WO2022152237A1 - 电池上箱体总成及电池总成 - Google Patents

电池上箱体总成及电池总成 Download PDF

Info

Publication number
WO2022152237A1
WO2022152237A1 PCT/CN2022/071984 CN2022071984W WO2022152237A1 WO 2022152237 A1 WO2022152237 A1 WO 2022152237A1 CN 2022071984 W CN2022071984 W CN 2022071984W WO 2022152237 A1 WO2022152237 A1 WO 2022152237A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
gas
upper case
upper box
box body
Prior art date
Application number
PCT/CN2022/071984
Other languages
English (en)
French (fr)
Inventor
卢军
孙焕丽
乔延涛
宋博涵
孙士杰
姜云峰
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022152237A1 publication Critical patent/WO2022152237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of thermal runaway of batteries, for example, to a battery upper case assembly and a battery assembly.
  • the battery cells in the related art all use high-energy, high-power lithium batteries, which are prone to battery thermal runaway, but the battery upper box assembly in the related technology does not have the function of delaying thermal runaway, so an additional independent thermal runaway needs to be added.
  • the protection system increases the production cost of the battery assembly.
  • the present application provides a battery upper case assembly with the function of delaying the thermal runaway of a battery cell.
  • the present application also provides a battery assembly, which does not require an additional independent thermal runaway protection system, thereby reducing the production cost of the battery assembly.
  • a battery upper case assembly capable of delaying thermal runaway, comprising: an upper case body, which defines an isolated accommodating cavity and a gas channel, the accommodating cavity is provided with a cooling liquid containing a fire extinguishing agent, and the gas The channel is located below the accommodating cavity, and the upper case body is configured such that when a thermal runaway occurs in the battery cell, the wall between the accommodating cavity and the gas channel can be broken so that the accommodating cavity and the gas channel can be broken.
  • the gas channel is connected, the upper box body is provided with an air inlet that communicates with the gas channel, and the first flow area of the air inlet is larger than the second flow area of the outlet of the gas channel; explosion-proof valve , which is arranged on the upper box body, and the explosion-proof valve is configured to punch out from the upper box body when the pressure of the gas at the outlet of the gas channel is higher than a preset pressure.
  • a battery assembly comprising a battery cell and the battery upper case assembly capable of delaying thermal runaway according to any one of the above solutions, the battery cell being located in the upper case assembly of the battery capable of delaying thermal runaway.
  • FIG. 1 is a schematic diagram of a battery upper case assembly that can delay thermal runaway provided by an embodiment of the present application in one direction;
  • FIG. 2 is a schematic diagram of a battery upper case assembly that can delay thermal runaway provided by an embodiment of the present application in another direction;
  • FIG. 3 is a cross-sectional view of an upper case body that can delay thermal runaway provided by an embodiment of the present application
  • Fig. 4 is a partial enlarged view of Fig. 3 at A;
  • FIG. 5 is a partial enlarged view at B in FIG. 3 .
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • This embodiment provides a battery upper case assembly that can delay thermal runaway. As shown in FIGS. 1 to 4 , it includes an upper case body 1 and an explosion-proof valve 2 .
  • the upper case body 1 defines an isolated accommodating cavity. 101 and a gas channel 102, the accommodating cavity 101 is provided with a cooling liquid containing a fire extinguishing agent, the gas channel 102 is located below the accommodating cavity 101, and the upper case body 1 is configured so that when the battery cell is thermally out of control, the accommodating cavity 101 and the The wall between the gas passages 102 can be broken to make the accommodating cavity 101 communicate with the gas passage 102.
  • the upper box body 1 is provided with an air inlet 103 that communicates with the gas passage 102.
  • the first flow area of the air inlet 103 is larger than that of the gas
  • the second flow area of the outlet of the passage 102, the explosion-proof valve 2 is arranged on the upper box body 1, and the explosion-proof valve 2 is configured so that when the pressure of the gas at the outlet of the gas passage 102 is higher than the preset pressure, the gas will blow the explosion-proof valve 2. Punch out from the upper case body 1 .
  • the pressure of the gas entering the gas channel 102 is greater than the pressure of the gas discharged from the gas channel 102, so as to ensure that the explosion-proof valve 2 is flushed out and avoid the explosion-proof valve 2 when the battery is thermally out of control.
  • the occurrence of the phenomenon that cannot be flushed out ensures that the gas generated when the battery cell is thermally out of control can be discharged in time.
  • the flow area of the gas channel 102 gradually decreases.
  • the explosion-proof valve 2 is first flushed out to realize the pressure relief of the gas and avoid the occurrence of the explosion of the battery assembly.
  • the wall is broken, and the cooling liquid in the accommodating cavity 101 extinguishes the flame and lowers the temperature of the gas, thereby delaying the thermal runaway of the remaining battery cells.
  • the first flow area of the air inlet 103 of the battery upper case assembly that can delay thermal runaway is larger than the second flow area of the outlet of the gas passage 102, so that the explosion-proof valve 2 is flushed out, and the battery cell
  • thermal runaway occurs, the wall between the accommodating cavity 101 and the gas channel 102 is ruptured, and the accommodating cavity 101 and the gas channel 102 are connected.
  • the cooling liquid contains fire extinguishing agent, the cooling liquid can play a role in extinguishing the fire, so that the battery is placed on the box.
  • the body assembly has the function of delaying the thermal runaway of the remaining battery cells.
  • the coolant in the accommodating cavity 101 can also absorb part of the impact energy when the battery upper box assembly vibrates or collides, so that the battery upper box assembly has damping properties.
  • the gas channel 102 in this embodiment is based on vibration and harshness (Noise, Vibration, Harshness, NVH), computer aided engineering (Computer Aided Engineering, CAE) in engineering design, computational fluid dynamics ( Computational Fluid Dynamics, CFD) simulation design channel.
  • the ratio of the first flow area to the second flow area in this embodiment is 3-20.
  • the ratio of the first flow area to the second flow area is 3-20, which can ensure that the explosion-proof valve 2 is flushed out in time, ensure that the gas generated when the battery cell is thermally out of control can be discharged in time, and reduce the thermal runaway of the battery cell.
  • the pressure of the gas can avoid the phenomenon that the explosion-proof valve 2 can only be flushed out when the pressure of the gas flowing through the air inlet 103 reaches a high level.
  • the ratio of the first flow area to the second flow area may be 3, 5, 9, 15, 20, etc., and the ratio may be an integer or a decimal. In other embodiments, the ratio of the first flow area to the second flow area may also be other values, which are specifically set according to actual needs.
  • the first flow area of the air inlet 103 gradually decreases along the flow direction of the gas.
  • the first flow area of the air inlet 103 gradually decreases, so that the pressure of the gas entering the gas passage 102 through the air inlet 103 gradually increases, so that the gas flows smoothly into the gas passage 102, which is finally beneficial to the gas flow through the gas passage 102.
  • the gas discharged from the outlet flushes the explosion-proof valve 2 from the upper box body 1 .
  • the inner wall of the gas channel 102 in this embodiment is provided with a rifling (not shown in the figure), and the additional rifling can make a sharp sound when the gas flows through the gas channel 102 to form an alarm sound, and the structure of this physical alarm is safe Reliable, it is convenient for users to know the thermal runaway of the battery cells in time, so as to effectively help passengers escape.
  • the ratio of the volume of the cooling liquid to the volume of the accommodating cavity 101 in this embodiment is 0.85-0.97.
  • the ratio of the volume of the cooling liquid to the volume of the accommodating cavity may be 0.85, 0.88, 0.9, 0.97, etc. If the ratio of the volume of the cooling liquid to the volume of the accommodating cavity 101 is too small, when the temperature of the battery cell is high, the volume of the gas in the accommodating cavity 101 increases more, so that the volume of the accommodating cavity 101 changes significantly.
  • the upper box body 1 may appear bulging, which is not conducive to the use of the upper box body 1, and reduces the service life of the upper box body 1.
  • the ratio of the volume of the cooling liquid to the volume of the accommodating cavity 101 is too small, so that the The content of coolant is less, which is not conducive to extinguishing the flame. If the ratio of the volume of the cooling liquid to the volume of the accommodating cavity 101 is too large, the excess cooling liquid will prevent the cooling liquid from shaking in the accommodating cavity 101, which will weaken the shock absorption characteristics of the battery upper box assembly, which is not conducive to the battery upper box. When the body assembly vibrates or collides, it absorbs part of the impact energy, which causes the battery upper box assembly to vibrate or sway easily when it collides.
  • the specific heat capacity of the cooling liquid in this embodiment is greater than or equal to 500J/(kg/K), and the cooling liquid with a larger specific heat capacity can effectively block the influence of the external temperature on the battery cells and prevent the battery cells from being overcooled or under extreme temperature conditions. Overheating, improve the temperature consistency of the battery cells, and improve the service life of the battery cells.
  • the upper box body 1 in this embodiment is a mica box body, and the thickness of the upper box body 1 is greater than or equal to 3 mm.
  • the non-metal mica box of the present embodiment is lighter in weight, and has the functions of high structural strength and ability to resist the impact force of thermal diffusion.
  • the upper box body 1 may also be a ceramic box body, a polyurethane box body, a melamine box body, or an upper box body made of other non-metallic materials, which is selected according to actual needs.
  • the side edges of the upper box body 1 in this embodiment are provided with angular reinforcing ribs 11
  • the corners of the upper box body 1 are provided with double-layer reinforcing ribs 12 .
  • the number of the protruding ribs 12 is four, and the four double-layer reinforcing protruding ribs 12 are respectively located at the four corners of the upper box body 1 .
  • the additional angular reinforcement ribs 11 and double-layer reinforcement ribs 12 can improve the structural strength of the upper box body 1.
  • the additional angular reinforcement ribs 11 and double-layer reinforcement ribs 12 The design can ensure the structural strength of the upper box body 1, ensure the rapid pressure relief of the gas generated when the battery cell undergoes thermal runaway, and prevent the upper box body 1 from being ruptured due to excessive gas pressure.
  • the position of the corner-shaped reinforcing rib 11 is set according to actual needs. Before mass-producing the upper box body 1, first perform software simulation on the upper box body 1, and obtain the position where the side of the upper box body 1 ruptures when the battery cell is thermally runaway by software simulation. The angular reinforcing ribs 11 are added to the position to reinforce the structural strength of the upper case body 1, so as to avoid the rupture of the side of the upper case body 1 when the battery cell is thermally out of control, and prevent the thermal runaway of the battery cell from occurring. The open flame spreads to the outside through the ruptured upper case body 1 to accelerate the occurrence of thermal runaway. Through NVH, CAE, and CFD simulation design, the upper box body 1 has been optimized for many times. Within the requirements specified in the experiment, when the thermal runaway of the battery cell occurs, it is ensured that the side of the upper box body 1 will not be broken. , to avoid the occurrence of the phenomenon that the flame spreads outward through the broken upper box body 1 .
  • the upper box body 1 of this embodiment is provided with punching ribs 13 protruding toward the battery cells, and the punching ribs 13 and the upper box body 1 form two parallel distributed gases
  • the flow channel 104, the two gas flow channels 104 are located on both sides of the punching rib 13 respectively and are connected with the air inlet 103.
  • the distribution wire is arranged directly below the punching rib 13. When the battery cell is thermally out of control, the gas flows from The gas flow channels 104 on both sides of the stamping rib 13 flow to the air inlet 103 without affecting the wires, thereby improving the safety of the battery assembly.
  • the gas flow channel 104 includes a first gas flow channel 1041 and a second gas flow channel 1042 , and the gas generated when the thermal runaway occurs in the battery cell flows through the first gas flow channel 1041 and the second gas flow channel in sequence. 1042 , the third flow area of the first gas flow channel 1041 is larger than the fourth flow channel area of the second gas flow channel 1042 .
  • the upper box body 1 is provided with a step 14 , and the width and depth of the first gas flow channel 1041 are respectively smaller than the width and depth of the second gas flow channel 1042 , so that thermal runaway occurs in the battery cells.
  • the gas generated during the process quickly passes through the first gas flow channel 1041, the second gas flow channel 1042, the air inlet 103, and the gas channel 102 in sequence to achieve pressure relief, so as to avoid disturbance of the internal gas flow and prevent the upper box from being caused by excessive gas pressure. Rupture of body 1.
  • This embodiment also provides a battery assembly, including a battery cell (not shown in the figure) and the battery upper case assembly that can delay thermal runaway described in this embodiment, the battery cell is located in a battery that can delay thermal runaway Just below the battery upper case assembly.
  • the battery assembly provided in this embodiment includes the battery upper box assembly that can delay thermal runaway described above, there is no need to add an independent thermal runaway protection system, so that the battery assembly has the ability to delay the thermal runaway of the battery cells. function, reducing the production cost of the battery assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电池的热失控技术领域,公开一种可延缓热失控的电池上箱体总成及电池总成。其中可延缓热失控的电池上箱体总成包括上箱体本体和防爆阀,上箱体本体内限定出隔绝的容纳腔和气体通道,容纳腔内设有冷却液,气体通道位于容纳腔的下方,上箱体本体被配置为当电池单体发生热失控时,容纳腔和气体通道之间的壁面可破裂以使容纳腔和气体通道连通,上箱体本体上设有与气体通道连通的进气口,进气口的第一流通面积大于气体通道的出口的第二流通面积,防爆阀设置在上箱体本体上,防爆阀被配置为当气体通道的出口的气体的压力高于预设压力时,从上箱体本体上冲出。

Description

电池上箱体总成及电池总成
本申请要求在2021年1月18日提交中国专利局、申请号为202110063857.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池的热失控技术领域,例如涉及一种电池上箱体总成及电池总成。
背景技术
相关技术中的电池单体都采用高能量、高功率的锂电池,容易发生电池热失控,但相关技术中的电池上箱体总成都没有延缓热失控的功能,因此需要额外增加独立的热失控保护***,增加了电池总成的生产成本。
发明内容
本申请提供一种电池上箱体总成具有延缓电池单体发生热失控的功能。
本申请还提供一种电池总成,该电池总成无需额外增设独立的热失控保护***,降低了电池总成的生产成本。
本申请采用以下技术方案:
一种可延缓热失控的电池上箱体总成,包括:上箱体本体,其内限定出隔绝的容纳腔和气体通道,所述容纳腔内设有含有灭火剂的冷却液,所述气体通道位于所述容纳腔的下方,所述上箱体本体被配置为当电池单体发生热失控时,所述容纳腔和所述气体通道之间的壁面可破裂以使所述容纳腔和所述气体通道连通,所述上箱体本体上设有与所述气体通道连通的进气口,所述进气口的第一流通面积大于所述气体通道的出口的第二流通面积;防爆阀,设置在所述上箱体本体上,所述防爆阀被配置为当所述气体通道的出口的气体的压力高于预设压力时,从所述上箱体本体上冲出。
一种电池总成,包括电池单体及以上任一方案所述的可延缓热失控的电池上箱体总成,所述电池单***于所述可延缓热失控的电池上箱体总成的正下方。
附图说明
图1是本申请实施例提供的可延缓热失控的电池上箱体总成在一个方向的示意图;
图2是本申请实施例提供的可延缓热失控的电池上箱体总成在另一个方向的示意图;
图3是本申请实施例提供的可延缓热失控的上箱体本体的剖视图;
图4是图3在A处的局部放大图;
图5是图3在B处的局部放大图。
图中:
1、上箱体本体;101、容纳腔;102、气体通道;103、进气口;104、气体流道;1041、第一气体流道;1042、第二气体流道;11、角型加强凸筋;12、双层加强凸筋;13、冲压凸筋;14、台阶;
2、防爆阀。
具体实施方式
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本实施例提供一种可延缓热失控的电池上箱体总成,如图1至图4所示,包括上箱体本体1和防爆阀2,上箱体本体1内限定出隔绝的容纳腔101和气体通道102,容纳腔101内设有含有灭火剂的冷却液,气体通道102位于容纳腔101的下方,上箱体本体1被配置为当电池单体发生热失控时,容纳腔101和气 体通道102之间的壁面可破裂以使容纳腔101和气体通道102连通,上箱体本体1上设有与气体通道102连通的进气口103,进气口103的第一流通面积大于气体通道102的出口的第二流通面积,防爆阀2设置在上箱体本体1上,防爆阀2被配置为当气体通道102的出口的气体的压力高于预设压力时,气体将防爆阀2从上箱体本体1上冲出。
由于第一流通面积大于第二流通面积,使得进入气体通道102的气体的压力大于从气体通道102排出的气体的压力,从而保证防爆阀2被冲出,避免了电池发生热失控时防爆阀2无法被冲出的现象的发生,保证电池单体发生热失控时产生的气体能够及时排出。如图4所示,在气体通道102的末端,气体通道102的流通面积逐渐减小。
电池单体发生热失控时,不但会产生高温高压的气体,还会产生火焰,火焰和高温高压的气体会同时对容纳腔101和气体通道102之间的壁面产生作用,使得壁面破裂,容纳腔101内的冷却液能够浇灭火焰和降低气体的温度,从而延缓其余电池单体发生热失控。
一般来讲,电池单体发生热失控时,防爆阀2首先被冲出,实现对气体的泄压,避免了电池总成发生***的现象的发生,接着容纳腔101和气体通道102之间的壁面破裂,容纳腔101内的冷却液浇灭火焰和降低气体的温度,从而延缓其余电池单体发生热失控。
本实施例提供的可延缓热失控的电池上箱体总成的进气口103的第一流通面积大于气体通道102的出口的第二流通面积,使得防爆阀2被冲出,在电池单体发生热失控时容纳腔101和气体通道102之间的壁面发生破裂,容纳腔101和气体通道102连通,由于冷却液内含有灭火剂,使得冷却液能够起到灭火的作用,使得该电池上箱体总成具有延缓其余电池单体发生热失控的功能,此外容纳腔101内的冷却液还能够在电池上箱体总成发生振动或者碰撞时吸收一部分冲击能量,使得电池上箱体总成具有减震的特性。
需要说明的是,本实施例的气体通道102是根据振动与声振粗糙度(Noise、Vibration、Harshness,NVH)、工程设计中的计算机辅助工程(Computer Aided Engineering,CAE)、计算流体动力学(Computational Fluid Dynamics,CFD)仿真设计而形成的通道。本实施例的第一流通面积与第二流通面积的比值为3-20。第一流通面积和第二流通面积的比值为3-20能够保证防爆阀2被及时冲出,保证电池单体发生热失控时所产生的气体能够及时排出,降低电池单体发 生热失控时的气体的压力,避免出现流经进气口103的气体的压力达到很大时防爆阀2才能被冲出的现象的发生。例如,第一流通面积和第二流通面积的比值可以为3,5,9,15,20等,比值可以为整数,也可以为小数。在其他实施例中,第一流通面积和第二流通面积的比值还可以为其他数值,具体根据实际需要设置。
如图3所示,沿气体的流动方向,进气口103的第一流通面积逐渐减小。进气口103的第一流通面积逐渐减小使得经进气口103进入气体通道102内的气体的压力逐渐增加,从而使得气体顺畅地流至气体通道102内,最终有利于经气体通道102的出口排出的气体将防爆阀2从上箱体本体1上冲出。
本实施例的气体通道102的内壁上设有膛线(图中未示出),增设的膛线能够在气体流经气体通道102时发出尖锐的声响,形成报警的声音,这种物理报警的结构安全可靠,便于用户及时知晓电池单体发生了热失控,从而有效帮助乘客逃生。
本实施例的冷却液的体积与容纳腔101的体积的比值为0.85-0.97。例如,冷却液的体积与容纳腔的体积的比值可以为0.85,0.88,0.9,0.97等。若是冷却液的体积与容纳腔101的体积的比值过小,当电池单体的温度较高时,容纳腔101内的气体的体积增加的较多,使得容纳腔101的体积发生明显的变化,上箱体本体1可能会出现鼓包的现象,不利于上箱体本体1的使用,降低了上箱体本体1的使用寿命,同时冷却液的体积与容纳腔101的体积的比值过小,使得冷却液的含量较少,不利于浇灭火焰。若是冷却液的体积与容纳腔101的体积的比值过大,冷却液过多使得冷却液无法在容纳腔101内晃动,减弱了电池上箱体总成的减震的特性,不利于电池上箱体总成发生振动或者碰撞时吸收一部分冲击能量,导致电池上箱体总成发生振动或者碰撞时容易产生晃动。
本实施例的冷却液的比热容大于或者等于500J/(kg/K),比热容较大的冷却液能够有效阻隔外界的温度对电池单体的影响,防止电池单体在极端温度条件下过冷或者过热,提升电池单体的温度一致性,提升电池单体的使用寿命。
本实施例的上箱体本体1为云母箱体,上箱体本体1的厚度大于或者等于3mm。本实施例的非金属的云母箱体与相关技术中的金属的上箱体本体1相比,重量更轻,且具有结构强度大和能够抵御热扩散的冲击力的作用。在其他实施例中,上箱体本体1还可以为陶瓷箱体、聚氨酯箱体、三聚氰胺箱体或者为其他非金属的材料制成的上箱体本体,具体根据实际需要选定。
如图1所示,本实施例的上箱体本体1的侧边设有角型加强凸筋11,上箱体本体1的拐角设有双层加强凸筋12,本实施例的双层加强凸筋12的个数为四个,四个双层加强凸筋12分别位于上箱体本体1的四个拐角处。增设的角型加强凸筋11和双层加强凸筋12可以提升上箱体本体1的结构强度,通过NVH、CAE、CFD仿真分析,增设的角型加强凸筋11和双层加强凸筋12设计可以保证上箱体本体1的结构强度,保证电池单体发生热失控时产生的气体的快速泄压,防止气体的压力过高造成上箱体本体1的破裂。
需要说明的是,角型加强凸筋11的位置根据实际需要设置。在大批量生产上箱体本体1之前首先对上箱体本体1进行软件模拟,通过软件模拟电池单体发生热失控时得到上箱体本体1的侧边发生破裂的位置,通过在该破裂的位置增加角型加强凸筋11实现对上箱体本体1的结构强度的加固,避免电池单体发生热失控时上箱体本体1的侧边的破裂,防止了电池单体发生热失控产生的明火通过破裂的上箱体本体1蔓延至外侧而加速热失控发生的速度。通过NVH、CAE、CFD仿真设计对上箱体本体1进行多次优化设计,在实验规定的要求范围内,当电池单体发生热失控时,保证上箱体本体1的侧边不会发生破裂,避免了火焰通过破裂的上箱体本体1向外蔓延的现象的发生。
如图1和图2所示,本实施例的上箱体本体1上设有朝向电池单体凸出的冲压凸筋13,冲压凸筋13与上箱体本体1形成两个平行分布的气体流道104,两个气体流道104分别位于冲压凸筋13的两侧且均与进气口103连通,冲压凸筋13的正下方设置为分布电线,当电池单体发生热失控时气体从冲压凸筋13两侧的气体流道104流至进气口103处,不会对电线产生影响,提高了电池总成的安全性。
如图2所示,气体流道104包括第一气体流道1041和第二气体流道1042,电池单体发生热失控时产生的气体依次流经第一气体流道1041和第二气体流道1042,第一气体流道1041的第三流通面积大于第二气体流道1042的第四流道面积。如图1和图2所示,上箱体本体1上设有台阶14,第一气体流道1041的宽度和深度分别小于第二气体流道1042的宽度和深度,使得电池单体发生热失控时产生的气体的依次快速通过第一气体流道1041、第二气体流道1042、进气口103、气体通道102实现泄压,避免内部气体流通紊乱,防止气体的压力过高造成上箱体本体1的破裂。
本实施例还提供一种电池总成,包括电池单体(图中未示出)和本实施例 所述的可延缓热失控的电池上箱体总成,电池单***于可延缓热失控的电池上箱体总成的正下方。
本实施例提供的电池总成由于包括前文所述的可延缓热失控的电池上箱体总成,无需额外增设独立的热失控保护***,使得该电池总成具有延缓电池单体发生热失控的功能,降低了电池总成的生产成本。

Claims (10)

  1. 一种电池上箱体总成,包括:
    上箱体本体(1),其内限定出隔绝的容纳腔(101)和气体通道(102),所述容纳腔(101)内设有含有灭火剂的冷却液,所述气体通道(102)位于所述容纳腔(101)的下方,所述上箱体本体(1)被配置为当电池单体发生热失控时,所述容纳腔(101)和所述气体通道(102)之间的壁面可破裂以使所述容纳腔(101)和所述气体通道(102)连通,所述上箱体本体(1)上设有与所述气体通道(102)连通的进气口(103),所述进气口(103)的第一流通面积大于所述气体通道(102)的出口的第二流通面积;
    防爆阀(2),设置在所述上箱体本体(1)上,所述防爆阀(2)被配置为当所述气体通道(102)的出口的气体的压力高于预设压力时,从所述上箱体本体(1)上冲出。
  2. 根据权利要求1所述的电池上箱体总成,其中,所述第一流通面积与所述第二流通面积的比值为3-20。
  3. 根据权利要求1所述的电池上箱体总成,其中,沿所述气体的流动方向,所述进气口(103)的第一流通面积逐渐减小。
  4. 根据权利要求1所述的电池上箱体总成,其中,所述气体通道(102)的内壁上设有膛线。
  5. 根据权利要求1所述的电池上箱体总成,其中,所述冷却液的体积与所述容纳腔(101)的体积的比值为0.85-0.97。
  6. 根据权利要求1所述的电池上箱体总成,其中,所述上箱体本体(1)包括云母箱体、陶瓷箱体、聚氨酯箱体或者三聚氰胺箱体,所述上箱体本体(1)的厚度大于或者等于3mm。
  7. 根据权利要求1所述的电池上箱体总成,其中,所述上箱体本体(1)的侧边设有角型加强凸筋(11),所述上箱体本体(1)的拐角设有双层加强凸筋(12)。
  8. 根据权利要求1所述的电池上箱体总成,其中,所述上箱体本体(1)上设有朝向所述电池单体凸出的冲压凸筋(13),所述冲压凸筋(13)与所述上箱体本体(1)形成两个平行分布的气体流道(104),两个所述气体流道(104)分别位于所述冲压凸筋(13)的两侧且分别与所述进气口(103)连通。
  9. 根据权利要求8所述的电池上箱体总成,其中,所述气体流道(104)包括第一气体流道(1041)和第二气体流道(1042),所述电池单体发生热失控 时产生的气体依次流经所述第一气体流道(1041)和所述第二气体流道(1042),所述第一气体流道(1041)的第三流通面积大于所述第二气体流道(1042)的第四流通面积。
  10. 一种电池总成,包括电池单体及如权利要求1-9任一项所述的电池上箱体总成,所述电池单***于所述电池上箱体总成的正下方。
PCT/CN2022/071984 2021-01-18 2022-01-14 电池上箱体总成及电池总成 WO2022152237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110063857.8A CN112652851B (zh) 2021-01-18 2021-01-18 一种可延缓热失控的电池上箱体总成及电池总成
CN202110063857.8 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022152237A1 true WO2022152237A1 (zh) 2022-07-21

Family

ID=75368516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071984 WO2022152237A1 (zh) 2021-01-18 2022-01-14 电池上箱体总成及电池总成

Country Status (2)

Country Link
CN (1) CN112652851B (zh)
WO (1) WO2022152237A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652851B (zh) * 2021-01-18 2022-03-15 中国第一汽车股份有限公司 一种可延缓热失控的电池上箱体总成及电池总成

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
CN209183609U (zh) * 2018-12-28 2019-07-30 宁德时代新能源科技股份有限公司 电池包
CN110534670A (zh) * 2018-05-23 2019-12-03 大众汽车有限公司 具有灭火装置的电池组以及机动车
CN111106278A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
WO2020231095A1 (ko) * 2019-05-14 2020-11-19 주식회사 엘지화학 전지 모듈 및 이를 포함하는 전지팩
CN112652851A (zh) * 2021-01-18 2021-04-13 中国第一汽车股份有限公司 一种可延缓热失控的电池上箱体总成及电池总成

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466906B2 (ja) * 2009-09-18 2014-04-09 パナソニック株式会社 電池モジュール
JP5440790B2 (ja) * 2010-03-18 2014-03-12 三菱自動車工業株式会社 バッテリケース及び電池パック
US8423215B2 (en) * 2010-08-10 2013-04-16 Tesla Motors, Inc. Charge rate modulation of metal-air cells as a function of ambient oxygen concentration
WO2013018305A1 (ja) * 2011-07-29 2013-02-07 パナソニック株式会社 電池ブロック
KR101294169B1 (ko) * 2011-09-26 2013-08-08 기아자동차주식회사 전기자동차용 배터리팩 화재 방지기구
JP5903607B2 (ja) * 2011-11-11 2016-04-13 パナソニックIpマネジメント株式会社 電池パック
DE102013200732A1 (de) * 2013-01-18 2014-07-24 Robert Bosch Gmbh Vorrichtung und Verfahren zur Bereitstellung von Sicherheitsmaßnahmen bei Gasfreisetzung von einer Fahrzeugbatterie sowie Einbauraum für eine Fahrzeugbatterie
JP6991748B2 (ja) * 2017-06-27 2022-02-03 三洋電機株式会社 電池モジュール
CN207474524U (zh) * 2017-09-29 2018-06-08 郑州宇通客车股份有限公司 一种车辆及其电池箱、电池模组、灭火部件、灭火容器
KR102152886B1 (ko) * 2017-12-11 2020-09-07 삼성에스디아이 주식회사 배터리 팩
CN109515216B (zh) * 2018-12-06 2024-02-27 中国第一汽车股份有限公司 纯电动汽车动力电池总成结构
CN209104274U (zh) * 2018-12-28 2019-07-12 宁德时代新能源科技股份有限公司 电池模组
CN210535737U (zh) * 2019-10-29 2020-05-15 上海蔚来汽车有限公司 电池包的隔热组件
CN211629200U (zh) * 2020-01-19 2020-10-02 蜂巢能源科技有限公司 电池包和具有它的车辆
CN111613751A (zh) * 2020-06-15 2020-09-01 中国第一汽车股份有限公司 一种动力电池总成及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
CN110534670A (zh) * 2018-05-23 2019-12-03 大众汽车有限公司 具有灭火装置的电池组以及机动车
CN209183609U (zh) * 2018-12-28 2019-07-30 宁德时代新能源科技股份有限公司 电池包
CN111106278A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
WO2020231095A1 (ko) * 2019-05-14 2020-11-19 주식회사 엘지화학 전지 모듈 및 이를 포함하는 전지팩
CN112652851A (zh) * 2021-01-18 2021-04-13 中国第一汽车股份有限公司 一种可延缓热失控的电池上箱体总成及电池总成

Also Published As

Publication number Publication date
CN112652851A (zh) 2021-04-13
CN112652851B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2022152237A1 (zh) 电池上箱体总成及电池总成
WO2023217225A1 (zh) 防爆阀、电池、电池模组、电池包以及车辆
JP2020087912A (ja) 電池パックに用いられる筐体及び電池パック
WO2023217242A1 (zh) 防爆阀、电池、电池模组、电池包以及车辆
WO2019174085A1 (zh) 电池模组以及电池包
WO2021027775A1 (zh) 二次电池
WO2023273887A1 (zh) 一种电池包下箱体、电池包及车辆
CN110299484A (zh) 基于泡沫铝材料和软包电池的动力电池包
WO2020215989A1 (zh) 储能装置
KR20240049383A (ko) 에너지 저장 컨테이너
CN116613461A (zh) 电池及电池包
CN109686874A (zh) 动力电池的壳体以及动力电池
CN212366138U (zh) 动力电池包及电动汽车
WO2023273568A1 (zh) 上箱体总成、电池总成及电动车辆
WO2023093432A1 (zh) 电池包
CN216120483U (zh) 一种隔热装置、电池及用电设备
CN109656322A (zh) 一种平板电脑保护套
JP2023538656A (ja) バッテリーモジュール、それを含むバッテリーパック及び自動車
CN210928351U (zh) 一种新型的气箱散热盖板
KR20220168919A (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차
CN206947386U (zh) 一种锂电池的芯壳结构
CN107275525B (zh) 一种终端保护壳
CN219677390U (zh) 一种锂电池用顶盖及锂电池
CN220895727U (zh) 一种外壳和外部挤压式浸默电芯
TWI796097B (zh) 具有主動滅火機制的電池芯固持裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739113

Country of ref document: EP

Kind code of ref document: A1