標的とする微生物の数を計数する標的微生物数計数部を有することを特徴とする請求項2に記載の検査システム。 3. The inspection system according to claim 2, further comprising a target microorganism count counting unit for counting the number of target microorganisms.
  15. 前記抗体が反応する前の前記蛍光した検体および前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体から前記標的とする微生物の数を計数する標的微生物数計数部を有することを特徴とする請求項14に記載の検査システム。 A target microorganism number counting unit for counting the number of the target microorganisms from the fluorescent specimen before the reaction with the antibody and the fluorescent specimen after the target microorganism and the antibody reacted. 15. The inspection system of Claim 14.
  16. 前記画像処理部により画像処理された前記抗体が反応する前の前記蛍光した検体の画像および前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像から前記標的とする微生物の数を計数する標的微生物数計数部を有することを特徴とする請求項11または請求項12に記載の検査システム。 The image of the target microorganism is obtained from the image of the fluorescent specimen before the antibody reacts and the image of the fluorescent specimen after the target microorganism reacts with the antibody, which are image-processed by the image processing unit. 13. The inspection system according to claim 11 or 12, further comprising a target microorganism count counting unit for counting the number of target microorganisms.
  17. 前記標的微生物数計数部は、前記抗体が反応する前の前記蛍光した検体から計数した微生物の数から前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体から計数した微生物の数を差し引くことにより前記標的とする微生物の数を計数することを特徴とする請求項14または請求項15に記載の検査システム。 The target microorganism number counting unit counts the number of microorganisms counted from the fluorescent specimen after the reaction between the target microorganism and the antibody from the number of microorganisms counted from the fluorescent specimen before the antibody reacts. 16. The inspection system according to claim 14 or 15, wherein the number of said target microorganisms is counted by subtracting .
  18. 前記標的微生物数計数部は、前記抗体が反応する前の前記蛍光した検体の画像から計数した微生物の数から前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像から計数した微生物の数を差し引くことにより前記標的とする微生物の数を計数することを特徴とする請求項14または請求項16に記載の検査システム。 The target microorganism number counting unit counts from the image of the fluorescent specimen after the reaction between the target microorganism and the antibody from the number of microorganisms counted from the image of the fluorescent specimen before reaction with the antibody. 17. The inspection system according to claim 14 or claim 16, wherein the number of said target microorganisms is counted by subtracting the number of microorganisms obtained.
  19. 前記標的とする微生物の種類を特定する標的微生物特定部を有することを特徴とする請求項2に記載の検査システム。 3. The inspection system according to claim 2, further comprising a target microorganism identifying unit that identifies the type of the target microorganism.
  20. 前記標的微生物数計数部により計数された前記抗体が反応する前の前記蛍光した検体における前記標的とする微生物の数と前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体における前記標的とする微生物の数とを比較し、前記抗体が反応する前の前記蛍光した検体における前記標的とする微生物の数に対して前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体における前記標的とする微生物の数が減少したときに、前記標的とする微生物が前記抗体反応を生じたとみなして前記標的とする微生物の種類を特定する標的微生物特定部を有することを特徴とする請求項14に記載の検査システム。 The number of the target microorganisms in the fluorescent sample before the reaction with the antibody counted by the target microorganism count counting unit and the number of the target microorganisms in the fluorescent sample after the reaction between the target microorganism and the antibody The number of target microorganisms is compared with the number of the target microorganisms in the fluorescent specimen before the antibody reacts with the fluorescence after the reaction between the target microorganism and the antibody. characterized by comprising a target microorganism identifying unit that identifies the type of the target microorganism by assuming that the target microorganism has generated the antibody reaction when the number of the target microorganism in the sample decreases. 15. The inspection system of claim 14.
  21. 前記標的微生物数計数部により計数された前記抗体が反応する前の前記蛍光した検体の画像における前記標的とする微生物の数と前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像における前記標的とする微生物の数とを比較し、前記抗体が反応する前の前記蛍光した検体の画像における前記標的とする微生物の数に対して前記標的とする微生物と前記抗体とが反応した後の前記蛍光した検体の画像における前記標的とする微生物の数が減少したときに、前記標的とする微生物が前記抗体反応を生じたとみなして前記標的とする微生物の種類を特定する標的微生物特定部を有することを特徴とする請求項14または請求項16に記載の検査システム。 The number of the target microorganisms in the image of the fluorescent specimen before the reaction with the antibody counted by the target microorganism counting unit and the fluorescent specimen after the reaction between the target microorganism and the antibody and comparing the number of the target microorganisms in the image with the target microorganisms and the antibody, with respect to the number of the target microorganisms in the image of the fluorescent specimen before the antibody reacts. identifying the type of the target microorganism by assuming that the target microorganism has generated the antibody reaction when the number of the target microorganism in the image of the fluorescent specimen after the 17. An inspection system according to claim 14 or 16, comprising a portion.
  22. 所定のレンズを有する画像撮影部を有し、前記画像撮影部は、前記所定のレンズを介して前記検体の画像を撮影することを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, further comprising an image capturing unit having a predetermined lens, wherein the image capturing unit captures an image of the specimen through the predetermined lens.
  23. 前記画像撮影部は、倍率の異なる複数の前記レンズを有し、前記倍率の異なる複数のレンズの選定および/または組み合わせを変更することにより、前記レンズの倍率を所定に変更する構成とすることを特徴とする請求項22に記載の検査システム。 The image capturing unit has a plurality of lenses with different magnifications, and is configured to change the magnification of the lenses to a predetermined value by changing the selection and/or combination of the plurality of lenses with different magnifications. 23. The inspection system of claim 22.
  24. 前記検体を載置するための所定のステージを有するとともに、前記ステージの位置を制御する位置制御部を有し、
    前記位置制御部は、前記ステージの位置を制御することにより、前記画像撮影部における焦点位置を制御することを特徴とする請求項22に記載の検査システム。
    Having a predetermined stage for placing the specimen, and having a position control unit for controlling the position of the stage,
    23. The inspection system according to claim 22, wherein the position control section controls the focal position in the image capturing section by controlling the position of the stage.
  25. 前記位置制御部は、前記蛍光した検体の位置を変更して行うとともに、
    前記画像処理部は、前記蛍光した検体の画像を複数撮影し、該複数撮影した画像を集計して画像処理を行うことを特徴とする請求項24に記載の検査システム。
    The position control unit performs by changing the position of the fluorescent specimen,
    25. The inspection system according to claim 24, wherein the image processing unit captures a plurality of images of the fluorescent specimen, aggregates the captured images, and performs image processing.
  26. 前記蛍光処理部は、所定の試薬を用いた蛍光染色により前記検体における標的とする微生物の前記蛍光処理を行うことを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, wherein the fluorescence processing unit carries out the fluorescence processing of target microorganisms in the specimen by fluorescence staining using a predetermined reagent.
  27. 前記標的とする微生物は、細菌およびウィルスのうち少なくともいずれかを含むこととし、前記細菌の検査を行う細菌検査モードおよび前記ウィルスの検査を行うウィルス検査モードの少なくともいずれかのモードを有することを特徴とする請求項1に記載の検査システム。 The target microorganism includes at least one of bacteria and viruses, and has at least one of a bacteria inspection mode for inspecting the bacteria and a virus inspection mode for inspecting the virus. The inspection system according to claim 1, wherein:
  28. 前記蛍光処理部は、光の波長の範囲を所定の範囲に制限するバンドパスフィルタを有することを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, wherein said fluorescence processing unit has a band-pass filter for limiting the wavelength range of light to a predetermined range.
  29. 所定の濾材を用いて、前記検体の濾過を行い、前記検体から異物を除去する濾過部を有することを特徴とする請求項1に記載の検査システム。 2. The inspection system according to claim 1, further comprising a filtering unit that filters the specimen using a predetermined filter medium and removes foreign matter from the specimen.
  30. 微生物の検査を行うための検査方法であって、
    所定の検体における微生物のうち標的とする微生物と、前記標的とする微生物と抗体反応を生じる抗体と、を反応させた前記検体を蛍光させる蛍光処理を所定の波長で行う蛍光処理ステップを有することを特徴とする検査方法。
    An inspection method for inspecting microorganisms,
    A fluorescence treatment step of performing fluorescence treatment at a predetermined wavelength to fluoresce the specimen obtained by reacting the target microorganism among the microorganisms in the predetermined specimen with an antibody that causes an antibody reaction with the target microorganism. Characterized inspection method.
  31. 前記蛍光処理ステップは、更に前記標的とする微生物と前記抗体とが反応する前の前記検体を蛍光させる蛍光処理を行うステップとすることを特徴とする請求項30に記載の検査方法。 31. The inspection method according to claim 30, wherein said fluorescence treatment step further comprises a step of performing a fluorescence treatment to fluoresce said specimen before reaction between said target microorganism and said antibody.
  32. 前記蛍光処理ステップは、更に前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方と前記抗体とを反応させた後の前記検体において前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか一方に蛍光を生じさせず、前記標的とする微生物および前記標的とする微生物以外の他の微生物のいずれか他方に蛍光を生じさせる蛍光処理を行うステップとすることを特徴とする請求項30に記載の検査方法。 In the fluorescence treatment step, the target microorganism and the target in the specimen after reacting any one of the target microorganism and other microorganisms other than the target microorganism with the antibody A step of performing a fluorescence treatment in which either one of the microorganisms other than the target microorganism does not fluoresce, and the other of the target microorganism and the other microorganism other than the target microorganism fluoresces. The inspection method according to claim 30, characterized by:
  33. 前記蛍光処理ステップは、更に前記標的とする微生物と前記抗体とを反応させた後の前記検体において前記標的とする微生物に蛍光を生じさせず、前記標的とする微生物以外の他の微生物に蛍光を生じさせる蛍光処理を行うステップとすることを特徴とする請求項30に記載の検査方法。 In the fluorescence treatment step, in the specimen after the reaction between the target microorganism and the antibody, the target microorganism does not emit fluorescence, and microorganisms other than the target microorganism emit fluorescence. 31. The inspection method according to claim 30, further comprising a step of carrying out a fluorescence treatment to cause the fluorescence.
  34. 前記抗体は、前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない抗体とすることを特徴とする請求項30に記載の検査方法。 31. The inspection method according to claim 30, wherein the antibody is an antibody that does not cause the target microorganism to fluoresce when causing an antibody reaction in the target microorganism.
  35. 前記蛍光処理ステップは、所定の試薬を用いた蛍光染色により、前記検体における微生物を蛍光させる蛍光処理を行い、前記試薬は、前記抗体により前記標的とする微生物に抗体反応を生じさせたときに前記標的とする微生物に蛍光を生じさせない試薬とすることを特徴とする請求項30に記載の検査方法。 In the fluorescence treatment step, fluorescent staining is performed using a predetermined reagent to fluoresce the microorganisms in the specimen, and the reagent causes the target microorganisms to react with the antibody. 31. The inspection method according to claim 30, wherein the reagent is a reagent that does not cause the target microorganism to fluoresce.
  36. 前記試薬は、フルオレセイン系化合物および/またはプロピディウム系化合物とする請求項35に記載の検査システム。 36. The inspection system according to claim 35, wherein the reagent is a fluorescein-based compound and/or a propidium-based compound.
  37. 前記試薬は、FDA (フルオレセイン・ジアセテート)および/またはPI(プロピディウムイオダイド)とする請求項35に記載の検査システム。 36. The inspection system according to claim 35, wherein the reagent is FDA (fluorescein diacetate) and/or PI (propidium iodide).
  38. 微生物の検査を行うための検査システムのコンピュータを、
    所定の検体における標的とする微生物と前記標的とする微生物と抗体反応を生じる抗体とを反応させた前記検体の蛍光処理を所定の波長で行う蛍光処理部として機能させることを特徴とするプログラム。
    The computer of the inspection system for inspecting microorganisms,
    A program characterized by functioning as a fluorescence processing unit that performs fluorescence processing at a predetermined wavelength on a specimen obtained by reacting a target microorganism in a predetermined specimen with an antibody that causes an antibody reaction with the target microorganism.
  39. 請求項38に記載のプログラムを記憶することを特徴とするコンピュータが読み取り可能な記憶媒体。
     
    A computer-readable storage medium storing the program according to claim 38.
PCT/JP2022/003467 2021-01-31 2022-01-30 Inspection system, inspection method, program, and computer-readable storage medium WO2022163845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524067A JP7286070B2 (en) 2021-01-31 2022-01-30 Inspection system, inspection method, program, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-014047 2021-01-31
JP2021014047 2021-01-31

Publications (1)

Publication Number Publication Date
WO2022163845A1 true WO2022163845A1 (en) 2022-08-04

Family

ID=82654717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003467 WO2022163845A1 (en) 2021-01-31 2022-01-30 Inspection system, inspection method, program, and computer-readable storage medium

Country Status (2)

Country Link
JP (1) JP7286070B2 (en)
WO (1) WO2022163845A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103055A (en) * 1980-10-30 1982-06-26 Miles Lab Analysis of homogeneous peculiar bond and apparatus used therefor
JPH07258296A (en) * 1994-03-28 1995-10-09 Science & Tech Agency Anti-(cdc) 2 kinase-phosphorylated vimentin monoclonal antibody
JP2008541022A (en) * 2005-05-02 2008-11-20 テラインベンション ゲーエムベーハー Fluorescence spectroscopy based on EU / TB chelate for detecting analytes
JP2011515656A (en) * 2008-02-14 2011-05-19 スリーエム イノベイティブ プロパティズ カンパニー Methods and compositions for detecting microorganisms
JP2015505248A (en) * 2012-01-18 2015-02-19 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Method for specifically labeling live bacteria
JP2017506912A (en) * 2014-02-21 2017-03-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for detecting microorganisms in a sample by a fluorescence-based detection method
JP2017511691A (en) * 2014-02-06 2017-04-27 アルサニス・バイオサイエンスズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング E. coli specific antibody sequence
JP2018514193A (en) * 2015-03-17 2018-06-07 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ Serotype cross-reactive dengue heat neutralizing antibody and use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103055A (en) * 1980-10-30 1982-06-26 Miles Lab Analysis of homogeneous peculiar bond and apparatus used therefor
JPH07258296A (en) * 1994-03-28 1995-10-09 Science & Tech Agency Anti-(cdc) 2 kinase-phosphorylated vimentin monoclonal antibody
JP2008541022A (en) * 2005-05-02 2008-11-20 テラインベンション ゲーエムベーハー Fluorescence spectroscopy based on EU / TB chelate for detecting analytes
JP2011515656A (en) * 2008-02-14 2011-05-19 スリーエム イノベイティブ プロパティズ カンパニー Methods and compositions for detecting microorganisms
JP2015505248A (en) * 2012-01-18 2015-02-19 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Method for specifically labeling live bacteria
JP2017511691A (en) * 2014-02-06 2017-04-27 アルサニス・バイオサイエンスズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング E. coli specific antibody sequence
JP2017506912A (en) * 2014-02-21 2017-03-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for detecting microorganisms in a sample by a fluorescence-based detection method
JP2018514193A (en) * 2015-03-17 2018-06-07 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ Serotype cross-reactive dengue heat neutralizing antibody and use thereof

Also Published As

Publication number Publication date
JP7286070B2 (en) 2023-06-05
JPWO2022163845A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP6186414B2 (en) Method for characterizing microorganisms on solid or semi-solid media
JP3035698B2 (en) Apparatus and method for fast and sensitive detection and counting of microorganisms by fluorescence
CN111220590A (en) Rapid detection instrument and detection method for pathogenic microorganism drug sensitivity
WO2014156797A1 (en) Detection device and detection method
US20080003610A1 (en) Method for identifying germs
JP2648376B2 (en) Apparatus and method for detecting and counting microorganisms
JP4029983B2 (en) Microorganism inspection apparatus and inspection method
JP2013094064A (en) Method for checking microorganism
JP4967280B2 (en) Microbe counting device
JP4106626B2 (en) Fluorescence image measuring method and apparatus
JPWO2003100086A1 (en) Viable cell counting method and apparatus
JPWO2004022774A1 (en) Method for detecting microorganisms or cells
RU2516580C2 (en) Method and device for proximate analysis of fluid samples with help of filter
US6979828B2 (en) Method and apparatus for immediately determining microorganism
JP7286070B2 (en) Inspection system, inspection method, program, and computer-readable storage medium
JP2000304689A (en) Projection observing method, microorganism inspection method and projection detecting apparatus
JP2008022776A (en) Microorganism metering device
JP4911423B2 (en) Microorganism measurement method
JP2005065570A (en) Method for detecting viable cell and apparatus for counting viable cell
JP4792880B2 (en) Microorganism counting method and microorganism counting apparatus
WO2022185592A1 (en) Method for measuring viral particle, and device for measuring viral particle
JP2014502146A (en) Apparatus and method for quantitative identification of discriminatory cell events
JPH02170053A (en) Method and device for detecting microorganism
CN209961688U (en) Rapid detection instrument for pathogenic microorganism drug sensitivity
JP4068419B2 (en) Microorganism detection method and apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022524067

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746064

Country of ref document: EP

Kind code of ref document: A1