WO2022163214A1 - Heater control device - Google Patents

Heater control device Download PDF

Info

Publication number
WO2022163214A1
WO2022163214A1 PCT/JP2021/047141 JP2021047141W WO2022163214A1 WO 2022163214 A1 WO2022163214 A1 WO 2022163214A1 JP 2021047141 W JP2021047141 W JP 2021047141W WO 2022163214 A1 WO2022163214 A1 WO 2022163214A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating element
power
controller
control device
Prior art date
Application number
PCT/JP2021/047141
Other languages
French (fr)
Japanese (ja)
Inventor
成伸 先田
良平 藤見
功一 木村
克裕 板倉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022578150A priority Critical patent/JPWO2022163214A1/ja
Priority to KR1020237025655A priority patent/KR20230124728A/en
Publication of WO2022163214A1 publication Critical patent/WO2022163214A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated

Definitions

  • the present disclosure relates to heater controllers.
  • This application claims priority based on Japanese Patent Application No. 2021-12977 dated January 29, 2021, and incorporates all the descriptions described in the Japanese application.
  • Patent Document 1 discloses a film forming apparatus for forming a metal thin film on a semiconductor wafer.
  • This film forming apparatus includes a heating means provided on a mounting table, a temperature detecting section for detecting the temperature of the semiconductor wafer placed on the mounting table, a control means for controlling the amount of heat generated by the heating means, and a lower portion of the mounting table. and a support member that supports the
  • the heating means includes a first heater and a second heater for respectively heating the central portion and the peripheral portion of the semiconductor wafer.
  • the control means controls power supplied to the first heater based on the detected temperature value of the central portion of the mounting table. Further, the control means is configured to supply power to the second heater in a predetermined ratio with respect to the power supplied to the first heater.
  • a heater control device of the present disclosure includes a substrate having a disk-like shape, a cylindrical support coaxially attached to the substrate, and a first heater disposed in an area including the center of the substrate. a heating element; at least one second heating element arranged concentrically with the first heating element; a temperature sensor for measuring a first temperature of the first heating element; at least one current sensor for measuring the supplied current; a first temperature regulator for outputting a first control signal such that the first temperature approaches a target temperature; A first power controller controlling a first power supplied to a heating element, a second power controller controlling a second power supplied to the second heating element, and determining the temperature of the second heating element A calculator.
  • the substrate has a first surface on which an object to be heated is placed and a second surface facing the first surface.
  • the tubular support is attached to the second surface.
  • the temperature sensor is arranged inside the tubular support.
  • the second power controller controls the second power using a phase control method so as to achieve a preset ratio with respect to the first power.
  • the calculator obtains the temperature of the second heating element based on the measured value of the at least one current sensor.
  • FIG. 1 is a functional block diagram of a heater control device according to Embodiment 1.
  • FIG. FIG. 2 is a plan view of a substrate showing areas where heat generating elements are arranged.
  • FIG. 3 is a vertical cross-sectional view showing the arrangement of heat generating elements within the substrate.
  • FIG. 4 is an explanatory diagram of the phase control method.
  • FIG. 5 is a flowchart showing a processing procedure up to outputting the second power in the first embodiment.
  • FIG. 6 is a flowchart showing a processing procedure up to outputting the second temperature in the first embodiment.
  • FIG. 7 is a graph showing an example of a temperature profile of a heating element according to Embodiment 1;
  • FIG. 8 is a graph showing an example of the temperature profile of the heating element during temperature maintenance.
  • FIG. 9 is a graph showing an enlarged example of the temperature profile in the processing state in FIG.
  • FIG. 10 is a functional block diagram of a heater control device according to the second embodiment.
  • FIG. 11 is a flowchart showing a processing procedure up to outputting the second power in the second embodiment.
  • FIG. 12 is a plan view of a base material showing an arrangement region of a heating element in Modification 1.
  • FIG. 13 is a vertical cross-sectional view of a base material showing an arrangement region of a heating element in Modification 1.
  • FIG. FIG. 14 is a functional block diagram of a heater control device according to Modification 2.
  • FIG. 15 is a functional block diagram of a heater control device according to Modification 3.
  • FIG. 15 is a functional block diagram of a heater control device according to Modification 3.
  • the power supplied to the first heater is controlled based on the value detected by the temperature detection unit.
  • the second heater is supplied with electric power at a predetermined ratio to the electric power supplied to the first heater, but does not have a temperature detection section for detecting the temperature of the peripheral portion of the wafer. Therefore, it is desired to improve the heat uniformity by grasping the temperature of the second heater.
  • One object of the present disclosure is to provide a multi-zone heater control device capable of grasping the temperature of the zone corresponding to each heating element without providing a temperature sensor for each heating element. .
  • Another object of the present disclosure is to provide a multi-zone heater control device capable of controlling the temperature of a zone corresponding to each heating element without providing a temperature sensor for each heating element. to do.
  • the temperature of the zone corresponding to each heating element can be grasped without providing a temperature sensor for each heating element.
  • a heater control device includes a disk-shaped substrate, a cylindrical support coaxially attached to the substrate, and a center of the substrate. a first heating element arranged in a region containing; at least one second heating element arranged concentrically with the first heating element; a temperature sensor for measuring a first temperature of the first heating element; at least one current sensor for measuring current supplied to at least one second heating element; a first temperature regulator for outputting a first control signal such that the first temperature approaches a target temperature; a first power controller for controlling first power supplied to the first heating element according to a control signal; a second power controller for controlling second power supplied to the second heating element; a calculator for obtaining the temperature of a second heating element, the base material has a first surface on which a heating target is placed and a second surface facing the first surface, and the cylindrical support A body is attached to the second surface, the temperature sensor is located inside the tubular support, and the second power controller is a preset ratio to the first power.
  • the second electric power is controlled by
  • the first temperature of the first heating element is detected by the temperature sensor.
  • the first power supplied to the first heating element is controlled based on the temperature detected by the temperature sensor.
  • the temperature of the second heating element is obtained by the calculator based on the measured value of the current sensor. Therefore, the temperature of the second heating element can be grasped without a temperature sensor for detecting the temperature of the second heating element or the temperature of the zone in which the second heating element is arranged.
  • the second power supplied to the second heating element is controlled to have a preset ratio to the first power. Since the second power is controlled by the phase control method, it can be controlled with high accuracy. As a result, the temperature of the second heating element can also be grasped with high precision.
  • the calculator calculates the temperature of the second heating element using the first temperature, the second voltage of the second heating element, and a predetermined coefficient.
  • the coefficient may be a coefficient representing the relationship between the resistance of the second heating element and the temperature of the second heating element.
  • the resistance of the second heating element can be obtained using the current and the second voltage supplied to the second heating element. Furthermore, the temperature of the second heating element can be obtained by using the coefficient representing the relationship between the resistance of the second heating element and the temperature of the second heating element.
  • the coefficient is selected from a plurality of predetermined coefficients according to the first temperature. It may be a coefficient.
  • the temperature of the second heating element can be determined more accurately by using different coefficients according to the measurement result of the temperature sensor, that is, the first temperature of the first heating element.
  • Electric power is supplied to the second heating element in a predetermined ratio to the electric power supplied to the first heating element. That is, the temperature of the second heating element is related to the temperature of the first heating element.
  • the relationship between the temperature and resistance of the second heating element it is difficult to accurately determine the temperature of the second heating element depending on the temperature range with a coefficient obtained only from the relationship between the resistance at room temperature and the resistance at the maximum temperature. . Therefore, by using different coefficients according to the temperature of the first heating element, the temperature of the second heating element can be calculated more accurately.
  • the plurality of coefficients are calculated when the temperature of the first heating element and the second heating element , at the time of temperature maintenance, and at the time of temperature decrease.
  • the temperature of the second heating element can be obtained with higher accuracy than when the same coefficient is used in each step of raising the temperature of the second heating element, maintaining the temperature, and lowering the temperature.
  • Each of the above stages has a significantly different temperature history. Therefore, it is difficult to accurately obtain the temperature of the second heating element if a common coefficient is used in each of these stages.
  • the amount of temperature change per unit time is small compared to when the temperature is raised or lowered. Therefore, by using different coefficients according to different stages of the process from temperature increase to temperature decrease, the temperature of the second heating element can be obtained with higher accuracy.
  • the coefficient is set to the value that the heating object is placed on the first surface when the temperature is maintained. It may be determined based on the first temperature measured in a state in which the temperature is not
  • the coefficient can be obtained without conducting a preliminary test by placing the object to be heated on the first surface. Therefore, there is no need to prepare an object to be heated in the preliminary test.
  • the preliminary test is a test in which the relationship between the temperature and the resistance of the second heating element is examined by heating the first heating element to the target temperature during temperature maintenance in order to obtain the above coefficient. If the required accuracy of the temperature of the second heating element is emphasized, the object to be heated must be prepared in order to perform a preliminary test by placing the object to be heated on the first surface of the base material. On the other hand, if the preliminary test is performed without placing the object to be heated on the first surface, the coefficient can be obtained without using the object to be heated.
  • One form of the heater control device is an external heater that displays or transmits at least one of the temperature of the second heating element and the determination result as to whether the temperature of the second heating element is within an appropriate range to an external device.
  • An output unit may be provided.
  • the above embodiment can notify the user of the second temperature, which is the temperature of the second heating element, and the determination result.
  • the external output unit include a second temperature indicator, an alarm device that outputs when the second temperature is out of a predetermined range, or a data output that communicates with other external devices. interface and the like.
  • One form of the heater control device further includes a second temperature controller, and the second temperature controller adjusts the ratio so that the temperature of the second heating element approaches the target temperature. Outputting a second control signal, the second power controller may control the second power according to the ratio adjusted by the second control signal.
  • the above form can adjust the above ratio and control the temperature of the second heating element with high accuracy.
  • One form of the heater control device further includes a third temperature controller, and the third temperature controller adjusts the difference between the temperature of the second heating element and the first temperature to the temperature of the second heating element. output a third control signal for adjusting the ratio so that the difference between the respective target temperatures of the temperature and the first temperature, the second power controller outputs the adjusted by the third control signal
  • the second power may be controlled according to the ratio.
  • the above form can adjust the above ratio and accurately control the temperature of the second heating element.
  • FIG. 1 A heater control device 1 according to a first embodiment will be described with reference to FIGS. 1 to 4.
  • FIG. This heater control device 1 can be used in a film forming apparatus for forming a thin film on the surface of a wafer.
  • a film forming apparatus includes a substrate 10 and a support 20 in a chamber in which atmospheric gas can be controlled. Illustration of the chamber is omitted.
  • the heating elements 30 are not arranged in a part of the substrate 10 in the circumferential direction.
  • the heater control device 1 includes a substrate 10 , a support 20 , multiple heating elements 30 , a temperature sensor 40 , a current sensor 50 and a controller 60 .
  • the base material 10 has a first surface 10a on which the heating target W shown in FIG. 3 is placed, and a second surface 10b facing the first surface 10a.
  • the first surface 10a side of the substrate 10 may be referred to as "upper”, and the second surface 10b side may be referred to as "lower”.
  • a support 20 is attached below the substrate 10 .
  • a plurality of heating elements 30 are arranged inside the base material 10 as shown in FIGS. 1 and 3 .
  • the plurality of heating elements 30 includes a first heating element 31 and one or more second heating elements 32 .
  • a temperature sensor 40 detects the temperature of the first heating element 31 .
  • the current sensor 50 includes a first current sensor 51 that measures a first current flowing through the first heating element 31 and a second current sensor 52 that measures a second current flowing through the second heating element 32 .
  • the controller 60 mainly controls power supplied to the first heating element 31 and the second heating element 32 .
  • One of the features of the first embodiment is that the temperature sensor 40 is provided only in the first heating element 31 without providing a temperature sensor in the second heating element 32, so that the temperature of the second heating element 32 can be grasped. That's what it is. Each configuration will be described in more detail below.
  • the substrate 10 has a disk-like shape.
  • the substrate 10 has a first surface 10a and a second surface 10b.
  • the first surface 10a and the second surface 10b face each other.
  • a heating target W shown in FIG. 3 is placed on the first surface 10a.
  • the object W to be heated is, for example, a wafer of silicon, a compound semiconductor, or the like.
  • a support 20, which will be described later, is attached to the second surface 10b.
  • the second surface 10b is provided with a plurality of holes into which a plurality of terminals 30t shown in FIG. 3 are fitted.
  • the base material 10 is concentrically divided into a plurality of regions.
  • the base material 10 of this example is divided into an inner region 10i and an outer region 10e.
  • the inner region 10i is a circular region centered on the center of the substrate 10.
  • the center of the base material 10 is the center of a circle formed by the outline of the base material 10 in plan view.
  • the diameter of inner region 10i is 80% or less of the diameter of substrate 10 .
  • the diameter of the inner region 10i may also be 50% or less of the diameter of the substrate 10.
  • the diameter of inner region 10i may be 10% or more of the diameter of substrate 10 . Since the diameter of the first heating element 31 is 10% or more of the diameter of the substrate 10 , an area in which the first heating element 31 can be arranged in the center of the substrate 10 can be secured.
  • the outer region 10e is an annular region located outside the inner region 10i. A plurality of heating elements 30, which will be described later, are arranged corresponding to the plurality of areas.
  • the material of the base material 10 includes known ceramics. Examples of ceramics include aluminum nitride, aluminum oxide, and silicon carbide.
  • the material of the base material 10 may be composed of a composite material of the above ceramics and metal. Examples of metals include aluminum, aluminum alloys, copper, copper alloys, and the like.
  • the material of the base material 10 of this example is ceramics.
  • the support 20 supports the base material 10 from the second surface 10b side, as shown in FIGS.
  • the support 20 is attached to the second surface 10b so as to surround the terminals 30t when the heater control device 1 is viewed from the first surface 10a side.
  • the shape of the support 20 is not particularly limited.
  • the support 20 of this example is a cylindrical member.
  • the support 20 is arranged concentrically with the substrate 10 .
  • the base 10 and the support 20 are connected so that the center of the cylindrical support 20 and the center of the disk-shaped base 10 are coaxial.
  • Both ends of the support 20 are provided with outwardly bent flanges 21 .
  • a sealing member (not shown) is arranged between the flange portion 21 of the upper end portion and the second surface 10b. The interior of the support 20 is sealed by the sealing member.
  • the second surface 10b and the flange portion 21 may be joined to maintain airtightness without using a sealing member.
  • the chamber in which substrate 10 and support 20 are placed is typically filled with a corrosive gas. By keeping the inside of the support 20 airtight, the plurality of terminals 30t and the plurality of power lines 30c housed inside the support 20 can be isolated from the corrosive gas.
  • the material of the support As for the material of the support 20, well-known ceramics can be mentioned as well as the material of the base material 10.
  • the material of the support 20 and the material of the substrate 10 may be the same or different.
  • Each of the multiple heating elements 30 is a heat source that heats the heating target W via the base material 10 .
  • the first heating element 31 is arranged in a circular area including the center of the substrate 10, that is, the inner area 10i, as shown in FIGS.
  • One or more second heating elements 32 are arranged concentrically with the substrate 10 and the first heating elements 31 .
  • One or more second heating elements 32 are arranged in an annular region concentric with the center of the substrate 10, ie the outer region 10e.
  • the first heating element 31 and one or more second heating elements 32 are spaced apart in the thickness direction of the substrate 10 .
  • Each of the first heating element 31 and the second heating element 32 is connected to the power line 30c via the terminal 30t shown in FIG. Power is supplied from a power source (not shown) to each heating element 30 via the power line 30c.
  • the shapes of the first heating element 31 and the second heating element 32 are not particularly limited.
  • the shape of the outer peripheral outline of the first heating element 31 and the second heating element 32 is generally circular.
  • a plurality of heating elements 30 are arranged concentrically with the substrate 10 and the support 20 . Therefore, the plurality of heating elements 30 are also arranged concentrically.
  • concentric means that when the heater control device 1 is viewed from the first surface 10a side, the enveloping circles of the heating elements 30 have a common center and the enveloping circles have different diameters. . The center of this enveloping circle coincides with the center of the substrate 10 .
  • the first heating element 31 and the second heating element 32 are shown in a simplified manner in FIGS. 1 and 3, the plurality of heating elements 30 are arranged concentrically.
  • the term “center side” means the center side of the enveloping circle, and the term “outer side” means the side away from the center in the radial direction of the enveloping circle.
  • the plurality of heating elements 30 includes one first heating element 31 and one or more second heating elements 32, as shown in FIGS. In this example, there is one second heating element 32 . As shown in Modification 1, which will be described later, a plurality of second heating elements 32 may be provided.
  • the enveloping circle diameter of the one or more second heating elements 32 is larger than the enveloping circle diameter of the first heating element 31 .
  • the heating elements 30 may be arranged so as to partially overlap in the radial direction of the enveloping circles, or may be arranged at intervals without overlapping. may be placed.
  • Each heating element 30 is arranged inside the base material 10, as shown in FIGS. Each heating element 30 is arranged in a layered manner at intervals in the thickness direction of the substrate 10 . Each heating element 30 of this example is arranged in a layer parallel to the first surface 10a. The first heating element 31 is arranged in the first layer located closest to the first surface 10 a in the thickness direction of the base material 10 . By arranging the first heating element 31 on the first layer, a long length can be secured between the first heating element 31 and the second surface 10b. In addition, since the first heating element 31 is arranged in the first layer, the degree of freedom of the circuit pattern is high compared to the case where the first heating element 31 is arranged in a layer other than the first layer. .
  • the first heating element 31 arranged in the first layer does not need to be arranged so as to avoid the terminal 30t connected to the second heating element 32 .
  • the second heating element 32 is arranged closer to the second surface 10b than the first heating element 31 is.
  • the individual second heating elements 32 are also arranged in layers with intervals in the thickness direction of the substrate 10 .
  • each heating element 30 is not particularly limited as long as it can heat the object W to be heated to a desired temperature.
  • the material of each heating element 30 includes known metals suitable for resistance heating. Examples of metals include one selected from the group consisting of stainless steel, nickel, nickel alloys, silver, silver alloys, tungsten, tungsten alloys, molybdenum, molybdenum alloys, chromium, and chromium alloys.
  • Nickel alloys include, for example, nichrome.
  • Each heating element 30 can be manufactured, for example, by combining a screen printing method and a hot press bonding method. In the case of this example, it can be manufactured by the following procedures. Three ceramic substrates and a screen mask to which each heating element 30 can be transferred are prepared. As the screen mask, a mask capable of forming each circuit pattern of the first heating element 31 and the second heating element 32 is used. A screen mask of a circuit pattern to be produced is placed on each of the two ceramic substrates. A paste to be the heating element 30 is applied to the ceramic substrate on which the screen mask is placed. A squeegee is used to transfer the heating element 30 to the ceramic substrate. After transferring the heating element 30, the screen mask is removed.
  • the first substrate to which the first heating element 31 is transferred and the second substrate to which the second heating element 32 is transferred are obtained.
  • the first substrate, the second substrate, and the ceramic substrate to which the heating element is not transferred are laminated in order and joined by hot pressing.
  • Each heating element 30 is arranged inside the base material 10 by this bonding.
  • the temperature sensor 40 is a sensor that measures the first temperature of the first heating element 31 .
  • a commercially available thermocouple or resistance temperature detector can be used favorably.
  • the temperature measuring resistor includes PT100, which is a platinum temperature measuring resistor.
  • this temperature sensor 40 is inside the base material 10 .
  • the temperature sensor 40 is arranged inside the base 10 in a region inside the inner peripheral surface of the support 20 when the base 10 is viewed from above.
  • a temperature sensor is arranged inside a cylindrical support in the claims means that the temperature sensor is located inside the contour line of the inner peripheral surface of the support 20 when the support 20 is viewed in the axial direction. It means that 40 is located.
  • the temperature sensor 40 is preferably arranged near the first heating element 31 .
  • the temperature measured by the temperature sensor 40 installed near the first heating element 31 is not the temperature of the first heating element 31 itself, but the temperature of the inner region 10i of the substrate 10 where the first heating element 31 is arranged. be.
  • the temperature of the inner region 10i is also regarded as the first temperature of the first heating element 31.
  • the current sensor 50 is a sensor that detects current flowing through the heating element 30 .
  • a first current sensor 51 that detects a first current flowing through the first heating element 31 and a second current sensor 52 that detects a second current flowing through the second heating element 32 are provided.
  • the second current sensor 52 corresponds to the current sensor in claim 1 .
  • the second current sensor 52 is provided for each second heating element 32 .
  • the first current sensor 51 is provided on the power line 30c connected to the first heating element 31, and the second current sensor 52 is provided on the power line 30c connected to the second heating element 32, respectively.
  • a sensor represented by a commercially available CT (Current Transmitter) can be used as the current sensor 50 .
  • the first current or the second current is a value obtained by averaging the effective value of the current flowing through the first heating element 31 or the second heating element 32 within a predetermined period of time to remove electrical noise.
  • the controller 60 controls each part necessary for the operation of the heater control device 1 . More specifically, the controller 60 has a first temperature controller 61 , a first power controller 63 , a second power controller 64 , a calculator 65 and a memory 66 . Controller 60 is typically implemented by a processor including a CPU (Central Processor Unit) or DSP (Digital Signal Processing). Typically, a processor includes a bus, a CPU connected to the bus, a ROM (Read-Only Memory), a RAM (Random Access Memory), an input/output I/F (Interface), and the like. One or more processors may be provided in the controller 60, or a plurality of processors may be provided.
  • a processor Central Processor Unit
  • DSP Digital Signal Processing
  • a processor includes a bus, a CPU connected to the bus, a ROM (Read-Only Memory), a RAM (Random Access Memory), an input/output I/F (Interface), and the like.
  • One or more processors may be provided in the
  • the first temperature controller 61, the first power controller 63, the second power controller 64, the calculator 65, and the memory 66 may be configured as separate hardware, or may be part of one controller 60. It may be configured as a component.
  • a memory 66 stores a program for causing the processor to execute a control procedure, which will be described later.
  • the processor reads and executes programs stored in memory 66 .
  • the program includes program codes for processing in the first temperature controller 61 , the first power controller 63 , the second power controller 64 and the calculator 65 .
  • the first temperature controller 61 outputs a first control signal so that the first temperature approaches the target temperature.
  • PID control can be used for the control by the first temperature controller 61 .
  • PID control is a type of feedback control, and is a control method that controls an input value by three operations: the deviation (P) between the output value and the target value, its integration (I), and its differentiation (D). Smooth temperature control with little hunting can be performed by proportional action that outputs the manipulated variable according to the deviation. Integral action can automatically correct the offset. Differential action can speed up the response to disturbances.
  • the target temperature is the temperature set by the user.
  • the first temperature controller 61 performs PID calculation based on the target temperature and the current temperature of the first heating element 31 , that is, the first temperature, and outputs a first control signal to the first power controller 63 .
  • the first power controller 63 controls the first power supplied to the first heating element 31 according to the first control signal.
  • the first power controller 63 to which the first control signal is input supplies first power corresponding to the first control signal to the first heating element 31 .
  • the first power is calculated by multiplying the first current and the first voltage.
  • the first current is the measurement of the first current sensor 51 as described above.
  • the first voltage is the voltage applied to the first heating element 31 . This first voltage is obtained by calculation as described later.
  • the control of the first power is performed by the phase control method.
  • the phase control method is a method of controlling the voltage applied to the load within the range of 0% to 100% by controlling the ignition phase angle every half cycle of the power supply frequency.
  • a switching element is preferably used for the first power controller 63 .
  • a specific example of the switching element is a triac.
  • a triac is an element in which two thyristors are connected in anti-parallel so that bidirectional current can be controlled by opening and closing one gate.
  • FIG. 4 shows the current waveform of the supply current from the power supply as a sine wave.
  • the gate opens, turning on the triac and allowing current to flow.
  • the current in the area indicated by hatching is output.
  • the gate signal is a pulse signal with a constant width w. Even if the gate signal is removed, the triac remains on and current continues to flow. When the current flowing through the TRIAC becomes zero, the TRIAC automatically turns off and no current flows.
  • the triac can output a desired current within a range of 0% to 100% of the first current.
  • the output mode during phase control in this example is voltage proportional square control.
  • the voltage proportional square control is a mode in which the square of the effective value Vrms of the output voltage is proportional to the manipulated variable MV corresponding to the degree of opening of the gate.
  • the supply voltage from the power supply is also represented by a sine wave. Since the supply voltage from the power supply is known, the first voltage can also be grasped by calculation from the timing at which the gate signal is input with respect to the current waveform from the power supply as described above, in other words, the degree of opening of the gate. The computation of the first voltage and the computation of the first power are performed by the calculator 65, which will be described later.
  • Different ratios can be set in a series of temperature profiles of temperature increase, temperature maintenance, and temperature decrease of the heating element 30. Normally, this ratio is different in each stage of temperature rising, temperature holding, and temperature dropping.
  • the ratio between the time of temperature increase and the time of temperature decrease may differ depending on the temperature range from the start to the end of each stage. For example, between room temperature and 400° C., the first power:second power ratio is 1.0:0.8, and between 400° C. and 450° C., the first power:second power ratio is 1.0:0.8. 9. If the temperature rises at the same power ratio to a high temperature, the heat generating element 30 becomes too center-hot and may be damaged by thermal stress due to the difference in temperature distribution inside and outside the plane of itself. Therefore, it is preferable to increase the ratio of the second power at high temperatures.
  • This control of the second power is also performed by the phase control method in the same way as the control of the first power.
  • the second power is obtained by multiplying the second current and the second voltage.
  • the second current is the measurement of second current sensor 52 .
  • the second voltage can be calculated based on the degree of opening of the gate.
  • the computation of the second voltage and the computation of the second power are also performed by the calculator 65, which will be described later.
  • the calculator 65 performs various calculations required by the controller 60 . As described above, the computation of the first voltage, the first power, the second voltage, and the second power are all performed by the calculator 65 . Furthermore, the calculator 65 also calculates the second temperature, which is the temperature of the second heating element 32 .
  • the second temperature of the second heating element 32 is obtained using the resistance of the second heating element 32 and a previously obtained coefficient representing the relationship between the resistance of the second heating element 32 and the temperature. That is, the second temperature is not a value measured using a temperature sensor, but a value calculated based on the power supplied to the first heating element 31 .
  • the resistance of the second heating element 32 is obtained by dividing the second voltage of the second heating element 32 described above by the second current flowing through the second heating element 32 .
  • the coefficients are obtained in advance by a preliminary test, which will be described later. This coefficient also includes a relational expression showing the relationship between the resistance of the second heating element 32 and the temperature.
  • the coefficients are stored in memory 66 . If the relationship between the resistance of the second heating element 32 and the temperature is known in advance, and the resistance of the second heating element 32 is obtained, by referring to this resistance with the above relationship, the second Temperature can be calculated and obtained.
  • the memory 66 can use various non-volatile memories suitably as memory which memorize
  • the memory 66 may also include a volatile memory that temporarily stores values required for a series of operations.
  • the heater control device 1 may include an external output section 70 and a transformer 80 .
  • the external output unit 70 is a device that displays or transmits at least one of the second temperature of the second heating element 32 obtained as described above and the determination result as to whether or not the second temperature is within the appropriate range to an external device.
  • the external output unit 70 may be a display that displays the second temperature in characters, or displays the change over time of the second temperature in a graph.
  • Another external output unit 70 may be a device that outputs a processing result obtained by subjecting the second temperature to predetermined processing. Devices that indicate the result of this processing include an alarm device.
  • the alarm device is, for example, a device that issues an alarm when the second temperature deviates from the set appropriate range.
  • the warning is not particularly limited as long as it can notify the user of the abnormality of the second temperature.
  • specific types of alarms include character display on a display, lighting of a lamp, and sounding of a buzzer.
  • Still another external output unit 70 includes a communication device (not shown). This communication device communicates with an external device owned by a remote user. For example, information on the second temperature can be sent to an external device via a communication device, or the above alarm can be transmitted to the external device as a change in flag state via a communication device. The transmission of this information allows remote users to perceive the second temperature and alarm.
  • the transformer 80 is a member for electromagnetically coupling a power source (not shown) and the controller 60 to supply electric power to the first heating element 31 and the second heating element 32 .
  • the primary side of the transformer 80, that is, the power supply side, and the secondary side of the transformer 80, that is, the controller 60 side are not electrically connected and are insulated from each other. Since the power supply and the controller 60 are insulated, it is easy to control the power to each heating element 30 .
  • power is supplied to each of the heating elements 30 by branching the power line 30 c on the secondary side to each of the first heating element 31 and the second heating element 32 . That is, the first heating element 31 and the second heating element 32 are not electrically insulated from each other. Since the first heating element 31 and the second heating element 32 are not insulated, the number of transformers 80 can be reduced compared to the case where both the heating elements 30 are insulated.
  • the heater control device 1 may include an input section (not shown).
  • the input unit is a device for inputting various conditions set by the user. Various conditions include a preset ratio to the first power to define the second power.
  • Known input devices such as a numeric keypad, a keyboard, and a touch panel can be used for the input unit.
  • Various conditions input from the input unit are stored in the memory 66 .
  • ⁇ Processing procedure> The processing procedure of the heater control device 1 will be described with reference to FIGS. 5 and 6.
  • FIG. Refer to FIG. 1 for each component.
  • a processing procedure for outputting the first power and the second power to each heating element 30 will be described.
  • step S ⁇ b>1 a first temperature is obtained from the temperature sensor 40 and a first current is obtained from the first current sensor 51 .
  • the first temperature controller 61 outputs a first control signal so that the first temperature approaches the target temperature.
  • the first power controller 63 outputs the first power corresponding to the first control signal to the first heating element 31 .
  • step S ⁇ b>4 the calculator 65 calculates the second power, and the second power is output from the second power controller 64 to the second heating element 32 .
  • a series of processes from step S1 to step S4 are repeated while the heater control device 1 is being driven.
  • step S11 the second current sensor 52 acquires a second current.
  • step S12 the computing unit 65 computes the second resistance, which is the resistance of the second heating element 32, from the second current and the second voltage.
  • step S13 the computing unit 65 computes the second temperature using the computed second resistance and the previously obtained coefficient representing the relationship between the resistance of the second heating element 32 and the temperature.
  • step S ⁇ b>14 the obtained second temperature is output to the external output section 70 .
  • the preliminary test is a test for preliminarily obtaining a coefficient representing the relationship between the resistance of the second heating element 32 and the temperature. It is preferable to perform the preliminary test by different methods when the temperature is raised, when the temperature is lowered, and when the temperature is maintained. In other words, it is preferable to use different coefficients when raising and lowering the temperature and when maintaining the temperature.
  • FIG. 7 is a graph showing temporal changes in the temperature of the first heating element 31 in the heater control device 1 of this example.
  • the temperature of the heating element 30 rises at a substantially constant rate from room temperature to a predetermined holding temperature.
  • the rate of temperature increase in this temperature increase process is selected such that the heating element 30 is not damaged.
  • the temperature of the heating element 30 is held at a substantially constant temperature.
  • the temperature holding process includes an idle state in which no wafer is placed on the substrate 10 and a processing state in which a wafer is placed on the substrate 10 and a film is formed on the wafer.
  • minute temperature fluctuations occur due to the gas entering and exiting the film forming apparatus and the control of the electric power supplied to the heating elements 30 described above.
  • the idling state is indicated by a straight line extending horizontally, but actually, as will be described later, the temperature fluctuates very slightly.
  • wafers are moved in and out of the base material 10 and films are sequentially formed on a plurality of wafers, so that temperature fluctuations are greater than in the idle state.
  • the temperature change in the process state is shown in FIG. 7 by the dashed line following the straight line in the idle state.
  • the temperature of the heating element 30 drops at a substantially constant rate from the holding temperature to room temperature.
  • the temperature drop rate in this temperature drop process is selected such that the heating element 30 is not damaged.
  • the time of temperature increase and temperature decrease The amount of temperature change per unit time during temperature increase and temperature decrease is greater than that during temperature maintenance. During this temperature increase and temperature decrease, the film formation process on the wafer is not performed.
  • the temperature range from the room temperature to the holding temperature or the temperature range from the holding temperature to the room temperature is divided into narrower temperature ranges, and the relationship between the resistance of the second heating element 32 and the temperature is calculated for each of the divided temperature ranges.
  • Ask. the relationship between the resistance and the temperature of each of the first heating element 31 and the second heating element 32 is obtained for each of the temperature ranges separated from 50°C to 100°C. More specifically, when the temperature is rising, the first temperature range of 50 ° C. or higher and 100 ° C.
  • the second temperature range of 100 ° C. or higher and 200 ° C. or lower, the third temperature range of 200 ° C. or higher and 300 ° C. or lower, 300 C. to 400.degree. C. and the fifth temperature range from 400.degree. C. to the holding temperature are obtained.
  • An example of the holding temperature is 450°C.
  • the first temperature range the relationship between resistance and temperature at two points of 50° C. and 100° C. is obtained.
  • the relationship between the resistance of the second heating element 32 and the temperature should be obtained when the temperature is lowered, based on the same concept as when the temperature is raised.
  • a different coefficient can be used for each temperature range.
  • the temperature of the second heating element 32 can be obtained with high accuracy.
  • the temperature of the second heating element 32 at the resistance R(Tr), that is, the room temperature Tr, and the holding temperature Tk of the second heating element 32 at the resistance R(Tk) are also expressed by a proportional relational expression.
  • Tr ⁇ T ⁇ Tk and R(Tr) ⁇ R ⁇ R(Tk) Tr ⁇ T ⁇ Tk and R(Tr) ⁇ R ⁇ R(Tk).
  • the resistance value at the intermediate temperature cannot be expressed by linear interpolation between the two points. It is difficult to accurately obtain the temperature of the second heating element.
  • the rate of temperature change per unit time is very small compared to when the temperature is raised or lowered. Therefore, when maintaining the temperature, it is preferable to obtain the relationship between the resistance of the second heating element 32 and the temperature in a narrower temperature range than when raising or lowering the temperature. More specifically, the temperature of the second heating element 32 can be obtained accurately by using a coefficient corresponding to a minute temperature range, that is, the difference between the maximum temperature and the minimum temperature when the temperature is maintained.
  • the temperature holding process includes two temperature profiles, the idle state without the heating target W and the processing state with the heating target W, as described above. This temperature profile will be explained based on FIG. FIG.
  • the temperature of the first heating element 31 is the temperature obtained based on the resistance of the first heating element 31 obtained from the first current and the first voltage and the above coefficient.
  • the temperature of the second heating element 32 is the temperature obtained based on the resistance of the second heating element 32 obtained from the second current and the second voltage and the above coefficient.
  • This graph also shows the change over time of the measured value of the temperature sensor 40 . Both graphs have lines overlapping each other. Further, in this graph, Case 1 indicates the process of the idle state, and Case 2 indicates the process of the processing state.
  • Method A processing state: with heating target
  • the resistance value Rmax of each heating element 30 at the time of the maximum temperature Tmax and the resistance value Rmin of each heating element 30 at the time of the minimum temperature Tmin are obtained from the change over time of the measured value of the temperature sensor 40 within a predetermined time of the processing state. to confirm.
  • the predetermined time is selected from a range of about 500 seconds to 1000 seconds.
  • the predetermined time in this example is 600 seconds.
  • a film is formed on one wafer within this predetermined time.
  • FIG. 9 is an enlarged view of part of the temperature change in the processing state of FIG.
  • the minimum temperature Tmin is the valley temperature from when the film-formed wafer is taken out to when the current wafer to be film-formed is placed on the substrate 10 .
  • the maximum temperature Tmax is the peak temperature during the film formation process on the current wafer.
  • FIG. 9 shows that the minimum temperature Tmin is 449.4°C and the maximum temperature Tmax is 450.3°C.
  • the resistance value Rmax and the resistance value Rmin of each heating element 30 are the values obtained by dividing the first voltage at each time point by the first current, or the values obtained by dividing the second voltage at each time point by the second current. Using these maximum temperature Tmax, resistance value Rmax, minimum temperature Tmin, and resistance value Rmin, a relational expression between the temperature and resistance value of each heating element 30 is obtained. This relational expression is obtained from the same way of thinking as the relational expressions shown when the temperature is rising and when the temperature is falling.
  • the above method obtains a relational expression based on the resistance value Rmax, the maximum temperature Tmax, the minimum temperature Tmin, and the resistance value Rmin in the processing state of the wafer. It can be grasped with high precision.
  • the relationship between the resistance and the temperature of the heating element 30 can be obtained based on the temperature profile simulating the actual film formation. Thereby, the temperature of the second heating element 32 can be grasped with high accuracy.
  • Method B processing state: with heating target
  • the average resistance Rave within a predetermined time period is obtained from the change over time of the resistance value of each heating element 30 during the predetermined time period in the processing state.
  • the predetermined time is appropriately selected, for example, from a range of approximately 5000 seconds to 10000 seconds. In this example, the predetermined time is 8000 seconds. Film formation is performed on 10 or more wafers within this predetermined time.
  • the rate of change ⁇ R/R of the resistance of each heating element 30 within a predetermined period of time is set in advance.
  • the maximum resistance Rmax and the minimum resistance Rmin within a predetermined time are obtained, and then the difference ⁇ R between the maximum resistance Rmax and the minimum resistance Rmin and the ratio ⁇ R/Rave of the difference ⁇ R to the average resistance Rave are obtained.
  • this ratio ⁇ R/Rave be the rate of change ⁇ R/R.
  • the rate of change ⁇ R/R is assumed to be 0.02 here.
  • the average temperature Tave within a predetermined time period is obtained.
  • the amount of temperature change ⁇ T within a predetermined period of time is set in advance.
  • the temperature change amount ⁇ T the difference between the maximum temperature Tmax and the minimum temperature Tmin within a predetermined time is first obtained as the temperature change amount ⁇ T.
  • the temperature change amount ⁇ T is 0.88° C. here.
  • the ratio ⁇ R/R and the amount of temperature change ⁇ T are considered to be substantially constant for each heating element 30 unless the holding temperature changes significantly.
  • the fact that the holding temperature does not change greatly means that the amount of change in the holding temperature is 100° C. or less, for example.
  • the average resistance Rave and the average temperature Tave of each heating element 30 may be obtained. That is, the maximum resistance Rmax, the minimum resistance Rmin, the maximum temperature Tmax, and the minimum temperature Tmin from the next time onward are obtained as follows.
  • ⁇ R Rave x 0.02
  • Maximum resistance Rmax Rave+ ⁇ R/2
  • Minimum resistance Rmin Rave- ⁇ R/2
  • Maximum temperature Tmax Tave+ ⁇ T/2
  • Minimum temperature Tmin Tave- ⁇ T/2
  • the maximum resistance Rmax, minimum resistance Rmin, maximum temperature Tmax, and minimum temperature Tmin can be obtained using known resistance change rate ⁇ R/R and temperature change amount ⁇ T. Once these parameters are determined, the correlation between the resistance and temperature of the heating element 30 can be determined.
  • the temperature of the second heating element 32 can be obtained more easily.
  • Method C (idle state: no object to be heated) First, an average resistance Rave within a predetermined period of time is obtained from the change over time of the resistance value of each heating element 30 within a predetermined period of time in the idle state.
  • the predetermined time is appropriately selected, for example, from a range of approximately 5000 seconds to 10000 seconds. In this example, the predetermined time is 10000 seconds.
  • the rate of change ⁇ R/R of the resistance of each heating element 30 within a predetermined period of time is set in advance.
  • the maximum resistance Rmax and the minimum resistance Rmin within a predetermined time are obtained, and then the difference ⁇ R between the maximum resistance Rmax and the minimum resistance Rmin and the ratio ⁇ R/Rave of the difference ⁇ R to the average resistance Rave are obtained.
  • This ⁇ R/Rave is defined as the resistance change rate ⁇ R/R.
  • the rate of change ⁇ R/R is assumed to be 0.02 here.
  • the average temperature Tave within a predetermined time period is obtained.
  • the amount of temperature change ⁇ T within a predetermined period of time is set in advance.
  • the temperature change amount ⁇ T the difference between the maximum temperature Tmax and the minimum temperature Tmin within a predetermined time is first obtained as the temperature change amount ⁇ T.
  • the temperature change amount ⁇ T is 0.88° C. here.
  • the ratio ⁇ R/R and the amount of temperature change ⁇ T are considered to be substantially constant for each heating element 30 unless the holding temperature changes significantly.
  • the fact that the holding temperature does not change greatly means that the amount of change in the holding temperature is 100° C. or less, for example.
  • the average resistance Rave and the average temperature Tave of each heating element 30 may be obtained. That is, the maximum resistance Rmax, the minimum resistance Rmin, the maximum temperature Tmax, and the minimum temperature Tmin from the next time onward are obtained as follows.
  • ⁇ R Rave x 0.02
  • Maximum resistance Rmax Rave+ ⁇ R/2
  • Minimum resistance Rmin Rave- ⁇ R/2
  • Maximum temperature Tmax Tave+ ⁇ T/2
  • Minimum temperature Tmin Tave- ⁇ T/2
  • the maximum resistance Rmax, minimum resistance Rmin, maximum temperature Tmax, and minimum temperature Tmin can be obtained using known resistance change rate ⁇ R/R and temperature change amount ⁇ T.
  • the temperature of the second heating element 32 can be obtained based on the coefficient obtained when there is no object W to be heated in the idle state, there is no need to prepare a wafer when obtaining the coefficient.
  • waste of wafers can be reduced compared to the case of obtaining coefficients by forming films on wafers during the preliminary test. Once these parameters are determined, the correlation between the resistance and temperature of the heating element 30 can be determined.
  • the temperature of the second heating element 32 can be obtained more easily.
  • the heater control device can grasp the temperature of the zone corresponding to the second heating element 32 without providing the temperature sensor 40 on the second heating element 32 .
  • a temperature sensor 40 detects the temperature of the first heating element 31 .
  • the first electric power supplied to the first heating element 31 is controlled based on the temperature detected by the temperature sensor 40 .
  • the second electric power supplied to the second heating element 32 is controlled to have a preset ratio to the first electric power.
  • the temperature of the second heating element 32 is obtained by the calculator 65 based on the measured value of the second current sensor 52 . Therefore, the temperature of the second heating element 32 can be grasped without a temperature sensor for detecting the temperature of the second heating element 32 .
  • the second power is controlled by the phase control method, it can be controlled with high precision. As a result, the temperature of the second heating element 32 can also be grasped with high accuracy.
  • the first heating element 31 and the second heating element 32 are controlled by the first electric power and the second electric power. Control based on the power ratio is less susceptible to changes in resistance value due to self-heating of each heating element 30 than control based on the current ratio. From this point as well, the temperature of the second heating element 32 can be accurately grasped.
  • Embodiment 2 Next, Embodiment 2 will be described based on FIG.
  • the second temperature which is the temperature of the second heating element 32
  • the temperature of the second heating element 32 can be controlled by controlling the second electric power by changing the ratio described above. Differences from the first embodiment will be mainly described below, and descriptions of common points with the first embodiment will be omitted.
  • Embodiment 2 further includes a second temperature controller 62 .
  • the second temperature controller 62 outputs a second control signal for adjusting the ratio so that the second temperature approaches the target temperature. Control for adjusting this ratio can also utilize PID control.
  • second power controller 64 adjusts the ratio for determining the second power.
  • the fluctuation range of this ratio can be set as appropriate, but it is preferably within about 5% of the ratio of the second power before the change.
  • the second power ratio before change is 0.8, so the second power ratio after change is changed between 0.76 and 0.84. If the power fluctuates outside the fluctuation range of this ratio, an alarm device (not shown) issues an alarm to the user. This warning enables the user to detect an abnormality and take appropriate measures.
  • step S21 the second temperature controller 62 outputs a second control signal for adjusting the ratio so that the second temperature approaches the target temperature.
  • step S22 the calculator 65 calculates the second power according to the adjusted ratio. Second power is then output from the second power controller 64 to the second heating element 32 .
  • the heater control device 1 of Embodiment 2 not only can the second temperature of the second heating element 32 be displayed on the external output unit 70, but also the temperature of the second heating element 32 can be controlled.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • the ratio for obtaining the second power is controlled so that the difference between the second temperature and the first temperature is as zero as possible.
  • the device configuration of Embodiment 3 is substantially the same as the device configuration of Embodiment 2 described in FIG.
  • a third temperature controller 62a instead of the second temperature controller 62, a third temperature controller 62a is provided.
  • the temperature Ts measured by the temperature sensor 40 is regarded as the temperature Th of the first heating element 31 itself and set as the first temperature. That is, strictly speaking, the temperature Th of the first heating element 31 is different from the temperature Ts measured by the temperature sensor 40 . This is because the temperature Ts transiently includes a temperature rise caused by the heat generated by the first heating element 31 itself.
  • the difference between the second temperature and the first temperature is regarded as the difference in temperature distribution within the first surface 10a. Strictly speaking, the first temperature and the second temperature have different target temperatures.
  • the third temperature adjuster 62a outputs a third control signal for adjusting the ratio so that the difference in temperature distribution becomes the difference between the target temperatures of the second temperature and the first temperature.
  • a second power controller 64 controls the second power according to the ratio adjusted by the third control signal. This control of the second power enables more precise temperature control of each heating element 30 .
  • an alarm device (not shown) issues an alarm to the user. This warning enables the user to detect an abnormality and take appropriate measures.
  • FIG. Modification 1 is a configuration that can be applied to any of Embodiments 1 to 3.
  • Each zone of the outer region 10e is a fan-shaped zone obtained by dividing the annular region into four equal parts.
  • a second heating element 32 is arranged in each zone of the outer region 10e divided into four equal parts. That is, a first heat generating element 31 is provided in the inner area 10i, one second heat generating element 32 is provided in the intermediate area 10m, and four second heat generating elements 32 are provided in the outer area 10e.
  • Each heating element 30 can independently control the power supplied.
  • a current sensor (not shown) is provided on each power line 30c connected to each heating element 30. As shown in FIG.
  • the heater control device 1 of Modified Example 1 by using the second power controller 64, it is possible to achieve uniform heating of the substrate 10 using more heating elements 30 than in Embodiments 1 and 2. .
  • Modification 2 will be described based on FIG. Modification 2 is a modification of Embodiment 1, and has a configuration in which the first heating element 31 and the second heating element 32 are insulated.
  • a first transformer 81 and a second transformer 82 are provided between the first heating element 31 and the power supply and between the second heating element 32 and the power supply, respectively. . That is, the primary sides of the first transformer 81 and the second transformer 82 are connected to the power line branched from the power supply. On the other hand, the secondary sides of the first transformer 81 and the second transformer 82 are connected to power lines 30c independent of each other. Therefore, the first heating element 31 and the second heating element 32 are insulated from each other.
  • the first heating element 31 and the second heating element 32 can be more reliably insulated.
  • Modification 3 will be described with reference to FIG. Modification 3 is a modification of Embodiment 2 or Embodiment 3, and has a configuration in which the first heating element 31 and the second heating element 32 are insulated.
  • a first transformer 81 and a second transformer 82 are provided between the first heating element 31 and the power supply and between the second heating element 32 and the power supply, respectively. . That is, the primary sides of the first transformer 81 and the second transformer 82 are connected to the power line branched from the power supply.
  • the secondary sides of the first transformer 81 and the second transformer 82 are connected to power lines 30c independent of each other. Therefore, the first heating element 31 and the second heating element 32 are insulated from each other.
  • the first heating element 31 and the second heating element 32 can be more reliably insulated.
  • heater control device 10 substrate 10a first surface 10b second surface 10i inner region 10m intermediate region 10e outer region 20 support 21 flange 30 heating element 31 first heating element 32 second heating element 30t terminal 30c power line 40 temperature sensor 50 Current sensor 51 First current sensor 52 Second current sensor 60 Controller 61 First temperature controller 62 Second temperature controller 62a Third temperature controller 63 First power controller 64 Second power controller 65 Computer 66 Memory 70 External output unit 80 Transformer 81 First transformer 82 Second transformer W Heating target w Width ⁇ Operation phase angle

Abstract

This heater control device is provided with: a disk-shaped base material; a cylindrical supporting body attached to the base material; a first heat generating body disposed on the base material; at least one second heat generating body disposed concentrically with the first heat generating body; a temperature sensor for measuring a first temperature of the first heat generating body; at least one current sensor for measuring a current supplied to the at least one second heat generating body; a first temperature regulator for outputting a first control signal such that the first temperature approaches a target temperature; a first electric power controller for controlling first electric power supplied to the first heat generating body, in accordance with the first control signal; a second electric power controller for controlling second electric power supplied to the second heat generating bodies; and a calculator for obtaining a temperature of the second heat generating bodies. The second electric power controller controls the second electric power by means of a phase control method in such a way that a predetermined ratio with respect to the first electric power is achieved, and obtains the temperature of the second heat generating bodies on the basis of measured values from the at least one current sensor.

Description

ヒータ制御装置heater controller
 本開示は、ヒータ制御装置に関する。
 本出願は、2021年1月29日付の日本国出願の特願2021-12977に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to heater controllers.
This application claims priority based on Japanese Patent Application No. 2021-12977 dated January 29, 2021, and incorporates all the descriptions described in the Japanese application.
 特許文献1は、半導体ウエハの上に金属薄膜を設ける成膜装置を開示する。この成膜装置は、載置台に設けられた加熱手段と、載置台に載せられた半導体ウエハの温度を検出する温度検出部と、加熱手段の発熱量を制御する制御手段と、載置台の下部を支持する支持部材とを備える。加熱手段は、半導体ウエハの中央部と周縁部とをそれぞれ加熱するための第一のヒータ及び第二のヒータを備える。制御手段は、載置台の中央部の温度検出値に基づいて第一のヒータの供給電力を制御する。さらに制御手段は、第一のヒータの供給電力に対して予め定められた比率の電力を第二のヒータに供給するように構成されている。 Patent Document 1 discloses a film forming apparatus for forming a metal thin film on a semiconductor wafer. This film forming apparatus includes a heating means provided on a mounting table, a temperature detecting section for detecting the temperature of the semiconductor wafer placed on the mounting table, a control means for controlling the amount of heat generated by the heating means, and a lower portion of the mounting table. and a support member that supports the The heating means includes a first heater and a second heater for respectively heating the central portion and the peripheral portion of the semiconductor wafer. The control means controls power supplied to the first heater based on the detected temperature value of the central portion of the mounting table. Further, the control means is configured to supply power to the second heater in a predetermined ratio with respect to the power supplied to the first heater.
特開2009-74148号公報JP 2009-74148 A
 本開示のヒータ制御装置は、円板状の形状を有する基材と、前記基材に同軸状に取り付けられた筒状の支持体と、前記基材の中心を含む領域に配置された第一発熱体と、前記第一発熱体と同心状に配置された少なくとも一つの第二発熱体と、前記第一発熱体の第一温度を測定する温度センサと、前記少なくとも一つの第二発熱体に供給される電流を測定する少なくとも一つの電流センサと、前記第一温度が目標温度に近づくように第一制御信号を出力する第一温度調節器と、前記第一制御信号に応じて前記第一発熱体に供給される第一電力を制御する第一電力制御器と、前記第二発熱体に供給される第二電力を制御する第二電力制御器と、前記第二発熱体の温度を求める演算器とを備える。前記基材は、加熱対象が載置される第一面と、前記第一面と向かい合う第二面とを有する。前記筒状の支持体は、前記第二面に取り付けられている。前記温度センサは、前記筒状の支持体の内側に配置される。前記第二電力制御器は、前記第一電力に対して予め設定された比率となるように前記第二電力を位相制御方式により制御する。前記演算器は、前記少なくとも一つの電流センサの測定値に基づいて前記第二発熱体の温度を求める。 A heater control device of the present disclosure includes a substrate having a disk-like shape, a cylindrical support coaxially attached to the substrate, and a first heater disposed in an area including the center of the substrate. a heating element; at least one second heating element arranged concentrically with the first heating element; a temperature sensor for measuring a first temperature of the first heating element; at least one current sensor for measuring the supplied current; a first temperature regulator for outputting a first control signal such that the first temperature approaches a target temperature; A first power controller controlling a first power supplied to a heating element, a second power controller controlling a second power supplied to the second heating element, and determining the temperature of the second heating element A calculator. The substrate has a first surface on which an object to be heated is placed and a second surface facing the first surface. The tubular support is attached to the second surface. The temperature sensor is arranged inside the tubular support. The second power controller controls the second power using a phase control method so as to achieve a preset ratio with respect to the first power. The calculator obtains the temperature of the second heating element based on the measured value of the at least one current sensor.
図1は、実施形態1に係るヒータ制御装置の機能ブロック図である。FIG. 1 is a functional block diagram of a heater control device according to Embodiment 1. FIG. 図2は、発熱体の配置領域を示す基材の平面図である。FIG. 2 is a plan view of a substrate showing areas where heat generating elements are arranged. 図3は、基材内における発熱体の配置を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing the arrangement of heat generating elements within the substrate. 図4は、位相制御方式の説明図である。FIG. 4 is an explanatory diagram of the phase control method. 図5は、実施形態1において第二電力を出力するまでの処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a processing procedure up to outputting the second power in the first embodiment. 図6は、実施形態1において第二温度を出力するまでの処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a processing procedure up to outputting the second temperature in the first embodiment. 図7は、実施形態1における発熱体の温度プロファイルの一例を示すグラフである。FIG. 7 is a graph showing an example of a temperature profile of a heating element according to Embodiment 1; 図8は、温度保持時における発熱体の温度プロファイルの一例を示すグラフである。FIG. 8 is a graph showing an example of the temperature profile of the heating element during temperature maintenance. 図9は、図8における処理状態での温度プロファイルの一例を拡大して示すグラフである。FIG. 9 is a graph showing an enlarged example of the temperature profile in the processing state in FIG. 図10は、実施形態2に係るヒータ制御装置の機能ブロック図である。FIG. 10 is a functional block diagram of a heater control device according to the second embodiment. 図11は、実施形態2において第二電力を出力するまでの処理手順を示すフローチャートである。FIG. 11 is a flowchart showing a processing procedure up to outputting the second power in the second embodiment. 図12は、変形例1において、発熱体の配置領域を示す基材の平面図である。FIG. 12 is a plan view of a base material showing an arrangement region of a heating element in Modification 1. FIG. 図13は、変形例1において、発熱体の配置領域を示す基材の縦断面図である。FIG. 13 is a vertical cross-sectional view of a base material showing an arrangement region of a heating element in Modification 1. FIG. 図14は、変形例2に係るヒータ制御装置の機能ブロック図である。FIG. 14 is a functional block diagram of a heater control device according to Modification 2. As shown in FIG. 図15は、変形例3に係るヒータ制御装置の機能ブロック図である。FIG. 15 is a functional block diagram of a heater control device according to Modification 3. As shown in FIG.
 [本開示が解決しようとする課題]
 複数の発熱体を有するマルチゾーンヒータにおいて、ウエハ面内でのさらなる均熱性の向上が求められている。
[Problems to be Solved by the Present Disclosure]
In multi-zone heaters having a plurality of heating elements, there is a demand for further improvement in heat uniformity within the wafer surface.
 特許文献1に記載の成膜装置では、第一のヒータは温度検出部の検出値に基づいて供給電力が制御されている。これに対し、第二のヒータには、第一のヒータの供給電力に対して所定の比率の電力が供給されるが、ウエハの周縁部の温度を検出する温度検出部はない。そのため、第二のヒータの温度を把握することで、上記均熱性を改善することが望まれる。 In the film forming apparatus described in Patent Document 1, the power supplied to the first heater is controlled based on the value detected by the temperature detection unit. On the other hand, the second heater is supplied with electric power at a predetermined ratio to the electric power supplied to the first heater, but does not have a temperature detection section for detecting the temperature of the peripheral portion of the wafer. Therefore, it is desired to improve the heat uniformity by grasping the temperature of the second heater.
 一方で、マルチゾーンヒータにおいて、各発熱体に温度センサを設け、それらセンサの検出値に基づいて各ヒータを制御することは難しい。成膜装置では、腐食性ガスを取り扱うことがある。発熱体、電極、及び温度センサなどに使用される金属は腐食性ガスに弱いため、耐腐食性の高いセラミックス材料で保護される必要がある。特許文献1に記載の成膜装置では、セラミックス材料からなる筒状の支持部材の内側に電極や温度センサが集約して配置されている。そのため、サイズの制約がある支持部材内に複数の温度センサを配置することは困難である。この困難性は、発熱体の数が増えると電極数や温度センサの数も増えるため、一層顕著になる。 On the other hand, in multi-zone heaters, it is difficult to provide temperature sensors for each heating element and control each heater based on the values detected by those sensors. Corrosive gas may be handled in the film forming apparatus. Since metals used for heating elements, electrodes, temperature sensors, etc. are vulnerable to corrosive gases, they need to be protected with highly corrosion-resistant ceramic materials. In the film forming apparatus described in Patent Literature 1, electrodes and temperature sensors are collectively arranged inside a cylindrical support member made of a ceramic material. Therefore, it is difficult to arrange a plurality of temperature sensors within the support member, which has size restrictions. This difficulty becomes even more pronounced because the number of electrodes and the number of temperature sensors increase as the number of heating elements increases.
 本開示の目的の一つは、マルチゾーンのヒータ制御装置において、個々の発熱体に温度センサを設けることなく、各発熱体に対応するゾーンの温度を把握できるヒータ制御装置を提供することにある。 One object of the present disclosure is to provide a multi-zone heater control device capable of grasping the temperature of the zone corresponding to each heating element without providing a temperature sensor for each heating element. .
 さらに本開示の別の目的の一つは、マルチゾーンのヒータ制御装置において、個々の発熱体に温度センサを設けることなく、各発熱体に対応するゾーンの温度制御が可能なヒータ制御装置を提供することにある。 Another object of the present disclosure is to provide a multi-zone heater control device capable of controlling the temperature of a zone corresponding to each heating element without providing a temperature sensor for each heating element. to do.
 [本開示の効果] 
 上記ヒータ制御装置によれば、個々の発熱体に温度センサを設けることなく、各発熱体に対応するゾーンの温度を把握できる。
[Effect of the present disclosure]
According to the above heater control device, the temperature of the zone corresponding to each heating element can be grasped without providing a temperature sensor for each heating element.
[本開示の実施形態の説明]
 以下、本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
Embodiments of the present disclosure are listed and described below.
(1)本開示の一実施形態に係るヒータ制御装置は、円板状の形状を有する基材と、前記基材に同軸状に取り付けられた筒状の支持体と、前記基材の中心を含む領域に配置された第一発熱体と、前記第一発熱体と同心状に配置された少なくとも一つの第二発熱体と、前記第一発熱体の第一温度を測定する温度センサと、前記少なくとも一つの第二発熱体に供給される電流を測定する少なくとも一つの電流センサと、前記第一温度が目標温度に近づくように第一制御信号を出力する第一温度調節器と、前記第一制御信号に応じて前記第一発熱体に供給される第一電力を制御する第一電力制御器と、前記第二発熱体に供給される第二電力を制御する第二電力制御器と、前記第二発熱体の温度を求める演算器とを備え、前記基材は、加熱対象が載置される第一面と、前記第一面と向かい合う第二面とを有し、前記筒状の支持体は、前記第二面に取り付けられ、前記温度センサは、前記筒状の支持体の内側に配置され、前記第二電力制御器は、前記第一電力に対して予め設定された比率となるように前記第二電力を位相制御方式により制御し、前記演算器は、前記少なくとも一つの電流センサの測定値に基づいて前記第二発熱体の温度を求める。 (1) A heater control device according to an embodiment of the present disclosure includes a disk-shaped substrate, a cylindrical support coaxially attached to the substrate, and a center of the substrate. a first heating element arranged in a region containing; at least one second heating element arranged concentrically with the first heating element; a temperature sensor for measuring a first temperature of the first heating element; at least one current sensor for measuring current supplied to at least one second heating element; a first temperature regulator for outputting a first control signal such that the first temperature approaches a target temperature; a first power controller for controlling first power supplied to the first heating element according to a control signal; a second power controller for controlling second power supplied to the second heating element; a calculator for obtaining the temperature of a second heating element, the base material has a first surface on which a heating target is placed and a second surface facing the first surface, and the cylindrical support A body is attached to the second surface, the temperature sensor is located inside the tubular support, and the second power controller is a preset ratio to the first power. The second electric power is controlled by a phase control method, and the computing unit obtains the temperature of the second heating element based on the measured value of the at least one current sensor.
 上記ヒータ制御装置によれば、第一発熱体の第一温度は、温度センサにより検出される。第一発熱体に供給される第一電力は、温度センサの検出温度に基づいて制御される。一方、第二発熱体の温度は、電流センサの測定値に基づいて演算器により求められる。そのため、第二発熱体の温度又は第二発熱体が配置されるゾーンの温度を検出する温度センサがなくても第二発熱体の温度を把握できる。第二発熱体に供給される第二電力は、第一電力に対して予め設定された比率となるように制御される。第二電力は、位相制御方式により制御されるため、高精度に制御することができる。その結果、第二発熱体の温度も高精度に把握することができる。 According to the above heater control device, the first temperature of the first heating element is detected by the temperature sensor. The first power supplied to the first heating element is controlled based on the temperature detected by the temperature sensor. On the other hand, the temperature of the second heating element is obtained by the calculator based on the measured value of the current sensor. Therefore, the temperature of the second heating element can be grasped without a temperature sensor for detecting the temperature of the second heating element or the temperature of the zone in which the second heating element is arranged. The second power supplied to the second heating element is controlled to have a preset ratio to the first power. Since the second power is controlled by the phase control method, it can be controlled with high accuracy. As a result, the temperature of the second heating element can also be grasped with high precision.
(2)上記ヒータ制御装置の一形態として、前記演算器は、前記第一温度、前記第二発熱体の第二電圧、及び予め定めた係数を用いて前記第二発熱体の温度を演算し、前記係数は、前記第二発熱体の抵抗と前記第二発熱体の温度との関係を表す係数であってもよい。 (2) As one form of the heater control device, the calculator calculates the temperature of the second heating element using the first temperature, the second voltage of the second heating element, and a predetermined coefficient. , The coefficient may be a coefficient representing the relationship between the resistance of the second heating element and the temperature of the second heating element.
 上記形態は、第二発熱体に供給される電流及び第二電圧を用いて、第二発熱体の抵抗を求めることができる。さらに、第二発熱体の抵抗と第二発熱体の温度との関係を表す係数を用いることで、第二発熱体の温度を求めることができる。 With the above configuration, the resistance of the second heating element can be obtained using the current and the second voltage supplied to the second heating element. Furthermore, the temperature of the second heating element can be obtained by using the coefficient representing the relationship between the resistance of the second heating element and the temperature of the second heating element.
(3)予め定めた係数を用いて前記第二発熱体の温度を演算する上記ヒータ制御装置の一形態として、前記係数は、予め定めた複数の係数から前記第一温度に応じて選択された係数であってもよい。 (3) As one form of the heater control device that calculates the temperature of the second heating element using a predetermined coefficient, the coefficient is selected from a plurality of predetermined coefficients according to the first temperature. It may be a coefficient.
 上記形態は、温度センサの測定結果、つまり第一発熱体の第一温度に応じて、異なる係数を用いることで、より精度よく第二発熱体の温度を求めることができる。第二発熱体には、第一発熱体に供給される電力と所定の比率となる電力が供給される。つまり、第二発熱体の温度は、第一発熱体の温度と関係する。一方、第二発熱体の温度と抵抗の関係は、室温での抵抗と最高温度での抵抗との関係のみから求めた係数では、温度域によって正確に第二発熱体の温度を求めることが難しい。そのため、第一発熱体の温度に応じて、異なる係数を用いることで、より正確に第二発熱体の温度を演算できる。 In the above embodiment, the temperature of the second heating element can be determined more accurately by using different coefficients according to the measurement result of the temperature sensor, that is, the first temperature of the first heating element. Electric power is supplied to the second heating element in a predetermined ratio to the electric power supplied to the first heating element. That is, the temperature of the second heating element is related to the temperature of the first heating element. On the other hand, regarding the relationship between the temperature and resistance of the second heating element, it is difficult to accurately determine the temperature of the second heating element depending on the temperature range with a coefficient obtained only from the relationship between the resistance at room temperature and the resistance at the maximum temperature. . Therefore, by using different coefficients according to the temperature of the first heating element, the temperature of the second heating element can be calculated more accurately.
(4)予め定めた係数を用いて前記第二発熱体の温度を演算する上記ヒータ制御装置の一形態として、前記複数の係数は、前記第一発熱体及び前記第二発熱体の昇温時、温度保持時、及び降温時で異なってもよい。 (4) As one form of the heater control device that calculates the temperature of the second heating element using a predetermined coefficient, the plurality of coefficients are calculated when the temperature of the first heating element and the second heating element , at the time of temperature maintenance, and at the time of temperature decrease.
 上記形態は、第二発熱体の昇温時、温度保持時、降温時の各段階で同じ係数を用いる場合に比べてより精度よく第二発熱体の温度を求めることができる。上記各段階は、温度履歴が大きく異なる。そのため、これらの各段階で共通する係数を用いたのでは、正確に第二発熱体の温度を求めることが難しい。特に、温度保持時は、昇温時及び降温時に比べて単位時間当たりの温度変化量が僅かである。よって、昇温から降温に至る過程の異なる段階に応じて異なる係数を用いることで、より精度よく第二発熱体の温度を求めることができる。 With the above configuration, the temperature of the second heating element can be obtained with higher accuracy than when the same coefficient is used in each step of raising the temperature of the second heating element, maintaining the temperature, and lowering the temperature. Each of the above stages has a significantly different temperature history. Therefore, it is difficult to accurately obtain the temperature of the second heating element if a common coefficient is used in each of these stages. In particular, when the temperature is maintained, the amount of temperature change per unit time is small compared to when the temperature is raised or lowered. Therefore, by using different coefficients according to different stages of the process from temperature increase to temperature decrease, the temperature of the second heating element can be obtained with higher accuracy.
(5)予め定めた係数を用いて前記第二発熱体の温度を演算する上記ヒータ制御装置の一形態として、前記係数は、前記温度保持時に、前記第一面に前記加熱対象が載置されていない状態で測定された前記第一温度に基づいて求められてもよい。 (5) As one form of the heater control device that calculates the temperature of the second heating element using a predetermined coefficient, the coefficient is set to the value that the heating object is placed on the first surface when the temperature is maintained. It may be determined based on the first temperature measured in a state in which the temperature is not
 上記形態は、加熱対象を第一面に載せて予備試験を行うことなく係数を求めることができる。よって、予備試験で加熱対象を用意する必要がない。予備試験は、上記係数を求めるために、温度保持時における目標温度に第一発熱体を加熱して、第二発熱体の温度と抵抗との関係を調べる試験である。求められる第二発熱体の温度の正確性を重視すれば、基材の第一面に加熱対象を載せて予備試験を行うには加熱対象を用意しなければならない。これに対し、加熱対象を第一面に載せない状態で予備試験を行えば、加熱対象を用いなくても係数を求めることができる。 With the above form, the coefficient can be obtained without conducting a preliminary test by placing the object to be heated on the first surface. Therefore, there is no need to prepare an object to be heated in the preliminary test. The preliminary test is a test in which the relationship between the temperature and the resistance of the second heating element is examined by heating the first heating element to the target temperature during temperature maintenance in order to obtain the above coefficient. If the required accuracy of the temperature of the second heating element is emphasized, the object to be heated must be prepared in order to perform a preliminary test by placing the object to be heated on the first surface of the base material. On the other hand, if the preliminary test is performed without placing the object to be heated on the first surface, the coefficient can be obtained without using the object to be heated.
(6)上記ヒータ制御装置の一形態は、前記第二発熱体の温度及び前記第二発熱体の温度が適正範囲にあるか否かの判定結果の少なくとも一方を表示又は外部装置に送信する外部出力部を備えてもよい。 (6) One form of the heater control device is an external heater that displays or transmits at least one of the temperature of the second heating element and the determination result as to whether the temperature of the second heating element is within an appropriate range to an external device. An output unit may be provided.
 上記形態は、外部出力部を備えることで、第二発熱体の温度である第二温度や上記判定結果をユーザに知らせることができる。外部出力部の具体例としては、第二温度の表示器や、第二温度が所定の範囲を外れた場合に出力される警報装置、或いは外部に設けられた他の機器へ通信を行うデータ出力インターフェイスなどが挙げられる。 By providing an external output unit, the above embodiment can notify the user of the second temperature, which is the temperature of the second heating element, and the determination result. Specific examples of the external output unit include a second temperature indicator, an alarm device that outputs when the second temperature is out of a predetermined range, or a data output that communicates with other external devices. interface and the like.
(7)上記ヒータ制御装置の一形態は、さらに第二温度調節器を備え、前記第二温度調節器は、前記第二発熱体の温度が目標温度に近づくように前記比率を調整するための第二制御信号を出力し、前記第二電力制御器は、前記第二制御信号により調整された前記比率に応じて前記第二電力を制御してもよい。 (7) One form of the heater control device further includes a second temperature controller, and the second temperature controller adjusts the ratio so that the temperature of the second heating element approaches the target temperature. Outputting a second control signal, the second power controller may control the second power according to the ratio adjusted by the second control signal.
 上記形態は、第二温度調節器を備えることで、上記比率を調整し、第二発熱体の温度を精度よく制御することができる。 By providing the second temperature controller, the above form can adjust the above ratio and control the temperature of the second heating element with high accuracy.
(8)上記ヒータ制御装置の一形態は、さらに第三温度調節器を備え、前記第三温度調節器は、前記第二発熱体の温度と前記第一温度との差が前記第二発熱体の温度と第一温度のそれぞれの目標温度の差になるように前記比率を調整するための第三制御信号を出力し、前記第二電力制御器は、前記第三制御信号により調整された前記比率に応じて前記第二電力を制御してもよい。 (8) One form of the heater control device further includes a third temperature controller, and the third temperature controller adjusts the difference between the temperature of the second heating element and the first temperature to the temperature of the second heating element. output a third control signal for adjusting the ratio so that the difference between the respective target temperatures of the temperature and the first temperature, the second power controller outputs the adjusted by the third control signal The second power may be controlled according to the ratio.
 上記形態は、第三温度調節器を備えることで、上記比率を調整し、第二発熱体の温度を精度よく制御することができる。 By providing the third temperature controller, the above form can adjust the above ratio and accurately control the temperature of the second heating element.
[本開示の実施形態の詳細]
 本開示の実施形態に係るヒータ制御装置を図面に基づいて説明する。図中の同一符号は同一名称物を示す。各図面が示す部材の大きさや位置関係等は、説明を明確にする目的で表現されており、必ずしも実際の寸法関係等を表すものではない。
[Details of the embodiment of the present disclosure]
A heater control device according to an embodiment of the present disclosure will be described based on the drawings. The same reference numerals in the drawings indicate the same names. The sizes and positional relationships of members shown in each drawing are expressed for the purpose of clarifying the description, and do not necessarily represent the actual dimensional relationships.
 [実施形態1]
 図1から図4を参照して、実施形態1に係るヒータ制御装置1を説明する。このヒータ制御装置1は、ウエハの表面に薄膜を形成する成膜装置に利用できる。成膜装置は、雰囲気ガスの制御ができるチャンバー内に基材10及び支持体20を備える。チャンバーの図示は省略する。図1において、各発熱体30は基材10の周方向の一部に配置されていない箇所があるが、実際の装置では基材10の全体に満遍なく発熱体30が配置されている。
[Embodiment 1]
A heater control device 1 according to a first embodiment will be described with reference to FIGS. 1 to 4. FIG. This heater control device 1 can be used in a film forming apparatus for forming a thin film on the surface of a wafer. A film forming apparatus includes a substrate 10 and a support 20 in a chamber in which atmospheric gas can be controlled. Illustration of the chamber is omitted. In FIG. 1, the heating elements 30 are not arranged in a part of the substrate 10 in the circumferential direction.
 <全体構成>
 図1に示すように、ヒータ制御装置1は、基材10と、支持体20と、複数の発熱体30と、温度センサ40と、電流センサ50と、制御器60とを備える。基材10は、図3に示す加熱対象Wが載置される第一面10aと、第一面10aに向かい合う第二面10bとを備える。以下の説明では、基材10の第一面10a側を「上」とし、第二面10b側を「下」ということがある。支持体20は、基材10の下方に取り付けられている。複数の発熱体30は、図1及び図3に示すように、基材10の内部に配置されている。複数の発熱体30は、第一発熱体31と一つ以上の第二発熱体32とを備える。本例では、説明の便宜上、一つの第二発熱体32を備える場合を例として説明する。温度センサ40は第一発熱体31の温度を検知する。電流センサ50は、第一発熱体31に流れる第一電流を測定する第一電流センサ51と、第二発熱体32に流れる第二電流を測定する第二電流センサ52とを備える。制御器60は、主に第一発熱体31及び第二発熱体32に供給される電力を制御する。実施形態1の特徴の一つは、第二発熱体32には温度センサを設けることなく第一発熱体31のみに温度センサ40を設け、第二発熱体32の温度を把握できるように構成したことにある。以下、各構成をより詳しく説明する。
<Overall composition>
As shown in FIG. 1 , the heater control device 1 includes a substrate 10 , a support 20 , multiple heating elements 30 , a temperature sensor 40 , a current sensor 50 and a controller 60 . The base material 10 has a first surface 10a on which the heating target W shown in FIG. 3 is placed, and a second surface 10b facing the first surface 10a. In the following description, the first surface 10a side of the substrate 10 may be referred to as "upper", and the second surface 10b side may be referred to as "lower". A support 20 is attached below the substrate 10 . A plurality of heating elements 30 are arranged inside the base material 10 as shown in FIGS. 1 and 3 . The plurality of heating elements 30 includes a first heating element 31 and one or more second heating elements 32 . In this example, for convenience of explanation, a case in which one second heating element 32 is provided will be explained as an example. A temperature sensor 40 detects the temperature of the first heating element 31 . The current sensor 50 includes a first current sensor 51 that measures a first current flowing through the first heating element 31 and a second current sensor 52 that measures a second current flowing through the second heating element 32 . The controller 60 mainly controls power supplied to the first heating element 31 and the second heating element 32 . One of the features of the first embodiment is that the temperature sensor 40 is provided only in the first heating element 31 without providing a temperature sensor in the second heating element 32, so that the temperature of the second heating element 32 can be grasped. That's what it is. Each configuration will be described in more detail below.
 <基材>
 基材10は円板状の形状を有する。基材10は、第一面10aと第二面10bとを備える。第一面10aと第二面10bとは互いに向かい合っている。第一面10aには、図3に示す加熱対象Wが載置される。加熱対象Wは、例えばシリコンや化合物半導体等のウエハである。第二面10bには、後述する支持体20が取り付けられている。第二面10bには、図3に示す複数の端子30tが嵌め込まれる複数の穴が設けられている。
<Base material>
The substrate 10 has a disk-like shape. The substrate 10 has a first surface 10a and a second surface 10b. The first surface 10a and the second surface 10b face each other. A heating target W shown in FIG. 3 is placed on the first surface 10a. The object W to be heated is, for example, a wafer of silicon, a compound semiconductor, or the like. A support 20, which will be described later, is attached to the second surface 10b. The second surface 10b is provided with a plurality of holes into which a plurality of terminals 30t shown in FIG. 3 are fitted.
 基材10は、図2に示すように、同心状に複数の領域に区切られている。本例の基材10は、内側領域10iと外側領域10eとに区切られている。内側領域10iは、基材10の中心を中心とした円形状の領域である。基材10の中心とは、平面視した基材10の輪郭で構成された円の中心のことである。内側領域10iの直径は、基材10の直径の80%以下である。内側領域10iの直径が基材10の直径の80%以下であることで、第一発熱体31の外側に一つ以上の第二発熱体32を配置可能な面積を確保できる。内側領域10iの直径は、更に基材10の直径の50%以下であってもよい。内側領域10iの直径は、基材10の直径の10%以上であってもよい。第一発熱体31の直径が基材10の直径の10%以上であることで、基材10の中心に第一発熱体31を配置可能な面積を確保できる。外側領域10eは、内側領域10iの外側に位置する環状の領域である。複数の領域に対応して、後述する複数の発熱体30が配置されている。 As shown in FIG. 2, the base material 10 is concentrically divided into a plurality of regions. The base material 10 of this example is divided into an inner region 10i and an outer region 10e. The inner region 10i is a circular region centered on the center of the substrate 10. As shown in FIG. The center of the base material 10 is the center of a circle formed by the outline of the base material 10 in plan view. The diameter of inner region 10i is 80% or less of the diameter of substrate 10 . By setting the diameter of the inner region 10 i to 80% or less of the diameter of the base material 10 , it is possible to secure an area in which one or more second heating elements 32 can be arranged outside the first heating elements 31 . The diameter of the inner region 10i may also be 50% or less of the diameter of the substrate 10. The diameter of inner region 10i may be 10% or more of the diameter of substrate 10 . Since the diameter of the first heating element 31 is 10% or more of the diameter of the substrate 10 , an area in which the first heating element 31 can be arranged in the center of the substrate 10 can be secured. The outer region 10e is an annular region located outside the inner region 10i. A plurality of heating elements 30, which will be described later, are arranged corresponding to the plurality of areas.
 基材10の材質は、公知のセラミックスが挙げられる。セラミックスとしては、例えば、窒化アルミニウム、酸化アルミニウム、炭化珪素等が挙げられる。基材10の材質は、上記セラミックスと金属との複合材料で構成されていてもよい。金属としては、例えば、アルミニウム、アルミニウム合金、銅、銅合金等が挙げられる。本例の基材10の材質は、セラミックスである。 The material of the base material 10 includes known ceramics. Examples of ceramics include aluminum nitride, aluminum oxide, and silicon carbide. The material of the base material 10 may be composed of a composite material of the above ceramics and metal. Examples of metals include aluminum, aluminum alloys, copper, copper alloys, and the like. The material of the base material 10 of this example is ceramics.
 <支持体>
 支持体20は、図1及び図3に示すように、基材10を第二面10b側から支持している。支持体20は、ヒータ制御装置1を第一面10a側から平面視したときに複数の端子30tを囲むように第二面10bに取り付けられている。支持体20の形状は、特に限定されない。本例の支持体20は、円筒状部材である。支持体20は、基材10と同心状に配置されている。本例では、円筒状の支持体20の中心と、円板状の基材10の中心とが同軸となるように、基材10と支持体20とが接続されている。
<Support>
The support 20 supports the base material 10 from the second surface 10b side, as shown in FIGS. The support 20 is attached to the second surface 10b so as to surround the terminals 30t when the heater control device 1 is viewed from the first surface 10a side. The shape of the support 20 is not particularly limited. The support 20 of this example is a cylindrical member. The support 20 is arranged concentrically with the substrate 10 . In this example, the base 10 and the support 20 are connected so that the center of the cylindrical support 20 and the center of the disk-shaped base 10 are coaxial.
 支持体20の両端部は、外側に屈曲したフランジ部21を備える。上端部のフランジ部21と第二面10bとの間には、図示しないシール部材が配置されている。シール部材によって、支持体20の内部はシールされている。別の形態として、シール部材を用いずに気密を保つために第二面10bとフランジ部21とが接合されていてもよい。基材10及び支持体20が配置されるチャンバー内には、代表的には、腐食性ガスが充満される。支持体20の内部の気密が保たれることで、支持体20の内部に収納された複数の端子30tや複数の電力線30cなどを腐食性ガスから隔離することができる。 Both ends of the support 20 are provided with outwardly bent flanges 21 . A sealing member (not shown) is arranged between the flange portion 21 of the upper end portion and the second surface 10b. The interior of the support 20 is sealed by the sealing member. As another form, the second surface 10b and the flange portion 21 may be joined to maintain airtightness without using a sealing member. The chamber in which substrate 10 and support 20 are placed is typically filled with a corrosive gas. By keeping the inside of the support 20 airtight, the plurality of terminals 30t and the plurality of power lines 30c housed inside the support 20 can be isolated from the corrosive gas.
 支持体20の材質は、基材10の材質と同様に、公知のセラミックスが挙げられる。支持体20の材質と基材10の材質とは、同じであってもよいし、異なっていてもよい。 As for the material of the support 20, well-known ceramics can be mentioned as well as the material of the base material 10. The material of the support 20 and the material of the substrate 10 may be the same or different.
 <第一発熱体及び第二発熱体>
 複数の発熱体30の各々は、基材10を介して加熱対象Wを加熱する熱源である。第一発熱体31は、図1及び図3に示すように基材10の中心を含む円形領域、即ち内側領域10iに配置されている。一つ以上の第二発熱体32は、基材10及び第一発熱体31と同心状に配置されている。一つ以上の第二発熱体32は、基材10の中心と同心状の環状領域、即ち外側領域10eに配置されている。第一発熱体31と一つ以上の第二発熱体32とは、基材10の厚さ方向に間隔をあけて配置されている。第一発熱体31及び第二発熱体32の各々は、図3に示す端子30tを介して電力線30cにつながっている。この電力線30cを介して各発熱体30には図示しない電源から電力が供給される。
<First heating element and second heating element>
Each of the multiple heating elements 30 is a heat source that heats the heating target W via the base material 10 . The first heating element 31 is arranged in a circular area including the center of the substrate 10, that is, the inner area 10i, as shown in FIGS. One or more second heating elements 32 are arranged concentrically with the substrate 10 and the first heating elements 31 . One or more second heating elements 32 are arranged in an annular region concentric with the center of the substrate 10, ie the outer region 10e. The first heating element 31 and one or more second heating elements 32 are spaced apart in the thickness direction of the substrate 10 . Each of the first heating element 31 and the second heating element 32 is connected to the power line 30c via the terminal 30t shown in FIG. Power is supplied from a power source (not shown) to each heating element 30 via the power line 30c.
 第一発熱体31及び第二発熱体32の形状は、特に限定されない。基材10を第一面10a側から平面視したとき、第一発熱体31及び第二発熱体32の外周輪郭線の形状は、一般的には円形である。複数の発熱体30は、基材10及び支持体20と同心状に配置されている。よって、複数の発熱体30同士も同心状に配置されている。ここでの同心状とは、ヒータ制御装置1を第一面10a側から平面視したとき、各発熱体30の包絡円が共通する中心を有し、かつ各包絡円の直径が異なることを言う。この包絡円の中心は、基材10の中心と一致する。図1や図3では、第一発熱体31及び第二発熱体32を簡略化して示しているが、これら複数の発熱体30は同心状に配置されている。本明細書において、中心側とは包絡円の中心側のこと、外側とは中心から包絡円の径方向に離れる側のことを言う。 The shapes of the first heating element 31 and the second heating element 32 are not particularly limited. When the substrate 10 is viewed in plan from the side of the first surface 10a, the shape of the outer peripheral outline of the first heating element 31 and the second heating element 32 is generally circular. A plurality of heating elements 30 are arranged concentrically with the substrate 10 and the support 20 . Therefore, the plurality of heating elements 30 are also arranged concentrically. Here, concentric means that when the heater control device 1 is viewed from the first surface 10a side, the enveloping circles of the heating elements 30 have a common center and the enveloping circles have different diameters. . The center of this enveloping circle coincides with the center of the substrate 10 . Although the first heating element 31 and the second heating element 32 are shown in a simplified manner in FIGS. 1 and 3, the plurality of heating elements 30 are arranged concentrically. In this specification, the term "center side" means the center side of the enveloping circle, and the term "outer side" means the side away from the center in the radial direction of the enveloping circle.
 複数の発熱体30は、図1及び図3に示すように、一つの第一発熱体31と、一つ以上の第二発熱体32とを備える。本例では第二発熱体32は一つである。後述する変形例1で示すように、第二発熱体32は複数設けられていてもよい。一つ以上の第二発熱体32の包絡円の直径は、第一発熱体31の包絡円の直径よりも大きい。基材10を第一面10a側から平面視したとき、各発熱体30は、上記の各包絡円の径方向に部分的に重なって配置されていてもよいし、重なることなく間隔をあけて配置されていてもよい。 The plurality of heating elements 30 includes one first heating element 31 and one or more second heating elements 32, as shown in FIGS. In this example, there is one second heating element 32 . As shown in Modification 1, which will be described later, a plurality of second heating elements 32 may be provided. The enveloping circle diameter of the one or more second heating elements 32 is larger than the enveloping circle diameter of the first heating element 31 . When the base material 10 is viewed from the first surface 10a side, the heating elements 30 may be arranged so as to partially overlap in the radial direction of the enveloping circles, or may be arranged at intervals without overlapping. may be placed.
 各発熱体30は、図1及び図3に示すように、基材10の内部に配置されている。各発熱体30は、基材10の厚さ方向に間隔をあけて層状に配置されている。本例の各発熱体30は、第一面10aと平行な層に配置されている。第一発熱体31は、基材10の厚さ方向で最も第一面10a側に位置する第一層に配置されている。第一発熱体31が第一層に配置されていることで、第一発熱体31と第二面10bとの間の長さを長く確保できる。また、第一発熱体31は、第一層に配置されていることで、第一発熱体31が第一層以外の層に配置されている場合に比較して、回路パターンの自由度が高い。第一層に配置された第一発熱体31は、第二発熱体32に接続された端子30tを回避して配置する必要がないからである。第二発熱体32は、第一発熱体31よりも第二面10b側に配置されている。第二発熱体32が複数設けられている場合、個々の第二発熱体32も基材10の厚さ方向に間隔をあけて層状に配置されている。 Each heating element 30 is arranged inside the base material 10, as shown in FIGS. Each heating element 30 is arranged in a layered manner at intervals in the thickness direction of the substrate 10 . Each heating element 30 of this example is arranged in a layer parallel to the first surface 10a. The first heating element 31 is arranged in the first layer located closest to the first surface 10 a in the thickness direction of the base material 10 . By arranging the first heating element 31 on the first layer, a long length can be secured between the first heating element 31 and the second surface 10b. In addition, since the first heating element 31 is arranged in the first layer, the degree of freedom of the circuit pattern is high compared to the case where the first heating element 31 is arranged in a layer other than the first layer. . This is because the first heating element 31 arranged in the first layer does not need to be arranged so as to avoid the terminal 30t connected to the second heating element 32 . The second heating element 32 is arranged closer to the second surface 10b than the first heating element 31 is. When a plurality of the second heating elements 32 are provided, the individual second heating elements 32 are also arranged in layers with intervals in the thickness direction of the substrate 10 .
 各発熱体30の材質は、加熱対象Wを所望の温度に加熱できる材質であれば特に限定されない。各発熱体30の材質は、抵抗加熱に好適な公知の金属が挙げられる。金属としては、例えば、ステンレス鋼、ニッケル、ニッケル合金、銀、銀合金、タングステン、タングステン合金、モリブデン、モリブデン合金、クロム、及びクロム合金からなる群より選択される1種が挙げられる。ニッケル合金としては、例えば、ニクロムが挙げられる。 The material of each heating element 30 is not particularly limited as long as it can heat the object W to be heated to a desired temperature. The material of each heating element 30 includes known metals suitable for resistance heating. Examples of metals include one selected from the group consisting of stainless steel, nickel, nickel alloys, silver, silver alloys, tungsten, tungsten alloys, molybdenum, molybdenum alloys, chromium, and chromium alloys. Nickel alloys include, for example, nichrome.
 各発熱体30は、例えば、スクリーン印刷法とホットプレス接合法とを組み合わせて製造できる。本例の場合、以下の手順で製造できる。3枚のセラミックス基板と、各発熱体30を転写できるスクリーンマスクとを用意する。スクリーンマスクは、第一発熱体31、第二発熱体32の各回路パターンを作製可能なものを用いる。2枚のセラミックス基板の各々に、作製する回路パターンのスクリーンマスクを置く。発熱体30となるペーストをスクリーンマスクが載せられたセラミックス基板に塗布する。スキージを使用して発熱体30をセラミックス基板に転写する。発熱体30の転写後、スクリーンマスクを除去する。以上により、第一発熱体31が転写された第一基板と、第二発熱体32が転写された第二基板とが得られる。第一基板、第二基板、及び発熱体を転写していないセラミックス基板を順に貼り合わせてホットプレスで接合する。この接合によって、基材10の内部に各発熱体30が配置される。 Each heating element 30 can be manufactured, for example, by combining a screen printing method and a hot press bonding method. In the case of this example, it can be manufactured by the following procedures. Three ceramic substrates and a screen mask to which each heating element 30 can be transferred are prepared. As the screen mask, a mask capable of forming each circuit pattern of the first heating element 31 and the second heating element 32 is used. A screen mask of a circuit pattern to be produced is placed on each of the two ceramic substrates. A paste to be the heating element 30 is applied to the ceramic substrate on which the screen mask is placed. A squeegee is used to transfer the heating element 30 to the ceramic substrate. After transferring the heating element 30, the screen mask is removed. As described above, the first substrate to which the first heating element 31 is transferred and the second substrate to which the second heating element 32 is transferred are obtained. The first substrate, the second substrate, and the ceramic substrate to which the heating element is not transferred are laminated in order and joined by hot pressing. Each heating element 30 is arranged inside the base material 10 by this bonding.
 <温度センサ>
 温度センサ40は、第一発熱体31の第一温度を測定するセンサである。温度センサ40としては、市販の熱電対や測温抵抗体が好適に利用できる。測温抵抗体には、白金測温抵抗体であるPT100などが挙げられる。
<Temperature sensor>
The temperature sensor 40 is a sensor that measures the first temperature of the first heating element 31 . As the temperature sensor 40, a commercially available thermocouple or resistance temperature detector can be used favorably. The temperature measuring resistor includes PT100, which is a platinum temperature measuring resistor.
 この温度センサ40の配置箇所は、基材10の内部である。本例では、基材10の内部のうち、基材10を平面視したとき、支持体20の内周面よりも内側の領域に温度センサ40が配置されている。つまり、請求項における「温度センサは筒状の支持体の内側に配置され」とは、支持体20を軸方向に見た場合、支持体20の内周面の輪郭線よりも内側に温度センサ40が位置することをいう。特に、温度センサ40は、第一発熱体31の近傍に配置されていることが好ましい。第一発熱体31の近傍に設置した温度センサ40で測定される温度は、第一発熱体31自体の温度ではなく、第一発熱体31が配置される基材10の内側領域10iの温度である。但し、この内側領域10iの温度も第一発熱体31の第一温度とみなす。 The location of this temperature sensor 40 is inside the base material 10 . In this example, the temperature sensor 40 is arranged inside the base 10 in a region inside the inner peripheral surface of the support 20 when the base 10 is viewed from above. In other words, "a temperature sensor is arranged inside a cylindrical support" in the claims means that the temperature sensor is located inside the contour line of the inner peripheral surface of the support 20 when the support 20 is viewed in the axial direction. It means that 40 is located. In particular, the temperature sensor 40 is preferably arranged near the first heating element 31 . The temperature measured by the temperature sensor 40 installed near the first heating element 31 is not the temperature of the first heating element 31 itself, but the temperature of the inner region 10i of the substrate 10 where the first heating element 31 is arranged. be. However, the temperature of the inner region 10i is also regarded as the first temperature of the first heating element 31. FIG.
 <電流センサ>
 電流センサ50は、発熱体30に流れる電流を検知するセンサである。本例では、第一発熱体31に流れる第一電流を検知する第一電流センサ51と、第二発熱体32に流れる第二電流を検知する第二電流センサ52とを備える。第二電流センサ52が請求項1における電流センサに相当する。第二発熱体32が複数ある場合、第二電流センサ52は、各第二発熱体32に設けられる。第一電流センサ51は第一発熱体31につながる電力線30cに、第二電流センサ52は第二発熱体32につながる電力線30cにそれぞれ設けられている。この電流センサ50は、市販のCT(Current Tansmitter)で代表されるセンサが利用できる。本例において、第一電流又は第二電流は、第一発熱体31又は第二発熱体32に流れる電流の実効値を所定時間内に平均化して電気的雑音を除去した値としている。
<Current sensor>
The current sensor 50 is a sensor that detects current flowing through the heating element 30 . In this example, a first current sensor 51 that detects a first current flowing through the first heating element 31 and a second current sensor 52 that detects a second current flowing through the second heating element 32 are provided. The second current sensor 52 corresponds to the current sensor in claim 1 . When there are multiple second heating elements 32 , the second current sensor 52 is provided for each second heating element 32 . The first current sensor 51 is provided on the power line 30c connected to the first heating element 31, and the second current sensor 52 is provided on the power line 30c connected to the second heating element 32, respectively. A sensor represented by a commercially available CT (Current Transmitter) can be used as the current sensor 50 . In this example, the first current or the second current is a value obtained by averaging the effective value of the current flowing through the first heating element 31 or the second heating element 32 within a predetermined period of time to remove electrical noise.
 <制御器>
 制御器60は、ヒータ制御装置1の動作に必要な各部の制御を行う。より具体的には、制御器60は、第一温度調節器61、第一電力制御器63、第二電力制御器64、演算器65及びメモリ66を備える。制御器60は、代表的には、CPU(Central Processor Unit)またはDSP(Digital Signal Processing)等を含むプロセッサによって実現される。代表的には、プロセッサは、バスと、バスに接続されたCPU、ROM(Read-Only Memory)、RAM(Random Access Memory)、入出力I/F(Interface)などを含む。プロセッサの数は、制御器60に一つ以上備えれられていればよく、複数備えられていてもよい。第一温度調節器61、第一電力制御器63、第二電力制御器64、演算器65及びメモリ66は、個別のハードウェアで構成されてもよいし、一つの制御器60の一部の構成要素として構成されてもよい。メモリ66には、後述する制御手順をプロセッサに実行させるためのプログラムが格納されている。プロセッサは、メモリ66に格納されたプログラムを読み出して実行する。プログラムは、第一温度調節器61、第一電力制御器63、第二電力制御器64、及び演算器65での処理に関するプログラムコードを含む。
<Controller>
The controller 60 controls each part necessary for the operation of the heater control device 1 . More specifically, the controller 60 has a first temperature controller 61 , a first power controller 63 , a second power controller 64 , a calculator 65 and a memory 66 . Controller 60 is typically implemented by a processor including a CPU (Central Processor Unit) or DSP (Digital Signal Processing). Typically, a processor includes a bus, a CPU connected to the bus, a ROM (Read-Only Memory), a RAM (Random Access Memory), an input/output I/F (Interface), and the like. One or more processors may be provided in the controller 60, or a plurality of processors may be provided. The first temperature controller 61, the first power controller 63, the second power controller 64, the calculator 65, and the memory 66 may be configured as separate hardware, or may be part of one controller 60. It may be configured as a component. A memory 66 stores a program for causing the processor to execute a control procedure, which will be described later. The processor reads and executes programs stored in memory 66 . The program includes program codes for processing in the first temperature controller 61 , the first power controller 63 , the second power controller 64 and the calculator 65 .
 ・第一温度調節器
 第一温度調節器61は、上記第一温度が目標温度に近づくように第一制御信号を出力する。この第一温度調節器61での制御は、PID制御が利用できる。PID制御は、フィードバック制御の一種であり、入力値の制御を出力値と目標値との偏差(P)、その積分(I)、および微分(D)の3つの動作によって行う制御方法である。偏差に応じた操作量を出力する比例動作によりハンチングの小さい滑らかな温度制御が行える。積分動作でオフセットを自動的に修正できる。微分動作で外乱に対する応答を速くすることができる。
- First temperature controller The first temperature controller 61 outputs a first control signal so that the first temperature approaches the target temperature. PID control can be used for the control by the first temperature controller 61 . PID control is a type of feedback control, and is a control method that controls an input value by three operations: the deviation (P) between the output value and the target value, its integration (I), and its differentiation (D). Smooth temperature control with little hunting can be performed by proportional action that outputs the manipulated variable according to the deviation. Integral action can automatically correct the offset. Differential action can speed up the response to disturbances.
 目標温度はユーザにより設定された温度である。第一温度調節器61は、目標温度と第一発熱体31の現在温度、即ち第一温度を元にPID演算を行って、第一制御信号を第一電力制御器63に出力する。 The target temperature is the temperature set by the user. The first temperature controller 61 performs PID calculation based on the target temperature and the current temperature of the first heating element 31 , that is, the first temperature, and outputs a first control signal to the first power controller 63 .
 ・第一電力制御器
 第一電力制御器63は、第一制御信号に応じて第一発熱体31に供給される第一電力を制御する。第一制御信号が入力された第一電力制御器63は、第一制御信号に対応した第一電力を第一発熱体31に供給する。第一電力は、第一電流と第一電圧との積により演算される。第一電流は、上述したように第一電流センサ51の測定値である。第一電圧は、第一発熱体31に印加される電圧である。この第一電圧は後述するように演算により求められる。
- First power controller The first power controller 63 controls the first power supplied to the first heating element 31 according to the first control signal. The first power controller 63 to which the first control signal is input supplies first power corresponding to the first control signal to the first heating element 31 . The first power is calculated by multiplying the first current and the first voltage. The first current is the measurement of the first current sensor 51 as described above. The first voltage is the voltage applied to the first heating element 31 . This first voltage is obtained by calculation as described later.
 第一電力の制御は、位相制御方式により行われる。位相制御方式とは、電源周波数の半サイクルごとに点弧位相角を制御することにより、負荷に加わる電圧を0%から100%の範囲で制御する方式である。第一電力制御器63には、スイッチング素子が好適に用いられる。スイッチング素子の具体例としては、トライアックが挙げられる。トライアックは、2個のサイリスタを逆並列に接続することで、1つのゲートの開閉で双方向の電流を制御できる素子である。  The control of the first power is performed by the phase control method. The phase control method is a method of controlling the voltage applied to the load within the range of 0% to 100% by controlling the ignition phase angle every half cycle of the power supply frequency. A switching element is preferably used for the first power controller 63 . A specific example of the switching element is a triac. A triac is an element in which two thyristors are connected in anti-parallel so that bidirectional current can be controlled by opening and closing one gate.
 位相制御方式の概要を図4に基づいて説明する。図4は、電源からの供給電流の電流波形を正弦波として示している。トライアックのゲートにゲート信号が入力されると、ゲートが開くことでトライアックがオンになり電流が流れる。図4における正弦波のうち、ハッチングで示される領域の電流が出力される。本例では、ゲート信号は一定の幅wのパルス信号である。ゲート信号がなくなっても、トライアックはオンのままであり電流は流れ続ける。トライアックに流れる電流がゼロになると、トライアックは自動的にオフになり電流は流れなくなる。上記ゲート信号を与えるタイミングにより、トライアックは第一電流を0%から100%までの範囲で所望の電流に出力できる。本例での位相制御時の出力モードは、電圧比例自乗制御である。電圧比例自乗制御は、ゲートの開き具合に対応する操作量MVに対して出力電圧の実効値Vrmsの自乗が比例するモードである。操作量MVと図4の操作位相角θとは、MV=θ-(1/2π)sin(2θπ)の関係にある。 An outline of the phase control method will be explained based on FIG. FIG. 4 shows the current waveform of the supply current from the power supply as a sine wave. When a gate signal is input to the gate of the triac, the gate opens, turning on the triac and allowing current to flow. Of the sinusoidal wave in FIG. 4, the current in the area indicated by hatching is output. In this example, the gate signal is a pulse signal with a constant width w. Even if the gate signal is removed, the triac remains on and current continues to flow. When the current flowing through the TRIAC becomes zero, the TRIAC automatically turns off and no current flows. Depending on the timing of applying the gate signal, the triac can output a desired current within a range of 0% to 100% of the first current. The output mode during phase control in this example is voltage proportional square control. The voltage proportional square control is a mode in which the square of the effective value Vrms of the output voltage is proportional to the manipulated variable MV corresponding to the degree of opening of the gate. The manipulated variable MV and the manipulated phase angle θ in FIG. 4 have a relationship of MV=θ−(1/2π)sin(2θπ).
 一方、電源からの供給電圧も正弦波で表される。その電源からの供給電圧は既知であるため、上述のように電源からの電流波形に対してゲート信号が入力されるタイミング、換言すればゲートの開き具合により第一電圧も演算により把握できる。この第一電圧の演算及び第一電力の演算は、後述する演算器65により行われる。 On the other hand, the supply voltage from the power supply is also represented by a sine wave. Since the supply voltage from the power supply is known, the first voltage can also be grasped by calculation from the timing at which the gate signal is input with respect to the current waveform from the power supply as described above, in other words, the degree of opening of the gate. The computation of the first voltage and the computation of the first power are performed by the calculator 65, which will be described later.
 ・第二電力制御器
 第二電力制御器64は、第二発熱体32に供給される第二電力を制御する。より具体的には、第二電力制御器64は、第一電力に対して予め設定された比率となるように第二電力を制御する。この比率は、ユーザが予め設定する比率である。例えば、第一電力:第二電力が1.0:0.8となるように比率が設定される。第二発熱体32が複数ある場合、個々の発熱体30の第二電力も第一電力に対して予め設定された比率となるように制御される。例えば、第二発熱体32が2つある場合、第一電力:第二電力A:第二電力B=1.0:0.8:0.6とする。第二電力Aは、2つの第二発熱体32の一方の第二電力である。第二電力Bは、2つの第二発熱体32の他方の第二電力である。
- Second power controller The second power controller 64 controls the second power supplied to the second heating element 32 . More specifically, the second power controller 64 controls the second power to be a preset ratio to the first power. This ratio is a ratio preset by the user. For example, the ratio is set such that the first power:second power is 1.0:0.8. When there are a plurality of second heating elements 32, the second power of each heating element 30 is also controlled to have a preset ratio to the first power. For example, when there are two second heating elements 32, first power:second power A:second power B=1.0:0.8:0.6. The second power A is the second power of one of the two second heating elements 32 . The second power B is the other second power of the two second heating elements 32 .
 発熱体30の昇温、温度保持、降温の一連の温度プロファイルにおいて、異なる比率を設定することができる。通常、この比率は、昇温時、温度保持時、及び降温時の各段階で異なる。昇温時及び降温時は、各段階の開始から終了までの間において、温度域によって比率が異なってもよい。例えば、室温から400℃までの間は第一電力:第二電力を1.0:0.8とし、400℃から450℃までの間は第一電力:第二電力を1.0:0.9とする。同じ電力比率で昇温して高温になると、発熱体30がセンターホットになり過ぎて、自身の面内温度分布の内外差による熱応力で破損する可能性がある。そのため、高温で第二電力の比率を上げることが好ましい。 Different ratios can be set in a series of temperature profiles of temperature increase, temperature maintenance, and temperature decrease of the heating element 30. Normally, this ratio is different in each stage of temperature rising, temperature holding, and temperature dropping. The ratio between the time of temperature increase and the time of temperature decrease may differ depending on the temperature range from the start to the end of each stage. For example, between room temperature and 400° C., the first power:second power ratio is 1.0:0.8, and between 400° C. and 450° C., the first power:second power ratio is 1.0:0.8. 9. If the temperature rises at the same power ratio to a high temperature, the heat generating element 30 becomes too center-hot and may be damaged by thermal stress due to the difference in temperature distribution inside and outside the plane of itself. Therefore, it is preferable to increase the ratio of the second power at high temperatures.
 この第二電力の制御も、第一電力の制御と同様に、位相制御方式により行われる。第二電力は第二電流と第二電圧との積により求められる。第二電流は、第二電流センサ52の測定値である。第二電圧は、第一電圧と同様、ゲートの開き具合に基づいて演算で求めることができる。これら第二電圧の演算及び第二電力の演算も次述する演算器65で行われる。  This control of the second power is also performed by the phase control method in the same way as the control of the first power. The second power is obtained by multiplying the second current and the second voltage. The second current is the measurement of second current sensor 52 . As with the first voltage, the second voltage can be calculated based on the degree of opening of the gate. The computation of the second voltage and the computation of the second power are also performed by the calculator 65, which will be described later.
 ・演算器
 演算器65は、制御器60で必要な各種演算を行う。上述したように、第一電圧、第一電力、第二電圧、及び第二電力の演算はいずれも演算器65で行われる。さらに、演算器65は第二発熱体32の温度である第二温度の演算も行う。
·Calculator The calculator 65 performs various calculations required by the controller 60 . As described above, the computation of the first voltage, the first power, the second voltage, and the second power are all performed by the calculator 65 . Furthermore, the calculator 65 also calculates the second temperature, which is the temperature of the second heating element 32 .
 第二発熱体32の第二温度は、第二発熱体32の抵抗と、予め求められた第二発熱体32の抵抗と温度との関係を表す係数とを用いて求められる。つまり、第二温度は、温度センサを用いて測定された値ではなく、第一発熱体31に供給される電力に基づいて演算された値である。第二発熱体32の抵抗は、上述した第二発熱体32の第二電圧を第二発熱体32に流れる第二電流で除することにより求められる。係数は、後述する予備試験により予め求めておく。この係数は、第二発熱体32の抵抗と温度との関係を示す関係式も含む。係数は、メモリ66に記憶されている。予め第二発熱体32の抵抗と温度との関係が既知であれば、第二発熱体32の抵抗が求められると、この抵抗を上記関係と参照することで、第二発熱体32の第二温度を演算して求めることができる。 The second temperature of the second heating element 32 is obtained using the resistance of the second heating element 32 and a previously obtained coefficient representing the relationship between the resistance of the second heating element 32 and the temperature. That is, the second temperature is not a value measured using a temperature sensor, but a value calculated based on the power supplied to the first heating element 31 . The resistance of the second heating element 32 is obtained by dividing the second voltage of the second heating element 32 described above by the second current flowing through the second heating element 32 . The coefficients are obtained in advance by a preliminary test, which will be described later. This coefficient also includes a relational expression showing the relationship between the resistance of the second heating element 32 and the temperature. The coefficients are stored in memory 66 . If the relationship between the resistance of the second heating element 32 and the temperature is known in advance, and the resistance of the second heating element 32 is obtained, by referring to this resistance with the above relationship, the second Temperature can be calculated and obtained.
 ・メモリ
 メモリ66は、プログラムを記憶するメモリとして、各種不揮発性メモリが好適に利用できる。また、メモリ66は、一連の演算に必要な値を一時的に記憶する揮発性メモリを含んでいてもよい。
- Memory The memory 66 can use various non-volatile memories suitably as memory which memorize|stores a program. The memory 66 may also include a volatile memory that temporarily stores values required for a series of operations.
 <その他の構成部材>
 ヒータ制御装置1は、外部出力部70及びトランス80を備えてもよい。
 外部出力部70は、上記のように求められた第二発熱体32の第二温度及び第二温度が適正範囲にあるか否かの判定結果の少なくとも一方を表示又は外部装置に送信する機器である。例えば、外部出力部70として、第二温度を文字で表示したり、第二温度の経時変化をグラフで表示したりするディスプレイが挙げられる。他の外部出力部70としては、第二温度に所定の処理を施した処理結果を出力する機器であってもよい。この処理結果を示す機器には、警報装置が挙げられる。警報装置は、例えば第二温度が設定された所定の適正範囲から外れた場合に警報を出す装置である。警報は、ユーザに第二温度の異常を知らせることができるものであれば特に限定されない。例えば、具体的な警報の種類としては、ディスプレイへの文字表示、ランプの点灯、ブザーの鳴動などが挙げられる。さらに他の外部出力部70としては、図示しない通信機器が挙げられる。この通信機器は、遠隔地のユーザが持つ外部装置との通信を行う。例えば、第二温度の情報を通信機器で外部装置へ送ったり、上記警報を通信機器でフラグの状態変化として外部装置に伝えたりすることができる。この情報の伝送により、遠隔地のユーザは第二温度や警報を認知できる。
<Other components>
The heater control device 1 may include an external output section 70 and a transformer 80 .
The external output unit 70 is a device that displays or transmits at least one of the second temperature of the second heating element 32 obtained as described above and the determination result as to whether or not the second temperature is within the appropriate range to an external device. be. For example, the external output unit 70 may be a display that displays the second temperature in characters, or displays the change over time of the second temperature in a graph. Another external output unit 70 may be a device that outputs a processing result obtained by subjecting the second temperature to predetermined processing. Devices that indicate the result of this processing include an alarm device. The alarm device is, for example, a device that issues an alarm when the second temperature deviates from the set appropriate range. The warning is not particularly limited as long as it can notify the user of the abnormality of the second temperature. For example, specific types of alarms include character display on a display, lighting of a lamp, and sounding of a buzzer. Still another external output unit 70 includes a communication device (not shown). This communication device communicates with an external device owned by a remote user. For example, information on the second temperature can be sent to an external device via a communication device, or the above alarm can be transmitted to the external device as a change in flag state via a communication device. The transmission of this information allows remote users to perceive the second temperature and alarm.
 トランス80は、図示しない電源と制御器60とを電磁気的に結合して、第一発熱体31及び第二発熱体32への電力を供給するための部材である。トランス80の一次側、つまり電源側と、トランス80の二次側、つまり制御器60側とは、電気的には接続されることがなく互いに絶縁されている。電源と制御器60とが絶縁されていることで、各発熱体30に対する電力を制御し易い。本例では、二次側の電力線30cを第一発熱体31と第二発熱体32の各々に分岐させることで発熱体30の各々に電力供給を行っている。即ち、第一発熱体31と第二発熱体32とは互いに電気的に絶縁されていない。第一発熱体31と第二発熱体32とが絶縁されていないことで、両発熱体30を絶縁する場合に比べてトランス80の数を削減できる。 The transformer 80 is a member for electromagnetically coupling a power source (not shown) and the controller 60 to supply electric power to the first heating element 31 and the second heating element 32 . The primary side of the transformer 80, that is, the power supply side, and the secondary side of the transformer 80, that is, the controller 60 side are not electrically connected and are insulated from each other. Since the power supply and the controller 60 are insulated, it is easy to control the power to each heating element 30 . In this example, power is supplied to each of the heating elements 30 by branching the power line 30 c on the secondary side to each of the first heating element 31 and the second heating element 32 . That is, the first heating element 31 and the second heating element 32 are not electrically insulated from each other. Since the first heating element 31 and the second heating element 32 are not insulated, the number of transformers 80 can be reduced compared to the case where both the heating elements 30 are insulated.
 さらに、ヒータ制御装置1は、図示していない入力部を備えていてもよい。入力部は、ユーザが設定する各種条件を入力するためのデバイスである。各種条件には、第二電力を規定するために第一電力に対して予め設定された比率が含まれる。入力部には、例えばテンキー、キーボード、タッチパネルなどの公知の入力機器が利用できる。入力部から入力された各種条件は、メモリ66に記憶される。 Furthermore, the heater control device 1 may include an input section (not shown). The input unit is a device for inputting various conditions set by the user. Various conditions include a preset ratio to the first power to define the second power. Known input devices such as a numeric keypad, a keyboard, and a touch panel can be used for the input unit. Various conditions input from the input unit are stored in the memory 66 .
 <処理手順>
 図5、図6に基づいて、上記ヒータ制御装置1の処理手順を説明する。各構成部材については図1を参照する。
 まず、図5に基づいて、第一電力及び第二電力を各発熱体30に出力するまでの処理手順を説明する。ステップS1において、温度センサ40から第一温度を取得し、さらに第一電流センサ51から第一電流を取得する。ステップS2では、第一温度が目標温度に近づくように第一温度調節器61が第一制御信号を出力する。ステップS3では第一電力制御器63は第一制御信号に対応した第一電力を第一発熱体31に出力する。そして、ステップS4では、演算器65で第二電力を演算し、さらに第二電力を第二電力制御器64から第二発熱体32に出力する。このステップS1からステップS4の一連の処理は、ヒータ制御装置1を駆動している間、繰り返して行われる。
<Processing procedure>
The processing procedure of the heater control device 1 will be described with reference to FIGS. 5 and 6. FIG. Refer to FIG. 1 for each component.
First, based on FIG. 5, a processing procedure for outputting the first power and the second power to each heating element 30 will be described. In step S<b>1 , a first temperature is obtained from the temperature sensor 40 and a first current is obtained from the first current sensor 51 . At step S2, the first temperature controller 61 outputs a first control signal so that the first temperature approaches the target temperature. In step S<b>3 , the first power controller 63 outputs the first power corresponding to the first control signal to the first heating element 31 . Then, in step S<b>4 , the calculator 65 calculates the second power, and the second power is output from the second power controller 64 to the second heating element 32 . A series of processes from step S1 to step S4 are repeated while the heater control device 1 is being driven.
 次に、図6に基づいて、第二温度を求めて出力するまでの処理手順を説明する。ステップS11では、第二電流センサ52により第二電流を取得する。ステップS12では、演算器65により、第二電流と第二電圧とから第二発熱体32の抵抗である第二抵抗を演算する。ステップS13では、演算された第二抵抗と、予め求められた第二発熱体32の抵抗と温度との関係を表す係数とを用いて、演算器65により第二温度を演算する。ステップS14では、求められた第二温度を外部出力部70に出力する。 Next, based on FIG. 6, a processing procedure for obtaining and outputting the second temperature will be described. In step S11, the second current sensor 52 acquires a second current. In step S12, the computing unit 65 computes the second resistance, which is the resistance of the second heating element 32, from the second current and the second voltage. In step S13, the computing unit 65 computes the second temperature using the computed second resistance and the previously obtained coefficient representing the relationship between the resistance of the second heating element 32 and the temperature. In step S<b>14 , the obtained second temperature is output to the external output section 70 .
 <予備試験>
 予備試験は、第二発熱体32の抵抗と温度との関係を表す係数を予め求めるための試験である。予備試験は、昇温時及び降温時と、温度保持時とで異なる手法により行うことが好適である。つまり、昇温時及び降温時と、温度保持時とで異なる係数を用いることが好適である。
<Preliminary test>
The preliminary test is a test for preliminarily obtaining a coefficient representing the relationship between the resistance of the second heating element 32 and the temperature. It is preferable to perform the preliminary test by different methods when the temperature is raised, when the temperature is lowered, and when the temperature is maintained. In other words, it is preferable to use different coefficients when raising and lowering the temperature and when maintaining the temperature.
 この係数を求めるための手法を説明する前に、昇温から降温に至るまでの温度プロファイルを図7に基づいて説明する。図7は、本例のヒータ制御装置1における第一発熱体31の温度の経時変化を示すグラフである。 Before explaining the method for obtaining this coefficient, the temperature profile from temperature rise to temperature drop will be explained based on FIG. FIG. 7 is a graph showing temporal changes in the temperature of the first heating element 31 in the heater control device 1 of this example.
 まず、昇温過程では、室温から所定の保持温度まで、ほぼ一定の割合で発熱体30の温度が上昇する。この昇温過程の昇温速度は、発熱体30が損傷しないような速度が選択される。 First, in the temperature rising process, the temperature of the heating element 30 rises at a substantially constant rate from room temperature to a predetermined holding temperature. The rate of temperature increase in this temperature increase process is selected such that the heating element 30 is not damaged.
 温度保持過程では、ほぼ一定の温度に発熱体30の温度が保持される。温度保持過程には、基材10上にウエハを載せない状態のアイドル状態と、基材10上にウエハを載せて、そのウエハに成膜を行う処理状態とが含まれる。アイドル状態では、成膜装置におけるガスの出入りや上述した各発熱体30に供給する電力の制御に伴って、ごく微細な温度変動が生じている。図7のグラフでは、アイドル状態を水平に延びる直線で示しているが、実際には後述するように、ごく僅かに温度変動が生じている。一方、処理状態では、基材10上にウエハを出し入れして複数枚のウエハに順次成膜を行っていくため、アイドル状態に比べてより大きな温度変動が生じている。処理状態での温度変化は、図7において、アイドル状態の直線に続く波線で示している。 In the temperature holding process, the temperature of the heating element 30 is held at a substantially constant temperature. The temperature holding process includes an idle state in which no wafer is placed on the substrate 10 and a processing state in which a wafer is placed on the substrate 10 and a film is formed on the wafer. In the idle state, minute temperature fluctuations occur due to the gas entering and exiting the film forming apparatus and the control of the electric power supplied to the heating elements 30 described above. In the graph of FIG. 7, the idling state is indicated by a straight line extending horizontally, but actually, as will be described later, the temperature fluctuates very slightly. On the other hand, in the processing state, wafers are moved in and out of the base material 10 and films are sequentially formed on a plurality of wafers, so that temperature fluctuations are greater than in the idle state. The temperature change in the process state is shown in FIG. 7 by the dashed line following the straight line in the idle state.
 降温過程では、保持温度から室温まで、ほぼ一定の割合で発熱体30の温度が下降する。この降温過程の降温速度は、発熱体30が損傷しないような速度が選択される。 In the temperature-lowering process, the temperature of the heating element 30 drops at a substantially constant rate from the holding temperature to room temperature. The temperature drop rate in this temperature drop process is selected such that the heating element 30 is not damaged.
 以上の温度プロファイルにおいて、まず昇温時と降温時の係数の求め方を説明し、その後で温度保持時の係数の求め方を説明する。 In the above temperature profile, first, how to obtain the coefficients when the temperature is rising and when the temperature is falling will be explained, and then how to obtain the coefficients when the temperature is maintained.
 ・昇温時及び降温時
 昇温時及び降温時では、温度保持時に比べて単位時間当たりの温度変化量が大きい。この昇温時及び降温時、ウエハへの成膜処理は行われない。この場合、室温から保持温度までの温度域又は保持温度から室温までの温度域をより狭い温度域ごとに区切り、区切られた各温度域ごとに第二発熱体32の抵抗と温度との関係を求める。例えば、50℃から100℃の範囲を有する区切られた温度域ごとに第一発熱体31及び第二発熱体32の各々の抵抗と温度との関係を求める。より具体的には、昇温時であれば、50℃以上100℃以下の第一温度域、100℃以上200℃以下の第二温度域、200℃以上300℃以下の第三温度域、300℃以上400℃以下の第四温度域、及び400℃以上保持温度以下の第五温度域の各々について第二発熱体32の抵抗と温度との関係を求める。保持温度の一例としては450℃が挙げられる。例えば、第一温度域においては、50℃と100℃の二点における抵抗と温度との関係を求める。ここで、二点の測定点、即ち低温側の抵抗R(T1)における第二発熱体32の温度T1と、高温側の抵抗R(T2)における第二発熱体32の温度T2とは、比例の関係式で表される。この関係式を用いれば、抵抗Rの第二発熱体32の温度Tは次式で求められる。
T={(T2-T1)/(R(T2)-R(T1))}×(R-R(T1))+T1
 但し、T1≦T≦T2、R(T1)≦R≦R(T2)である。
・At the time of temperature increase and temperature decrease The amount of temperature change per unit time during temperature increase and temperature decrease is greater than that during temperature maintenance. During this temperature increase and temperature decrease, the film formation process on the wafer is not performed. In this case, the temperature range from the room temperature to the holding temperature or the temperature range from the holding temperature to the room temperature is divided into narrower temperature ranges, and the relationship between the resistance of the second heating element 32 and the temperature is calculated for each of the divided temperature ranges. Ask. For example, the relationship between the resistance and the temperature of each of the first heating element 31 and the second heating element 32 is obtained for each of the temperature ranges separated from 50°C to 100°C. More specifically, when the temperature is rising, the first temperature range of 50 ° C. or higher and 100 ° C. or lower, the second temperature range of 100 ° C. or higher and 200 ° C. or lower, the third temperature range of 200 ° C. or higher and 300 ° C. or lower, 300 C. to 400.degree. C. and the fifth temperature range from 400.degree. C. to the holding temperature are obtained. An example of the holding temperature is 450°C. For example, in the first temperature range, the relationship between resistance and temperature at two points of 50° C. and 100° C. is obtained. Here, two measurement points, that is, the temperature T1 of the second heating element 32 at the low temperature side resistance R (T1) and the temperature T2 of the second heating element 32 at the high temperature side resistance R (T2) are proportional is represented by the relational expression of Using this relational expression, the temperature T of the second heating element 32 with resistance R can be obtained by the following equation.
T={(T2−T1)/(R(T2)−R(T1))}×(RR(T1))+T1
However, T1≦T≦T2 and R(T1)≦R≦R(T2).
 降温時も昇温時と同様の考え方により、第二発熱体32の抵抗と温度との関係を求めておけばよい。このように、区切られた狭い範囲の温度域ごとに第二発熱体32の抵抗と温度との関係を求めておくことで、区切られた温度域ごとに異なる係数を用いることができる。区切られた温度域ごとに異なる係数を用いることで、高精度に第二発熱体32の温度を求めることができる。 The relationship between the resistance of the second heating element 32 and the temperature should be obtained when the temperature is lowered, based on the same concept as when the temperature is raised. By obtaining the relationship between the resistance of the second heating element 32 and the temperature for each narrow temperature range, a different coefficient can be used for each temperature range. By using a different coefficient for each divided temperature range, the temperature of the second heating element 32 can be obtained with high accuracy.
 これに対し、例えば、抵抗R(Tr)における第二発熱体32の温度、即ち室温Trと、抵抗R(Tk)における第二発熱体32の保持温度Tkも比例の関係式で表される。この関係式を用いれば、抵抗Rの第二発熱体の温度Tは、次式で求められる。
T={(Tk-Tr)/(R(Tk)-R(Tr))}×(R-R(Tr))+Tr
 但し、Tr≦T≦Tk、R(Tr)≦R≦R(Tk)である。
 この場合、室温と保持温度との二点から求めた第二発熱体32の抵抗と温度との関係式では、その中間の温度での抵抗値はその二点間の線形補間では表せないため、精度よく第二発熱体の温度を求めることは難しい。
On the other hand, for example, the temperature of the second heating element 32 at the resistance R(Tr), that is, the room temperature Tr, and the holding temperature Tk of the second heating element 32 at the resistance R(Tk) are also expressed by a proportional relational expression. Using this relational expression, the temperature T of the second heating element of the resistor R can be obtained by the following equation.
T={(Tk−Tr)/(R(Tk)−R(Tr))}×(RR(Tr))+Tr
However, Tr≤T≤Tk and R(Tr)≤R≤R(Tk).
In this case, in the relational expression between the resistance and the temperature of the second heating element 32 obtained from the two points of the room temperature and the holding temperature, the resistance value at the intermediate temperature cannot be expressed by linear interpolation between the two points. It is difficult to accurately obtain the temperature of the second heating element.
 ・温度保持時
 温度保持時は、昇温時や降温時に比べて単位時間当たりの温度変化の割合はごく僅かである。よって、温度保持時は、昇温時や降温時よりも狭い温度帯域における第二発熱体32の抵抗と温度との関係を求めることが好ましい。より具体的には、温度保持時における最大温度と最小温度との差という微細な温度域に応じた係数を用いることで、正確に第二発熱体32の温度を求めることができる。温度保持過程には、上述したように加熱対象Wのないアイドル状態と加熱対象Wのある処理状態の2つの温度プロファイルが含まれる。この温度プロファイルを図8に基づいて説明する。図8は、第一発熱体の温度と第二発熱体の温度の経時変化を示すグラフである。第一発熱体31の温度は、第一電流と第一電圧とから求めた第一発熱体31の抵抗と上記係数とに基づいて求めた温度である。第二発熱体32の温度は、第二電流と第二電圧とから求めた第二発熱体32の抵抗と上記係数とに基づいて求めた温度である。このグラフでは、さらに温度センサ40の測定値の経時変化も併せて示している。いずれのグラフも互いに線が重なっている。さらにこのグラフでは、アイドル状態の過程をCase1とし、処理状態の過程をCase2として示している。このグラフに示すように、アイドル状態では、成膜装置のチャンバー内にガスの出入りが行われ、第一温度調節器61による温度制御の結果、ごく僅かの温度の上下動が認められる。これに対し、処理状態では、チャンバー内にウエハを出し入れするため、アイドル状態に比べてより大きな温度の上下動が認められる。図8のグラフは複数の線が重なって示されるため、例えば複数の線が重なって示されたアイドル状態における温度の振れ幅は大きく見える。しかし、個々のグラフの線の振れ幅はもっと小さい。特に、個々のグラフの振れ幅は、処理状態よりもアイドル状態の方が明確に小さい。このような温度保持過程においては、処理状態での温度プロファイルに基づいて係数を求める方法と、アイドル状態での温度プロファイルに基づいて係数を求める方法とがある。以下、それぞれを順に説明する。
・During temperature retention During temperature retention, the rate of temperature change per unit time is very small compared to when the temperature is raised or lowered. Therefore, when maintaining the temperature, it is preferable to obtain the relationship between the resistance of the second heating element 32 and the temperature in a narrower temperature range than when raising or lowering the temperature. More specifically, the temperature of the second heating element 32 can be obtained accurately by using a coefficient corresponding to a minute temperature range, that is, the difference between the maximum temperature and the minimum temperature when the temperature is maintained. The temperature holding process includes two temperature profiles, the idle state without the heating target W and the processing state with the heating target W, as described above. This temperature profile will be explained based on FIG. FIG. 8 is a graph showing temporal changes in the temperature of the first heating element and the temperature of the second heating element. The temperature of the first heating element 31 is the temperature obtained based on the resistance of the first heating element 31 obtained from the first current and the first voltage and the above coefficient. The temperature of the second heating element 32 is the temperature obtained based on the resistance of the second heating element 32 obtained from the second current and the second voltage and the above coefficient. This graph also shows the change over time of the measured value of the temperature sensor 40 . Both graphs have lines overlapping each other. Further, in this graph, Case 1 indicates the process of the idle state, and Case 2 indicates the process of the processing state. As shown in this graph, in the idle state, gas flows in and out of the chamber of the film forming apparatus, and as a result of the temperature control by the first temperature controller 61, very slight fluctuations in temperature are observed. On the other hand, in the processing state, since the wafer is moved in and out of the chamber, the temperature fluctuates more than in the idle state. Since the graph of FIG. 8 shows a plurality of overlapping lines, for example, the range of temperature fluctuations in the idle state where the plurality of lines are overlapped appears large. However, the amplitude of the individual graph lines is smaller. In particular, the amplitude of individual graphs is clearly smaller in the idle state than in the processing state. In such a temperature holding process, there are a method of obtaining the coefficient based on the temperature profile in the processing state and a method of obtaining the coefficient based on the temperature profile in the idle state. Each of them will be described in order below.
  方法A(処理状態:加熱対象あり)
 まず、処理状態の所定時間内における温度センサ40の測定値の経時変化から、最大温度Tmaxの時点における各発熱体30の抵抗値Rmax、及び最小温度Tminの時点における各発熱体30の抵抗値Rminを確認する。所定時間は、500秒から1000秒程度の範囲から選択する。本例での所定時間は600秒である。この所定時間内に1枚のウエハに成膜が行われる。図9は、図8の処理状態における温度変化の一部を拡大して示したものである。最小温度Tminは、成膜処理済みのウエハが取り出され、今から成膜処理を行う現ウエハが基材10上に載置されるまでの間のバレー温度である。最大温度Tmaxは現ウエハに対して成膜処理が行われている間のピーク温度である。図9では、最小温度Tminが449.4℃、最大温度Tmaxが450.3℃であることを示している。各発熱体30の抵抗値Rmax及び抵抗値Rminは、上記各時点における第一電圧を第一電流で除した値、又は上記各時点における第二電圧を第二電流で除した値である。これら最大温度Tmax、抵抗値Rmax、最小温度Tmin、及び抵抗値Rminを用いて各発熱体30の温度と抵抗値の関係式を求める。この関係式は、昇温時及び降温時で示した関係式と同様の考え方により求められる。
Method A (processing state: with heating target)
First, the resistance value Rmax of each heating element 30 at the time of the maximum temperature Tmax and the resistance value Rmin of each heating element 30 at the time of the minimum temperature Tmin are obtained from the change over time of the measured value of the temperature sensor 40 within a predetermined time of the processing state. to confirm. The predetermined time is selected from a range of about 500 seconds to 1000 seconds. The predetermined time in this example is 600 seconds. A film is formed on one wafer within this predetermined time. FIG. 9 is an enlarged view of part of the temperature change in the processing state of FIG. The minimum temperature Tmin is the valley temperature from when the film-formed wafer is taken out to when the current wafer to be film-formed is placed on the substrate 10 . The maximum temperature Tmax is the peak temperature during the film formation process on the current wafer. FIG. 9 shows that the minimum temperature Tmin is 449.4°C and the maximum temperature Tmax is 450.3°C. The resistance value Rmax and the resistance value Rmin of each heating element 30 are the values obtained by dividing the first voltage at each time point by the first current, or the values obtained by dividing the second voltage at each time point by the second current. Using these maximum temperature Tmax, resistance value Rmax, minimum temperature Tmin, and resistance value Rmin, a relational expression between the temperature and resistance value of each heating element 30 is obtained. This relational expression is obtained from the same way of thinking as the relational expressions shown when the temperature is rising and when the temperature is falling.
 上記の手法は、ウエハの処理状態における抵抗値Rmaxと最大温度Tmax並びに最小温度Tminと抵抗値Rminに基づいて関係式を求めるため、その関係式を用いて得られる第二発熱体32の温度は高精度に把握することができる。 The above method obtains a relational expression based on the resistance value Rmax, the maximum temperature Tmax, the minimum temperature Tmin, and the resistance value Rmin in the processing state of the wafer. It can be grasped with high precision.
 上記方法Aにより予備試験を行い、発熱体30の抵抗と温度との関係を求めれば、実際の成膜を模擬した温度プロファイルに基づいて上記抵抗と温度との関係が求められる。これにより、高い精度で第二発熱体32の温度を把握することができる。 If the preliminary test is performed by the method A and the relationship between the resistance and the temperature of the heating element 30 is obtained, the relationship between the resistance and the temperature can be obtained based on the temperature profile simulating the actual film formation. Thereby, the temperature of the second heating element 32 can be grasped with high accuracy.
 方法B(処理状態:加熱対象あり)
 まず、処理状態の所定時間内における各発熱体30の抵抗値の経時変化から、所定時間内の平均抵抗Raveを求める。所定時間は、例えば5000秒から10000秒程度の範囲から適宜選択する。本例では所定時間は8000秒である。この所定時間内には、10枚以上のウエハに成膜が行われている。次に、所定時間内の各発熱体30の抵抗の変化率ΔR/Rを予め設定しておく。最初に所定時間内の最大抵抗Rmax、最小抵抗Rminを求めておき、さらに最大抵抗Rmaxと最小抵抗Rminとの差分ΔR、及び差分ΔRの平均抵抗Raveに対する比率ΔR/Raveを求める。この比率ΔR/Raveを変化率ΔR/Rとする。例えば、ここでは変化率ΔR/Rを0.02とする。一方、温度センサ40の測定値についても同様に、所定時間内の平均温度Taveを求める。また、所定時間内における温度変化量ΔTを予め設定しておく。温度変化量ΔTも最初に所定時間内の最大温度Tmaxと最小温度Tminとの差分を温度変化量ΔTとして求めておく。例えば、ここでは温度変化量ΔTは0.88℃とする。比率ΔR/Rと温度変化量ΔTは、保持温度が大きく変わらなければ、発熱体30ごとにほぼ一定と考えられる。保持温度が大きく変わらないとは、例えば保持温度の変化量が100℃以下であることを言う。
Method B (processing state: with heating target)
First, the average resistance Rave within a predetermined time period is obtained from the change over time of the resistance value of each heating element 30 during the predetermined time period in the processing state. The predetermined time is appropriately selected, for example, from a range of approximately 5000 seconds to 10000 seconds. In this example, the predetermined time is 8000 seconds. Film formation is performed on 10 or more wafers within this predetermined time. Next, the rate of change ΔR/R of the resistance of each heating element 30 within a predetermined period of time is set in advance. First, the maximum resistance Rmax and the minimum resistance Rmin within a predetermined time are obtained, and then the difference ΔR between the maximum resistance Rmax and the minimum resistance Rmin and the ratio ΔR/Rave of the difference ΔR to the average resistance Rave are obtained. Let this ratio ΔR/Rave be the rate of change ΔR/R. For example, the rate of change ΔR/R is assumed to be 0.02 here. On the other hand, for the measured values of the temperature sensor 40, similarly, the average temperature Tave within a predetermined time period is obtained. Also, the amount of temperature change ΔT within a predetermined period of time is set in advance. As for the temperature change amount ΔT, the difference between the maximum temperature Tmax and the minimum temperature Tmin within a predetermined time is first obtained as the temperature change amount ΔT. For example, the temperature change amount ΔT is 0.88° C. here. The ratio ΔR/R and the amount of temperature change ΔT are considered to be substantially constant for each heating element 30 unless the holding temperature changes significantly. The fact that the holding temperature does not change greatly means that the amount of change in the holding temperature is 100° C. or less, for example.
 次回以降の成膜においては、各発熱体30の平均抵抗Raveと平均温度Taveとを求めればよい。つまり、次回以降における最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminは、次のように求める。
 ΔR=Rave×0.02
 最大抵抗Rmax=Rave+ΔR/2
 最小抵抗Rmin=Rave-ΔR/2
 最大温度Tmax=Tave+ΔT/2
 最小温度Tmin=Tave-ΔT/2
In subsequent film formation, the average resistance Rave and the average temperature Tave of each heating element 30 may be obtained. That is, the maximum resistance Rmax, the minimum resistance Rmin, the maximum temperature Tmax, and the minimum temperature Tmin from the next time onward are obtained as follows.
ΔR = Rave x 0.02
Maximum resistance Rmax=Rave+ΔR/2
Minimum resistance Rmin=Rave-ΔR/2
Maximum temperature Tmax=Tave+ΔT/2
Minimum temperature Tmin=Tave-ΔT/2
 このように、1回目の成膜前には、事前に最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminを求める必要がある。しかし、2回目以降の成膜時には、既知である抵抗変化率ΔR/R及び温度変化量ΔTを用いて最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminを求めることができる。これらの各パラメータが求められれば、その発熱体30の抵抗と温度の相関関係を求めることができる。 Thus, before the first film formation, it is necessary to obtain the maximum resistance Rmax, minimum resistance Rmin, maximum temperature Tmax, and minimum temperature Tmin in advance. However, for the second and subsequent film formations, the maximum resistance Rmax, minimum resistance Rmin, maximum temperature Tmax, and minimum temperature Tmin can be obtained using known resistance change rate ΔR/R and temperature change amount ΔT. Once these parameters are determined, the correlation between the resistance and temperature of the heating element 30 can be determined.
 上記方法Bにより予備試験を行い、発熱体30の抵抗と温度との関係を求めれば、2回目以降のヒータ制御装置1の運転時、実際に最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminを測定する必要がない。そのため、より簡便に第二発熱体32の温度を求めることができる。 If the preliminary test is performed by the above method B and the relationship between the resistance and the temperature of the heating element 30 is obtained, the maximum resistance Rmax, the minimum resistance Rmin, the maximum temperature Tmax, the minimum There is no need to measure the temperature Tmin. Therefore, the temperature of the second heating element 32 can be obtained more easily.
 方法C(アイドル状態:加熱対象なし)
 まず、アイドル状態の所定時間内における各発熱体30の抵抗値の経時変化から、所定時間内の平均抵抗Raveを求める。所定時間は、例えば5000秒から10000秒程度の範囲から適宜選択する。本例では所定時間は10000秒である。次に、所定時間内の各発熱体30の抵抗の変化率ΔR/Rを予め設定しておく。最初に所定時間内の最大抵抗Rmax、最小抵抗Rminを求めておき、さらに最大抵抗Rmaxと最小抵抗Rminとの差分ΔR、及び差分ΔRの平均抵抗Raveに対する比率ΔR/Raveを求める。このΔR/Raveを抵抗変化率ΔR/Rとする。例えば、ここでは変化率ΔR/Rを0.02とする。一方、温度センサ40の測定値についても同様に、所定時間内の平均温度Taveを求める。また、所定時間内における温度変化量ΔTを予め設定しておく。温度変化量ΔTも最初に所定時間内の最大温度Tmaxと最小温度Tminとの差分を温度変化量ΔTとして求めておく。例えば、ここでは温度変化量ΔTは0.88℃とする。比率ΔR/Rと温度変化量ΔTは、保持温度が大きく変わらなければ、発熱体30ごとにほぼ一定と考えられる。保持温度が大きく変わらないとは、例えば保持温度の変化量が100℃以下であることを言う。
Method C (idle state: no object to be heated)
First, an average resistance Rave within a predetermined period of time is obtained from the change over time of the resistance value of each heating element 30 within a predetermined period of time in the idle state. The predetermined time is appropriately selected, for example, from a range of approximately 5000 seconds to 10000 seconds. In this example, the predetermined time is 10000 seconds. Next, the rate of change ΔR/R of the resistance of each heating element 30 within a predetermined period of time is set in advance. First, the maximum resistance Rmax and the minimum resistance Rmin within a predetermined time are obtained, and then the difference ΔR between the maximum resistance Rmax and the minimum resistance Rmin and the ratio ΔR/Rave of the difference ΔR to the average resistance Rave are obtained. This ΔR/Rave is defined as the resistance change rate ΔR/R. For example, the rate of change ΔR/R is assumed to be 0.02 here. On the other hand, for the measured values of the temperature sensor 40, similarly, the average temperature Tave within a predetermined time period is obtained. Also, the amount of temperature change ΔT within a predetermined period of time is set in advance. As for the temperature change amount ΔT, the difference between the maximum temperature Tmax and the minimum temperature Tmin within a predetermined time is first obtained as the temperature change amount ΔT. For example, the temperature change amount ΔT is 0.88° C. here. The ratio ΔR/R and the amount of temperature change ΔT are considered to be substantially constant for each heating element 30 unless the holding temperature changes significantly. The fact that the holding temperature does not change greatly means that the amount of change in the holding temperature is 100° C. or less, for example.
 次回以降の成膜においては、各発熱体30の平均抵抗Raveと平均温度Taveとを求めればよい。つまり、次回以降における最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminは、次のように求める。
 ΔR=Rave×0.02
 最大抵抗Rmax=Rave+ΔR/2
 最小抵抗Rmin=Rave-ΔR/2
 最大温度Tmax=Tave+ΔT/2
 最小温度Tmin=Tave-ΔT/2
In subsequent film formation, the average resistance Rave and the average temperature Tave of each heating element 30 may be obtained. That is, the maximum resistance Rmax, the minimum resistance Rmin, the maximum temperature Tmax, and the minimum temperature Tmin from the next time onward are obtained as follows.
ΔR = Rave x 0.02
Maximum resistance Rmax=Rave+ΔR/2
Minimum resistance Rmin=Rave-ΔR/2
Maximum temperature Tmax=Tave+ΔT/2
Minimum temperature Tmin=Tave-ΔT/2
 このように、1回目の成膜前には、事前に最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminを求める必要がある。しかし、2回目以降の成膜時には、既知である抵抗変化率ΔR/R及び温度変化量ΔTを用いて最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminを求めることができる。しかも、アイドル状態で加熱対象Wのない場合において取得した係数に基づいて第二発熱体32の温度を求められるため、係数を求めるのに際し、ウエハを用意する必要もない。また、予備試験時に、ウエハを成膜して係数を求める場合に比べて、ウエハの浪費を削減できる。これらの各パラメータが求められれば、その発熱体30の抵抗と温度の相関関係を求めることができる。 Thus, before the first film formation, it is necessary to obtain the maximum resistance Rmax, minimum resistance Rmin, maximum temperature Tmax, and minimum temperature Tmin in advance. However, for the second and subsequent film formations, the maximum resistance Rmax, minimum resistance Rmin, maximum temperature Tmax, and minimum temperature Tmin can be obtained using known resistance change rate ΔR/R and temperature change amount ΔT. Moreover, since the temperature of the second heating element 32 can be obtained based on the coefficient obtained when there is no object W to be heated in the idle state, there is no need to prepare a wafer when obtaining the coefficient. In addition, waste of wafers can be reduced compared to the case of obtaining coefficients by forming films on wafers during the preliminary test. Once these parameters are determined, the correlation between the resistance and temperature of the heating element 30 can be determined.
 上記方法Cにより予備試験を行い、発熱体30の抵抗と温度との関係を求めれば、2回目以降のヒータ制御装置1の運転時、実際に最大抵抗Rmax、最小抵抗Rmin、最大温度Tmax、最小温度Tminを測定する必要がない。そのため、より簡便に第二発熱体32の温度を求めることができる。 If the preliminary test is performed by the above method C and the relationship between the resistance and the temperature of the heating element 30 is obtained, the maximum resistance Rmax, the minimum resistance Rmin, the maximum temperature Tmax, the minimum There is no need to measure the temperature Tmin. Therefore, the temperature of the second heating element 32 can be obtained more easily.
 上記ヒータ制御装置は、第二発熱体32に温度センサ40を設けることなく、第二発熱体32に対応するゾーンの温度を把握できる。第一発熱体31の温度は、温度センサ40により検出される。第一発熱体31に供給される第一電力は、温度センサ40の検出温度に基づいて制御される。一方、第二発熱体32に供給される第二電力は、第一電力に対して予め設定された比率となるように制御される。また、第二発熱体32の温度は、第二電流センサ52の測定値に基づいて演算器65により求められる。そのため、第二発熱体32の温度を検出する温度センサがなくても第二発熱体32の温度を把握できる。 The heater control device can grasp the temperature of the zone corresponding to the second heating element 32 without providing the temperature sensor 40 on the second heating element 32 . A temperature sensor 40 detects the temperature of the first heating element 31 . The first electric power supplied to the first heating element 31 is controlled based on the temperature detected by the temperature sensor 40 . On the other hand, the second electric power supplied to the second heating element 32 is controlled to have a preset ratio to the first electric power. Also, the temperature of the second heating element 32 is obtained by the calculator 65 based on the measured value of the second current sensor 52 . Therefore, the temperature of the second heating element 32 can be grasped without a temperature sensor for detecting the temperature of the second heating element 32 .
 第二電力は、位相制御方式により制御されるため、高精度に制御することができる。その結果、第二発熱体32の温度も高精度に把握することができる。 Because the second power is controlled by the phase control method, it can be controlled with high precision. As a result, the temperature of the second heating element 32 can also be grasped with high accuracy.
 第一発熱体31及び第二発熱体32は第一電力及び第二電力により制御される。電力比率による制御は、電流比率による制御に比べて各発熱体30の自己発熱による抵抗値の変化の影響を受けにくい。この点からも第二発熱体32の温度を正確に把握できる。 The first heating element 31 and the second heating element 32 are controlled by the first electric power and the second electric power. Control based on the power ratio is less susceptible to changes in resistance value due to self-heating of each heating element 30 than control based on the current ratio. From this point as well, the temperature of the second heating element 32 can be accurately grasped.
 [実施形態2]
 次に、実施形態2を図10に基づいて説明する。実施形態1では、第二発熱体32の温度である第二温度を把握したり、第二温度が異常な温度となることを監視したりできる。これに対し、実施形態2では、上述した比率を変えることにより第二電力を制御することで、第二発熱体32の温度を制御することができる。以下、主に実施形態1との相違点について説明を行い、実施形態1との共通点の説明は省略する。
[Embodiment 2]
Next, Embodiment 2 will be described based on FIG. In Embodiment 1, the second temperature, which is the temperature of the second heating element 32, can be grasped, and the abnormal temperature of the second temperature can be monitored. In contrast, in the second embodiment, the temperature of the second heating element 32 can be controlled by controlling the second electric power by changing the ratio described above. Differences from the first embodiment will be mainly described below, and descriptions of common points with the first embodiment will be omitted.
 実施形態2では、実施形態1の構成に加え、さらに第二温度調節器62を備えている。第二温度調節器62は、第二温度が目標温度に近づくように、上記比率を調整するための第二制御信号を出力する。この比率を調整するための制御もPID制御を利用することができる。第二制御信号に応じて、第二電力制御器64は、第二電力を求めるための比率を調整する。上記比率が第一電力:第二電力=1.0:0.8であったが、第二温度が目標温度よりも低い場合、第二電力を上げる必要がある。その場合、例えば、第一電力:第二電力=1.0:0.81に変更する。逆に第二温度が目標温度よりも高い場合、第二電力を下げる必要がある。その場合、例えば、第一電力:第二電力=1.0:0.79に変更する。この比率の変動幅は適宜設定できるが、変更前の第二電力の比率の5%以内程度とすることが好ましい。上記の例であれば、変更前の第二電力の比率は0.8なので、変更後の第二電力の比率は0.76から0.84までの間で変更する。この比率の変動幅を逸脱するような電力の変動が起こった場合は、図示しない警報装置によってユーザに警報を発する。この警報により、ユーザは異常を検知して適宜対処することが可能となる。 In addition to the configuration of Embodiment 1, Embodiment 2 further includes a second temperature controller 62 . The second temperature controller 62 outputs a second control signal for adjusting the ratio so that the second temperature approaches the target temperature. Control for adjusting this ratio can also utilize PID control. In response to the second control signal, second power controller 64 adjusts the ratio for determining the second power. Although the above ratio is first power:second power=1.0:0.8, if the second temperature is lower than the target temperature, the second power needs to be increased. In that case, for example, the first power:second power is changed to 1.0:0.81. Conversely, when the second temperature is higher than the target temperature, it is necessary to lower the second power. In that case, for example, the first power:second power is changed to 1.0:0.79. The fluctuation range of this ratio can be set as appropriate, but it is preferably within about 5% of the ratio of the second power before the change. In the above example, the second power ratio before change is 0.8, so the second power ratio after change is changed between 0.76 and 0.84. If the power fluctuates outside the fluctuation range of this ratio, an alarm device (not shown) issues an alarm to the user. This warning enables the user to detect an abnormality and take appropriate measures.
 実施形態2における処理手順を図11に基づいて説明する。この処理手順は、図5のステップS3に続いて行われる。ステップS21では、第二温度調節器62により、第二温度が目標温度に近づくように、上記比率を調整するための第二制御信号を出力する。ステップS22では、演算器65により、調整された比率に応じた第二電力を演算する。そして、第二電力が第二電力制御器64より第二発熱体32に出力される。 The processing procedure in Embodiment 2 will be described based on FIG. This processing procedure is performed following step S3 in FIG. In step S21, the second temperature controller 62 outputs a second control signal for adjusting the ratio so that the second temperature approaches the target temperature. In step S22, the calculator 65 calculates the second power according to the adjusted ratio. Second power is then output from the second power controller 64 to the second heating element 32 .
 実施形態2のヒータ制御装置1によれば、第二発熱体32の第二温度を外部出力部70に表示したりするだけでなく、第二発熱体32を温度制御することができる。 According to the heater control device 1 of Embodiment 2, not only can the second temperature of the second heating element 32 be displayed on the external output unit 70, but also the temperature of the second heating element 32 can be controlled.
 [実施形態3]
 次に、実施形態3を説明する。実施形態3では、第二温度と第一温度との差が可及的にゼロになるように、第二電力を求めるための比率を制御する。実施形態3の装置構成は図10で説明される実施形態2の装置構成とほぼ同じである。実施形態3では、第二温度調節器62の代わりに第三温度調節器62aを備えている。実施形態2では、温度センサ40で測定した温度Tsを第一発熱体31自体の温度Thとみなして第一温度としている。つまり、厳密には第一発熱体31の温度Thは温度センサ40で測定される温度Tsとは異なる。これは、温度Tsには、第一発熱体31自身の発熱による温度上昇分が過渡的に含まれるためである。
[Embodiment 3]
Next, Embodiment 3 will be described. In Embodiment 3, the ratio for obtaining the second power is controlled so that the difference between the second temperature and the first temperature is as zero as possible. The device configuration of Embodiment 3 is substantially the same as the device configuration of Embodiment 2 described in FIG. In Embodiment 3, instead of the second temperature controller 62, a third temperature controller 62a is provided. In the second embodiment, the temperature Ts measured by the temperature sensor 40 is regarded as the temperature Th of the first heating element 31 itself and set as the first temperature. That is, strictly speaking, the temperature Th of the first heating element 31 is different from the temperature Ts measured by the temperature sensor 40 . This is because the temperature Ts transiently includes a temperature rise caused by the heat generated by the first heating element 31 itself.
 より精密に各発熱体30の温度分布を制御するためには、第一温度及び第二温度には、発熱体30の自己発熱による微小な温度上昇分が含まれることを考慮する必要がある。そこで、第二温度と第一温度との差を第一面10a内の温度分布の差とみなす。また、厳密には、第一温度と第二温度はそれぞれ異なる目標温度がある。第三温度調節器62aは、上記温度分布の差が第二温度と第一温度のそれぞれの目標温度の差になるように上記比率を調整するための第三制御信号を出力する。第二電力制御器64は、上記第三制御信号により調整された上記比率に応じて第二電力を制御する。この第二電力の制御により、さらに精密な各発熱体30の温度制御が可能になる。実施形態2と同様に、この比率の変動幅を逸脱するような電力の変動が起こった場合は、図示しない警報装置によってユーザに警報を発する。この警報により、ユーザは異常を検知して適宜対処することが可能となる。 In order to control the temperature distribution of each heating element 30 more precisely, it is necessary to consider that the first temperature and the second temperature include a small temperature rise due to self-heating of the heating element 30 . Therefore, the difference between the second temperature and the first temperature is regarded as the difference in temperature distribution within the first surface 10a. Strictly speaking, the first temperature and the second temperature have different target temperatures. The third temperature adjuster 62a outputs a third control signal for adjusting the ratio so that the difference in temperature distribution becomes the difference between the target temperatures of the second temperature and the first temperature. A second power controller 64 controls the second power according to the ratio adjusted by the third control signal. This control of the second power enables more precise temperature control of each heating element 30 . As in the second embodiment, if the power fluctuates outside the fluctuation range of this ratio, an alarm device (not shown) issues an alarm to the user. This warning enables the user to detect an abnormality and take appropriate measures.
 [変形例1]
 図12、図13に基づいて、変形例1を説明する。変形例1は実施形態1から実施形態3のいずれにおいても適用できる構成である。変形例1では、基材10において独立して温度制御されるゾーンが6つある。つまり、基材10には、基材10の中央部に位置する円形の内側領域10i、内側領域10iの外側に位置する中間領域10m、中間領域10mの外側に位置する外側領域10eが設けられている。さらに、変形例1では外側領域10eが基材10の周方向に分割されている。分割された外側領域10eに設けられる第二発熱体32の数は複数であればよい。本例での分割数は4つである。外側領域10eの各ゾーンは環状の領域を4等分した扇形のゾーンである。4等分された外側領域10eの各ゾーンには各々第二発熱体32が配置されている。つまり、内側領域10iには第一発熱体31が、中間領域10mには一つの第二発熱体32が、外側領域10eには4つの第二発熱体32が設けられている。各発熱体30は供給される電力を独立して制御できる。そして、各々の発熱体30につながる各電力線30cに図示しない電流センサが設けられている。
[Modification 1]
Modification 1 will be described with reference to FIGS. 12 and 13. FIG. Modification 1 is a configuration that can be applied to any of Embodiments 1 to 3. FIG. In variant 1, there are six independently temperature-controlled zones in the substrate 10 . That is, the base material 10 is provided with a circular inner region 10i positioned in the center of the base material 10, an intermediate region 10m positioned outside the inner region 10i, and an outer region 10e positioned outside the intermediate region 10m. there is Furthermore, in Modification 1, the outer region 10 e is divided in the circumferential direction of the base material 10 . The number of the second heating elements 32 provided in the divided outer region 10e may be plural. The number of divisions in this example is four. Each zone of the outer region 10e is a fan-shaped zone obtained by dividing the annular region into four equal parts. A second heating element 32 is arranged in each zone of the outer region 10e divided into four equal parts. That is, a first heat generating element 31 is provided in the inner area 10i, one second heat generating element 32 is provided in the intermediate area 10m, and four second heat generating elements 32 are provided in the outer area 10e. Each heating element 30 can independently control the power supplied. A current sensor (not shown) is provided on each power line 30c connected to each heating element 30. As shown in FIG.
 変形例1のヒータ制御装置1によれば、第二電力制御器64を用いることで、実施形態1や実施形態2よりも多くの発熱体30を用いて基材10の均熱化を実現できる。 According to the heater control device 1 of Modified Example 1, by using the second power controller 64, it is possible to achieve uniform heating of the substrate 10 using more heating elements 30 than in Embodiments 1 and 2. .
 [変形例2]
 図14に基づいて変形例2を説明する。変形例2は実施形態1の変形例であり、第一発熱体31と第二発熱体32とを絶縁した構成である。
[Modification 2]
Modification 2 will be described based on FIG. Modification 2 is a modification of Embodiment 1, and has a configuration in which the first heating element 31 and the second heating element 32 are insulated.
 図14に示すように、変形例2では、第一発熱体31と電源との間及び第二発熱体32と電源との間にそれぞれ第一トランス81と第二トランス82とが設けられている。つまり、第一トランス81と第二トランス82の一次側は電源から分岐された電力線につながっている。一方、第一トランス81と第二トランス82の二次側は互いに独立した電力線30cにつながっている。そのため、第一発熱体31と第二発熱体32とは互いに絶縁されている。 As shown in FIG. 14, in modification 2, a first transformer 81 and a second transformer 82 are provided between the first heating element 31 and the power supply and between the second heating element 32 and the power supply, respectively. . That is, the primary sides of the first transformer 81 and the second transformer 82 are connected to the power line branched from the power supply. On the other hand, the secondary sides of the first transformer 81 and the second transformer 82 are connected to power lines 30c independent of each other. Therefore, the first heating element 31 and the second heating element 32 are insulated from each other.
 変形例2によれば、実施形態1と同様の効果に加え、第一発熱体31と第二発熱体32とをより確実に絶縁することができる。 According to Modification 2, in addition to the same effects as Embodiment 1, the first heating element 31 and the second heating element 32 can be more reliably insulated.
 [変形例3]
 図15に基づいて変形例3を説明する。変形例3は実施形態2又は実施形態3の変形例であり、第一発熱体31と第二発熱体32とを絶縁した構成である。
 図15に示すように、変形例3では、第一発熱体31と電源との間及び第二発熱体32と電源との間にそれぞれ第一トランス81と第二トランス82とが設けられている。つまり、第一トランス81と第二トランス82の一次側は電源から分岐された電力線につながっている。一方、第一トランス81と第二トランス82の二次側は互いに独立した電力線30cにつながっている。そのため、第一発熱体31と第二発熱体32とは互いに絶縁されている。
[Modification 3]
Modification 3 will be described with reference to FIG. Modification 3 is a modification of Embodiment 2 or Embodiment 3, and has a configuration in which the first heating element 31 and the second heating element 32 are insulated.
As shown in FIG. 15, in Modification 3, a first transformer 81 and a second transformer 82 are provided between the first heating element 31 and the power supply and between the second heating element 32 and the power supply, respectively. . That is, the primary sides of the first transformer 81 and the second transformer 82 are connected to the power line branched from the power supply. On the other hand, the secondary sides of the first transformer 81 and the second transformer 82 are connected to power lines 30c independent of each other. Therefore, the first heating element 31 and the second heating element 32 are insulated from each other.
 変形例3によれば、実施形態2又は実施形態3と同様の効果に加え、第一発熱体31と第二発熱体32とをより確実に絶縁することができる。 According to Modification 3, in addition to the same effect as Embodiment 2 or Embodiment 3, the first heating element 31 and the second heating element 32 can be more reliably insulated.
 なお、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be noted that the embodiments disclosed this time are illustrative in all respects and should not be considered restrictive. The present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include equivalent meanings and all modifications within the scope of the scope of the claims.
1 ヒータ制御装置
10 基材
10a 第一面
10b 第二面
10i 内側領域
10m 中間領域
10e 外側領域
20 支持体
21 フランジ部
30 発熱体
31 第一発熱体
32 第二発熱体
30t 端子
30c 電力線
40 温度センサ
50 電流センサ
51 第一電流センサ
52 第二電流センサ
60 制御器
61 第一温度調節器
62 第二温度調節器
62a 第三温度調節器
63 第一電力制御器
64 第二電力制御器
65 演算器
66 メモリ
70 外部出力部
80 トランス
81 第一トランス
82 第二トランス
W 加熱対象
w 幅
θ 操作位相角

 
1 heater control device 10 substrate 10a first surface 10b second surface 10i inner region 10m intermediate region 10e outer region 20 support 21 flange 30 heating element 31 first heating element 32 second heating element 30t terminal 30c power line 40 temperature sensor 50 Current sensor 51 First current sensor 52 Second current sensor 60 Controller 61 First temperature controller 62 Second temperature controller 62a Third temperature controller 63 First power controller 64 Second power controller 65 Computer 66 Memory 70 External output unit 80 Transformer 81 First transformer 82 Second transformer W Heating target w Width θ Operation phase angle

Claims (8)

  1.  円板状の形状を有する基材と、
     前記基材に同軸状に取り付けられた筒状の支持体と、
     前記基材の中心を含む領域に配置された第一発熱体と、
     前記第一発熱体と同心状に配置された少なくとも一つの第二発熱体と、
     前記第一発熱体の第一温度を測定する温度センサと、
     前記少なくとも一つの第二発熱体に供給される電流を測定する少なくとも一つの電流センサと、
     前記第一温度が目標温度に近づくように第一制御信号を出力する第一温度調節器と、
     前記第一制御信号に応じて前記第一発熱体に供給される第一電力を制御する第一電力制御器と、
     前記第二発熱体に供給される第二電力を制御する第二電力制御器と、
     前記第二発熱体の温度を求める演算器とを備え、
     前記基材は、加熱対象が載置される第一面と、前記第一面と向かい合う第二面とを有し、
     前記筒状の支持体は、前記第二面に取り付けられ、
     前記温度センサは、前記筒状の支持体の内側に配置され、
     前記第二電力制御器は、前記第一電力に対して予め設定された比率となるように前記第二電力を位相制御方式により制御し、
     前記演算器は、前記少なくとも一つの電流センサの測定値に基づいて前記第二発熱体の温度を求める、
    ヒータ制御装置。
    a substrate having a disk-like shape;
    a cylindrical support coaxially attached to the substrate;
    a first heating element arranged in a region including the center of the base material;
    at least one second heating element arranged concentrically with the first heating element;
    a temperature sensor that measures the first temperature of the first heating element;
    at least one current sensor measuring the current supplied to the at least one second heating element;
    a first temperature regulator that outputs a first control signal so that the first temperature approaches a target temperature;
    a first power controller that controls the first power supplied to the first heating element according to the first control signal;
    a second power controller that controls the second power supplied to the second heating element;
    A calculator for obtaining the temperature of the second heating element,
    The base material has a first surface on which a heating target is placed and a second surface facing the first surface,
    The tubular support is attached to the second surface,
    The temperature sensor is arranged inside the tubular support,
    The second power controller controls the second power by a phase control method so as to achieve a preset ratio with respect to the first power,
    The computing unit obtains the temperature of the second heating element based on the measured value of the at least one current sensor;
    heater controller.
  2.  前記演算器は、前記第一温度、前記第二発熱体の第二電圧、及び予め定めた係数を用いて前記第二発熱体の温度を演算し、
     前記係数は、前記第二発熱体の抵抗と前記第二発熱体の温度との関係を表す係数である、請求項1に記載のヒータ制御装置。
    The calculator calculates the temperature of the second heating element using the first temperature, the second voltage of the second heating element, and a predetermined coefficient,
    2. The heater control device according to claim 1, wherein said coefficient is a coefficient representing the relationship between the resistance of said second heating element and the temperature of said second heating element.
  3.  前記係数は、予め定めた複数の係数から前記第一温度に応じて選択された係数である、請求項2に記載のヒータ制御装置。 The heater control device according to claim 2, wherein the coefficient is selected from a plurality of predetermined coefficients according to the first temperature.
  4.  前記複数の係数は、前記第一発熱体及び前記第二発熱体の昇温時、温度保持時、及び降温時で異なる、請求項3に記載のヒータ制御装置。 4. The heater control device according to claim 3, wherein the plurality of coefficients are different when the temperature of the first heating element and the second heating element is increased, when the temperature is maintained, and when the temperature is decreased.
  5.  前記係数は、前記温度保持時に、前記第一面に前記加熱対象が載置されていない状態で測定された前記第一温度に基づいて求められる、請求項4に記載のヒータ制御装置。 5. The heater control device according to claim 4, wherein said coefficient is obtained based on said first temperature measured in a state in which said object to be heated is not placed on said first surface when said temperature is maintained.
  6.  前記第二発熱体の温度及び前記第二発熱体の温度が適正範囲にあるか否かの判定結果の少なくとも一方を表示又は外部装置に送信する外部出力部を備える、請求項1から請求項5のいずれか1項に記載のヒータ制御装置。 6. An external output unit that displays or transmits at least one of the temperature of the second heating element and the determination result as to whether or not the temperature of the second heating element is within an appropriate range to an external device. The heater control device according to any one of Claims 1 to 3.
  7.  さらに第二温度調節器を備え、
     前記第二温度調節器は、前記第二発熱体の温度が目標温度に近づくように前記比率を調整するための第二制御信号を出力し、
     前記第二電力制御器は、前記第二制御信号により調整された前記比率に応じて前記第二電力を制御する、請求項1から請求項6のいずれか1項に記載のヒータ制御装置。
    Further equipped with a second temperature controller,
    The second temperature controller outputs a second control signal for adjusting the ratio so that the temperature of the second heating element approaches the target temperature;
    The heater control device according to any one of claims 1 to 6, wherein said second power controller controls said second power according to said ratio adjusted by said second control signal.
  8.  さらに第三温度調節器を備え、
     前記第三温度調節器は、前記第二発熱体の温度と前記第一温度との差が前記第二発熱体の温度と第一温度のそれぞれの目標温度の差になるように前記比率を調整するための第三制御信号を出力し、
     前記第二電力制御器は、前記第三制御信号により調整された前記比率に応じて前記第二電力を制御する、請求項1から請求項6のいずれか1項に記載のヒータ制御装置。

     
    Further equipped with a third temperature controller,
    The third temperature controller adjusts the ratio so that the difference between the temperature of the second heating element and the first temperature is the difference between the target temperatures of the second heating element and the first temperature. output a third control signal for
    The heater control device according to any one of claims 1 to 6, wherein said second power controller controls said second power according to said ratio adjusted by said third control signal.

PCT/JP2021/047141 2021-01-29 2021-12-20 Heater control device WO2022163214A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022578150A JPWO2022163214A1 (en) 2021-01-29 2021-12-20
KR1020237025655A KR20230124728A (en) 2021-01-29 2021-12-20 heater control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-012977 2021-01-29
JP2021012977 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163214A1 true WO2022163214A1 (en) 2022-08-04

Family

ID=82654454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047141 WO2022163214A1 (en) 2021-01-29 2021-12-20 Heater control device

Country Status (3)

Country Link
JP (1) JPWO2022163214A1 (en)
KR (1) KR20230124728A (en)
WO (1) WO2022163214A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235886A (en) * 1998-12-14 2000-08-29 Tokyo Electron Ltd Temperature controlling device and temperature controlling method for heating means
JP2009074148A (en) * 2007-09-21 2009-04-09 Tokyo Electron Ltd Film deposition system
WO2012165174A1 (en) * 2011-06-01 2012-12-06 シャープ株式会社 Device and method for detecting degradation of resistance heating heater
JP2020506539A (en) * 2017-01-20 2020-02-27 ラム リサーチ コーポレーションLam Research Corporation Virtual measurement method for ESC temperature estimation using thermal control element
US20200255945A1 (en) * 2018-05-07 2020-08-13 Lam Research Corporation Use of voltage and current measurements to control dual zone ceramic pedestals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235886A (en) * 1998-12-14 2000-08-29 Tokyo Electron Ltd Temperature controlling device and temperature controlling method for heating means
JP2009074148A (en) * 2007-09-21 2009-04-09 Tokyo Electron Ltd Film deposition system
WO2012165174A1 (en) * 2011-06-01 2012-12-06 シャープ株式会社 Device and method for detecting degradation of resistance heating heater
JP2020506539A (en) * 2017-01-20 2020-02-27 ラム リサーチ コーポレーションLam Research Corporation Virtual measurement method for ESC temperature estimation using thermal control element
US20200255945A1 (en) * 2018-05-07 2020-08-13 Lam Research Corporation Use of voltage and current measurements to control dual zone ceramic pedestals

Also Published As

Publication number Publication date
JPWO2022163214A1 (en) 2022-08-04
KR20230124728A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
KR101781032B1 (en) Multi-zone resistive heating apparatus, reactor incorporating the multi-zone resistive heating apparatus, heating system for a chemical vapor deposition apparatus, and method for resistive heating of substrate
KR940010643B1 (en) Mehtod of and apparatus for controlling temperature in the processing of a substrate
US6579731B2 (en) Temperature measuring method and apparatus in semiconductor processing apparatus, and semiconductor processing method and apparatus
KR100762157B1 (en) Temperature controlling method, thermal treating apparatus, and method of manufacturing semiconductor device
JP4495340B2 (en) Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
US10337904B2 (en) Apparatus and method for determining flow of a medium
US9892941B2 (en) Multi-zone resistive heater
US20210263542A1 (en) Dynamic calibration of a control system controlling a heater
US20210368584A1 (en) Passive and active calibration methods for a resistive heater
WO2022163214A1 (en) Heater control device
WO2023112233A1 (en) Heater control device and power control method
JP2860144B2 (en) Plate temperature measuring device
TW202209528A (en) Methods and systems for temperature control for a substrate
JP2004233120A (en) Instrument and method for measuring temperature
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
TW201814253A (en) Fluid sensor, fluid control device provided with fluid sensor, and adjustment method
US20230376055A1 (en) Substrate supporting unit and temperature control method thereof
JPH0463276A (en) Method for measuring temperature of material to be treated in vacuum, method and device for controlling temperature
JPH03252127A (en) Temperature control method for vapor growth device
JPH04183862A (en) Heater of base plate
JPS63317725A (en) Method for measuring flow rate of liquid
HU189753B (en) Method and arangement for stabilizing temperature distribution and temperature of the electric oven

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578150

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237025655

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923217

Country of ref document: EP

Kind code of ref document: A1