WO2022154230A1 - Liquid adsorbent for carbon dioxide capture and manufacturing method therefor - Google Patents

Liquid adsorbent for carbon dioxide capture and manufacturing method therefor Download PDF

Info

Publication number
WO2022154230A1
WO2022154230A1 PCT/KR2021/016186 KR2021016186W WO2022154230A1 WO 2022154230 A1 WO2022154230 A1 WO 2022154230A1 KR 2021016186 W KR2021016186 W KR 2021016186W WO 2022154230 A1 WO2022154230 A1 WO 2022154230A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
carbon dioxide
organic solvent
carbon nanotubes
liquid adsorbent
Prior art date
Application number
PCT/KR2021/016186
Other languages
French (fr)
Korean (ko)
Inventor
강용태
이재원
김민재
김성곤
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2022154230A1 publication Critical patent/WO2022154230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/292Liquid sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a liquid adsorbent for capturing carbon dioxide and a method for preparing the same.
  • the present invention is a group research support (R & D) of the Ministry of Science and ICT (Project Unique Number: 1711119436, Research Management Specialized Organization: National Research Foundation of Korea, Research Project Name: Plus Energy Building Innovation Technology Research Center, Hosted by: Korea University Industry-Academic Cooperation Foundation, It is derived from research conducted as part of the research period: 2020.07.01 ⁇ 2021.05.31, contribution rate: 1/2).
  • the present invention relates to the establishment of science and engineering research base (R & D) by the Ministry of Education (Project unique number: 1345324054, research management institution: National Research Foundation of Korea, research project name: Nano-absorbent/adsorbent development for carbon dioxide reduction in confined spaces in buildings , Host institution: Korea University Industry-University Cooperation Foundation, research period: 2020.09.01 ⁇ 2021.08.31, contribution rate: 1/2).
  • conventional carbon dioxide reduction techniques include a physical absorption method, a chemical absorption method, an adsorption method, a membrane method, a deep cooling method, and the like.
  • water or activated carbon as an adsorbent was used because it was necessary to examine the harmfulness to the human body in the indoor space.
  • the water has a problem in that it is difficult to use in a quiet place due to the noise generated during falling water, and it is difficult to use it adjacent to the room due to the low capacity of the water and the low carbon capture performance.
  • activated carbon which is an adsorbent
  • has a main principle of capturing carbon dioxide through pores on the surface there is a problem in that carbon dioxide is not properly captured when moisture or fine dust contained in the air is collected in the pores.
  • the activated carbon is synthesized and manufactured in a solid shape to fit the air purifier, there is also a problem that the structure of the air purifier needs to be changed when the structure is changed.
  • the absorption method is a typical method used in large-capacity facilities, but the existing absorbents are methanol and amine-based solutions, and depending on the absorbent, there is a disadvantage that it cannot be used in places where there are people indoors, such as odor, corrosion, fire risk, and toxicity.
  • Patent Document 1 Republic of Korea Patent Registration 10-1635095 (2016.06.24)
  • Patent Document 2 Republic of Korea Patent Registration 10-1572967 (2015.11.24)
  • Patent Document 3 Republic of Korea Patent Publication 10-2015-0064978 (2015.06.12)
  • Patent Document 4 US Registered Patent 9844766 (2017.12.19)
  • An object of the present invention which has been devised to solve the above-described problems, is that it is possible to capture carbon dioxide as well as release the captured carbon dioxide through heating, so that it is possible to reuse a liquid adsorbent for capturing carbon dioxide and a method for manufacturing the same is to provide
  • an object of the present invention is that since the basic skeleton is in the form of carbon nanotubes, it can be applied using the adhesive properties of the adsorbent, and the liquid adsorbent is composed of a lipophilic component, so carbon dioxide can be used without being affected by humidity. It is to provide a liquid adsorbent for collection and a method for manufacturing the same.
  • the dispersion stabilizer is heated to 30 to 42° C. to dissolve it, and then the carbon nanotubes are added.
  • the carbon nanotubes added in the dispersing step are added in a weight ratio of 1:1 with the dispersion stabilizer.
  • the organic solvent removing step when heating the second mixture, characterized in that 100 ⁇ 120 °C.
  • the carbon nanotubes are multi-walled carbon nanotubes
  • the second mixture is mixed using a mechanical stirrer so that the concentration of the multi-walled carbon nanotubes is 1 to 10 wt%.
  • the dispersion stabilizer is an anionic surfactant, a cationic surfactant, a cationic surfactant, a nonionic surfactant, or a mixture stabilizer thereof.
  • the organic solvent is methanol, ethanol, butyl alcohol, acetone, ethyl acetic acid, hexane, benzene, ether, ethyl ether, chloroform, dichloromethane, xylene, glycerin, or a mixed solvent thereof.
  • the oil is characterized in that it is mineral oil, synthetic oil, silicone oil, vegetable oil, or a mixed oil thereof.
  • the present invention provides a liquid adsorbent for capturing carbon dioxide prepared by the manufacturing method as described above.
  • the effect of the present invention as described above is, by manufacturing the liquid adsorbent, it is possible not only to capture carbon dioxide, but also to release the captured carbon dioxide through heating. can provide
  • the effect of the present invention is that, as the basic skeleton is in the form of carbon nanotubes, it can be applied using the adhesive properties of the adsorbent, and the liquid adsorbent is made of a lipophilic component, so carbon dioxide can be used without being affected by humidity.
  • a liquid adsorbent for trapping and a method for making the same can be provided.
  • FIG. 1 is a photograph showing a liquid adsorbent for capturing carbon dioxide according to a preferred embodiment of the present invention.
  • Figure 2 is a view showing the viscosity change of the liquid adsorbent and silicone oil for capturing carbon dioxide according to a preferred embodiment of the present invention.
  • FIG 3 is a view illustrating an example of application of a liquid adsorbent for capturing carbon dioxide according to a preferred embodiment of the present invention.
  • FIG. 4 is an exemplary view showing the capture and release of carbon dioxide using a liquid adsorbent for capturing carbon dioxide according to a preferred embodiment of the present invention.
  • 5 is a schematic diagram showing an experimental apparatus capable of testing carbon dioxide trapping performance.
  • FIG. 6 is a view showing the results of a collection performance test for liquid adsorbent, silicone oil, and water using FIG. 5 .
  • the method for manufacturing a liquid adsorbent for capturing carbon dioxide according to the present invention includes a first mixing step, a dispersing step, a second mixing step, and an organic solvent removal step.
  • an organic solvent and a dispersion stabilizer are mixed and stirred to prepare a first mixture.
  • the organic solvent is preferably methanol, ethanol, butyl alcohol, acetone, ethyl acetic acid, hexane, benzene, ether, ethyl ether, chloroform, dichloromethane, xylene, glycerin, or a mixture thereof, but is not limited thereto. .
  • the dispersion stabilizer is preferably an anionic surfactant, a cationic surfactant, a cationic surfactant, a nonionic surfactant, or a mixture stabilizer thereof, but is not limited thereto.
  • the anionic surfactant is Alkylbenzene sulfonates, Ammonium lauryl sulfate, Chlorosulfolipid, Docusate, Perfluorobutanesulfonic acid, Potassium lauryl sulfate, Soap, Sodium alkyl sulfate, Sodium dodecyl sulfate, Sodium laurate, Sodium laureth sulfate, Sodium nonanoyloxybenzenesulfonate, or mixed stabilizer; preferred, but not limited thereto.
  • Cationic surfactants include, but are not limited to, Behentrimonium chloride, Benzalkonium chloride, Benzododecinium bromide, Cetalkonium chloride, Cetrimonium bromide, Cetylpyridinium chloride, Dimethyldioctadecylammonium bromide, Dimethyldioctadecylammonium chloride Domiphen bromide, Octenidine dihydrochloride, or mixed stabilizers, preferably Olaflur, Pahutoxinium or mixed stabilizers. does not
  • the zwitterionic surfactant is preferably Lauryl betaine, Sodium hydroxymethylglycinate, RENNIN, Cocoamidopropyl betaine, or a mixed stabilizer, but is not limited thereto.
  • Nonionic surfactants are preferably Alkyl polyglycoside, Cetyl alcohol, Glycerol monostearate, Gum arabic, Nonoxynols, Oleyl alcohol, Polysorbate, Poly vinyl alcohol, Sorbitan, Sorbitan monolaurate, Sorbitan monostearate, Triton X-100, Tween 80 or a mixed stabilizer. , but not limited thereto.
  • the organic solvent is for uniformly dispersing the carbon nanotubes mixed with the oil in the stirring process of the first mixture with the high viscosity oil, which will be described later. That is, since it is very difficult to disperse carbon nanotubes in oil with high viscosity, first, carbon nanotubes are evenly dispersed in an organic solvent with low viscosity, then stirred with hydrocarbonyl, and as the organic solvent is removed, carbon in oil It is possible to evenly disperse the nanotubes. Therefore, it is preferable to use an organic solvent having low viscosity and high volatility for even dispersion of carbon nanotubes, but is not limited thereto.
  • the carbon nanotubes are dispersed in the organic solvent using stirring and an ultrasonic homogenizer.
  • magnetic stirring may be used for stirring, but is not limited thereto.
  • the carbon nanotubes can be uniformly dispersed in the organic solvent.
  • the first mixture and carbon nanotubes are irradiated with an ultrasonic homogenizer for 40 minutes, and may be stirred using a stirrer during irradiation.
  • the dispersion stabilizer is to ensure that when carbon nanotube (CNT) is dispersed in an organic solvent, it is uniformly dispersed throughout.
  • the carbon nanotube is a multi-walled carbon nanotube (DWCNT).
  • the dispersing step in the dispersing step, it is preferable to heat the dispersion stabilizer to 30 to 42° C. to dissolve it, and then add carbon nanotubes.
  • the organic solvent and the dispersion stabilizer are heated to 30 to 42° C. and stirred or stirred without heating so that carbon nanotubes can be added in a dissolved state of the dispersion stabilizer.
  • One first mixture can be heated to 30 ⁇ 42 °C.
  • the carbon nanotubes added in the dispersion step are preferably added in a weight ratio of 1:1 with the dispersion stabilizer, but the present invention is not limited thereto.
  • oil is added to the first mixture in which the carbon nanotubes are dispersed, and then a second mixture is prepared by stirring.
  • the second mixing step may be stirred for 30 minutes using a mechanical stirrer to prepare the second mixture, and to prepare a mixed second mixture such that the concentration of multi-walled carbon nanotubes is 1 to 10 wt% It may be desirable, but not limited thereto.
  • the concentration of the multi-wall carbon nanotubes is less than 1 wt%, a sufficient viscosity increase does not occur, and there may be a problem that it cannot be used as an adsorbent because it is not maintained in a solid state, and the concentration of the multi-wall carbon nanotubes is more than 10 wt% In this case, since the oil content is reduced, there may be a problem of scattering of carbon nanotubes after manufacturing.
  • the oil is a fluid having viscosity, and may be mineral oil, synthetic oil, silicone oil, vegetable oil, or a mixture thereof. .
  • Mineral oils are Paraffinic oils, Naphenic oils, Aromatic oils or a mixture thereof, Synthetic oils are Polyalpgaolefins, Polyglycols, Synthetic ester oils or a mixture thereof, Vegetable oils are soybean, sunflower, grape seed, coconut or olive oil. It is one oil, and it may be a mixed oil in which these are mixed.
  • animal oil is used as the oil. Since animal oil is in a solid state at room temperature, as in the present invention, in order to capture carbon dioxide at room temperature, the above-mentioned oil in a fluid state at room temperature is preferable.
  • the oil preferably has a viscosity of 1000 cp so that carbon nanotubes are evenly dispersed and the liquid adsorbent prepared through the present invention can be easily used, but is not limited thereto.
  • the organic solvent mixed in the second mixture is removed by heating the second mixture to prepare a liquid adsorbent capable of adsorption and desorption of carbon dioxide.
  • the organic solvent is removed and at the same time, other gases and moisture contained in the manufacturing process are removed.
  • heating of 80 ° C or higher is required to remove the organic solvent, and heating of 100 ° C or higher is required to remove moisture. do.
  • Such a liquid adsorbent has a solid form as shown in FIG. 1 because the basic skeleton is a carbon nanotube, but has adhesive properties through oil. That is, the fluid of the liquid adsorbent prepared through the method of manufacturing the liquid adsorbent for capturing carbon dioxide of the present invention is referred to as a non-Newtonian fluid, and as shown in FIG. 2 , the viscosity of the fluid is not constant, but changes according to the shear rate do.
  • the liquid adsorbent prepared by the method for manufacturing the liquid adsorbent for capturing carbon dioxide of the present invention has no fluidity and has a tacky property, and thus, as shown in FIG.
  • Various implementations such as coating on the filter mesh (refer to (B) of FIG. 3) or applying to a wall (interior wall) (refer to (C) of FIG. 3) are possible.
  • the liquid adsorbent has liquid properties, can capture and release carbon dioxide according to solubility, and can release carbon dioxide captured by heating, as shown in FIG. 4 , so that it can be reused.
  • liquid adsorbent is made of a lipophilic component, it is not affected by humidity, and can be easily carried out to capture carbon dioxide indoors or in a humid environment.
  • the first mixture was heated to 40° C. to dissolve polyvinyl alcohol, and multi-wall carbon nanotubes were added thereto. And after dispersing the multi-walled carbon nanotubes by irradiating and stirring an ultrasonic homogenizer for 40 minutes, after adding 1000 cp of silicone oil, the addition concentration of the multi-walled carbon nanotubes to the silicone oil using a mechanical stirrer is 1 to 10 wt% It was stirred as much as possible. Thereafter, the liquid adsorbent of the present invention was prepared by heating at 110° C. for 12 hours to remove ethanol and other contaminants.
  • the evaluation material 60 is filled in the carbon dioxide collecting container 50 .
  • the second valve 42 is closed, and carbon dioxide at a constant pressure is filled in the carbon dioxide auxiliary tank 30 from the carbon dioxide gas container 10 through the regulator 20 .
  • 'T' shown in FIG. 5 is a temperature sensor, and 'P' is a pressure sensor. And the experiment was evaluated at 25 °C through the temperature holding chamber (70).
  • the liquid adsorbent of the present invention silicone oil, and water (deionized water) were used.
  • the liquid adsorbent improves carbon dioxide capture performance by 33.4% compared to silicone oil and 3 times that of water. Through these results, it can be confirmed that the liquid adsorbent has the potential to be used as a material for reducing carbon dioxide.

Abstract

A manufacturing method for a liquid adsorbent for carbon dioxide capture of the present invention comprises: a first mixing step of mixing an organic solvent and a dispersion stabilizer, followed by stirring, to prepare a first mixture; a dispersing step of adding carbon nanotubes to the first mixture, followed by stirring, and dispersing the carbon nanotubes in the organic solvent by an ultrasonic homogenizer; a second mixing step of adding oil to the first mixture in which the carbon nanotubes are dispersed, followed by stirring, to prepare a second mixture; and an organic solvent removing step of removing the organic solvent mixed in the second mixture through heating of the second mixture, thereby preparing a liquid adsorbent capable of adsorption and desorption of carbon dioxide.

Description

이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법Liquid adsorbent for carbon dioxide capture and manufacturing method thereof
본 발명은 이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법에 관한 것이다.The present invention relates to a liquid adsorbent for capturing carbon dioxide and a method for preparing the same.
본 발명은 과학기술정보통신부의 집단연구지원(R&D)(과제고유번호: 1711119436, 연구관리 전문기관: 한국연구재단, 연구과제명: 플러스에너지빌딩 혁신기술 연구센터, 주관기관: 고려대학교 산학협력단, 연구기간: 2020.07.01 ~ 2021.05.31, 기여율: 1/2)의 일환으로 수행한 연구로부터 도출된 것이다.The present invention is a group research support (R & D) of the Ministry of Science and ICT (Project Unique Number: 1711119436, Research Management Specialized Organization: National Research Foundation of Korea, Research Project Name: Plus Energy Building Innovation Technology Research Center, Hosted by: Korea University Industry-Academic Cooperation Foundation, It is derived from research conducted as part of the research period: 2020.07.01 ~ 2021.05.31, contribution rate: 1/2).
또한, 본 발명은 교육부의 이공학학술연구기반구축(R&D)(과제고유번호: 1345324054, 연구관리 전문기관: 한국연구재단, 연구과제명: 건물 내 밀폐 공간의 이산화탄소 저감을 위한 나노흡수/흡착제 개발, 주관기관: 고려대학교 산학협력단, 연구기간: 2020.09.01 ~ 2021.08.31, 기여율: 1/2)의 일환으로 수행한 연구로부터 도출된 것이다.In addition, the present invention relates to the establishment of science and engineering research base (R & D) by the Ministry of Education (Project unique number: 1345324054, research management institution: National Research Foundation of Korea, research project name: Nano-absorbent/adsorbent development for carbon dioxide reduction in confined spaces in buildings , Host institution: Korea University Industry-University Cooperation Foundation, research period: 2020.09.01 ~ 2021.08.31, contribution rate: 1/2).
한편, 본 발명의 모든 측면에서 한국 정부의 재산 이익은 없다.On the other hand, there is no property interest of the Korean government in all aspects of the present invention.
일반적으로, 사람이 활동하는 실내 공간의 경우, 현존하는 가장 효과적인 이산화탄소 저감 방법은 실외공기와의 환기지만 일부 상황에 따라, 환기가 불가능한 공부방, 교실, 시험고사실이 있다. 또한, 외부소음의 이유로 창문 개방 어렵거나, 덕트를 통한 환기시에도 대형 팬 사용으로 소음이 발생할 수 있다. In general, in the case of an indoor space where people are active, the most effective carbon dioxide reduction method currently exists is ventilation with outdoor air, but in some situations, there are study rooms, classrooms, and test rooms where ventilation is impossible. Also, it may be difficult to open a window due to external noise, or noise may occur due to the use of a large fan even during ventilation through a duct.
또한 지하철과 같은 경우는 출퇴근시 높은 인구밀도로 인해 이산화탄소 발생량이 높아 환기가 필요함에도, 지하 터널의 중금속, 미세먼지 등과 같은 오염물이 고농도로 존재하여 환기가 불가능하다.Also, in the case of subways, ventilation is impossible due to the presence of high concentrations of pollutants such as heavy metals and fine dust in underground tunnels, although ventilation is required due to the high carbon dioxide generation due to high population density during commuting.
이와 같이, 환기가 어려운 실내환경에서 효과적으로 이산화탄소 저감이 필요하다.As such, it is necessary to effectively reduce carbon dioxide in an indoor environment where ventilation is difficult.
이에 따라, 기존의 이산화탄소 저감 기술로는 물리 흡수법, 화학흡수법, 흡착법, 멤브레인법, 심냉법 등이 있다. Accordingly, conventional carbon dioxide reduction techniques include a physical absorption method, a chemical absorption method, an adsorption method, a membrane method, a deep cooling method, and the like.
각각 화학적 반응, 용해, 흡착, 증류 등을 이용한 방법으로 주로 산업에서 대용량을 이산화탄소를 배출하는 곳에 적합한 방법들이다. Methods using chemical reaction, dissolution, adsorption, distillation, etc., respectively, are suitable methods where large amounts of carbon dioxide are emitted mainly in industry.
또한, 실내 공간에서는 인체 유해성을 검토해야 하기 때문에 물을 이용하거나 흡착제인 활성탄을 이용하였다. In addition, water or activated carbon as an adsorbent was used because it was necessary to examine the harmfulness to the human body in the indoor space.
그러나, 물은 낙수시 소음 발생으로 정숙한 곳 사용 불가와 낮은 이산화탄소 포집 성능으로 인해 용량이 커야 하며, 실내에 인접하게 사용하기 어려운 문제점이 있다.However, the water has a problem in that it is difficult to use in a quiet place due to the noise generated during falling water, and it is difficult to use it adjacent to the room due to the low capacity of the water and the low carbon capture performance.
또한, 흡착제인 활성탄은 표면 기공을 통해 이산화탄소를 포집하는 것이 주요 원리지만, 공기에 함유되어 있는 습기나 미세먼지가 기공에 포집되면 이산화탄소를 포집이 제대로 이루어지지 않는 문제점이 있다.In addition, although activated carbon, which is an adsorbent, has a main principle of capturing carbon dioxide through pores on the surface, there is a problem in that carbon dioxide is not properly captured when moisture or fine dust contained in the air is collected in the pores.
이러한 활성탄은 공기청정기에 맞도록 고체의 형상으로 합성 및 제작하기 때문에 공기청정기의 구조가 바뀌면 변경해야 하는 문제점도 있다.Since the activated carbon is synthesized and manufactured in a solid shape to fit the air purifier, there is also a problem that the structure of the air purifier needs to be changed when the structure is changed.
흡수법은 대용량 설비에서 사용하는 대표적인 방식이지만 현존하는 흡수제들이 메탄올, 아민계열 용액 등으로 흡수제에 따라 냄새, 부식, 화재위험, 독성 등 실내 사람이 있는 곳에 사용할 수 없는 단점이 있다.The absorption method is a typical method used in large-capacity facilities, but the existing absorbents are methanol and amine-based solutions, and depending on the absorbent, there is a disadvantage that it cannot be used in places where there are people indoors, such as odor, corrosion, fire risk, and toxicity.
[선행기술문헌][Prior art literature]
(특허문헌 1) 대한민국 등록특허 10-1635095 (2016.06.24)(Patent Document 1) Republic of Korea Patent Registration 10-1635095 (2016.06.24)
(특허문헌 2) 대한민국 등록특허 10-1572967 (2015.11.24)(Patent Document 2) Republic of Korea Patent Registration 10-1572967 (2015.11.24)
(특허문헌 3) 대한민국 공개특허 10-2015-0064978 (2015.06.12) (Patent Document 3) Republic of Korea Patent Publication 10-2015-0064978 (2015.06.12)
(특허문헌 4) 미국 등록특허 9844766(2017.12.19)(Patent Document 4) US Registered Patent 9844766 (2017.12.19)
상술한 바와 같은 문제점을 해결하기 위해 안출된 본 발명의 목적은, 이산화탄소의 포집이 가능할 뿐만 아니라, 가열을 통해 포집한 이산화탄소의 방출도 가능하여, 재사용이 가능한 이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법을 제공하기 위함이다.An object of the present invention, which has been devised to solve the above-described problems, is that it is possible to capture carbon dioxide as well as release the captured carbon dioxide through heating, so that it is possible to reuse a liquid adsorbent for capturing carbon dioxide and a method for manufacturing the same is to provide
또한, 본 발명의 목적은, 기본 골격이 탄소 나노 튜브의 형태임에 따라, 흡착제의 점착성 특성을 이용하여 도포가 가능하며, 액체 흡착제가 친유성의 성분으로 이루어져 습도의 영향을 받지 않고 사용가능한 이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법을 제공하기 위함이다.In addition, an object of the present invention is that since the basic skeleton is in the form of carbon nanotubes, it can be applied using the adhesive properties of the adsorbent, and the liquid adsorbent is composed of a lipophilic component, so carbon dioxide can be used without being affected by humidity. It is to provide a liquid adsorbent for collection and a method for manufacturing the same.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 이산화탄소 포집을 위한 액체 흡착제 제조 방법에 따르면, 유기용매와 분산안정제를 혼합한 후 교반하여 제1혼합물을 제조하는 제1혼합단계; 상기 제1혼합물에 탄소나노튜브를 첨가한 후, 교반과 초음파 균질기를 이용하여 상기 유기용매에 상기 탄소나노튜브를 분산시키는 분산단계; 상기 탄소나노튜브가 분산된 제1혼합물에 오일을 첨가한 후, 교반하여 제2혼합물을 제조하는 제2혼합단계; 상기 제2혼합물의 가열을 통해 상기 제2혼합물에 혼합된 상기 유기용매를 제거하여, 이산화탄소의 흡착과 탈착이 가능한 액체 흡착제를 제조하는 유기용매 제거단계;를 포함한다.According to the method for producing a liquid adsorbent for capturing carbon dioxide of the present invention for achieving the above object, a first mixing step of mixing an organic solvent and a dispersion stabilizer and then stirring to prepare a first mixture; a dispersion step of dispersing the carbon nanotubes in the organic solvent using stirring and an ultrasonic homogenizer after adding the carbon nanotubes to the first mixture; a second mixing step of adding oil to the first mixture in which the carbon nanotubes are dispersed, followed by stirring to prepare a second mixture; and removing the organic solvent mixed in the second mixture by heating the second mixture to prepare a liquid adsorbent capable of adsorption and desorption of carbon dioxide.
또한, 상기 분산단계는, 상기 분산안정제를 30~42℃로 가열시켜 용해시킨 후, 상기 탄소나노튜브를 첨가하는 것을 특징으로 한다.In addition, in the dispersing step, the dispersion stabilizer is heated to 30 to 42° C. to dissolve it, and then the carbon nanotubes are added.
또한, 상기 분산단계에서 첨가된 탄소나노튜브는, 상기 분산안정제와 1:1의 중량비로 첨가되는 것을 특징으로 한다.In addition, it is characterized in that the carbon nanotubes added in the dispersing step are added in a weight ratio of 1:1 with the dispersion stabilizer.
또한, 상기 유기용매 제거단계는, 상기 제2혼합물을 가열할 때, 100~120℃인 것을 특징으로 한다.In addition, the organic solvent removing step, when heating the second mixture, characterized in that 100 ~ 120 ℃.
또한, 상기 탄소나노튜브는, 다중벽 탄소나노튜브고, 상기 제2혼합물은, 기계식 교반기를 이용하여 상기 다중벽 탄소나노튜브의 농도가 1 내지 10wt%가 되도록 혼합된 것을 특징으로 한다.In addition, the carbon nanotubes are multi-walled carbon nanotubes, and the second mixture is mixed using a mechanical stirrer so that the concentration of the multi-walled carbon nanotubes is 1 to 10 wt%.
또한, 상기 분산안정제는, 음이온 계면활성제, 양이온 계면활성제, 양이온성 계면활성제, 비이온성 계면활성제 또는 이들의 혼합안정제인 것을 특징으로 한다.In addition, the dispersion stabilizer is an anionic surfactant, a cationic surfactant, a cationic surfactant, a nonionic surfactant, or a mixture stabilizer thereof.
또한, 상기 유기용매는, 메탄올, 에탄올, 부틸알코올, 아세톤, 에틸아세트산, 헥산, 벤젠, 에테르, 에틸에테르, 클로로포름, 디클로로메탄, 크실렌, 글리세린 또는 이들의 혼합용매인 것을 특징으로 한다.In addition, the organic solvent is methanol, ethanol, butyl alcohol, acetone, ethyl acetic acid, hexane, benzene, ether, ethyl ether, chloroform, dichloromethane, xylene, glycerin, or a mixed solvent thereof.
또한, 상기 오일은, 미네랄 오일, 합성 오일, 실리콘 오일, 식물성 오일 또는 이들의 혼합오일인 것을 특징으로 한다.In addition, the oil is characterized in that it is mineral oil, synthetic oil, silicone oil, vegetable oil, or a mixed oil thereof.
또한, 본 발명은 상기와 같은 제조방법으로 제조된 이산화탄소 포집을 위한 액체 흡착제를 제공한다.In addition, the present invention provides a liquid adsorbent for capturing carbon dioxide prepared by the manufacturing method as described above.
이상 살펴본 바와 같은 본 발명의 효과는, 액체 흡착제를 제조함으로써, 이산화탄소의 포집이 가능할 뿐만 아니라, 가열을 통해 포집한 이산화탄소의 방출도 가능하여, 재사용이 가능한 이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법을 제공할 수 있다.The effect of the present invention as described above is, by manufacturing the liquid adsorbent, it is possible not only to capture carbon dioxide, but also to release the captured carbon dioxide through heating. can provide
또한, 본 발명의 효과는, 기본 골격이 탄소 나노 튜브의 형태임에 따라, 흡착제의 점착성 특성을 이용하여 도포가 가능하며, 액체 흡착제가 친유성의 성분으로 이루어져 습도의 영향을 받지 않고 사용가능한 이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법을 제공할 수 있다.In addition, the effect of the present invention is that, as the basic skeleton is in the form of carbon nanotubes, it can be applied using the adhesive properties of the adsorbent, and the liquid adsorbent is made of a lipophilic component, so carbon dioxide can be used without being affected by humidity. A liquid adsorbent for trapping and a method for making the same can be provided.
도 1은 본 발명의 바람직한 실시예에 따른 이산화탄소 포집을 위한 액체 흡착제를 나타낸 사진이다.1 is a photograph showing a liquid adsorbent for capturing carbon dioxide according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 이산화탄소 포집을 위한 액체 흡착제와 실리콘오일의 점도 변화를 나타낸 도면이다.Figure 2 is a view showing the viscosity change of the liquid adsorbent and silicone oil for capturing carbon dioxide according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 이산화탄소 포집을 위한 액체 흡착제의 활용예를 살펴본 도면이다.3 is a view illustrating an example of application of a liquid adsorbent for capturing carbon dioxide according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 실시예에 따른 이산화탄소 포집을 위한 액체 흡착제를 이용한 이산화탄소 포집과 방출을 나타낸 예시도이다.4 is an exemplary view showing the capture and release of carbon dioxide using a liquid adsorbent for capturing carbon dioxide according to a preferred embodiment of the present invention.
도 5는 이산화탄소 포집성능을 실험할 수 있는 실험장치를 나타낸 개략도이다.5 is a schematic diagram showing an experimental apparatus capable of testing carbon dioxide trapping performance.
도 6은 도 5를 이용하여 액체 흡착제, 실리콘오일 및 물에 대한 포집성능 시험결과를 나타내는 도면이다.FIG. 6 is a view showing the results of a collection performance test for liquid adsorbent, silicone oil, and water using FIG. 5 .
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the technical field to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.
이하, 본 발명의 실시예들에 의하여 이산화탄소 포집을 위한 액체 흡착제 제조 방법을 설명한다.Hereinafter, a method for preparing a liquid adsorbent for capturing carbon dioxide according to embodiments of the present invention will be described.
본 발명에 따른 이산화탄소 포집을 위한 액체 흡착제 제조 방법은, 제1혼합단계, 분산단계, 제2혼합단계, 유기용매 제거단계를 포함한다.The method for manufacturing a liquid adsorbent for capturing carbon dioxide according to the present invention includes a first mixing step, a dispersing step, a second mixing step, and an organic solvent removal step.
먼저, 제1혼합단계는, 유기용매와 분산안정제를 혼합한 후 교반하여 제1혼합물을 제조한다. First, in the first mixing step, an organic solvent and a dispersion stabilizer are mixed and stirred to prepare a first mixture.
유기용매는, 유기용매는, 메탄올, 에탄올, 부틸알코올, 아세톤, 에틸아세트산, 헥산, 벤젠, 에테르, 에틸에테르, 클로로포름, 디클로로메탄, 크실렌, 글리세린 또는 이들의 혼합용매가 바람직하나, 이에 한정하지 않는다. The organic solvent is preferably methanol, ethanol, butyl alcohol, acetone, ethyl acetic acid, hexane, benzene, ether, ethyl ether, chloroform, dichloromethane, xylene, glycerin, or a mixture thereof, but is not limited thereto. .
또한, 분산안정제는, 음이온 계면활성제, 양이온 계면활성제, 양이온성 계면활성제, 비이온성 계면활성제 또는 이들의 혼합안정제가 바람직하나, 이에 한정하지 않는다. In addition, the dispersion stabilizer is preferably an anionic surfactant, a cationic surfactant, a cationic surfactant, a nonionic surfactant, or a mixture stabilizer thereof, but is not limited thereto.
여기서, 음이온 계면활성제는, Alkylbenzene sulfonates, Ammonium lauryl sulfate, Chlorosulfolipid, Docusate, Perfluorobutanesulfonic acid, Potassium lauryl sulfate, Soap, Sodium alkyl sulfate, Sodium dodecyl sulfate, Sodium laurate, Sodium laureth sulfate, Sodium nonanoyloxybenzenesulfonate, Sulfolipid 또는 혼합안정제가 바람직하나, 이에 한정하지 않는다. Here, the anionic surfactant is Alkylbenzene sulfonates, Ammonium lauryl sulfate, Chlorosulfolipid, Docusate, Perfluorobutanesulfonic acid, Potassium lauryl sulfate, Soap, Sodium alkyl sulfate, Sodium dodecyl sulfate, Sodium laurate, Sodium laureth sulfate, Sodium nonanoyloxybenzenesulfonate, or mixed stabilizer; preferred, but not limited thereto.
양이온 계면활성제는, Behentrimonium chloride, Benzalkonium chloride, Benzododecinium bromide, Cetalkonium chloride, Cetrimonium bromide, Cetylpyridinium chloride, Dimethyldioctadecylammonium bromide, Dimethyldioctadecylammonium chloride Domiphen bromide, Octenidine dihydrochloride, Olaflur, Pahutoxin, Stearalkonium chloride 또는 혼합안정제가 바람직하나, 이에 한정하지 않는다. Cationic surfactants include, but are not limited to, Behentrimonium chloride, Benzalkonium chloride, Benzododecinium bromide, Cetalkonium chloride, Cetrimonium bromide, Cetylpyridinium chloride, Dimethyldioctadecylammonium bromide, Dimethyldioctadecylammonium chloride Domiphen bromide, Octenidine dihydrochloride, or mixed stabilizers, preferably Olaflur, Pahutoxinium or mixed stabilizers. does not
양성이온 계면활성제는 Lauryl betaine, Sodium hydroxymethylglycinate, RENNIN, Cocoamidopropyl betaine 또는 혼합안정제가 바람직하나, 이에 한정하지 않는다. The zwitterionic surfactant is preferably Lauryl betaine, Sodium hydroxymethylglycinate, RENNIN, Cocoamidopropyl betaine, or a mixed stabilizer, but is not limited thereto.
비이온 계면활성제는, Alkyl polyglycoside, Cetyl alcohol, Glycerol monostearate, Gum arabic, Nonoxynols, Oleyl alcohol, Polysorbate, Poly vinyl alcohol, Sorbitan, Sorbitan monolaurate, Sorbitan monostearate, Triton X-100, Tween 80 또는 혼합안정제가 바람직하나, 이에 한정하지 않는다. Nonionic surfactants are preferably Alkyl polyglycoside, Cetyl alcohol, Glycerol monostearate, Gum arabic, Nonoxynols, Oleyl alcohol, Polysorbate, Poly vinyl alcohol, Sorbitan, Sorbitan monolaurate, Sorbitan monostearate, Triton X-100, Tween 80 or a mixed stabilizer. , but not limited thereto.
여기서, 유기용매는, 후술할 점도가 높은 오일과 제1혼합물의 교반과정에서 탄소나노튜브가 오일과 혼합되어 골고루 분산시키기 위함이다. 즉, 점도가 높은 오일에 탄소나노튜브를 분산시키는 것은 매우 어렵기 때문에, 먼저 점도가 낮은 유기용매에 탄소나노튜브를 고르게 분산시킨 후, 탄화수소일과 교반하고, 유기용매를 제거함에 따라, 오일에 탄소나노튜브를 골고루 분산시킬 수 있는 것이다. 따라서, 탄소나노튜브의 고른 분산을 위하여 점도가 낮고, 휘발성이 높은 유기용매를 사용하는 것이 바람직하나, 이에 한정하지 않는다. Here, the organic solvent is for uniformly dispersing the carbon nanotubes mixed with the oil in the stirring process of the first mixture with the high viscosity oil, which will be described later. That is, since it is very difficult to disperse carbon nanotubes in oil with high viscosity, first, carbon nanotubes are evenly dispersed in an organic solvent with low viscosity, then stirred with hydrocarbonyl, and as the organic solvent is removed, carbon in oil It is possible to evenly disperse the nanotubes. Therefore, it is preferable to use an organic solvent having low viscosity and high volatility for even dispersion of carbon nanotubes, but is not limited thereto.
분산단계는, 제1혼합물에 탄소나노튜브를 첨가한 후, 교반과 초음파 균질기를 이용하여 유기용매에 탄소나노튜브를 분산시킨다. In the dispersing step, after adding the carbon nanotubes to the first mixture, the carbon nanotubes are dispersed in the organic solvent using stirring and an ultrasonic homogenizer.
분산단계에서, 교반할 때는 자력 교반을 이용할 수 있으나, 이에 한정하지 않는다. In the dispersing step, magnetic stirring may be used for stirring, but is not limited thereto.
또한, 분산단계는, 교반기와 초음파 균질기를 동시에 사용함으로써, 탄소나노튜브를 유기용매에 골고루 분산시킬 수 있다. 여기서, 분산단계는 초음파 균질기를 40분 동안 제1혼합물과 탄소나노튜브를 조사하고, 조사하는 동안 교반기를 이용하여 교반할 수 있다. In addition, in the dispersing step, by using a stirrer and an ultrasonic homogenizer at the same time, the carbon nanotubes can be uniformly dispersed in the organic solvent. Here, in the dispersing step, the first mixture and carbon nanotubes are irradiated with an ultrasonic homogenizer for 40 minutes, and may be stirred using a stirrer during irradiation.
이때, 분산안정제는, 유기용매에 탄소나노튜브(Carbon nanotube, CNT)가 분산될 때, 전체적으로 골고루 분산되도록 하기 위함이다. In this case, the dispersion stabilizer is to ensure that when carbon nanotube (CNT) is dispersed in an organic solvent, it is uniformly dispersed throughout.
여기서, 탄소나노튜브는, 다중벽 탄소나노튜브(Multi -Walled Carbon Nano-Tube, DWCNT)이다. Here, the carbon nanotube is a multi-walled carbon nanotube (DWCNT).
이에 따라, 분산단계는, 분산단계는, 분산안정제를 30~42℃로 가열시켜 용해시킨 후, 탄소나노튜브를 첨가하는 것이 바람직하다. Accordingly, in the dispersing step, in the dispersing step, it is preferable to heat the dispersion stabilizer to 30 to 42° C. to dissolve it, and then add carbon nanotubes.
즉, 분산안정제는 상온에서 용해되기 어렵기 때문에, 분산안정제를 용해된 상태에서 탄소나노튜브가 첨가될 수 있도록, 유기용매와 분산안정제를 30~42℃로 가열하여 교반하거나, 가열없이 교반하여 제조한 제1혼합물을 30~42℃로 가열할 수 있다. That is, since the dispersion stabilizer is difficult to dissolve at room temperature, the organic solvent and the dispersion stabilizer are heated to 30 to 42° C. and stirred or stirred without heating so that carbon nanotubes can be added in a dissolved state of the dispersion stabilizer. One first mixture can be heated to 30 ~ 42 ℃.
이때, 분산안정제의 용해를 위하여 30~42℃로 가열하는 것은, 30℃이하로 가열하면 분산안정제의 원활한 용해가 이루어지지 않고, 42℃이상으로 가열하면 분산안정제의 용해가 이루어지지만 유기용매의 증발이 일부 발생하므로, 30~42℃로 분산안정제를 용해시키는 것이 바람직하다. At this time, heating to 30 ~ 42 ℃ for dissolution of the dispersion stabilizer, when heated to 30 ℃ or less, the dispersion stabilizer is not smoothly dissolved, and when heated to 42 ℃ or more, the dispersion stabilizer is dissolved, but evaporation of the organic solvent Since some of this occurs, it is preferable to dissolve the dispersion stabilizer at 30 to 42°C.
한편, 분산단계에서 첨가된 탄소나노튜브는, 분산안정제와 1:1의 중량비로 첨가되는 것이 바람직하나, 이에 한정하지 않는다. Meanwhile, the carbon nanotubes added in the dispersion step are preferably added in a weight ratio of 1:1 with the dispersion stabilizer, but the present invention is not limited thereto.
제2혼합단계는, 탄소나노튜브가 분산된 제1혼합물에 오일을 첨가한 후, 교반하여 제2혼합물을 제조한다. In the second mixing step, oil is added to the first mixture in which the carbon nanotubes are dispersed, and then a second mixture is prepared by stirring.
이때, 제2혼합단계는, 제2혼합물을 제조하기 위해 기계식 교반기를 이용하여 30분간 교반할 수 있으며, 다중벽 탄소나노튜브의 농도가 1 내지 10wt%가 되도록 혼합된 제2혼합물을 제조하는 것이 바람직할 수 있으나, 이에 한정하지 않는다. At this time, the second mixing step may be stirred for 30 minutes using a mechanical stirrer to prepare the second mixture, and to prepare a mixed second mixture such that the concentration of multi-walled carbon nanotubes is 1 to 10 wt% It may be desirable, but not limited thereto.
여기서, 다중벽 탄소나노튜브의 농도가 1wt% 미만인 경우 충분한 점도 상승이 발생하지 않아, 고형으로 유지 되지 않아 흡착제 처럼 사용할 수 없는 문제가 있을 수 있고, 다중벽 탄소나노튜브의 농도가 10wt% 초과인 경우 오일 함량이 적어지기 때문에 제조 후 탄소나노튜브의 비산 문제가 있을 수 있다.또한, 오일은 점성을 가지는 형태의 유체로, 미네랄 오일, 합성 오일, 실리콘 오일, 식물성 오일 또는 이들의 혼합오일일 수 있다. Here, when the concentration of the multi-wall carbon nanotubes is less than 1 wt%, a sufficient viscosity increase does not occur, and there may be a problem that it cannot be used as an adsorbent because it is not maintained in a solid state, and the concentration of the multi-wall carbon nanotubes is more than 10 wt% In this case, since the oil content is reduced, there may be a problem of scattering of carbon nanotubes after manufacturing. In addition, the oil is a fluid having viscosity, and may be mineral oil, synthetic oil, silicone oil, vegetable oil, or a mixture thereof. .
미네랄 오일은, Paraffinic oils, Naphenic oils, Aromatic oils 또는 이들의 혼합오일이고, 합성 오일은 Polyalpgaolefins, Polyglycols, Synthetic ester oils 또는 이들의 혼합오일이며, 식물성 오일은 콩, 해바라기, 포도씨, 코코넛 또는 올리브를 착유한 오일이며, 이들을 혼합한 혼합오일일 수도 있다. Mineral oils are Paraffinic oils, Naphenic oils, Aromatic oils or a mixture thereof, Synthetic oils are Polyalpgaolefins, Polyglycols, Synthetic ester oils or a mixture thereof, Vegetable oils are soybean, sunflower, grape seed, coconut or olive oil. It is one oil, and it may be a mixed oil in which these are mixed.
여기서, 오일은 동물성 오일을 이용하지 않는 것이 바람직하다. 동물성 오일은 상온에서 고체 상태이기 때문에 본 발명과 같이, 상온에서 이산화탄소를 포집하기 위해서는 상온에서 유체 상태인 상술한 오일이 바람직하다. Here, it is preferable not to use animal oil as the oil. Since animal oil is in a solid state at room temperature, as in the present invention, in order to capture carbon dioxide at room temperature, the above-mentioned oil in a fluid state at room temperature is preferable.
또한, 오일은 탄소나노튜브의 분산이 고르게 이루어지고, 본 발명을 통해 제조된 액체 흡착제를 용이하게 사용할 수 있도록 점성도 1000cp 인 것이 바람직하나, 이에 한정하지 않는다.In addition, the oil preferably has a viscosity of 1000 cp so that carbon nanotubes are evenly dispersed and the liquid adsorbent prepared through the present invention can be easily used, but is not limited thereto.
유기용매 제거단계는, 제2혼합물의 가열을 통해 제2혼합물에 혼합된 유기용매를 제거하여, 이산화탄소의 흡착과 탈착이 가능한 액체 흡착제를 제조한다. In the organic solvent removal step, the organic solvent mixed in the second mixture is removed by heating the second mixture to prepare a liquid adsorbent capable of adsorption and desorption of carbon dioxide.
또한, 유기용매 제거단계는, 제2혼합물을 가열할 때, 100~120℃에서 10~13시간 가열하는 것이 바람직하다. In addition, in the organic solvent removal step, when heating the second mixture, it is preferable to heat at 100 ~ 120 ℃ 10 ~ 13 hours.
그리고 유기용매 제거단계는, 유기용매를 제거하는 동시에 제조과정에서 포함된 타가스와 수분을 제거한다. In the organic solvent removal step, the organic solvent is removed and at the same time, other gases and moisture contained in the manufacturing process are removed.
이에 따라, 유기용매를 제거하기 위하여 80℃이상의 가열이 필요하고, 수분을 제거하기 위하여 100℃이상의 가열이 필요함으로, 100~120℃에서 제2혼합물을 가열하여 유기용매, 타가스, 수분을 제거한다. Accordingly, heating of 80 ° C or higher is required to remove the organic solvent, and heating of 100 ° C or higher is required to remove moisture. do.
즉, 유기용매, 타가스, 수분이 제거되어, 분산안정제, 탄소나노튜브 및 오일을 포함하는 액체 흡착제를 제조할 수 있다. That is, the organic solvent, other gases, and moisture are removed to prepare a liquid adsorbent containing a dispersion stabilizer, carbon nanotubes, and oil.
이러한, 액체 흡착제는 기본 골격이 탄소나노튜브이기 때문에 도 1과 같이, 고체의 형태를 띄지만, 오일을 통해 점착성의 성질을 갖게 된다. 즉, 본 발명의 이산화탄소 포집을 위한 액체 흡착제 제조 방법을 통해 제조된 액체 흡착제의 유체를 비뉴턴유체라 하며, 도 2와 같이, 유체의 점도가 일정하기 않고, 전단속도(shear rate)에 따라 변화한다. Such a liquid adsorbent has a solid form as shown in FIG. 1 because the basic skeleton is a carbon nanotube, but has adhesive properties through oil. That is, the fluid of the liquid adsorbent prepared through the method of manufacturing the liquid adsorbent for capturing carbon dioxide of the present invention is referred to as a non-Newtonian fluid, and as shown in FIG. 2 , the viscosity of the fluid is not constant, but changes according to the shear rate do.
따라서, 본 발명의 이산화탄소 포집을 위한 액체 흡착제 제조 방법으로 제조된 액체 흡착제는, 유동성을 지니지 않고 점착성의 성질을 갖으므로, 도 3과 같이, 원자로에 채우거나(도 3의 (A) 참조), 필터 메쉬에 코팅하거나(도 3의 (B) 참조), 벽(실내벽)에 바르는(도 3의 (C) 참조) 등의 다양한 실시가 가능하다. 또한, 액체 흡착제는, 액체의 성질을 갖고, 용해도에 따라 이산화탄소의 포집과 방출을 할 수 있어, 도 4와 같이, 가열에 의해 포집한 이산화탄소를 방출할 수 있으므로, 재사용이 가능하다.Therefore, the liquid adsorbent prepared by the method for manufacturing the liquid adsorbent for capturing carbon dioxide of the present invention has no fluidity and has a tacky property, and thus, as shown in FIG. Various implementations such as coating on the filter mesh (refer to (B) of FIG. 3) or applying to a wall (interior wall) (refer to (C) of FIG. 3) are possible. In addition, the liquid adsorbent has liquid properties, can capture and release carbon dioxide according to solubility, and can release carbon dioxide captured by heating, as shown in FIG. 4 , so that it can be reused.
게다가, 액체 흡착제는, 친유성의 성분으로 이루어짐에 따라, 습도의 영향을 받지 않아, 실내 또는 습한 환경에서 이산화탄소를 포집하는데에 용이하게 실시할 수 있다.In addition, since the liquid adsorbent is made of a lipophilic component, it is not affected by humidity, and can be easily carried out to capture carbon dioxide indoors or in a humid environment.
상술한 본 발명의 이산화탄소 포집을 위한 액체 흡착제 제조 방법을 통해 제조된 액체 흡착제에 대한 이산화탄소 포집 성능을 평가한 실험에 대해 설명한다. An experiment for evaluating the carbon dioxide trapping performance of the liquid adsorbent prepared through the above-described method for manufacturing the liquid adsorbent for capturing carbon dioxide of the present invention will be described.
먼저, 액체 흡착제를 제조하기 위하여, 분산안정제는 폴리비닐알코올, 유기용매는 메탄올, 탄소나노튜브는 다중벽 탄소나노튜브, 오일은 점성도 1000cp의 실리콘 오일을 사용하였다. First, in order to prepare a liquid adsorbent, polyvinyl alcohol as a dispersion stabilizer, methanol as an organic solvent, multi-wall carbon nanotubes as carbon nanotubes, and silicone oil with a viscosity of 1000 cp as oil were used.
제1혼합물을 40℃까지 가열하여 폴리비닐알코올을 용해시키고, 다중벽 탄소나노튜브를 첨가하였다. 그리고 초음파 균질기를 40분 조사 및 교반하여 다중벽 탄소나노튜브를 분산시킨 후, 1000cp의 실리콘 오일을 첨가한 후 기계식 교반기를 사용하여 실리콘 오일에 다중벽 탄소나노튜브의 첨가농도가 1 내지 10wt%가 되도록 교반하였다. 이후, 110℃로 12시간 가열하여 에탄올과 기타 오염물을 제거하여 본 발명의 액체 흡착제를 제조하였다. The first mixture was heated to 40° C. to dissolve polyvinyl alcohol, and multi-wall carbon nanotubes were added thereto. And after dispersing the multi-walled carbon nanotubes by irradiating and stirring an ultrasonic homogenizer for 40 minutes, after adding 1000 cp of silicone oil, the addition concentration of the multi-walled carbon nanotubes to the silicone oil using a mechanical stirrer is 1 to 10 wt% It was stirred as much as possible. Thereafter, the liquid adsorbent of the present invention was prepared by heating at 110° C. for 12 hours to remove ethanol and other contaminants.
하기 [수학식 1] 및 [수학식 2]를 통해, 도 5와 같은 실험장치로 이산화탄소의 포집성능을 계산하였다. Through the following [Equation 1] and [Equation 2], the carbon dioxide trapping performance was calculated with the experimental apparatus as shown in FIG.
Figure PCTKR2021016186-appb-img-000001
Figure PCTKR2021016186-appb-img-000001
(Δn:이산화탄소 몰량, Vg:이산화탄소 포집용기 부피, RT:이상기체 상수, PCO2:이산화탄소 포집용기 압력, ZCO2:압축기체상수, 0, t:시간)(Δn: molar amount of carbon dioxide, Vg: volume of carbon dioxide collection vessel, RT: ideal gas constant, P CO2 : carbon dioxide collection vessel pressure, Z CO2 : compressed gas constant, 0, t: time)
Figure PCTKR2021016186-appb-img-000002
Figure PCTKR2021016186-appb-img-000002
(α:단위질량당 이산화탄소 포집몰량, Δn::이산화탄소 몰량, ms:평가샘플 질량)(α: molar amount of carbon dioxide captured per unit mass, Δn:: molar amount of carbon dioxide, m s : mass of evaluation sample)
이산화탄소 포집성능을 실험한 방법을 도 5의 실험장치를 참조하여 설명한다.A method of testing the carbon dioxide trapping performance will be described with reference to the experimental apparatus of FIG. 5 .
평가물질(60)을 이산화탄소 포집 용기(50) 내부에 채운다. The evaluation material 60 is filled in the carbon dioxide collecting container 50 .
제3밸브(43)를 잠그고, 제1밸브(41)와 제2밸브(42)를 열어 놓은 상태에서, 진공펌프(80)를 통해 배관 및 이산화탄소 보조탱크(30)의 내부 이물질을 제거하고, 진공처리한다. 이는 정확도를 위함이다.Close the third valve 43, and remove the foreign substances inside the pipe and the carbon dioxide auxiliary tank 30 through the vacuum pump 80 in the state in which the first valve 41 and the second valve 42 are opened, vacuum treatment. This is for accuracy.
제2밸브(42)를 잠그고, 이산화탄소 가스용기(10)로부터 레귤레이터(20)를 통해 이산화탄소 보조탱크(30)에 일정한 압력의 이산화탄소를 채운다.The second valve 42 is closed, and carbon dioxide at a constant pressure is filled in the carbon dioxide auxiliary tank 30 from the carbon dioxide gas container 10 through the regulator 20 .
다음으로, 제3밸브(43)를 열면, 이산화탄소 보조탱크(30)에 채워진 이산화탄소가 이산화탄소 포집 용기(50)에 있는 평가물질(60)로 포집된다. Next, when the third valve 43 is opened, the carbon dioxide filled in the carbon dioxide auxiliary tank 30 is collected as the evaluation material 60 in the carbon dioxide collecting container 50 .
이때, 이산화탄소가 평가물질(60)에 포집되면 이산화탄소 보조탱크(30)의 압력이 줄어들고, 이산화탄소 보조탱크(30)의 압력 변화를 통해 상기 [수학식 1] 및 [수학식 2]를 이용하여 이산화탄소 포집량을 계산한다. At this time, when the carbon dioxide is collected in the evaluation material 60, the pressure of the carbon dioxide auxiliary tank 30 is reduced, and the carbon dioxide using the [Equation 1] and [Equation 2] through the pressure change of the carbon dioxide auxiliary tank 30 Calculate the collection amount.
도 5에 도시된 'T'는 온도센서이고, 'P'는 압력센서이다. 그리고 실험은 온도 유지 챔버(70)를 통해서 25℃에서 평가하였다.'T' shown in FIG. 5 is a temperature sensor, and 'P' is a pressure sensor. And the experiment was evaluated at 25 ℃ through the temperature holding chamber (70).
평가물질(60)은 본 발명의 액체 흡착제, 실리콘오일, 물(탈이온수)을 이용하였다.As the evaluation material 60, the liquid adsorbent of the present invention, silicone oil, and water (deionized water) were used.
각각의 평가물질에 대해 상술한 실험장치를 이용하여 평가한 결과는 도 6과 같다.The results of evaluation using the above-described experimental apparatus for each evaluation material are shown in FIG. 6 .
액체 흡착제는 실리콘 오일보다 33.4%, 물보다 3배 가량의 이산화탄소 포집 성능이 더 향상함을 확인할 수 있다. 이러한 결과를 통하여, 액체 흡착제는 이산화탄소의 저감 물질로 사용 가능성이 있음을 확인할 수 있다.It can be seen that the liquid adsorbent improves carbon dioxide capture performance by 33.4% compared to silicone oil and 3 times that of water. Through these results, it can be confirmed that the liquid adsorbent has the potential to be used as a material for reducing carbon dioxide.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. 더불어, 상술하는 과정에서 기술된 구성의 작동순서는 반드시 시계열적인 순서대로 수행될 필요는 없으며, 각 구성 및 단계의 수행 순서가 바뀌어도 본 발명의 요지를 충족한다면 이러한 과정은 본 발명의 권리범위에 속할 수 있음은 물론이다.Those of ordinary skill in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential features thereof. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims described below rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts are included in the scope of the present invention. should be interpreted In addition, the operation sequence of the components described in the above process does not necessarily have to be performed in a time-series order, and if the gist of the present invention is satisfied even if the execution order of each configuration and step is changed, such a process may fall within the scope of the present invention. Of course you can.
[부호의 설명][Explanation of code]
10: 이산화탄소 가스용기 20: 레귤레이터10: carbon dioxide gas container 20: regulator
30: 이산화탄소 보조탱크 41: 제1밸브30: carbon dioxide auxiliary tank 41: first valve
42: 제2밸브 43: 제3밸브42: second valve 43: third valve
50: 이산화탄소 포집 용기 60: 평가물질50: carbon dioxide collection container 60: evaluation material
70: 온도 유지 챔버 80: 진공펌프70: temperature maintaining chamber 80: vacuum pump

Claims (9)

  1. 유기용매와 분산안정제를 혼합한 후 교반하여 제1혼합물을 제조하는 제1혼합단계;A first mixing step of mixing an organic solvent and a dispersion stabilizer and then stirring to prepare a first mixture;
    상기 제1혼합물에 탄소나노튜브를 첨가한 후, 교반과 초음파 균질기를 이용하여 상기 유기용매에 상기 탄소나노튜브를 분산시키는 분산단계;a dispersing step of dispersing the carbon nanotubes in the organic solvent using stirring and an ultrasonic homogenizer after adding the carbon nanotubes to the first mixture;
    상기 탄소나노튜브가 분산된 제1혼합물에 오일을 첨가한 후, 교반하여 제2혼합물을 제조하는 제2혼합단계; 및a second mixing step of adding oil to the first mixture in which the carbon nanotubes are dispersed, followed by stirring to prepare a second mixture; and
    상기 제2혼합물의 가열을 통해 상기 제2혼합물에 혼합된 상기 유기용매를 제거하여, 이산화탄소의 흡착과 탈착이 가능한 액체 흡착제를 제조하는 유기용매 제거단계;를 포함하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. An organic solvent removal step of preparing a liquid adsorbent capable of adsorption and desorption of carbon dioxide by removing the organic solvent mixed in the second mixture through heating of the second mixture; .
  2. 제1항에 있어서, According to claim 1,
    상기 분산단계는, 상기 분산안정제를 30~42℃로 가열시켜 용해시킨 후, 상기 탄소나노튜브를 첨가하는 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. In the dispersing step, the dispersion stabilizer is heated to 30-42° C. to dissolve, and then the carbon nanotubes are added.
  3. 제1항에 있어서,According to claim 1,
    상기 분산단계에서 첨가된 탄소나노튜브는, 상기 분산안정제와 1:1의 중량비로 첨가되는 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. The carbon nanotubes added in the dispersing step are added in a weight ratio of 1:1 with the dispersion stabilizer.
  4. 제1항에 있어서, According to claim 1,
    상기 유기용매 제거단계는, 상기 제2혼합물을 가열할 때, 100~120℃인 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법.The organic solvent removal step, when the second mixture is heated, the liquid adsorbent manufacturing method for carbon dioxide capture, characterized in that 100 ~ 120 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브는, 다중벽 탄소나노튜브고, The carbon nanotube is a multi-walled carbon nanotube,
    상기 제2혼합물은, 기계식 교반기를 이용하여 상기 다중벽 탄소나노튜브의 농도가 1 내지 10wt%가 되도록 혼합된 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. The second mixture is a liquid adsorbent manufacturing method for capturing carbon dioxide, characterized in that it is mixed using a mechanical stirrer so that the concentration of the multi-walled carbon nanotubes is 1 to 10 wt%.
  6. 제1항에 있어서,According to claim 1,
    상기 분산안정제는, 음이온 계면활성제, 양이온 계면활성제, 양이온성 계면활성제, 비이온성 계면활성제 또는 이들의 혼합안정제인 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. The dispersion stabilizer is an anionic surfactant, a cationic surfactant, a cationic surfactant, a nonionic surfactant, or a mixture stabilizer thereof.
  7. 제1항에 있어서, According to claim 1,
    상기 유기용매는, 메탄올, 에탄올, 부틸알코올, 아세톤, 에틸아세트산, 헥산, 벤젠, 에테르, 에틸에테르, 클로로포름, 디클로로메탄, 크실렌, 글리세린 또는 이들의 혼합용매인 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. The organic solvent is methanol, ethanol, butyl alcohol, acetone, ethyl acetic acid, hexane, benzene, ether, ethyl ether, chloroform, dichloromethane, xylene, glycerin or a liquid adsorbent for capturing carbon dioxide, characterized in that it is a mixed solvent thereof. manufacturing method.
  8. 제1항에 있어서, According to claim 1,
    상기 오일은, 미네랄 오일, 합성 오일, 실리콘 오일, 식물성 오일 또는 이들의 혼합오일인 것을 특징으로 하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법. The oil is a method for producing a liquid adsorbent for capturing carbon dioxide, characterized in that the mineral oil, synthetic oil, silicone oil, vegetable oil, or a mixed oil thereof.
  9. 유기용매와 분산안정제를 혼합한 후 교반하여 제1혼합물을 제조하는 제1혼합단계; 상기 제1혼합물에 탄소나노튜브를 첨가한 후, 교반과 초음파 균질기를 이용하여 상기 유기용매에 상기 탄소나노튜브를 분산시키는 분산단계; 상기 탄소나노튜브가 분산된 제1혼합물에 오일을 첨가한 후, 교반하여 제2혼합물을 제조하는 제2혼합단계; 및 상기 제2혼합물의 가열을 통해 상기 제2혼합물에 혼합된 상기 유기용매를 제거하여, 이산화탄소의 흡착과 탈착이 가능한 액체 흡착제를 제조하는 유기용매 제거단계;를 포함하는 이산화탄소 포집을 위한 액체 흡착제 제조 방법으로 제조된 이산화탄소 포집을 위한 액체 흡착제.A first mixing step of mixing an organic solvent and a dispersion stabilizer and then stirring to prepare a first mixture; a dispersion step of dispersing the carbon nanotubes in the organic solvent using stirring and an ultrasonic homogenizer after adding the carbon nanotubes to the first mixture; a second mixing step of adding oil to the first mixture in which the carbon nanotubes are dispersed, followed by stirring to prepare a second mixture; and an organic solvent removal step of removing the organic solvent mixed in the second mixture through heating of the second mixture to prepare a liquid adsorbent capable of adsorption and desorption of carbon dioxide; Liquid adsorbent for capture of carbon dioxide prepared by the method.
PCT/KR2021/016186 2021-01-13 2021-11-09 Liquid adsorbent for carbon dioxide capture and manufacturing method therefor WO2022154230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0004367 2021-01-13
KR1020210004367A KR102519895B1 (en) 2021-01-13 2021-01-13 Liquid adsorbents for carbon dioxide capture and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022154230A1 true WO2022154230A1 (en) 2022-07-21

Family

ID=82448197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016186 WO2022154230A1 (en) 2021-01-13 2021-11-09 Liquid adsorbent for carbon dioxide capture and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102519895B1 (en)
WO (1) WO2022154230A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100121804A (en) * 2009-05-11 2010-11-19 전자부품연구원 Purity elevation method of water dispersed carbon nanotube solution by removing surplus dispersion agents and water dispersed carbon nanotube coating solution
KR101400406B1 (en) * 2013-03-19 2014-05-27 숭실대학교산학협력단 Method of cnt composite
KR101635095B1 (en) * 2014-10-28 2016-07-04 인하대학교 산학협력단 Method of manufacturing silica-carbon nanotube composite introduced amine functions
KR101950579B1 (en) * 2017-05-12 2019-02-20 고려대학교 산학협력단 Absorbent For Carbon Dioxide and Method for Manufacturing The Same
KR102017761B1 (en) * 2018-04-17 2019-09-03 한국생산기술연구원 Biomass-based Filler for Polymer Matrix Composites with Carbon dioxide adsorption function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158609A1 (en) * 2006-01-12 2007-07-12 Haiping Hong Carbon nanoparticle-containing lubricant and grease
WO2013065880A1 (en) 2011-10-31 2013-05-10 한국전력공사 Solid carbon dioxide absorbent including amine or a compound thereof for use in the capturing process of dry carbon dioxide, and method for manufacturing same
KR101538639B1 (en) 2013-12-04 2015-07-22 인하대학교 산학협력단 Manufacturing method of carbon-based carbon dioxide adsorbents
KR101572967B1 (en) 2014-04-15 2015-11-30 고려대학교 산학협력단 Polyvinylidene Fluoride-based Carbon Nanofiber for Carbon Dioxide Adsorption and Preparation Method for Preparing the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100121804A (en) * 2009-05-11 2010-11-19 전자부품연구원 Purity elevation method of water dispersed carbon nanotube solution by removing surplus dispersion agents and water dispersed carbon nanotube coating solution
KR101400406B1 (en) * 2013-03-19 2014-05-27 숭실대학교산학협력단 Method of cnt composite
KR101635095B1 (en) * 2014-10-28 2016-07-04 인하대학교 산학협력단 Method of manufacturing silica-carbon nanotube composite introduced amine functions
KR101950579B1 (en) * 2017-05-12 2019-02-20 고려대학교 산학협력단 Absorbent For Carbon Dioxide and Method for Manufacturing The Same
KR102017761B1 (en) * 2018-04-17 2019-09-03 한국생산기술연구원 Biomass-based Filler for Polymer Matrix Composites with Carbon dioxide adsorption function

Also Published As

Publication number Publication date
KR102519895B1 (en) 2023-04-10
KR20220102244A (en) 2022-07-20

Similar Documents

Publication Publication Date Title
Cole et al. Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies
CN107362788A (en) A kind of graphene oxide/titanium dioxide activated carbon three-dimensional composite material and preparation method thereof
WO2022154230A1 (en) Liquid adsorbent for carbon dioxide capture and manufacturing method therefor
WO2009148597A1 (en) Composition and method for dust suppression wetting agent
Decker et al. Air filtration of microbial particles
CN105289527A (en) Preparation method of cellulose ester aerogel material for adsorbing organic matters in wastewater
CN108404870A (en) A kind of micropore carboxylated silica gel, preparation method and applications
CN111771907A (en) Antivirus nano material for slowly releasing chlorine dioxide and preparation method and application thereof
CN104226043A (en) Absorbent for removing PM2.5 dust and poisonous gas and preparation method of absorbent
CN102944449A (en) Passive sampling device of multi-component atmospheric organic pollutants
WO2018194432A2 (en) Membrane including porous substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
Fu et al. Preparation and application of poly (dimethylsiloxane)/β‐cyclodextrin solid‐phase microextraction fibers
Decker et al. AIR FILTRATION OF MICROBIAL PARTICLES.
CN101530715B (en) Efficient molecular sieve processor for controlling air composite pollution in saloon car
CN208476590U (en) A kind of Passive sampler acquired for nonpolar organic pollutants in sewer
CN217830061U (en) Multifunctional biological safety cabinet
WO2021235669A1 (en) Carbon dioxide capturing agent using carbon dioxide chemical absorbent provided in pickering emulsion state and method for preparing same
CN115155811B (en) Radon daughter filtering module and method based on high-voltage electrostatic field
CN212790382U (en) Peculiar smell removing device for waterproof coating
WO2023286981A1 (en) Emulsion-type dehumidifying composition for removing moisture and method for producing same
CN219083313U (en) Chemistry experiment room ventilation unit with fire control escape function
CN206636809U (en) A kind of Feed Sample laboratory ventilating fan
CN215678387U (en) Multi-station sample table for geological experiment test chemical detection
KR20210135713A (en) Ointment composition comprising the novel composition
JP2005241534A (en) Filter for sampling organic contaminant, manufacturing method thereof, sampling instrument of contaminant, and method for sampling organic contaminant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919854

Country of ref document: EP

Kind code of ref document: A1