WO2023159936A1 - 空调室内机 - Google Patents

空调室内机 Download PDF

Info

Publication number
WO2023159936A1
WO2023159936A1 PCT/CN2022/121005 CN2022121005W WO2023159936A1 WO 2023159936 A1 WO2023159936 A1 WO 2023159936A1 CN 2022121005 W CN2022121005 W CN 2022121005W WO 2023159936 A1 WO2023159936 A1 WO 2023159936A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air outlet
wind deflector
breeze
indoor unit
Prior art date
Application number
PCT/CN2022/121005
Other languages
English (en)
French (fr)
Inventor
尹晓英
王永涛
张蕾
闫秀洁
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023159936A1 publication Critical patent/WO2023159936A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre

Definitions

  • the invention relates to air-conditioning technology, in particular to an air-conditioning indoor unit.
  • the air-conditioning indoor unit in order to prevent the cold wind from blowing people, usually adopts the method of adjusting the angle of the air deflector to adjust the direction of the wind, and opening holes in the air deflector, louvers and other components to weaken the air flow.
  • these designs can soften the air flow, they have a greater impact on the air output of the air conditioner indoor unit itself.
  • the air output of the air conditioner indoor unit is restricted, and the air output mode of the air conditioner indoor unit is relatively monotonous. The wind effect and the requirements for adjusting the indoor temperature.
  • An object of the present invention is to overcome at least one defect of the prior art, and provide an air-conditioning indoor unit capable of diversified air supply, so as to meet user's air supply requirements with different air output effects.
  • a further object of the present invention is to simplify the structure of the indoor unit of the air conditioner.
  • an air conditioner indoor unit which includes:
  • the casing has an air inlet for the airflow to flow in, an air outlet at the bottom front side for the airflow to flow out, and a micro-air outlet at the lower front side for the airflow to flow out of, the casing is located at the air outlet
  • An air outlet duct is formed on the inner side of the
  • an outer wind deflector rotatably arranged at the air outlet, to controlly adjust the opening and closing of the air outlet and the air outlet direction;
  • the inner wind deflector is rotatably arranged in the air outlet channel, so as to controlly send the airflow in the air outlet channel to the breeze port and/or the air outlet, and adjust the air flow to the The flow direction of the air outlet.
  • a breeze chamber is defined inside the casing, the breeze port communicates with the breeze chamber, and the breeze chamber communicates with the outlet duct through the outlet;
  • the inner deflector is configured to controllably block the air opening to prevent the air flow in the outlet air channel from flowing into the breeze cavity through the air opening or open the air opening to allow the air flow in the air outlet air channel It flows into the breeze cavity through the tuyere and flows out through the breeze.
  • the air outlet duct is defined by a front volute located at the upper part of its front side, a rear volute located at the lower part of its rear side, and two end plates located at its lateral sides;
  • the tuyere is set on the front volute, and when the inner wind deflector is in the state of blocking the tuyere, at least part of its outer surface is in contact with the surface of the front volute behind the tuyere combine.
  • the tuyere runs through the front volute horizontally from back to front; or, the tuyere penetrates the front volute upwardly from back to front; and
  • the tuyere is a bar-shaped tuyere extending transversely of the casing.
  • the inner wind deflector is an arc-shaped plate with uniform thickness, and has a bow and an empennage, and the degree of curvature of the inner wind deflector increases gradually or stepwise from the bow to the tail ;and
  • the outer surface of the inner wind deflector extends from its bow to its tail along an outer arc
  • the outer arc includes a first smooth connection sequentially in the direction from the bow to the tail.
  • the ratio between the radius of the circle where the first outer arc is located and the radius of the circle where the second outer arc is located is any value ranging from 1.90 to 1.95; the ratio of the circle where the second outer arc is located
  • the ratio between the radius and the radius of the circle where the third outer arc is located is any value ranging from 1.85 to 1.90.
  • the inner surface of the inner wind deflector extends from its bow to its tail along an inner arc
  • the inner arc includes a first smooth connection sequentially in the direction from the bow to the tail.
  • the ratio between the radius of the circle where the first inner arc is located and the radius of the circle where the second inner arc is located is any value ranging from 1.83 to 1.87; the ratio of the circle where the second inner arc is located
  • the ratio between the radius and the radius of the circle where the third inner arc is located is any value ranging from 1.71 to 1.80.
  • the vertical distance between the rotating shaft of the inner wind deflector and the front volute is 0.05-0.10 times the overall height of the casing in the vertical direction.
  • the casing has a front panel on its front side, the body of the front panel extends vertically, and the air outlet is formed on the front panel;
  • the distance between the rotating shaft of the inner wind deflector and the front panel in the horizontal direction is 0.20-0.24 times the overall height of the casing in the vertical direction.
  • the line between the first wing and the empennage forms the linear length of the inner wind deflector, and the linear length of the inner wind deflector is the overall height of the casing in the vertical direction 0.17 to 0.20 times of that.
  • the height of the breeze port extending in the vertical direction is 0.05-0.08 times the overall height of the casing in the vertical direction.
  • the breeze openings include a plurality of fine ventilation holes closely arranged.
  • the air conditioner indoor unit of the present invention also has a specially designed micro-air outlet under the front side of the casing;
  • the rotatable inner wind deflector is specially designed in the air duct.
  • the outer air deflector can adjust the opening and closing of the air outlet and the air outlet direction, and the inner air guide can selectively send the airflow in the air outlet duct to the breeze outlet and/or the air outlet, and adjust the flow direction of the airflow to the air outlet.
  • the inner air deflector and the outer air deflector can have a combination of various positions and states, and through the cooperation of the inner air deflector and the outer air deflector, the conventional cooling, conventional heating, cold wind rising, and no air conditioning indoor unit can be realized.
  • Various air supply modes such as comfortable wind feeling and vertical downward blowing meet the diverse air supply needs of users and improve the user experience.
  • a breeze chamber is defined inside the casing, and the breeze chamber communicates with the air outlet channel through the air outlet, that is, the breeze outlet forms the airflow outlet of the breeze chamber, and the tuyere forms the airflow inlet of the breeze chamber.
  • the inner air deflector can block or open the air vents in a controlled manner. When the inner wind deflector is rotated to the state of blocking the air outlet, it can prevent the airflow in the air outlet channel from flowing into the breeze cavity through the air outlet, and prevent the air flow from flowing out of the breeze outlet; when the inner air guide plate is turned to the state of opening the air outlet, it can allow At least part of the air in the air outlet duct flows into the breeze cavity through the air outlet, and then flows out through the breeze outlet.
  • the present invention realizes the purpose of adjusting the air outlet direction of the air outlet in cooperation with the outer air guide plate by using the difference in the position of the inner air guide plate during the rotation process, and can also control the opening and closing of the breeze port very simply. , there is no need to set parts such as racks, baffles, etc., the design is very ingenious, and the structure of the air conditioner indoor unit is simplified.
  • FIG. 1 is a schematic cross-sectional view of an air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic cross-sectional view of an air conditioner indoor unit in a state of rising cold wind according to an embodiment of the present invention
  • Fig. 3 is a schematic cross-sectional view of an air-conditioning indoor unit in a comfortable state of breeze or a comfortable state of no wind according to an embodiment of the present invention
  • Fig. 4 is a schematic cross-sectional view of an air conditioner indoor unit in a normal cooling state according to an embodiment of the present invention
  • Fig. 5 is a schematic cross-sectional view of an air conditioner indoor unit in a vertical downward blowing state according to an embodiment of the present invention
  • Fig. 6 is a schematic cross-sectional view of an air conditioner indoor unit in a normal heating state according to an embodiment of the present invention
  • Fig. 7 is a schematic cross-sectional view of an inner wind deflector according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the specific shape division of the outer surface of the inner wind deflector according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the specific shape division of the inner surface of the inner wind deflector according to an embodiment of the present invention.
  • Fig. 10 is a partial dimension drawing of an air conditioner indoor unit according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of the air conditioner indoor unit according to an embodiment of the present invention.
  • the air conditioner indoor unit 1 includes a casing 10, the casing 10 has an air inlet 11 for the airflow to flow in, an air outlet 12 located at the bottom front side for the airflow to flow out, and an air outlet 12 located at the lower front side for the airflow Breeze port 13 for outflow.
  • An air outlet duct 14 is formed inside the casing 10 at the air outlet 12 .
  • the air inlet 11 may be formed on the top of the casing 10, so that the air conditioner indoor unit 1 enters air from the top and exhausts air from the bottom and/or the lower front side.
  • the air conditioner indoor unit 1 further includes a heat exchanger 20 and an airflow driving device 30 located in the casing 10 .
  • the heat exchanger 20 is used to exchange heat with the air flow passing therethrough.
  • the airflow driving device 30 is used to drive the airflow from the air inlet 11 to the air outlet 12 and/or the breeze opening 13 .
  • the heat exchanger 20 is located on the airflow path between the air inlet 11 and the airflow driving device 30 .
  • the airflow driving device 30 may be a fan, for example, in the embodiment shown in Figure 1, the airflow driving device 30 is a cross-flow fan.
  • the air outlet duct 14 communicates with the air outlet of the blower fan.
  • the air conditioner indoor unit 1 further includes an outer wind deflector 40 and an inner wind deflector 50 .
  • the outer air deflector 40 is rotatably arranged at the air outlet 12 to adjust the opening and closing of the air outlet 12 and the air outlet direction in a controlled manner.
  • the inner wind deflector 50 is rotatably arranged in the air outlet duct 14, so as to send the airflow in the air outlet duct 14 to the breeze port 13 and/or the air outlet 12 in a controlled manner, and adjust the flow of the airflow to the air outlet 12. flow direction.
  • the air outlet 12 can be selectively opened or closed by changing the rotational position of the outer air deflector 40 , and the air outlet direction of the air outlet 12 can also be adjusted by changing the rotational position of the outer air guide 40 .
  • the inner wind deflector 50 is rotatably arranged on the inner side of the outer wind deflector 40, and the airflow in the air outlet duct 14 can be selectively sent to the breeze port 13, the air outlet 12 or simultaneously through the change of its rotational position.
  • the air outlet 13 and the air outlet 12, and the change of the rotational position of the inner wind deflector 50 can also adjust the flow direction of the airflow to the air outlet 12, thereby adjusting the air outlet direction of the air outlet 12.
  • the air-conditioning indoor unit 1 of the present invention not only has the traditional bottom air outlet, but also has a specially designed micro-air outlet 13 under the front side of the casing 10;
  • a rotatable inner air deflector 50 is specially designed in the air outlet duct 14 inside the plate 40 .
  • the outer air guide plate 40 can adjust the opening and closing of the air outlet 12 and the direction of the air outlet, and the inner air guide plate 50 can selectively send the airflow in the air outlet air channel 14 to the breeze port 13 and/or the air outlet 12, and adjust The airflow flows to the flow direction of the air outlet 12 .
  • the inner air deflector 50 and the outer air deflector 40 can have various combinations of positions and states, and the cooperation of the inner air deflector 50 and the outer air deflector 40 can realize conventional cooling, conventional heating,
  • the breeze opening 13 may include a plurality of fine air holes arranged closely. Due to the small size of the ventilation holes and the tight arrangement, when the air flows out through the multiple ventilation holes of the breeze port 13, the air supply is very soft and comfortable, realizing the purpose of comfortable air supply with a breeze or a comfortable air supply with no wind feeling at all.
  • the breeze opening 13 may include a plurality of strip-shaped long and narrow ventilation holes arranged up and down, and each long and narrow ventilation hole extends along the lateral direction of the casing 10 .
  • the breeze opening 13 may include a plurality of strip-shaped long and narrow ventilation holes arranged along the lateral direction of the casing 10 , and each long and narrow ventilation hole extends along the vertical direction.
  • the breeze opening 13 may include a plurality of circular ventilation holes evenly distributed.
  • a breeze cavity 15 is defined inside the casing 10, and the breeze opening 13 communicates with the breeze cavity 15, and the breeze cavity 15 communicates with the air outlet duct 14 through the air opening 611, thereby indirectly communicating with the wind outlet.
  • Road 14 and Breeze Port 13 are defined inside the casing 10, and the breeze opening 13 communicates with the breeze cavity 15, and the breeze cavity 15 communicates with the air outlet duct 14 through the air opening 611, thereby indirectly communicating with the wind outlet.
  • the inner air deflector 50 is configured to block the air outlet 611 in a controlled manner so as to prevent the air flow in the air outlet duct 14 from flowing into the breeze chamber 15 through the air outlet 611 or to open the air outlet 611 to allow the air flow in the air outlet air duct 14 to pass through the air outlet 611 flows into the breeze cavity 15 and flows out through the breeze port 13.
  • the breeze port 13 forms the air outlet of the breeze chamber 15
  • the tuyere 611 forms the air inlet of the breeze chamber 15 .
  • the inner wind deflector 50 can block the air outlet 611 or open the air outlet 611 in a controlled manner.
  • the inner wind deflector 50 When the inner wind deflector 50 rotates to the state of blocking the tuyere 611, it can prevent the airflow in the air outlet duct 14 from flowing into the breeze cavity 15 through the tuyere 611, so as to prevent the air flow from flowing out from the breeze opening 13; when the inner wind deflector 50 rotates to When the tuyere 611 is opened, at least part of the air in the air outlet duct 14 can be allowed to flow into the breeze cavity 15 through the tuyere 611 , and then flow out through the breeze opening 13 .
  • the present invention utilizes the difference in the position of the inner wind deflector 50 during the rotation process to realize the ability to cooperate with the outer wind deflector 40 to adjust the air outlet direction of the air outlet 12 and to control the opening and closing of the breeze outlet 13 very simply. Therefore, there is no need to set parts such as racks, baffles, etc., and the design is very ingenious, which simplifies the structure of the air-conditioning indoor unit 1.
  • the air outlet duct 14 is composed of a front volute 61 located at the upper part of the front side, a rear volute 62 located at the lower part of the rear side, and two end plates (not shown in the figures) located at the lateral sides thereof. ) is limited.
  • the tuyere 611 is opened on the front volute 61 , and when the inner wind deflector 50 is in the state of shielding the tuyere 611 , at least part of its outer surface is attached to the surface behind the tuyere 611 of the front volute 61 .
  • the air outlet duct 14 and the air outlet 611 are located on both sides of the inner air deflector 50 , and there is no gap between the inner air deflector 50 and the surface of the front volute 61 allowing airflow to pass through.
  • the airflow in the air outlet duct 14 flows from the back to the front and encounters the inner wind deflector 50 , it will not continue to flow to the tuyere on the other side of the inner wind deflector 50 under the obstruction of the inner wind deflector 50 611, which prevents the air from being blown out through the breeze port 13;
  • an arc-shaped air channel that promotes the air flow to the air outlet 12 can also be formed in the air outlet channel 14 through the inner wind deflector 50, so as to minimize the internal The resistance produced by the wind deflector 50 to the airflow. It can be seen that the present invention achieves the purpose of opening or closing the breeze port 13 through the structural cooperation of the inner wind deflector 50 and the front volute 61
  • the tuyere 611 runs through the front volute 61 horizontally from back to front; or, the tuyere 611 runs through the front volute 61 obliquely from back to front, so as to reduce the resistance when the airflow passes through the tuyere 611 . Maintain as high a flow rate as possible.
  • the tuyere 611 is a strip-shaped tuyere extending laterally along the casing 10 so as to fill the entire breeze chamber 15 with airflow and prevent backflow caused by negative pressure in some areas of the breeze chamber 15 .
  • the inner wind deflector 50 is an arc-shaped plate with uniform thickness, and has a bow 51 and an empennage 52, and the degree of curvature of the inner wind deflector 50 is gradually or stepped from the bow 51 to the tail 52. increase exponentially. That is to say, the section of the inner wind deflector 50 close to its empennage 52 has the largest degree of curvature, which is more suitable for changing the flow direction of the airflow; The less resistance there is.
  • the inner wind deflector 50 when the inner wind deflector 50 is in the state of blocking the air outlet 611, its bow 51 is located at the front side of its tail 52, that is, the airflow flowing from the rear to the front in the air outlet duct 14 first contacts the inner wind deflector. The empennage 52 of 50 then contacts the bow 51 of the inner wind deflector 50 so as to effectively change the flow direction of the airflow and impel the airflow in the air outlet duct 14 to all flow to the air outlet 12.
  • the inner wind deflector 50 When the inner wind deflector 50 is in the state of opening the tuyere 611, its first wing 51 is positioned at the rear side of its empennage 52, that is, the airflow flowing from the rear to the front in the air outlet duct 14 first contacts the first edge of the inner wind deflector 50. wing 51, and then contact the empennage 52 of the inner wind deflector 50 to gradually adjust the direction of the airflow and reduce the airflow resistance.
  • the air conditioner indoor unit 1 of the present invention can realize multiple air supply modes such as conventional cooling, conventional heating, rising cold wind, comfortable feeling of no wind, and vertical downward blowing through the cooperation of the inner air deflector 50 and the outer air deflector 40 .
  • air supply modes such as conventional cooling, conventional heating, rising cold wind, comfortable feeling of no wind, and vertical downward blowing through the cooperation of the inner air deflector 50 and the outer air deflector 40 .
  • Various combinations of the inner wind deflector 50 and the outer wind deflector 40 will be described below with specific embodiments.
  • the air conditioner indoor unit 1 is in a stop state, and the outer air deflector 40 is at the position of closing the air outlet 12 at this time.
  • Fig. 2 is a schematic cross-sectional view of an air-conditioning indoor unit in a state of rising cold wind according to an embodiment of the present invention, and the dotted arrows in the figure indicate the approximate flow direction of the airflow.
  • the outer wind deflector 40 rotates to a substantially horizontal position
  • the inner wind deflector 50 rotates to a position where its empennage 52 is inclined upward by about 15°.
  • the airflow after heat exchange by the heat exchanger 20 is guided by the inner wind deflector 50 and shunted to the breeze chamber 15 and the air outlet 12, and the airflow flowing to the breeze chamber 15 passes through The breeze outlet 13 blows out horizontally forward, and the airflow flowing to the air outlet 12 is sent slightly forward and upward under the further guidance of the outer wind deflector 40, realizing the comfortable effect that the cold wind rises and does not blow directly on the human body.
  • Fig. 3 is a schematic sectional view of an air-conditioning indoor unit in a comfortable breeze state or a comfortable state without wind feeling according to an embodiment of the present invention, and the dotted arrows in the figure indicate the approximate flow direction of the airflow.
  • the outer wind deflector 40 rotates to the closed position to close the air outlet 12
  • the inner wind deflector 50 rotates to a position inclined upward by about 40°.
  • the airflow after the heat exchange by the heat exchanger 20 is guided by the inner wind deflector 50 and almost all flows to the breeze air chamber 15, even if part of the airflow continues to flow to the air outlet 12, it will flow outside.
  • the air flows to the breeze chamber 15 .
  • all the airflow is sent out through the breeze port 13, realizing the comfortable airflow effect of breeze or no wind feeling.
  • Fig. 4 is a schematic cross-sectional view of an air-conditioning indoor unit in a normal cooling state according to an embodiment of the present invention, and the dotted arrows in the figure indicate the approximate flow direction of the airflow.
  • the outer air deflector 40 In a normal cooling state, the outer air deflector 40 is in a state of fully opening the air outlet 12 without any hindrance to the air flow.
  • the inner air deflector 50 can rotate back and forth within the first angle range.
  • the airflow after heat exchange by the heat exchanger 20 will be distributed to the breeze chamber 15 and the air outlet according to the adjustable flow ratio. 12, so that it is sent out through the breeze port 13 and the air outlet 12, realizing the conventional cooling and air supply effect of blowing toward the front and front and bottom of the casing 10.
  • Fig. 5 is a schematic cross-sectional view of an air-conditioning indoor unit in a vertically downward blowing state according to an embodiment of the present invention, and the dotted arrows in the figure indicate the approximate flow direction of the airflow.
  • the outer air deflector 40 In the vertical downward blowing state, the outer air deflector 40 is in the state of fully opening the air outlet 12 , without any hindrance to the airflow.
  • the inner wind deflector 50 rotates to the position where the tail fin 52 fits the surface area of the front volute 61 at the rear side of the tuyere 611. At this time, the inner wind deflector 50 completely blocks the tuyere 611, which is equivalent to closing the breeze opening. 13.
  • the airflow after the heat exchange by the heat exchanger 20 flows to the air outlet 12 under the guidance of the inner air deflector 50, and is almost vertically sent downward through the air outlet 12, realizing the vertical flow of hot air. Cooling and sufficient air supply effect.
  • Fig. 6 is a schematic cross-sectional view of an air-conditioning indoor unit in a normal heating state according to an embodiment of the present invention, and the dotted arrows in the figure indicate the general flow direction of the airflow.
  • the outer air deflector 40 In a normal heating state, the outer air deflector 40 is in a state of fully opening the air outlet 12 without any hindrance to the airflow.
  • the inner air deflector 50 can rotate back and forth within the second angle range to guide all or most of the hot air after heat exchange to the air outlet 12, so as to send air toward the front and bottom of the casing 10 as much as possible, realizing the conventional Heating and air supply effect.
  • the inner deflector 50 has an inner surface and an outer surface.
  • Fig. 7 is a schematic cross-sectional view of the inner wind deflector according to an embodiment of the present invention
  • Fig. 8 is a schematic diagram of the specific shape division of the outer surface of the inner wind deflector according to one embodiment of the present invention.
  • the outer surface of the inner wind deflector 50 extends from its bow 51 to its tail 52 along the outer arc 53, and the outer arc 53 includes successively smooth connections in the direction from the bow 51 to the tail 52.
  • the first outer arc 531 , the second outer arc 532 and the third outer arc 533 are examples of the outer arc 531 .
  • the ratio between the radius R1 of the circle where the first outer arc 531 is located and the radius R2 of the circle where the second outer arc 532 is located is any value ranging from 1.90 to 1.95;
  • the ratio between the radius R2 of the circle and the radius R3 of the circle where the third outer arc 533 is located is any value ranging from 1.85 to 1.90.
  • the inner air deflector 50 When the inner air deflector 50 is in the state of blocking the tuyere 611, it can ensure that the outer surface of the inner air deflector 50 is closely attached to the front volute 61, avoiding the possibility of air leakage, while ensuring that the inner air deflector 50 has A proper downward bending angle can better guide the airflow to the air outlet 12 .
  • the ratio between the radius R1 of the circle where the first outer arc 531 is located and the radius R2 of the circle where the second outer arc 532 is located may be, for example, 1.90, 1.91, 1.92, 1.93, 1.94 or 1.95.
  • the ratio between the radius R2 of the circle where the second outer arc 532 is located and the radius R3 of the circle where the third outer arc 533 is located may be, for example, 1.85, 1.86, 1.87, 1.88, 1.89 or 1.90.
  • FIG. 9 a schematic diagram of specific shape division of the inner surface of the inner wind deflector according to an embodiment of the present invention.
  • the inner surface of the inner wind deflector 50 extends from its bow 51 to its empennage 52 along an inner arc 54, and the inner arc 54 includes a first inner arc 541 smoothly connected successively in the direction from the bow 51 to the empennage 52. , the second inner arc 542 and the third inner arc 543 .
  • the ratio between the radius r1 of the circle where the first inner arc 541 is located and the radius r2 of the circle where the second inner arc 542 is located is any value ranging from 1.83 to 1.87;
  • the ratio between the radius r2 of the circle and the radius r3 of the circle where the third inner arc 543 is located is any value ranging from 1.71 to 1.80.
  • the ratio between the radius r1 of the circle where the first inner arc 541 is located and the radius r2 of the circle where the second inner arc 542 is located may be, for example, 1.83, 1.84, 1.85, 1.86 or 1.87.
  • the ratio between the radius r2 of the circle where the second inner arc 542 is located and the radius r3 of the circle where the third inner arc 543 is located may be, for example, 1.71, 1.72, 1.73, 1.74, 1.75, 1.76, 1.77, 1.78, 1.79 or 1.80.
  • Fig. 10 is a partial dimension drawing of an air conditioner indoor unit according to an embodiment of the present invention.
  • the vertical distance W1 between the rotating shaft 55 of the inner wind deflector 50 and the front volute 61 is 0.05-0.10 times the overall height H of the casing 10 in the vertical direction.
  • the distance W1 between the rotating shaft 55 of the inner wind deflector 50 and the front volute 61 in the vertical direction may be, for example, 0.05 times, 0.06 times, or 0.07 times the overall height H of the casing 10 in the vertical direction. , 0.08 times, 0.09 times or 0.10 times.
  • an appropriate distance can be maintained between the inner wind deflector 50 and the front volute 61, so that the inner wind deflector 50 can be attached to the surface of the front volute 61 at the rear side of the tuyere 611, thereby blocking the tuyere 611 the goal of. If W1 is set too small, the contact position between the inner air deflector 50 and the front volute 61 may be before or in the tuyere 611 , and the purpose of blocking the tuyere 611 cannot be achieved. If W1 is set too large, the inner wind deflector 50 may not be able to touch the front volute 61 at all, and the purpose of blocking the air outlet 611 may not be achieved at all.
  • the casing 10 has a front panel 16 at its front side, the body of the front panel 16 extends vertically, and the air vent 611 is formed on the front panel 16 .
  • the distance W2 between the rotating shaft 55 of the inner wind deflector 50 and the front panel 16 in the horizontal direction is 0.20-0.24 times the overall height H of the casing 10 in the vertical direction.
  • the distance W2 between the rotating shaft 55 of the inner wind deflector 50 and the front panel 16 in the horizontal direction may be, for example, 0.20 times, 0.21 times, 0.22 times, or 0.23 times the overall height H of the casing 10 in the vertical direction. times or 0.24 times.
  • the specific shape and size of the inner surface and the outer surface of the inner wind deflector 50 and the position of the rotating shaft 55 of the inner wind deflector 50 are specifically limited, so that the inner wind deflector 50 can effectively guide the wind.
  • the line between the first wing 51 and the empennage 52 forms the linear length L of the inner wind deflector 50
  • the linear length L of the inner wind deflector 50 is the length L of the casing 10 in the vertical direction. 0.17 to 0.20 times of the overall height H.
  • the linear length L1 of the inner wind deflector 50 may be, for example, 0.17 times, 0.18 times, 0.19 times or 0.20 times the overall height H of the casing 10 in the vertical direction.
  • the inner air deflector 50 has a sufficient length to effectively guide the flow of air in the air duct 14, and it can also prevent the inner air deflector 50 from being too long to cause it to collide with the front volute 61 and/or The rear volute 62 creates structural interference.
  • the height H1 of the breeze opening 13 in the vertical direction is 0.05 ⁇ 0.08 times the overall height H of the cabinet 10 in the vertical direction.
  • the height H1 of the breeze port 13 in the vertical direction may be, for example, 0.05 times, 0.06 times, 0.07 times or 0.08 times the overall height H of the cabinet 10 in the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种空调室内机,其包括:机壳,具有用于供气流流入其中的进风口、位于其底部前侧以供气流流出的出风口以及位于其前侧下部以供气流流出的微风口,机壳的位于出风口的内侧形成有出风风道;外导风板,可转动地设置于出风口处,以受控地调节出风口的开闭和出风方向;以及内导风板,可转动地设置于出风风道内,以受控地将出风风道内的气流送往微风口和/或出风口,并调节气流流向出风口的流向。内导风板和外导风板可具有多种位置状态组合,可以通过内导风板和外导风板的配合实现空调室内机的常规制冷、常规制热、冷风上扬、无风感舒适、垂直下吹等多种送风模式,满足了用户多样化的送风需求,提高了用户的使用体验。

Description

空调室内机 技术领域
本发明涉及空气调节技术,特别是涉及一种空调室内机。
背景技术
相关技术中,空调室内机为避免冷风吹人通常采用调整导风板角度以调整出风方向,以及在导风板、百叶等部件上开孔等弱化气流的方式。虽然这些设计可以柔化出风,但是对空调室内机自身出风的影响较大,空调室内机的出风量受到制约,且空调室内机的出风方式较为单调,难以满足用户对空调室内机不同出风效果和调节室内温度的要求。
发明内容
本发明的一个目的旨在克服现有技术的至少一个缺陷,提供一种能够多样化送风的空调室内机,以满足用户不同出风效果的送风需求。
本发明的一个进一步的目的是简化空调室内机的结构。
为了实现上述目的,本发明提供一种空调室内机,其包括:
机壳,具有用于供气流流入其中的进风口、位于其底部前侧以供气流流出的出风口以及位于其前侧下部以供气流流出的微风口,所述机壳的位于所述出风口的内侧形成有出风风道;
外导风板,可转动地设置于所述出风口处,以受控地调节所述出风口的开闭和出风方向;以及
内导风板,可转动地设置于所述出风风道内,以受控地将所述出风风道内的气流送往所述微风口和/或所述出风口,并调节气流流向所述出风口的流向。
可选地,所述机壳内限定有微风风腔,所述微风口与所述微风风腔连通,所述微风风腔通过风口与所述出风风道连通;且
所述内导风板配置成受控地遮挡所述风口以阻止所述出风风道内的气流经所述风口流入所述微风风腔或敞开所述风口以允许所述出风风道内的气流经所述风口流入所述微风风腔并经所述微风口流出。
可选地,所述出风风道由位于其前侧上部的前蜗壳和位于其后侧下部的后蜗壳以及位于其横向两侧的两个端板限定而成;其中
所述风口开设在所述前蜗壳上,所述内导风板在处于遮挡所述风口的状态时,其至少部分外表面与所述前蜗壳的处于所述风口后侧的表面相贴合。
可选地,所述风口从后往前地水平贯穿所述前蜗壳;或者,所述风口从后往前地向上倾斜贯穿所述前蜗壳;且
所述风口为沿所述机壳的横向延伸的条形风口。
可选地,所述内导风板为厚度均匀的弧形板,且具有首翼和尾翼,所述内导风板的弯曲程度由其首翼向其尾翼的方向逐渐或阶梯式地增大;且
所述内导风板在处于遮挡所述风口的状态时,其首翼位于其尾翼的前侧;所述内导风板在处于敞开所述风口的状态时,其首翼位于其尾翼的后侧。
可选地,所述内导风板的外表面沿外弧线由其首翼向其尾翼延伸,所述外弧线包括在由所述首翼向所述尾翼的方向上依次平滑连接的第一外圆弧、第二外圆弧和第三外圆弧;且
所述第一外圆弧所在圆的半径与所述第二外圆弧所在圆的半径之间的比值为范围在1.90~1.95之间的任一值;所述第二外圆弧所在圆的半径与所述第三外圆弧所在圆的半径之间的比值为范围在1.85~1.90之间的任一值。
可选地,所述内导风板的内表面沿内弧线由其首翼向其尾翼延伸,所述内弧线包括在由所述首翼向所述尾翼的方向上依次平滑连接的第一内圆弧、第二内圆弧和第三内圆弧;且
所述第一内圆弧所在圆的半径与所述第二内圆弧所在圆的半径之间的比值为范围在1.83~1.87之间的任一值;所述第二内圆弧所在圆的半径与所述第三内圆弧所在圆的半径之间的比值为范围在1.71~1.80之间的任一值。
可选地,所述内导风板的转轴在竖直方向上与所述前蜗壳之间的距离为所述机壳在竖直方向上的整体高度的0.05~0.10倍。
可选地,所述机壳具有位于其前侧的前面板,所述前面板的板体沿竖直方向延伸,所述风口形成在所述前面板上;且
所述内导风板的转轴在水平方向上与所述前面板之间的距离为所述机壳在竖直方向上的整体高度的0.20~0.24倍。
可选地,所述首翼与所述尾翼之间的连线形成所述内导风板的线性长度,所述内导风板的线性长度为所述机壳在竖直方向上的整体高度的0.17~0.20倍。
可选地,所述微风口在竖直方向上延伸的高度为所述机壳在竖直方向上的整体高度的0.05~0.08倍。
可选地,所述微风口包括紧密排列的多个细小的通风孔。
本发明的空调室内机除了具有传统的底部出风口之外,还在其机壳前侧下方特别设计微风口;除了具有传统的外导风板之外,还在位于外导风板内侧的出风风道内特别设计可转动的内导风板。外导风板可以调节出风口的开闭和出风方向,内导风板可以选择性地将出风风道内的气流送往微风口和/或出风口,并调节气流流向出风口的流向。由此,内导风板和外导风板可具有多种位置状态组合,可以通过内导风板和外导风板的配合实现了空调室内机的常规制冷、常规制热、冷风上扬、无风感舒适、垂直下吹等多种送风模式,满足了用户多样化的送风需求,提高了用户的使用体验。
进一步地,机壳内限定有微风风腔,微风风腔通过风口与出风风道连通,即微风口形成了微风风腔的气流出口,风口形成了微风风腔的气流入口。内导风板能够受控地遮挡风口或敞开风口。当内导风板转动至遮挡风口的状态时,可以阻止出风风道内的气流经风口流入微风风腔,避免气流从微风口流出;当内导风板转动至敞开风口的状态时,可以允许出风风道内的至少部分气流经风口流入微风风腔,从而经微风口流出。可见, 本发明利用内导风板转动过程中所处位置的不同实现了既能够与外导风板相配合调节出风口的出风方向的目的,又能够非常简便地控制微风口开闭的目的,无需设置诸如齿条、挡板等之类的部件,设计非常巧妙,简化了空调室内机的结构。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调室内机的示意性剖视图;
图2是根据本发明一个实施例的空调室内机处于冷风上扬状态下的示意性剖视图;
图3是根据本发明一个实施例的空调室内机处于微风舒适状态或无风感舒适状态下的示意性剖视图;
图4是根据本发明一个实施例的空调室内机处于常规制冷状态下的示意性剖视图;
图5是根据本发明一个实施例的空调室内机处于垂直下吹状态下的示意性剖视图;
图6是根据本发明一个实施例的空调室内机处于常规制热状态下的示意性剖视图;
图7是根据本发明一个实施例的内导风板的示意性剖视图;
图8是根据本发明一个实施例的内导风板外表面的具体形状划分示意图;
图9是根据本发明一个实施例的内导风板内表面的具体形状划分示意图;
图10是根据本发明一个实施例的空调室内机的部分尺寸标注图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
本发明提供一种空调室内机,图1是根据本发明一个实施例的空调室内机的示意性剖视图。参见图1,空调室内机1包括机壳10,机壳10具有用于供气流流入其中的进风口11、位于其底部前侧以供气流流出的出风口12以及位于其前侧下部以供气流流出的微风口13。机壳10的位于出风口12的内侧形成有出风风道14。具体地,进风口11可形成在机壳10的顶部,以使得空调室内机1从顶部进风、从底部和/或前侧下部出风。
进一步地,空调室内机1还包括位于机壳10内的换热器20和气流驱动装置30。换热器20用于与流经其的气流进行热交换。气流驱动装置30用于驱动气流从进风口11流向出风口12和/或微风口13。换热器20位于进风口11至气流驱动装置30之间的气流流动路径上。具体地,气流驱动装置30可以为风机,例如在图1所示实施例中,气流驱动 装置30为贯流风机。出风风道14与风机的出风口连通。
特别地,空调室内机1还包括外导风板40和内导风板50。外导风板40可转动地设置于出风口12处,以受控地调节出风口12的开闭和出风方向。内导风板50可转动地设置于出风风道14内,以受控地将出风风道14内的气流送往微风口13和/或出风口12,并调节气流流向出风口12的流向。也就是说,可以通过外导风板40转动位置的改变选择性地打开出风口12或关闭出风口12,还可以通过外导风板40转动位置的改变调节出风口12的出风方向。内导风板50可转动地设置于外导风板40的内侧,可以通过其转动位置的改变选择性地将出风风道14内的气流送往微风口13、出风口12或者同时送往微风口13和出风口12,并且通过内导风板50转动位置的改变还可以调节气流流向出风口12的流向,从而调节出风口12的出风方向。
本发明的空调室内机1除了具有传统的底部出风口之外,还在其机壳10前侧下方特别设计微风口13;除了具有传统的外导风板40之外,还在位于外导风板40内侧的出风风道14内特别设计可转动的内导风板50。外导风板40可以调节出风口12的开闭和出风方向,内导风板50可以选择性地将出风风道14内的气流送往微风口13和/或出风口12,并调节气流流向出风口12的流向。由此,内导风板50和外导风板40可具有多种位置状态组合,可以通过内导风板50和外导风板40的配合实现空调室内机1的常规制冷、常规制热、冷风上扬、无风感舒适、垂直下吹等多种送风模式,满足了用户多样化的送风需求,提高了用户的使用体验。
进一步地,微风口13可包括紧密排列的多个细小的通风孔。由于通风孔的尺寸较小,且排列紧密,气流经微风口13的多个通风孔流出时,送风非常柔和、舒适,实现了微风舒适送风或者完全无风感舒适送风的目的。
在一个具体实施例中,微风口13可包括上下排列的多个条形的狭长通风孔,每个狭长通风孔均沿机壳10的横向延伸。
在另一个具体实施例中,微风口13可包括沿机壳10的横向排列的多个条形的狭长通风孔,每个狭长通风孔均沿上下方向延伸。
在又一个具体实施例中,微风口13可包括均匀分布的多个圆形通风孔。
在一些实施例中,机壳10内限定有微风风腔15,微风口13与微风风腔15连通,微风风腔15通过风口611与出风风道14连通,从而间接地连通了出风风道14和微风口13。
进一步地,内导风板50配置成受控地遮挡风口611以阻止出风风道14内的气流经风口611流入微风风腔15或敞开风口611以允许出风风道14内的气流经风口611流入微风风腔15并经微风口13流出。
也就是说,微风口13形成了微风风腔15的气流出口,风口611形成了微风风腔15的气流入口。内导风板50能够受控地遮挡风口611或敞开风口611。当内导风板50转动至遮挡风口611的状态时,可以阻止出风风道14内的气流经风口611流入微风风腔15,避免气流从微风口13流出;当内导风板50转动至敞开风口611的状态时,可以允许出风风道14内的至少部分气流经风口611流入微风风腔15,从而经微风口13流出。可见,本发明利用内导风板50转动过程中所处位置的不同实现了既能够与外导风板40相配合 调节出风口12的出风方向、又能够非常简便地控制微风口13开闭的目的,无需设置诸如齿条、挡板等之类的部件,设计非常巧妙,简化了空调室内机1的结构。
在一些实施例中,出风风道14由位于其前侧上部的前蜗壳61和位于其后侧下部的后蜗壳62以及位于其横向两侧的两个端板(图中未示出)限定而成。风口611开设在前蜗壳61上,内导风板50在处于遮挡风口611的状态时,其至少部分外表面与前蜗壳61的处于风口611后侧的表面相贴合。也就是说,出风风道14和风口611分别处在内导风板50的两侧,且内导风板50与前蜗壳61的表面之间没有允许气流通过的间隙。一方面,当出风风道14内的气流由后向前流动遇到内导风板50后,在内导风板50的阻挡下不会继续流向位于内导风板50另一侧的风口611,避免了气流经微风口13吹出;另一方面,还可以通过内导风板50在出风风道14内形成促使气流流向出风口12的弧形风道,以尽可能地减小内导风板50对气流产生的阻力。可见,本发明通过内导风板50与前蜗壳61的结构配合实现了打开或关闭微风口13的目的,设计非常巧妙。
在一些实施例中,风口611从后往前地水平贯穿前蜗壳61;或者,风口611从后往前地向上倾斜贯穿前蜗壳61,以减小气流流经风口611时的阻力,尽可能地保持较大的流速。
进一步地,风口611为沿机壳10的横向延伸的条形风口,以便于使得气流充满整个微风风腔15,防止微风风腔15的部分区域出现负压导致倒流现象。
在一些实施例中,内导风板50为厚度均匀的弧形板,且具有首翼51和尾翼52,内导风板50的弯曲程度由其首翼51向其尾翼52的方向逐渐或阶梯式地增大。也就是说,内导风板50靠近其尾翼52的区段弯曲程度最大,比较适合改变气流流向;内导风板50靠近其首翼51的区段弯曲程度最小,过度最平缓,对气流的阻力越小。
进一步地,内导风板50在处于遮挡风口611的状态时,其首翼51位于其尾翼52的前侧,即出风风道14内的由后向前流动的气流先接触内导风板50的尾翼52,然后再接触内导风板50的首翼51,以便有效地改变气流流向,促使出风风道14内的气流全部流向出风口12。内导风板50在处于敞开风口611的状态时,其首翼51位于其尾翼52的后侧,即出风风道14内的由后向前流动的气流先接触内导风板50的首翼51,然后再接触内导风板50的尾翼52,以循序渐进地调整气流的方向,减小气流阻力。
本发明的空调室内机1通过内导风板50和外导风板40的配合可以实现常规制冷、常规制热、冷风上扬、无风感舒适、垂直下吹等多种送风模式。下面以具体的实施例说明内导风板50和外导风板40的多种组合状态。
图1中,空调室内机1处于停机状态,此时外导风板40处于关闭出风口12的位置。
图2是根据本发明一个实施例的空调室内机处于冷风上扬状态下的示意性剖视图,图中的虚线箭头表示气流的大致流向。在冷风上扬状态下,外导风板40转动至大致水平的位置,内导风板50转动至其尾翼52向上倾斜15°左右的位置。此时,在气流驱动装置30的驱动下,经换热器20换热后的气流在内导风板50的引导下分流至微风风腔15和出风口12,流向微风风腔15的气流经微风口13水平地向前吹出,流向出风口12的气流在外导风板40的进一步引导下略向前上方送出,实现了冷风上扬不直吹人体的舒适效 果。
图3是根据本发明一个实施例的空调室内机处于微风舒适状态或无风感舒适状态下的示意性剖视图,图中的虚线箭头表示气流的大致流向。在微风舒适状态或无风感舒适状态下,外导风板40转动至关闭出风口12的闭合位置,内导风板50转动至向上倾斜40°左右的位置。此时,在气流驱动装置30的驱动下,经换热器20换热后的气流在内导风板50的引导下几乎全部流向微风风腔15,即使部分气流继续流向出风口12也会在外导风板40的引导下再流向微风风腔15。由此,全部气流均通过微风口13送出,实现了微风送风或无风感送风的舒适送风效果。
图4是根据本发明一个实施例的空调室内机处于常规制冷状态下的示意性剖视图,图中的虚线箭头表示气流的大致流向。在常规制冷状态下,外导风板40处于完全打开出风口12的状态,不会气流产生任何阻碍作用。内导风板50可在第一角度范围内来回转动,在气流驱动装置30的驱动下,经换热器20换热后的气流会按照可调的流量比分流到微风风腔15和出风口12,从而经微风口13和出风口12送出,实现了朝向机壳10前方和前下方吹风的常规制冷送风效果。
图5是根据本发明一个实施例的空调室内机处于垂直下吹状态下的示意性剖视图,图中的虚线箭头表示气流的大致流向。在垂直下吹状态下,外导风板40处于完全打开出风口12的状态,不会气流产生任何阻碍作用。内导风板50转动至使其尾翼52与前蜗壳61的位于风口611后侧的表面区域相贴合的位置,此时,内导风板50完全遮挡风口611,相当于关闭了微风口13。在气流驱动装置30的驱动下,经换热器20换热后的气流在内导风板50的引导下全部流向出风口12,并几乎垂直地经出风口12向下送出,实现了热风垂降暖足的送风效果。
图6是根据本发明一个实施例的空调室内机处于常规制热状态下的示意性剖视图,图中的虚线箭头表示气流的大致流向。在常规制热状态下,外导风板40处于完全打开出风口12的状态,不会气流产生任何阻碍作用。内导风板50可在第二角度范围内来回转动,以将换热后的全部或大部分热风引导至出风口12,从而尽可能地朝机壳10的前下方送风,实现了常规的制热送风效果。
可以理解的是,内导风板50和外导风板40的组合状态并不限制为以上几种,还可以有其他更多可能的组合状态,这里不再一一举例说明。
还可以理解的是,内导风板50具有内表面和外表面。图7是根据本发明一个实施例的内导风板的示意性剖视图,图8是根据本发明一个实施例的内导风板外表面的具体形状划分示意图。在一些实施例中,内导风板50的外表面沿外弧线53由其首翼51向其尾翼52延伸,外弧线53包括在由首翼51向尾翼52的方向上依次平滑连接的第一外圆弧531、第二外圆弧532和第三外圆弧533。
进一步地,第一外圆弧531所在圆的半径R1与第二外圆弧532所在圆的半径R2之间的比值为范围在1.90~1.95之间的任一值;第二外圆弧532所在圆的半径R2与第三外圆弧533所在圆的半径R3之间的比值为范围在1.85~1.90之间的任一值。由此,外弧线53的各个圆弧之间的连接过度更加平稳和光滑,可以保证内导风板50的外表面更加光 滑。当内导风板50处于遮挡风口611的状态时,能够确保内导风板50的外表面尽可能紧密地贴合于前蜗壳61,避免漏风的可能性,同时确保内导风板50具有合适的向下弯曲角度以更好地将气流引导至出风口12。
具体地,第一外圆弧531所在圆的半径R1与第二外圆弧532所在圆的半径R2之间的比值例如可以为1.90、1.91、1.92、1.93、1.94或1.95。第二外圆弧532所在圆的半径R2与第三外圆弧533所在圆的半径R3之间的比值例如可以为1.85、1.86、1.87、1.88、1.89或1.90。
在一些实施例中,参见图9所示的根据本发明一个实施例的内导风板内表面的具体形状划分示意图。内导风板50的内表面沿内弧线54由其首翼51向其尾翼52延伸,内弧线54包括在由首翼51向尾翼52的方向上依次平滑连接的第一内圆弧541、第二内圆弧542和第三内圆弧543。
进一步地,第一内圆弧541所在圆的半径r1与第二内圆弧542所在圆的半径r2之间的比值为范围在1.83~1.87之间的任一值;第二内圆弧542所在圆的半径r2与第三内圆弧543所在圆的半径r3之间的比值为范围在1.71~1.80之间的任一值。由此,内弧线54的各个圆弧之间的连接过度更加平稳和光滑,可以保证内导风板50的内表面更加光滑,从而减小气流流经内导风板50时的阻力。
具体地,第一内圆弧541所在圆的半径r1与第二内圆弧542所在圆的半径r2之间的比值例如可以为1.83、1.84、1.85、1.86或1.87。第二内圆弧542所在圆的半径r2与第三内圆弧543所在圆的半径r3之间的比值例如可以为1.71、1.72、1.73、1.74、1.75、1.76、1.77、1.78、1.79或1.80。
图10是根据本发明一个实施例的空调室内机的部分尺寸标注图。在一些实施例中,内导风板50的转轴55在竖直方向上与前蜗壳61之间的距离W1为机壳10在竖直方向上的整体高度H的0.05~0.10倍。具体地,内导风板50的转轴55在竖直方向上与前蜗壳61之间的距离W1例如可以为机壳10在竖直方向上的整体高度H的0.05倍、0.06倍、0.07倍、0.08倍、0.09倍或0.10倍。由此,可以在内导风板50与前蜗壳61之间保持合适的距离,使得内导风板50能够与前蜗壳61的位于风口611后侧的表面贴合,从而达到遮挡风口611的目的。若W1设置的过小,内导风板50与前蜗壳61的接触位置可能会处在风口611之前或处在风口611中,无法达到遮挡风口611的目的。若W1设置的过大,内导风板50可能根本无法接触到前蜗壳61,也根本达不到遮挡风口611的目的。
在一些实施例中,机壳10具有位于其前侧的前面板16,前面板16的板体沿竖直方向延伸,风口611形成在前面板16上。内导风板50的转轴55在水平方向上与前面板16之间的距离W2为机壳10在竖直方向上的整体高度H的0.20~0.24倍。具体地,内导风板50的转轴55在水平方向上与前面板16之间的距离W2例如可以为机壳10在竖直方向上的整体高度H的0.20倍、0.21倍、0.22倍、0.23倍或0.24倍。由此,便于在内导风板50与前蜗壳61之间保持合适的距离,使得内导风板50能够与前蜗壳61的位于风口611后侧的表面贴合,从而达到遮挡风口611的目的。若W2设置的过小,内导风板50的转轴55过于靠前,根本无法遮挡风口611;若W2设置的过大,内导风板50的转轴 55过于靠后,无法更加有效地调节气流流向,并且内导风板50在出风风道14内的转动范围会受到较大的限制,甚至会与前蜗壳61和/或后蜗壳62产生结构干涉。
本发明通过对内导风板50的内表面和外表面的具体形状和尺寸、以及内导风板50的转轴55的位置进行上述特别的限定,可以在内导风板50能够有效导风的同时,确保空调室内机1在垂直下吹状态时,内导风板50遮挡风口611的同时,邻近其首翼51区段恰好能够将气流垂直地向下引导,实现了较佳的垂降效果。
在一些实施例中,参见图9,首翼51与尾翼52之间的连线形成内导风板50的线性长度L,内导风板50的线性长度L为机壳10在竖直方向上的整体高度H的0.17~0.20倍。具体地,内导风板50的线性长度L1例如可以为机壳10在竖直方向上的整体高度H的0.17倍、0.18倍、0.19倍或0.20倍。由此,既能够确保内导风板50具有足够长的长度以有效地引导出风风道14内的气流流动,又可避免内导风板50过长导致其与前蜗壳61和/或后蜗壳62产生结构干涉。
在一些实施例中,微风口13在竖直方向上延伸的高度H1为机壳10在竖直方向上的整体高度H的0.05~0.08倍。具体地,微风口13在竖直方向上的高度H1例如可以为机壳10在竖直方向上的整体高度H的0.05倍、0.06倍、0.07倍或0.08。由此,既能够起到明显的微风送风效果,又不会产生回流现象。若H1设置的过小,显然不足以起到明显的送风效果;若H1设置的过大,微风风腔15内无法形成足够的风压使气流充满整个微风风腔15,微风口13的局部区域可能没有气流流出或者气流较少,外部空气可能会经该局部区域流入微风风腔15内部产生倒流现象,进而会在微风风腔15内形成凝露。
本领域技术人员还应理解,本发明实施例中所称的“上”、“下”、“前”、“后”、“顶”、“底”等用于表示方位或位置关系的用语是以空调室内机1的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或不见必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (12)

  1. 一种空调室内机,包括:
    机壳,具有用于供气流流入其中的进风口、位于其底部前侧以供气流流出的出风口以及位于其前侧下部以供气流流出的微风口,所述机壳的位于所述出风口的内侧形成有出风风道;
    外导风板,可转动地设置于所述出风口处,以受控地调节所述出风口的开闭和出风方向;以及
    内导风板,可转动地设置于所述出风风道内,以受控地将所述出风风道内的气流送往所述微风口和/或所述出风口,并调节气流流向所述出风口的流向。
  2. 根据权利要求1所述的空调室内机,其中,
    所述机壳内限定有微风风腔,所述微风口与所述微风风腔连通,所述微风风腔通过风口与所述出风风道连通;且
    所述内导风板配置成受控地遮挡所述风口以阻止所述出风风道内的气流经所述风口流入所述微风风腔或敞开所述风口以允许所述出风风道内的气流经所述风口流入所述微风风腔并经所述微风口流出。
  3. 根据权利要求2所述的空调室内机,其中,
    所述出风风道由位于其前侧上部的前蜗壳和位于其后侧下部的后蜗壳以及位于其横向两侧的两个端板限定而成;其中
    所述风口开设在所述前蜗壳上,所述内导风板在处于遮挡所述风口的状态时,其至少部分外表面与所述前蜗壳的处于所述风口后侧的表面相贴合。
  4. 根据权利要求3所述的空调室内机,其中,
    所述风口从后往前地水平贯穿所述前蜗壳;或者,所述风口从后往前地向上倾斜贯穿所述前蜗壳;且
    所述风口为沿所述机壳的横向延伸的条形风口。
  5. 根据权利要求3或4所述的空调室内机,其中,
    所述内导风板为厚度均匀的弧形板,且具有首翼和尾翼,所述内导风板的弯曲程度由其首翼向其尾翼的方向逐渐或阶梯式地增大;且
    所述内导风板在处于遮挡所述风口的状态时,其首翼位于其尾翼的前侧;所述内导风板在处于敞开所述风口的状态时,其首翼位于其尾翼的后侧。
  6. 根据权利要求5所述的空调室内机,其中,
    所述内导风板的外表面沿外弧线由其首翼向其尾翼延伸,所述外弧线包括在由所述 首翼向所述尾翼的方向上依次平滑连接的第一外圆弧、第二外圆弧和第三外圆弧;且
    所述第一外圆弧所在圆的半径与所述第二外圆弧所在圆的半径之间的比值为范围在1.90~1.95之间的任一值;所述第二外圆弧所在圆的半径与所述第三外圆弧所在圆的半径之间的比值为范围在1.85~1.90之间的任一值。
  7. 根据权利要求5或6所述的空调室内机,其中,
    所述内导风板的内表面沿内弧线由其首翼向其尾翼延伸,所述内弧线包括在由所述首翼向所述尾翼的方向上依次平滑连接的第一内圆弧、第二内圆弧和第三内圆弧;且
    所述第一内圆弧所在圆的半径与所述第二内圆弧所在圆的半径之间的比值为范围在1.83~1.87之间的任一值;所述第二内圆弧所在圆的半径与所述第三内圆弧所在圆的半径之间的比值为范围在1.71~1.80之间的任一值。
  8. 根据权利要求5-7中任一项所述的空调室内机,其中,
    所述内导风板的转轴在竖直方向上与所述前蜗壳之间的距离为所述机壳在竖直方向上的整体高度的0.05~0.10倍。
  9. 根据权利要求5-8中任一项所述的空调室内机,其中,
    所述机壳具有位于其前侧的前面板,所述前面板的板体沿竖直方向延伸,所述风口形成在所述前面板上;且
    所述内导风板的转轴在水平方向上与所述前面板之间的距离为所述机壳在竖直方向上的整体高度的0.20~0.24倍。
  10. 根据权利要求5-9中任一项所述的空调室内机,其中,
    所述首翼与所述尾翼之间的连线形成所述内导风板的线性长度,所述内导风板的线性长度为所述机壳在竖直方向上的整体高度的0.17~0.20倍。
  11. 根据权利要求1-10中任一项所述的空调室内机,其中,
    所述微风口在竖直方向上延伸的高度为所述机壳在竖直方向上的整体高度的0.05~0.08倍。
  12. 根据权利要求1-11中任一项所述的空调室内机,其中,
    所述微风口包括紧密排列的多个细小的通风孔。
PCT/CN2022/121005 2022-02-23 2022-09-23 空调室内机 WO2023159936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210167229.9A CN114413334B (zh) 2022-02-23 2022-02-23 空调室内机
CN202210167229.9 2022-02-23

Publications (1)

Publication Number Publication Date
WO2023159936A1 true WO2023159936A1 (zh) 2023-08-31

Family

ID=81261653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121005 WO2023159936A1 (zh) 2022-02-23 2022-09-23 空调室内机

Country Status (2)

Country Link
CN (1) CN114413334B (zh)
WO (1) WO2023159936A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413334B (zh) * 2022-02-23 2023-10-20 青岛海尔空调器有限总公司 空调室内机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009826A (ja) * 2012-06-28 2014-01-20 Sharp Corp 空気調和機
CN104697055A (zh) * 2015-02-13 2015-06-10 广东美的制冷设备有限公司 空调室内机及空调室内机的控制方法
CN111140922A (zh) * 2020-01-19 2020-05-12 广东美的制冷设备有限公司 空调室内机及空调器
CN111503742A (zh) * 2020-05-14 2020-08-07 青岛海尔空调器有限总公司 壁挂式空调室内机
CN211650472U (zh) * 2019-11-29 2020-10-09 广东美的制冷设备有限公司 导风板组件、空调室内机和空调器
CN214249820U (zh) * 2020-12-18 2021-09-21 青岛海尔空调器有限总公司 空调室内机
CN113847731A (zh) * 2021-09-10 2021-12-28 珠海格力电器股份有限公司 导风板结构、空调室内机及空调器
CN114413334A (zh) * 2022-02-23 2022-04-29 青岛海尔空调器有限总公司 空调室内机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261497A (ja) * 1995-03-20 1996-10-11 Fujitsu General Ltd 空気調和機
CN106958862B (zh) * 2017-04-13 2020-11-27 青岛海尔空调器有限总公司 空调室内壁挂机及其控制方法
CN207422394U (zh) * 2017-09-12 2018-05-29 广东美的制冷设备有限公司 空调器
CN207936267U (zh) * 2018-01-12 2018-10-02 青岛海尔空调器有限总公司 壁挂式空调室内机
CN207936258U (zh) * 2018-01-12 2018-10-02 青岛海尔空调器有限总公司 壁挂式空调室内机
CN208186574U (zh) * 2018-04-11 2018-12-04 武汉海尔电器股份有限公司 壁挂式空调室内机
CN112696731B (zh) * 2019-10-22 2022-04-15 青岛海尔空调器有限总公司 空调室内机
CN212252875U (zh) * 2020-03-23 2020-12-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN212746700U (zh) * 2020-07-29 2021-03-19 广东美的制冷设备有限公司 空调室内机及空调器
CN113483396B (zh) * 2021-06-29 2022-11-18 青岛海尔空调器有限总公司 一种空调器室内机
CN113566295A (zh) * 2021-07-28 2021-10-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009826A (ja) * 2012-06-28 2014-01-20 Sharp Corp 空気調和機
CN104697055A (zh) * 2015-02-13 2015-06-10 广东美的制冷设备有限公司 空调室内机及空调室内机的控制方法
CN211650472U (zh) * 2019-11-29 2020-10-09 广东美的制冷设备有限公司 导风板组件、空调室内机和空调器
CN111140922A (zh) * 2020-01-19 2020-05-12 广东美的制冷设备有限公司 空调室内机及空调器
CN111503742A (zh) * 2020-05-14 2020-08-07 青岛海尔空调器有限总公司 壁挂式空调室内机
CN214249820U (zh) * 2020-12-18 2021-09-21 青岛海尔空调器有限总公司 空调室内机
CN113847731A (zh) * 2021-09-10 2021-12-28 珠海格力电器股份有限公司 导风板结构、空调室内机及空调器
CN114413334A (zh) * 2022-02-23 2022-04-29 青岛海尔空调器有限总公司 空调室内机

Also Published As

Publication number Publication date
CN114413334A (zh) 2022-04-29
CN114413334B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2021190201A1 (zh) 空调室内机
CN112113277B (zh) 壁挂式空调室内机
WO2021190213A1 (zh) 空调室内机
CN108180552B (zh) 壁挂式空调室内机
WO2021227880A1 (zh) 柜式空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
CN206113128U (zh) 壁挂式空调的室内机
WO2021169403A1 (zh) 壁挂式空调室内机及其导风板
CN108180551B (zh) 壁挂式空调室内机
CN106482230A (zh) 一种混流空调
WO2021190200A1 (zh) 空调室内机
CN105352036B (zh) 空调室内机
CN212777640U (zh) 壁挂式空调室内机及空调器
CN108278683A (zh) 空调室内机及空调器
WO2023246197A1 (zh) 立式空调室内机
CN106225070A (zh) 风管机
WO2023159936A1 (zh) 空调室内机
WO2023246706A1 (zh) 立式空调室内机
CN210921588U (zh) 一种新风装置以及空调器
CN107726586B (zh) 空调器及其控制方法
WO2023246548A1 (zh) 立式空调室内机
KR100870626B1 (ko) 공기조화기
WO2023130769A1 (zh) 壁挂式空调室内机
WO2023082632A1 (zh) 壁挂式空调室内机
CN111023295A (zh) 一种新风装置以及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928200

Country of ref document: EP

Kind code of ref document: A1