WO2022151802A1 - 立式空调室内机 - Google Patents

立式空调室内机 Download PDF

Info

Publication number
WO2022151802A1
WO2022151802A1 PCT/CN2021/127642 CN2021127642W WO2022151802A1 WO 2022151802 A1 WO2022151802 A1 WO 2022151802A1 CN 2021127642 W CN2021127642 W CN 2021127642W WO 2022151802 A1 WO2022151802 A1 WO 2022151802A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air outlet
casing
indoor unit
conditioner indoor
Prior art date
Application number
PCT/CN2021/127642
Other languages
English (en)
French (fr)
Inventor
李英舒
陈会敏
李婧
王永涛
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022151802A1 publication Critical patent/WO2022151802A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/12Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of sliding members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1413Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre using more than one tilting member, e.g. with several pivoting blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • F24F2013/1433Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means with electric motors

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a vertical air conditioner indoor unit.
  • the air conditioner needs to blow the cooler air upwards as much as possible when cooling, and blow the hot air toward the ground as much as possible when heating, so that the cold air or hot air can spread more evenly in the indoor space and make the cooling and heating speed faster.
  • the existing vertical air conditioner indoor unit is usually provided with an air outlet facing forward, and the air guide structure such as the air guide plate and the swing blade is used to guide the air outlet direction of the air supply air, so as to realize upward blowing or downward blowing.
  • the various current air guiding structures have limited air guiding angles, and can only supply air obliquely upward or downward. It is difficult for cold air or hot air to reach the roof or floor area, which affects the cooling or heating effect.
  • An object of the present invention is to provide a vertical air conditioner indoor unit that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
  • the purpose of the present invention is to strengthen the upward blowing and downward blowing effects of the vertical air conditioner indoor unit.
  • a further object of the present invention is to facilitate the switching of the up-blowing mode and the down-blowing mode.
  • the present invention provides a vertical air conditioner indoor unit, which includes:
  • the air guide body is movably arranged at the air outlet, and is configured to:
  • the air guide body can be arranged at the air outlet so as to be moved up and down to the blowing position, so that its upper surface and the upper wall of the Its lower surface and the lower wall of the air outlet form a lower air outlet channel.
  • the upper surface of the air guide body includes a concave arc surface that gradually extends upwards from the inner side of the casing to the outer direction; Concave surface.
  • connection between the upper wall of the air outlet and the outer peripheral surface of the casing is an outer convex arc surface that matches the shape of the upper surface of the air guide body; and the connection between the lower wall of the air outlet and the outer peripheral surface of the casing is with the air guide.
  • the shape of the lower surface of the wind body matches the convex arc surface.
  • one end of the air guide body facing the inner side of the air outlet is a pointed end.
  • the tip is an arcuate end face.
  • the air outlet is a rectangular hole whose length direction is along the horizontal direction.
  • the vertical air conditioner indoor unit also includes: at least one rack and pinion mechanism for driving the air guide body to translate up and down, each rack and pinion mechanism includes a motor, a gear and a rack that mesh with each other, and the motor is mounted on the casing. , the gear is connected to the motor, the rack extends along the vertical direction and is connected to the air guide.
  • the air outlet is located in the upper area of the front side of the casing, and the lower part of the rear side of the casing is provided with an air inlet; and the vertical air conditioner indoor unit further includes a centrifugal fan and a plate heat exchanger, and the centrifugal fan is arranged on the front side of the air inlet.
  • the axis extends in the front-rear direction, and the plate-shaped heat exchanger is disposed in the upper region of the casing gradually and inclined forward from top to bottom.
  • a movable air guide body is arranged at the air outlet of the casing, and the air guide body has an upward blowing position and a downward blowing position, so that the vertical air conditioner indoor unit has an upward blowing mode and a downward blowing mode.
  • Modes to choose from to enhance cooling and heating For example, when the air-conditioning heating needs to operate in the downward blowing mode, the air guide body can be moved to the downward blowing position, so that it defines a lower air outlet channel with the casing, and guides the supply air flow to flow downward close to the outer peripheral surface of the casing.
  • the vertical air conditioner indoor unit of the present invention has better cooling or heating effect, and can also avoid cold or hot air blowing people to cause discomfort to the human body.
  • an air guide body that can be translated up and down is designed so that the upper and lower surfaces and the upper and lower walls of the air outlet form an upper and lower air outlet channel, and the structure is very simple and ingenious. Moreover, the mode switching action is also very simple and reliable.
  • the upper and lower surfaces of the air guide body are further concave arc surfaces, so as to guide the supply air flow to flow upward or downward more vertically, so as to better fit the outer peripheral surface of the casing and make the Coanda effect better. .
  • the air guide body when the air guide body is in the upward blowing position, the lower surface of the air guide body is attached to the lower wall of the air outlet, which can enhance the sealing and prevent the air flow from the air guide body and the air outlet.
  • the leakage between the lower wall of the air outlet affects the blowing effect.
  • the air guide body is connected with the casing as a whole, so that the appearance of the air conditioner is more beautiful.
  • the air guide body is in the downward blowing position, so that its lower surface is attached to the upper wall of the air outlet, so as to enhance the sealing and avoid air leakage.
  • FIG. 1 is a schematic front view of a vertical air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic top view of the vertical air conditioner indoor unit shown in Fig. 1;
  • Fig. 3 is a schematic cross-sectional view of the vertical air conditioner indoor unit shown in Fig. 1;
  • Fig. 4 is a schematic diagram when the air guide body of the vertical air conditioner indoor unit shown in Fig. 3 is moved to an upward blowing position;
  • Fig. 5 is a schematic diagram when the air guide body of the vertical air conditioner indoor unit shown in Fig. 3 is moved to a downward blowing position;
  • Fig. 6 is a schematic diagram of a rack and pinion mechanism of the vertical air conditioner indoor unit.
  • the vertical air conditioner indoor unit will be described below with reference to FIGS. 1 to 6 .
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention .
  • the flow direction of the supply air flow is indicated by arrows in the figure.
  • Embodiments of the present invention provide a vertical air conditioner indoor unit for adjusting indoor air, such as cooling/heating, dehumidification, introducing fresh air, and the like.
  • Fig. 1 is a schematic front view of a vertical air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic top view of the vertical air conditioner indoor unit shown in Fig. 1
  • Fig. 3 is a vertical air conditioner indoor unit shown in Fig. 1
  • Fig. 4 is the schematic diagram when the air guide body 20 of the vertical air conditioner indoor unit shown in Fig. 3 is moved to the blowing position
  • Fig. 5 is the air guide body 20 of the vertical air conditioner indoor unit shown in Fig. 3 is moved Schematic diagram of the blow down position.
  • the vertical air conditioner indoor unit may generally include a casing 10 and an air guide body 20 .
  • the casing 10 is provided with an air inlet 11 and an air outlet 12.
  • the air inlet 11 is used to inhale indoor air
  • the air outlet 12 is used to discharge the air supply air in the casing 10 into the room.
  • the supply air flow may be cold air produced by the vertical air conditioner indoor unit in the cooling mode, hot air produced in the heating mode, or fresh air introduced in the fresh air mode, and so on.
  • the air guide 20 is movably disposed at the air outlet 12 and configured to be movable to an upward blowing position, so as to define an upper air outlet channel 251 opened upward together with the casing 10 for guiding the air from the air outlet.
  • the supply air flow from 12 flows upward along the outer peripheral surface of the casing 10, as shown in FIG. 4 .
  • the air guide body 20 is moved to the downward blowing position, so as to define a lower air outlet channel 252 opened downward together with the casing 10 for guiding the air flow flowing out of the air outlet 12 downward along the outer peripheral surface of the casing 10 flow, as shown in Figure 5.
  • the vertical air conditioner indoor unit of the embodiment of the present invention has an upward blowing mode and a downward blowing mode for selection, which can improve the cooling and heating effects.
  • the air guide 20 can be moved to the blow-down position, so that it defines the lower air outlet channel 252 with the casing 10 so as to guide the supply air flow against the casing 10
  • the peripheral surface flows downward.
  • the air supply air flows out of the lower air outlet channel 252
  • it continues to flow downward along the outer peripheral surface of the casing 10 by virtue of the Coanda effect, so as to reach the ground smoothly and form a carpet air supply effect, as shown in FIG. 5 .
  • the air guide body 20 is moved to the upward blowing position, so that it defines the upper air outlet channel 251 with the casing 10 , and guides the air supply air to be close to the outer peripheral surface of the casing 10 upward. flow. After the supply air flows out of the upper air outlet channel 251, it continues to flow upward along the outer peripheral surface of the casing 10 by virtue of the Coanda effect, so as to reach the roof smoothly, as shown in FIG. 4 .
  • the indoor unit of the vertical air conditioner of the embodiment of the present invention has better cooling or heating effect, and can also avoid cold or hot air blowing people to cause discomfort to the human body.
  • the area of the outer peripheral surface of the casing 10 through which the air supply air flows can be a flat surface, so that the air supply air flow can better fit the outer peripheral surface of the casing 10 .
  • the air guide 20 can be arranged at the air outlet 12 so as to be able to translate up and down, so as to move downward to the upward blowing position, so that the upper surface 21 of the air guide body 20 is positioned at the air outlet 12 .
  • the upper wall 121 forms an upper air outlet channel 251 , as shown in FIG. 4 .
  • the air guide 20 is moved upward to the downward blowing position, so that its lower surface 22 and the lower wall 122 of the air outlet 12 form a lower air outlet channel 252 , as shown in FIG. 5 .
  • the air outlet mode can be switched only by moving the air guide body 20 up and down, and the structure is very simple and ingenious. Moreover, the mode switching action is also very simple and reliable.
  • the air guide body 20 can be moved to an intermediate position between the upward blowing position and the downward blowing position, so as to substantially close the air outlet 12, as shown in Figs. 1 and 3 .
  • the air guide body 20 can be placed in the middle position.
  • the upper surface 21 of the air guide 20 may include a concave arc surface extending gradually upward from the inner side to the outer side of the cabinet 10 , so that the air conditioner operates in the upward blowing mode.
  • the airflow is guided by the inner concave arc surface, it can be blown upwards more vertically, so as to better fit the outer peripheral surface of the casing 10 and make the Coanda effect better.
  • the lower surface 22 of the air guide 20 includes a concave arc surface extending gradually downward from the inside to the outside of the casing 10.
  • the air conditioner is running in the blowing mode, the air flow is guided by the concave arc surface. Blow down more vertically.
  • connection between the upper wall 121 of the air outlet 12 and the outer peripheral surface of the casing 10 can also be a convex arc surface that matches the shape of the upper surface 21 of the air guide 20 , so that The supply air flow smoothly transitions from the upper wall 121 of the air outlet 12 to the outer peripheral surface of the casing 10 along the outer convex arc surface.
  • connection between the lower wall 122 of the air outlet 12 and the outer peripheral surface of the casing 10 can be a convex arc surface that matches the shape of the lower surface 22 of the air guide 20 .
  • the upper surface 21 of the air guide body 20 can be attached to the upper wall 121 of the air outlet 12 . Since the outer convex arc surface of the upper wall 121 of the air outlet 12 matches the shape of the inner concave arc surface of the upper surface 21 of the air guide body 20, the two are perfectly fitted, which can enhance the sealing and prevent the supply air flow from passing from the air guide body 20 to the air guide body 20. Leakage between the upper walls 121 of the air outlet 12 affects the downward blowing effect.
  • the lower surface 22 of the air guide body 20 is attached to the lower wall 122 of the air outlet 12 , so that the outer convex arc surface of the lower wall 122 of the air outlet 12 is connected to the inner surface of the lower surface 22 of the air guide body 20 .
  • the shape of the concave arc surface is matched, so that the two are perfectly fitted, which can enhance the sealing performance and prevent the air supply air from leaking from the air guide body 20 and the lower wall 122 of the air outlet 12 to affect the upward blowing effect.
  • the end of the air guide 20 facing the inside of the air outlet 12 can be a tip 23 , and the tip 23 can further be an arc-shaped end surface, so as to make the air flow more smooth.
  • the ground flows to the upper surface 21 or the lower surface 22 of the wind deflector 20 to reduce the resistance.
  • the air outlet 12 is a rectangular hole whose length direction is along the horizontal direction. In this way, the lateral span of the air outlet 12 can be made larger, so that the air supply air can be more attached to the outer peripheral surface of the casing 10, and the attachment effect is better.
  • the air outlet 12 can be located in the upper area of the front side of the casing 10 , and the air inlet 11 is opened at the lower part of the rear side of the casing 10 .
  • the vertical air conditioner indoor unit further includes a centrifugal fan 50 and a plate heat exchanger 30 .
  • the centrifugal fan 50 is disposed on the front side of the air inlet 11 and the axis extends in the front-rear direction, and the plate-shaped heat exchanger 30 is disposed in the upper region of the casing 10 gradually inclined forward from top to bottom.
  • the vertical air conditioner indoor unit also includes a centrifugal fan 50 and a plate heat exchanger 30 .
  • the centrifugal fan 50 is disposed on the front side of the air inlet 11 and the axis extends in the front-rear direction, and the plate-shaped heat exchanger 30 is disposed in the upper region of the casing 10 gradually inclined forward from top to bottom.
  • An air duct 40 may also be arranged in the casing 10 , so that the centrifugal fan 50 is arranged in the air duct 40 .
  • the air duct 40 is used to transport the airflow of the centrifugal fan 50 upward and blow it toward the plate heat exchanger 30 .
  • Fig. 6 is a schematic diagram of a rack and pinion mechanism of the vertical air conditioner indoor unit.
  • the vertical air conditioner indoor unit includes at least one rack and pinion mechanism 60 for driving the air guide body 20 to translate up and down.
  • Each rack and pinion mechanism 60 includes a motor 61, a gear 62 and a rack that mesh with each other.
  • the motor 61 is attached to the casing 10 .
  • the gear 62 is connected to the motor 61 . It extends from the rack 63 in the vertical direction and is connected to the wind guide body 20 .
  • the rack 63 translates up and down to drive the wind guide body 20 to translate up and down.
  • the number of the rack and pinion mechanisms 60 is preferably two, wherein the two motors 61 are respectively installed on the lateral sides of the air outlet 12 to make the air guide 20 move up and down more smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种立式空调室内机,其包括机壳,其上开设有出风口;和导风体,可动地设置在出风口处,并配置成:可运动至一上吹位置,以与机壳共同限定出朝上敞开的上出风通道,用于引导从出风口流出的送风气流沿机壳外周面向上流动;或运动至一下吹位置,以与机壳共同限定出朝下敞开的下出风通道,用于引导从出风口流出的送风气流沿机壳外周面向下流动。该立式空调室内机具有更好的上吹效果和下吹效果。

Description

立式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种立式空调室内机。
背景技术
由于冷空气密度相对较大有下沉趋势,热空气密度相对较小有上升趋势。因此,空调在制冷时需要将较冷风尽量向上吹,在制热时需要将热风尽量朝地面吹,以使冷风或热风在室内空间扩散更加均匀,使制冷制热速度更快。
现有的立式空调室内机通常设置一个朝前的出风口,并利导风板、摆叶等导风结构引导送风气流的出风方向,实现上吹风或下吹风。但是,当前的各种导风结构导风角度比较有限,也仅能向斜上方或斜下方送风,冷风或热风难以抵达屋顶或地板区域,影响制冷或制热效果。
发明内容
本发明的目的是要提供一种克服上述问题或者至少部分地解决上述问题的立式空调室内机。
本发明的目的是要加强立式空调室内机的上吹风和下吹风效果。
本发明的进一步的目的是要方便上吹模式和下吹模式的切换。
特别地,本发明提供了一种立式空调室内机,其包括:
机壳,其上开设有出风口;和
导风体,可动地设置在出风口处,并配置成:
可运动至一上吹位置,以与机壳共同限定出朝上敞开的上出风通道,用于引导从出风口流出的送风气流沿机壳外周面向上流动;或
运动至一下吹位置,以与机壳共同限定出朝下敞开的下出风通道,用于引导从出风口流出的送风气流沿机壳外周面向下流动。
可选地,导风体可上下平移地设置在出风口处,以便向下移动至上吹位置,使其上表面与出风口的上壁形成上出风通道,或向上移动至下吹位置,使其下表面与出风口的下壁形成下出风通道。
可选地,导风体的上表面包括从机壳内侧向外侧方向逐渐向上倾斜延伸的内凹弧面;且导风体的下表面包括从机壳内侧向外侧方向逐渐向下倾斜延伸的内凹弧面。
可选地,出风口的上壁与机壳外周面的连接处为与导风体的上表面形状匹配的外凸弧面;且出风口的下壁与机壳外周面的连接处为与导风体的下表面形状匹配的外凸弧面。
可选地,导风体处于下吹位置时,其上表面贴合于出风口上壁;且导风体处于上吹位置时,其下表面贴合于出风口下壁。
可选地,导风体朝向出风口内侧的一端为尖端。
可选地,尖端为弧形端面。
可选地,出风口为长度方向沿水平方向的矩形孔。
可选地,立式空调室内机还包括:至少一个齿轮齿条机构,用于驱动导风体上下平移,每个齿轮齿条机构包括电机、相互啮合的齿轮和齿条,电机安装于机壳,齿轮连接于电机,齿条沿竖直方向延伸且连接于导风体。
可选地,出风口位于机壳前侧上部区域,机壳的后侧下部开设有进风口;且立式空调室内机还包括离心风机和板状换热器,离心风机设置在进风口前侧且轴线沿前后方向延伸,板状换热器从上至下逐渐向前倾斜地设置在机壳内的上部区域内。
本发明的立式空调室内机中,机壳出风口处设置有可动的导风体,导风体具有上吹位置和下吹位置,从而使立式空调室内机具有上吹模式和下吹模式以供选择,可提升制冷和制热效果。例如,当空调制热需要运行下吹模式时,可使导风体运动至下吹位置,使其与机壳限定出下出风通道,引导送风气流紧贴着机壳外周面向下流动,流出下出风通道后,依靠附壁效应继续沿机壳外周面向下流动,以便顺利到达地面,形成地毯式送风效果。同理,当空调制冷运行上吹模式时,使导风体运动至上吹位置,使其与机壳限定出上出风通道,引导送风气流紧贴着机壳外周面向上流动,流出上出风通道后,依靠附壁效应继续沿机壳外周面向上流动,以便顺利到达屋顶。本发明的立式空调室内机的制冷或制热效果更好,也能避免冷风或热风吹人导致人体不适。
进一步地,本发明的立式空调室内机中,设计了一个可上下平移的导风体,使其上下表面与出风口上下壁形成上下出风通道,结构非常简单巧妙。而且,模式切换动作也非常简单、可靠。此外,本发明进一步使导风体上下表面为内凹弧面,以便引导送风气流更加竖直地向上或向下流动,以更好地贴合于机壳外周面,使附壁效应更好。
进一步地,本发明的立式空调室内机中,使导风体在处于上吹位置时,使其下表面贴合于出风口下壁,可增强密封性,避免送风气流从导风体与出风口下壁之间泄漏而影响上吹效果。而且,也使导风体与机壳相接为一体,使空调外形更加美观。同理,导风体处于下吹位置,使其下表面贴合于出风口上壁,以增强密封性,避免气流泄漏。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的立式空调室内机的示意性前视图;
图2是图1所示立式空调室内机的示意性俯视图;
图3是图1所示立式空调室内机的示意性剖视图;
图4是将图3所示立式空调室内机的导风体移动至上吹位置时的示意图;
图5是将图3所示立式空调室内机的导风体移动至下吹位置时的示意图;
图6是立式空调室内机的齿轮齿条机构的示意图。
具体实施方式
下面参照图1至图6来描述本发明实施例的立式空调室内机。其中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。图中用箭头示意了送风气流的流动方向。
本发明实施例提供了一种立式空调室内机,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。
图1是根据本发明一个实施例的立式空调室内机的示意性前视图;图2是图1所示立式空调室内机的示意性俯视图;图3是图1所示立式空调室内机的示意性剖视图;图4是将图3所示立式空调室内机的导风体20移动至上吹位置时的示意图;图5是将图3所示立式空调室内机的导风体20移动 至下吹位置时的示意图。
如图1至图5所示,本发明实施例的立式空调室内机一般性地可包括机壳10和导风体20。机壳10上开设有进风口11和出风口12,进风口11用于吸入室内空气,出风口12用于将机壳10内的送风气流排向室内。该送风气流可为立式空调室内机在制冷模式下制取的冷风,在制热模式下制取的热风,或者在新风模式下引入的新风等等。
导风体20可动地设置在出风口12处,并配置成:可运动至一上吹位置,以与机壳10共同限定出朝上敞开的上出风通道251,用于引导从出风口12流出的送风气流沿机壳10的外周面向上流动,如图4。或者,导风体20运动至一下吹位置,以与机壳10共同限定出朝下敞开的下出风通道252,用于引导从出风口12流出的送风气流沿机壳10的外周面向下流动,如图5。
本发明实施例的立式空调室内机具有上吹模式和下吹模式以供选择,可提升制冷和制热效果。例如,当空调制热需要运行下吹模式时,可使导风体20运动至下吹位置,使其与机壳10限定出下出风通道252,以便引导送风气流紧贴着机壳10的外周面向下流动。送风气流流出下出风通道252后,依靠附壁效应继续沿机壳10的外周面向下流动,以便顺利到达地面,形成地毯式送风效果,如图5。同理,当空调制冷运行上吹模式时,使导风体20运动至上吹位置,使其与机壳10限定出上出风通道251,引导送风气流紧贴着机壳10的外周面向上流动。送风气流流出上出风通道251后,依靠附壁效应继续沿机壳10外周面向上流动,以便顺利到达屋顶,如图4。本发明实施例的立式空调室内机的制冷或制热效果更好,也能避免冷风或热风吹人导致人体不适。
可使送风气流流经的机壳10的外周面区域为平坦表面,以利于送风气流更好地贴合着机壳10的外周面流动。
在一些实施例中,如图1至图5所示,可使导风体20可上下平移地设置在出风口12处,以便向下移动至上吹位置,使其上表面21与出风口12的上壁121形成上出风通道251,如图4。或者,导风体20向上移动至下吹位置,使其下表面22与出风口12的下壁122形成下出风通道252,如图5。
本发明实施例仅通过上下移动导风体20便可完成其出风模式的切换,结构非常简单巧妙。而且,模式切换动作也非常简单、可靠。
本实施例中,导风体20可运动至处于上吹位置和下吹位置之间的中间 位置,以大致封闭出风口12,如图1和图3。立式空调处于关机状态时候,可使导风体20处于中间位置。
在一些实施例中,如图3至图5所示,可使导风体20的上表面21包括从机壳10内侧向外侧方向逐渐向上倾斜延伸的内凹弧面,以便空调运行上吹模式时,使气流经过内凹弧面的引导,可更加竖直地向上吹出,以更好地贴合于机壳10的外周面,使附壁效应更好。同理,使导风体20的下表面22包括从机壳10内侧向外侧方向逐渐向下倾斜延伸的内凹弧面,在空调运行下吹模式时,使气流经内凹弧面的引导,更加竖直地向下吹出。
此外,如图3至图5所示,还可使出风口12的上壁121与机壳10的外周面的连接处为与导风体20的上表面21形状匹配的外凸弧面,以便送风气流沿着外凸弧面更加顺畅地从出风口12上壁121过渡到机壳10的外周面。同理,可使出风口12的下壁122与机壳10外周面的连接处为与导风体20的下表面22形状匹配的外凸弧面。
进一步地,导风体20处于下吹位置时,可使其上表面21贴合于出风口12上壁121。由于出风口12上壁121的外凸弧面与导风体20上表面21的内凹弧面形状匹配,使得两者完美嵌合,能够增强密封性,避免送风气流从导风体20与出风口12上壁121之间泄漏而影响下吹效果。同理,导风体20处于上吹位置时,使其下表面22贴合于出风口12下壁122,使出风口12下壁122的外凸弧面与导风体20下表面22的内凹弧面形状匹配,使得两者完美嵌合,能够增强密封性,避免送风气流从导风体20与出风口12下壁122之间泄漏而影响上吹效果。
在一些实施例中,如图3和图4所示,可使导风体20朝向出风口12内侧的一端为尖端23,且可进一步使尖端23为弧形端面,以使送风气流更加顺畅地流至导风体20的上表面21或下表面22,减小阻力。
如图4和图5所示,出风口12为长度方向沿水平方向的矩形孔。如此一来,可使出风口12横向跨度更大,以利于送风气流更多地贴合于机壳10的外周面,使贴附效果更好。
如图1至图5所示,可使出风口12位于机壳10的前侧上部区域,机壳10的后侧下部开设有进风口11。立式空调室内机还包括离心风机50和板状换热器30。离心风机50设置在进风口11的前侧且轴线沿前后方向延伸,板状换热器30从上至下逐渐向前倾斜地设置在机壳10内的上部区域内。
如图5和图6所示,可使出风口12位于机壳10的前侧上部区域,机壳10的后侧下部开设有进风口11。立式空调室内机的还包括离心风机50和板状换热器30。离心风机50设置在进风口11的前侧且轴线沿前后方向延伸,板状换热器30从上至下逐渐向前倾斜地设置在机壳10内的上部区域内。机壳10内还可设置有风道40,使离心风机50设置在风道40内。风道40用于将离心风机50的气流向上输送,并吹向板状换热器30。
图6是立式空调室内机的齿轮齿条机构的示意图。
如图6所示,立式空调室内机包括至少一个齿轮齿条机构60,以用于驱动导风体20上下平移。每个齿轮齿条机构60包括电机61、相互啮合的齿轮62和齿条。电机61安装于机壳10。齿轮62连接于电机61。从齿条63沿竖直方向延伸且连接于导风体20。电机61带动齿轮62转动时,使齿条63上下平移,以驱动导风体20上下平移。具体地,齿轮齿条机构60的数量优选为两个,其中两个电机61分别安装于出风口12的横向两侧,以使导风体20更加平稳地上下平移。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种立式空调室内机,其特征在于包括:
    机壳,其上开设有出风口;和
    导风体,可动地设置在所述出风口处,并配置成:
    可运动至一上吹位置,以与所述机壳共同限定出朝上敞开的上出风通道,用于引导从所述出风口流出的送风气流沿所述机壳外周面向上流动;或
    运动至一下吹位置,以与所述机壳共同限定出朝下敞开的下出风通道,用于引导从所述出风口流出的送风气流沿所述机壳外周面向下流动。
  2. 根据权利要求1所述的立式空调室内机,其特征在于,
    所述导风体可上下平移地设置在所述出风口处,以便向下移动至所述上吹位置,使其上表面与所述出风口的上壁形成所述上出风通道,或向上移动至所述下吹位置,使其下表面与所述出风口的下壁形成所述下出风通道。
  3. 根据权利要求2所述的立式空调室内机,其特征在于,
    所述导风体的上表面包括从所述机壳内侧向外侧方向逐渐向上倾斜延伸的内凹弧面;且
    所述导风体的下表面包括从所述机壳内侧向外侧方向逐渐向下倾斜延伸的内凹弧面。
  4. 根据权利要求3所述的立式空调室内机,其特征在于,
    所述出风口的上壁与所述机壳外周面的连接处为与导风体的上表面形状匹配的外凸弧面;且
    所述出风口的下壁与所述机壳外周面的连接处为与导风体的下表面形状匹配的外凸弧面。
  5. 根据权利要求4所述的立式空调室内机,其特征在于,
    所述导风体处于所述下吹位置时,其上表面贴合于所述出风口上壁;且
    所述导风体处于所述上吹位置时,其下表面贴合于所述出风口下壁。
  6. 根据权利要求3所述的立式空调室内机,其特征在于,
    所述导风体朝向出风口内侧的一端为尖端。
  7. 根据权利要求6所述的立式空调室内机,其特征在于,
    所述尖端为弧形端面。
  8. 根据权利要求2所述的立式空调室内机,其特征在于,
    所述出风口为长度方向沿水平方向的矩形孔。
  9. 根据权利要求2所述的立式空调室内机,其特征在于还包括:
    至少一个齿轮齿条机构,用于驱动所述导风体上下平移,每个所述齿轮齿条机构包括电机、相互啮合的齿轮和齿条,所述电机安装于所述机壳,所述齿轮连接于所述电机,所述齿条沿竖直方向延伸且连接于所述导风体。
  10. 根据权利要求1所述的立式空调室内机,其特征在于,
    所述出风口位于所述机壳前侧上部区域,所述机壳的后侧下部开设有进风口;且
    所述立式空调室内机还包括离心风机和板状换热器,所述离心风机设置在所述进风口前侧且轴线沿前后方向延伸,所述板状换热器从上至下逐渐向前倾斜地设置在所述机壳内的上部区域内。
PCT/CN2021/127642 2021-01-15 2021-10-29 立式空调室内机 WO2022151802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110056577.4 2021-01-15
CN202110056577.4A CN114763926A (zh) 2021-01-15 2021-01-15 立式空调室内机

Publications (1)

Publication Number Publication Date
WO2022151802A1 true WO2022151802A1 (zh) 2022-07-21

Family

ID=82363980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127642 WO2022151802A1 (zh) 2021-01-15 2021-10-29 立式空调室内机

Country Status (2)

Country Link
CN (1) CN114763926A (zh)
WO (1) WO2022151802A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228249A (ja) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd 空気調和装置における風向等調整機構
JP2005315537A (ja) * 2004-04-30 2005-11-10 Fujitsu General Ltd 空気調和機
CN104949308A (zh) * 2014-03-27 2015-09-30 广东美的集团芜湖制冷设备有限公司 空调器的进风调控组件、***和进风调控方法
CN206959167U (zh) * 2017-07-05 2018-02-02 广东美的制冷设备有限公司 空调室内机
CN109405080A (zh) * 2018-10-31 2019-03-01 广东美的制冷设备有限公司 空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440308A (zh) * 2016-10-21 2017-02-22 珠海格力电器股份有限公司 一种空调室内机的封闭式外壳、空调室内机及空调器
CN206609054U (zh) * 2017-02-28 2017-11-03 广东美的制冷设备有限公司 空调内机及其导风板结构和空调
CN209763279U (zh) * 2019-03-29 2019-12-10 广东美的制冷设备有限公司 空调室内机
CN212252842U (zh) * 2020-03-26 2020-12-29 青岛海尔空调器有限总公司 空调室内机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228249A (ja) * 2001-02-01 2002-08-14 Matsushita Electric Ind Co Ltd 空気調和装置における風向等調整機構
JP2005315537A (ja) * 2004-04-30 2005-11-10 Fujitsu General Ltd 空気調和機
CN104949308A (zh) * 2014-03-27 2015-09-30 广东美的集团芜湖制冷设备有限公司 空调器的进风调控组件、***和进风调控方法
CN206959167U (zh) * 2017-07-05 2018-02-02 广东美的制冷设备有限公司 空调室内机
CN109405080A (zh) * 2018-10-31 2019-03-01 广东美的制冷设备有限公司 空调器

Also Published As

Publication number Publication date
CN114763926A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2017041699A1 (zh) 立式空调器
WO2017041728A1 (zh) 立式空调器及其使用方法
WO2021190213A1 (zh) 空调室内机
CN111351130A (zh) 空调室内机
WO2021190200A1 (zh) 空调室内机
CN107300265A (zh) 空调柜机及其控制方法
WO2023029542A1 (zh) 壁挂式空调室内机
CN110762634B (zh) 一种空调室内机和空调器以及控制方法
CN210921588U (zh) 一种新风装置以及空调器
CN111189111A (zh) 空调室内机
CN205048557U (zh) 立式空调器
CN211822731U (zh) 空调室内机
WO2023130769A1 (zh) 壁挂式空调室内机
WO2022151803A1 (zh) 立式空调室内机
WO2023159936A1 (zh) 空调室内机
WO2022151802A1 (zh) 立式空调室内机
WO2023082632A1 (zh) 壁挂式空调室内机
WO2022151804A1 (zh) 立式空调室内机
CN111351131A (zh) 空调室内机
WO2023071225A1 (zh) 壁挂式空调室内机
WO2022151801A1 (zh) 立式空调室内机
WO2022151800A1 (zh) 立式空调室内机
CN108397822A (zh) 壁挂式空调室内机
CN207936268U (zh) 壁挂式空调室内机
WO2022151799A1 (zh) 立式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918993

Country of ref document: EP

Kind code of ref document: A1