WO2022148468A1 - 一种低磁致伸缩取向硅钢及其制造方法 - Google Patents

一种低磁致伸缩取向硅钢及其制造方法 Download PDF

Info

Publication number
WO2022148468A1
WO2022148468A1 PCT/CN2022/071200 CN2022071200W WO2022148468A1 WO 2022148468 A1 WO2022148468 A1 WO 2022148468A1 CN 2022071200 W CN2022071200 W CN 2022071200W WO 2022148468 A1 WO2022148468 A1 WO 2022148468A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
insulating coating
manufacturing
difference
steel substrate
Prior art date
Application number
PCT/CN2022/071200
Other languages
English (en)
French (fr)
Inventor
吴美洪
李国保
储双杰
赵自鹏
刘宝军
沈侃毅
杨勇杰
胡卓超
吉亚明
凌晨
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US18/259,898 priority Critical patent/US20240071661A1/en
Priority to JP2023541062A priority patent/JP2024502594A/ja
Priority to EP22736629.1A priority patent/EP4261853A4/en
Publication of WO2022148468A1 publication Critical patent/WO2022148468A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/125Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a steel material and a manufacturing method thereof, in particular to a low magnetostrictive oriented silicon steel and a manufacturing method thereof.
  • the existing transformer cores are generally made of oriented silicon steel laminations or oriented silicon steel windings.
  • the transformer indicators that the companies that produce transformers mainly focus on are no-load loss characteristics and no-load excitation current characteristics, which correspond to the loss and excitation power characteristics of grain-oriented silicon steel, respectively.
  • the noise performance of transformers has become the main indicator as important as no-load loss, which corresponds to the magnetostrictive properties of grain-oriented silicon steel. It should be noted that, during AC excitation, the process of the size change of the oriented silicon steel finished plate with the magnetization is called magnetostriction, which is one of the main sources of transformer noise.
  • the magnetostriction mechanism of oriented silicon steel is due to the change and rotation of the number of 90° magnetic domains deviating from the easy magnetization direction during the magnetization process.
  • the ideal state of the grain-oriented silicon steel product is only 180° magnetic domain, and the actual grain-oriented silicon steel product is due to the deviation of orientation, inclusions, grain boundaries and other defects, in order to reduce the magnetostatic energy, there is a small additional domain between the 180° magnetic domains - willow leaf domain (90° domains). Therefore, magnetostriction can be effectively reduced by reducing 90° domains (closed domains).
  • the currently mainly used methods for reducing magnetostriction mainly include: (1) increasing the orientation degree of the ⁇ 001> crystal plane of the finished crystal grains to reduce the magnetostriction; (2) reducing the thickness of the finished product to reduce the Magnetostriction; (3) Increase coating tension to reduce magnetostriction.
  • the publication number is CN107210109A
  • the publication date is September 27, 2017,
  • the Chinese patent document entitled "Oriented Electrical Steel Sheet and Its Manufacturing Method and Prediction Method of Transformer Noise Characteristics” discloses a grain-oriented electrical steel sheet and its manufacture Methods and methods for predicting the noise characteristics of transformers.
  • the patent discloses a technical solution in which the surface-back tension difference of the forsterite coating is controlled to be more than 0.5 MPa and the total surface-back tension difference between the forsterite and the insulating coating is less than 0.5 MPa,
  • the speed level of magnetostriction acceleration or deceleration points at d ⁇ /dt are set to 4 in one period of magnetostrictive vibration, and the adjacent speeds in the acceleration region or deceleration region of magnetostrictive vibration are set.
  • the speed level change amount of the change point was set to be 3.0 ⁇ 10 4 seconds or less, and the reduction of the magnetostrictive characteristics was realized.
  • the publication number is CN106460111A, the publication date is February 22, 2017, and the Chinese patent document titled "low iron loss and low magnetostrictive grain-oriented electrical steel sheet” discloses a low iron loss and low magnetostriction.
  • Grain-oriented electrical steel sheet The grain-oriented electrical steel sheet of the present invention has a steel sheet base material, a primary coating formed on the surface of the steel sheet base material, and a tensile insulating coating formed on the surface of the primary coating, and the coating satisfies the following conditions: the tensile insulating coating is controlled.
  • the magnetic domain control is performed by irradiating laser light from the above-mentioned tension insulating film.
  • a strip-shaped sample having a length of 300 mm in a direction parallel to the rolling direction of the grain-oriented electrical steel sheet and a length of 60 mm in a direction parallel to the sheet width direction was taken from the grain-oriented electrical steel sheet.
  • the publication number is CN106029917A, the date of publication is October 12, 2016, and the Chinese patent document entitled "Oriented electrical steel sheet for low-noise transformer and its manufacturing method" discloses a grain-oriented electrical steel sheet, which is used in the same rolling process.
  • a grain-oriented electrical steel sheet obtained by irradiating an electron beam with a beam diameter d of 0.40 mm or less in a line region in a direction intersecting the direction of the production direction and subjecting the surface of the steel sheet to a magnetic domain refining treatment, wherein repeating units are formed by connecting repeating units in the line region direction.
  • the period of the repeating unit in the modulated irradiation line region is set to 2/3 ⁇ d ⁇ 2.5 ⁇ dmm, and the repetition interval of the modulated irradiation line region in the rolling direction is set to 4.0 ⁇ 12.5mm,
  • the intensity of the electron beam is set to be equal to or higher than the intensity capable of forming divided magnetic domains elongated in the direction of the modulated irradiation line region at least on the irradiation surface side, and no coating damage occurs and no plastic strain region is formed on the irradiation surface side.
  • the present invention solves the problem of uneven stress distribution caused by single-sided laser scoring in the existing grain-oriented silicon steel, which causes the steel plate to bend toward the scoring surface, and causes the magnetostrictive deviation of the scoring surface and the non-scoring surface of the grain-oriented silicon steel to be too large. The problem.
  • the present invention provides a method for manufacturing low magnetostriction oriented silicon steel, the oriented silicon steel includes a silicon steel substrate and an insulating coating on the surface thereof, and the manufacturing method includes: performing single-sided laser etching on the silicon steel substrate , the side of the silicon steel substrate that is subjected to single-sided laser etching is the first surface, and the side opposite to the first surface is the second surface; The difference determines the difference in the amount of insulating coating on the first surface and the second surface; the insulating coating is formed on the first surface and the second surface, so that the amount of insulating coating on the second surface is greater than that on the first surface and the amount of insulating coating on the first surface and the second surface satisfies the difference in the amount of insulating coating.
  • the deflection of the first surface and the second surface of the silicon steel substrate can be determined according to the power of laser etching (representing the distance from the center of the curved back end surface of the steel plate to the original axis), and then according to This difference in deflection results in a difference in the coating amount of the insulating coating applied to the first surface and the second surface.
  • an insulating coating is applied on the first surface and the second surface, so that by adjusting the tension difference of the insulating coating on the first surface and the second surface, the finished product of oriented silicon steel is reduced due to single-sided
  • the difference in deflection between the first surface and the second surface caused by the laser etching reduces the magnetostrictive deviation of the first surface and the second surface.
  • Single-sided laser etching is a common practice in the prior art to refine the magnetic domains of oriented silicon steel and reduce losses.
  • the method for forming the insulating coating is: coating the insulating coating liquid on the first surface and the second surface, and baking and sintering the insulating coating liquid to form the insulating coating on the first surface and the second surface .
  • the steps of baking and sintering the insulating coating liquid can be performed according to the prior art.
  • the power of laser etching is controlled so that the obtained oriented silicon steel exhibits a magnetostrictive velocity sound pressure level of ⁇ 55db(A).
  • the power of the laser etching is 0.5-2.5 mJ/mm 2 , so as to achieve the purpose of reducing the noise of the transformer core prepared from oriented silicon steel during operation.
  • the power of the laser etching is 1-2 mJ/mm 2 , which can further reduce the noise of the transformer core prepared from the oriented silicon steel of the present invention during operation.
  • the deflection difference is determined based on the following formula:
  • W is the power of single-sided laser etching, and the unit is mJ/mm 2 .
  • the unit of deflection difference is mm.
  • the insulating coating amount difference is determined based on the following formula:
  • Insulation coating amount difference 3 ⁇ 10 -5 -0.407 ⁇ deflection difference
  • the unit of the coating amount difference of the coating insulating layer is g/m 2 .
  • the amount of the insulating coating on the first surface is 4.0 ⁇ 4.5 g/m 2 .
  • the thickness of the insulating coating is too thin, the tension imparted by the insulating coating to the substrate is small, and the magnetic optimization is insufficient.
  • the thickness of the insulating coating is too thick, which will affect the lamination coefficient of the finished product, and at the same time, defects such as powder drop and white edge may easily occur during the shearing process.
  • the thickness H of the silicon steel substrate is: 0.18mm ⁇ H ⁇ 0.23mm.
  • the thickness of the finished oriented silicon steel substrate is greater than or equal to 0.18mm; when the thickness of the substrate is greater than 0.23mm, the stiffness becomes stronger due to the thicker thickness, and the sensitivity to uneven stress distribution caused by laser etching becomes weaker after the insulating coating is formed on the surface.
  • the deflection difference caused by the uneven distribution of stress caused by etching becomes smaller and cannot be applied to the above empirical formula.
  • the components of the insulating coating liquid are calculated by mass percentage: at least one of aluminum dihydrogen phosphate and magnesium dihydrogen phosphate: 2% to 25%, colloidal silicon dioxide: 4% to 16%, chromic anhydride: 0.15% ⁇ 4.50%, the balance is water and other unavoidable impurities.
  • the insulating coating is used to improve the insulating properties of the surface of the silicon steel substrate.
  • the insulating coating solution widely used in the prior art is an aqueous solution mainly composed of chromic anhydride, colloidal SiO 2 and phosphates of Mg and Al.
  • the silicon steel substrate is prepared by the following steps according to the prior art: step a, smelting and casting; step b, heating; step c, normalization; step d, cold rolling; step e, decarburization annealing; Step f, finished product annealing; Step g, thermal stretching annealing.
  • the silicon steel substrate is subjected to a two-stage normalization treatment: firstly heating to 1100-1200°C, then cooling to 900-1000°C at a cooling rate of 1°C/s-10°C/s; Cool to room temperature at a cooling rate of 10°C/s to 70°C/s.
  • the cold rolling adopts a primary cold rolling or a secondary cold rolling with an intermediate annealing step.
  • a recrystallization annealing is performed at 800-900° C., and then the surface of the silicon steel substrate is coated with an annealing separator.
  • an annealing separator such as magnesium oxide, needs to be coated on the surface of the silicon steel substrate before annealing the high-temperature finished product to prevent the steel plates from sticking to each other at high temperature.
  • the annealing temperature is controlled to be 1100-1200° C., and the holding time is 20-30 h.
  • the silicon steel substrate is first heated to 800-900°C, kept for 10-30s, and then cooled to room temperature at a cooling rate of 5°C/s-50°C/s.
  • the present invention provides a low magnetostriction oriented silicon steel, the magnetostriction deviation between the scored surface and the non-scored surface of the oriented silicon steel is small, and the oriented silicon steel has a good average magnetostriction.
  • the iron core made of the low magnetostrictive oriented silicon steel of the present invention generates little vibration, so that the overall noise level of the transformer with such an iron core is low.
  • the present invention proposes a low magnetostriction oriented silicon steel, which is prepared by the above-mentioned manufacturing method of low magnetostriction oriented silicon steel, and the magnetostriction deviation of the first surface and the second surface of the oriented silicon steel is ⁇ 2db(A), and the average magnetostriction of grain-oriented silicon steel ⁇ 55db(A).
  • the low magnetostrictive oriented silicon steel of the present invention Compared with the prior art, the low magnetostrictive oriented silicon steel of the present invention and the manufacturing method thereof have the following advantages and beneficial effects:
  • the difference in the amount of insulating coating between the first surface and the second surface can be obtained according to the deflection difference between the scored surface and the non-scored surface of the steel sheet after scoring, so as to adjust the scoring surface (first surface) and the insulating coating tension on the non-scoring surface (second surface), thereby reducing the magnetostrictive deviation between the scoring and non-scoring surfaces.
  • the prepared low magnetostriction oriented silicon steel can realize that the magnetostriction deviation of the scored surface and the non-scored surface of the oriented silicon steel is less than or equal to 2db(A), and the average magnetostriction is less than or equal to 55db(A).
  • Cores made of strain-oriented silicon steel produce low vibrations, resulting in low overall noise levels for transformers with such cores.
  • Fig. 1 shows the curve of the magnetostriction of the score surface of the grain-oriented silicon steel of the present invention as a function of laser score energy density
  • FIG. 2 shows the curve of the difference in deflection between the first surface and the second surface of the silicon steel substrate as a function of laser incision energy density after single-side laser etching is performed on the silicon steel substrate of the present invention.
  • FIG. 3 shows the difference in the amount of insulating coating on the first surface and the second surface required to maintain the straightness of the silicon steel substrate of the present invention under the condition of different deflection differences.
  • the silicon steel substrates of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4 were prepared by the following steps:
  • Smelting and casting Smelting was carried out according to the chemical composition shown in Table 1, and cast into slabs.
  • Heating heated to 1200 ⁇ 1280°C, kept for 1 ⁇ 4h, and hot rolled into strip steel.
  • Two-stage normalization treatment is adopted, firstly heated to 1100 ⁇ 1200°C, then cooled to 900 ⁇ 1000°C at a cooling rate of 1°C/s ⁇ 10°C/s; s cooling rate to room temperature.
  • Cold Rolling Either primary cold rolling or secondary cold rolling with an intermediate annealing step.
  • Decarburization annealing perform a recrystallization annealing at a temperature of 800-900 °C, and then apply an annealing separator.
  • Finished annealing annealing temperature 1100 ⁇ 1200 °C, heat preservation 20-30hr.
  • Thermal stretching annealing first heat to 800-900°C, hold for 10-30s, and then cool down to room temperature at a cooling rate of 5°C/s-50°C/s to obtain a silicon steel substrate.
  • Table 1 lists the mass percentage of each chemical element and the thickness of the finished product in the oriented silicon steels with low noise characteristics of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4, and the balance of chemical components of the silicon steel substrates in the following examples For Fe and other inevitable impurities.
  • the deflection difference between the first surface and the second surface is determined based on the power of the laser etching, and the amount of insulating coating is determined based on the deflection difference. poor; then an insulating coating is formed on the first surface and the second surface to obtain an oriented silicon steel.
  • the amount of coating on the surface of the silicon steel substrate needs to meet: the amount of insulating coating on the second surface is greater than the amount of insulating coating on the first surface, and the amount of insulating coating on the first surface and the second surface satisfies the difference in the amount of insulating coating .
  • the specific chemical components of the insulating coating liquids applied to the grain-oriented silicon steels of Examples 1-6 of the present invention and the comparative steel sheets of Comparative Examples 1-4 may be, in mass percentage, at least one of aluminum dihydrogen phosphate or magnesium dihydrogen phosphate. Species: 2% to 25%; colloidal silica: 4% to 16%; chromic anhydride: 0.15% to 4.50%; the rest is water and other inevitable impurities.
  • Table 2 lists the specific chemical components of the insulating coating liquids coated on the surfaces of the silicon-based steel sheets of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4.
  • Example 1 Numbering Aluminum Dihydrogen Phosphate Magnesium Dihydrogen Phosphate Colloidal silica Chromic anhydride Example 1 2% 0 4% 0.15% Example 2 0 2% 8% 1% Example 3 4% 4% 10% 2% Example 4 8% 8% 14% 3% Example 5 25% 0 16% 4% Example 6 0 25% 16% 4.5% Comparative Example 1 12% 0 16% 4.5% Comparative Example 2 0 8% 10% 2% Comparative Example 3 10% 10% 15% 3% Comparative Example 4 10% 5% 15% 2%
  • Table 3-1 lists the specific parameters of the manufacturing process of the silicon-based steel sheets of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4.
  • Table 3-2 lists the power of single-side laser etching for the silicon-based steel sheets of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4, the deflection difference of the finally obtained oriented silicon steel, and the amount of insulating coating on the surface As well as the poor amount of insulating coating on both surfaces.
  • the method can refer to IEC (International Electrotechnical Commission) technical report-IEC/TP 62581. After measurement, the obtained magnetostrictive performance test results of each embodiment and comparative example are listed in Table 4.
  • Table 4 lists the performance test results of the low-noise characteristic oriented silicon steels of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4.
  • the three-phase transformers of 240KVA were respectively obtained by using the grain-oriented silicon steels of the above-mentioned examples 1-6 and the comparative steel sheets of the comparative examples 1-4, and the three-phase transformers of the respective examples and comparative examples were prepared at 50Hz. , 1.7T magnetization conditions for noise detection (GB/T 1094.10-2003), and the obtained test results are listed in Table 5.
  • Table 5 lists the noise test results of the 240KVA three-phase transformers made from the low-noise characteristic oriented silicon steels of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-4.
  • the magnetostriction deviations of the first surface and the second surface of the grain-oriented silicon steels of Examples 1-6 are both ⁇ 2db(A), and the average magnetostriction thereof is ⁇ 55db(A). Furthermore, as shown in Table 5, compared with Comparative Examples 1-4, the overall noise level of the 240KVA three-phase transformer made by using the low-noise characteristic oriented silicon steel of Examples 1-6 is significantly lower.
  • Fig. 1 shows the curve of the magnetostriction of the grain-oriented silicon steel of the present invention as a function of the laser indentation energy density, and the shaded part corresponds to the corresponding properties of the grain-oriented silicon steel in Examples 2-4. It can be seen that with the increase of laser scribing energy density, the improvement of magnetic properties first increases and then tends to be stable, and the magnetostrictive properties first decrease and then increase.
  • Fig. 2 shows the curve of the deflection difference between the first surface and the second surface of the silicon steel substrate as a function of the laser indentation energy density after single-sided laser etching is performed on the silicon steel substrate of the present invention, and the shaded part corresponds to the silicon steel in Examples 2-4 Corresponding properties of the substrate. It can be seen that with the increase of the laser etching energy density, the deflection difference between the first surface and the second surface of the silicon steel substrate increases exponentially at first, and then tends to be stable.
  • Fig. 3 shows the difference in the amount of insulating coating between the first surface and the second surface required to keep the silicon steel substrate flat when the deflection difference between the first surface and the second surface is different, and the shaded part corresponds to Example 2 Corresponding properties of silicon steel substrates in -4. It can be seen that in order to maintain the straightness of the oriented silicon steel product and reduce the magnetostrictive deviation on both sides, it is necessary to adjust the difference in the coating amount of the insulating coating on the first surface and the second surface according to the deflection difference caused by laser etching.
  • the manufacturing method of the low magnetostrictive oriented silicon steel in the present invention can adjust the score surface and the non-scoring surface according to the difference in deflection value between the score surface and the non-scoring surface of the silicon steel substrate after single-sided laser etching.
  • the poor tension of the insulating coating reduces the magnetostrictive deviation of the scored and non-scored surfaces of the oriented silicon steel.
  • the low magnetostriction oriented silicon steel prepared by the above manufacturing method can realize the magnetostrictive deviation of the scored surface and the non-scored surface of the oriented silicon steel ⁇ 2db(A), and the average magnetostriction ⁇ 55db(A).
  • Cores made of strain-oriented silicon steel produce low vibrations, resulting in low overall noise levels for transformers with such cores.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

一种低磁致伸缩取向硅钢的制造方法,取向硅钢包括硅钢基板和硅钢基板表面的绝缘涂层,所述制造方法包括:对上述硅钢基板进行单面激光刻蚀,硅钢基板中进行单面激光刻蚀的一面为第一表面,与第一表面相对设置的一面为第二表面;基于激光刻蚀的功率确定第一表面和第二表面的挠度差,基于挠度差确定第一表面和第二表面上的绝缘涂层量差;在第一表面和第二表面上形成绝缘涂层,第二表面上的绝缘涂层量大于第一表面上的绝缘涂层量,且第一表面和第二表面上的绝缘涂层量满足绝缘涂层量差。采用本发明的制造方法能够解决取向硅钢由于具有单面激光刻痕导致的磁致伸缩两面偏差大的问题。还公开了一种采用上述制造方法制得的取向硅钢,由该取向硅钢制备得到的变压器铁芯使变压器在工作时噪音小。

Description

一种低磁致伸缩取向硅钢及其制造方法 技术领域
本发明涉及一种钢材及其制造方法,尤其涉及一种低磁致伸缩取向硅钢及其制造方法。
背景技术
目前,现有的变压器铁芯一般均采用取向硅钢叠片或取向硅钢卷绕制成。各生产变压器的企业主要关注的变压器指标分别为空载损耗特性和空载激磁电流特性,这两个指标分别对应取向硅钢的损耗和激磁功率特性。
近年来,随着市场和用户对变压器噪音性能的关注日益重视,变压器的噪音性能已成为与空载损耗同等重要的主要指标,该指标对应取向硅钢的磁致伸缩特性。需要说明的是,在交流励磁时,取向硅钢成品板随着磁化发生样板尺寸变化的过程称之为磁致伸缩,其是变压器噪音的主要来源之一。
随着变压器企业加工工艺和变压器设计的持续优化,取向硅钢的磁致伸缩已经成为变压器噪音的主要来源。取向硅钢的磁致伸缩产生机理是由于磁化过程的偏离易磁化方向的90°磁畴数量变化和转动。
取向硅钢成品的理想状态是只有180°磁畴,而实际的取向硅钢成品由于取向度偏差、夹杂物、晶界等缺陷,为降低静磁能而在180°磁畴间出现的小附加畴-柳叶畴(90°畴)。因此,减少90°畴(闭合畴),就能够有效地降低磁致伸缩。
在现有技术中,目前主要使用的降低磁致伸缩的方法主要包括:(1)提升成品晶粒<001>晶面的取向度,以降低磁致伸缩;(2)降低成品厚度,以降低磁致伸缩;(3)增加涂层张力,以降低磁致伸缩。通过上述三种技术方案均可以实现取向硅钢成品板磁致伸缩的下降,从而实现变压器噪音水平的降低。
公开号为CN107210109A,公开日为2017年9月27日,名称为“取向性电磁钢板及其制造方法及变压器噪音特性的预测方法”的中国专利文献,公开了一种取向性电磁钢板及其制造方法及变压器噪音特性的预测方法。对于取向性电磁钢板的磁致伸缩特性,该专利公开通过控制镁橄榄石涂层的表背张力差为0.5MPa以上同时镁橄榄石和绝缘涂层的总表背张力差小于0.5MPa的技术方案,将磁致伸缩的速度级:dλ/dt下的加速或减速点在磁 致伸缩振动1个周期内设定为4个,并且将磁致伸缩振动的加速区域或减速区域内的相邻的速度变化点的速度级变化量设定为3.0×10 4秒以下,实现磁致伸缩特性的降低。然而该技术方案通过调整镁橄榄石的张力差和镁橄榄石+绝缘涂层的总张力差,对单面激光刻痕取向硅钢基板的双面磁致伸缩差改善较为有限且控制难度大,难以批量、稳定、合理成本生产噪音特性优良及磁致伸缩上下表面偏差小的取向性电磁钢板。
公开号为CN106460111A,公开日为2017年2月22日,名称为“低铁损且低磁致伸缩的方向性电磁钢板”的中国专利文献,公开了一种低铁损且低磁致伸缩的方向性电磁钢板。该发明的方向性电磁钢板具有钢板母材、形成在上述钢板母材的表面的一次覆膜以及形成在上述一次覆膜的表面的张力绝缘覆膜,其覆膜符合如下条件:控制张力绝缘覆膜膜厚/一次覆膜膜厚的比例∈(0.1,3)、张力绝缘覆膜膜厚∈(0.5,4.5)μm、一次覆膜和张力绝缘覆膜的总张力∈(1,10)MPa。磁畴控制是通过从上述张力绝缘覆膜之上照射激光来进行的。从上述方向性电磁钢板采取与上述方向性电磁钢板的轧制方向平行的方向的长度为300mm,并且与板宽方向平行的方向的长度为60mm的条状样品,通过对上述样品的至少单面进行酸洗,将从上述张力绝缘覆膜的表面到由上述钢板母材与上述一次覆膜的界面向上述钢板母材侧为5μm的深度位置为止的范围除去,然后对上述样品的翘曲量进行测定,此时上述翘曲量满足规定的条件。然而该技术方案仅仅考虑一次覆膜和张力绝缘覆膜的膜厚和张力,对取向硅钢基板的磁致伸缩改善较为有限且控制难度大,难以批量、稳定、合理成本生产噪音特性优良及磁致伸缩上下表面偏差小的取向性电磁钢板。
公开号为CN106029917A,公开日为2016年10月12日,名称为“低噪音变压器用取向性电磁钢板及其制造方法”的中国专利文献,公开了一种取向性电磁钢板,其是在与轧制方向交叉的方向的线区域照射光束直径d为0.40mm以下的电子束而对钢板表面实施了磁畴细化处理所得到的取向性电磁钢板,其中,形成使重复单元在线区域方向连接而成的调制照射线区域,将该重复单元在该调制照射线区域的周期设为2/3×d~2.5×dmm,将该调制照射线区域在轧制方向的重复间隔设为4.0~12.5mm,而且将电子束的强度设定在至少在照射面侧能形成沿该调制照射线区域方向细长延伸的分割磁畴的强度以上、且在照射面侧不发生被膜损伤且不形成塑性应变区域的强度以下,由此,可以实现以往难以做到的同时满足变压器的低铁损和低噪声的条件下的磁畴细化处理,而且能够获得以往没有的低铁损且低磁致伸缩的取向性电磁钢板。然而该技术方案仅考虑到刻痕条件对磁致伸缩的影响,没有考虑刻痕条件与涂层条件的匹配问题,难以有效批量、稳定、合理成本生产噪音特性优良及磁致伸缩上下表面偏差小的取向性电磁钢板。
发明内容
本发明要解决的是现有的取向硅钢由于单面激光刻痕导致的应力分布不均,引起钢板往刻痕面弯曲,使取向硅钢的刻痕面和非刻痕面磁致伸缩偏差过大的问题。
为了实现上述目的,本发明提供了一种低磁致伸缩取向硅钢的制造方法,上述取向硅钢包括硅钢基板和其表面的绝缘涂层,上述制造方法包括:对上述硅钢基板进行单面激光刻蚀,硅钢基板中进行单面激光刻蚀的一面为第一表面,与第一表面相对设置的一面为第二表面;基于激光刻蚀的功率确定第一表面和第二表面的挠度差,基于挠度差确定第一表面和第二表面上的绝缘涂层量差;在第一表面和第二表面上形成绝缘涂层,使第二表面上的绝缘涂层量大于第一表面上的绝缘涂层量,且第一表面和第二表面上的绝缘涂层量满足绝缘涂层量差。
在本发明所述的技术方案中,本发明中可以根据激光刻蚀的功率确定硅钢基板第一表面和第二表面的挠度(表示钢板弯曲后端面的中心至原轴线的距离)差,然后根据该挠度差获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差。并基于上述涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,这样,通过调整第一表面和第二表面上绝缘涂层的张力差来减少取向硅钢成品因由于单面激光刻蚀导致的第一表面和第二表面的挠度差,降低第一表面和第二表面的磁致伸缩偏差。单面激光刻蚀是现有技术中细化取向硅钢磁畴、降低损耗的常用做法。
进一步地,形成绝缘涂层的方法为:在第一表面和第二表面上涂覆绝缘涂液,对绝缘涂液进行烘烤和烧结,以在第一表面和第二表面上形成绝缘涂层。对绝缘涂液进行烘烤和烧结的步骤按现有技术进行即可。
优选地,在本发明中控制激光刻蚀的功率要满足使获得的取向硅钢表现出磁致伸缩速度声压水平≤55db(A)。
进一步地,在本发明中激光刻蚀的功率为0.5~2.5mJ/mm 2,以达到降低取向硅钢制备得到的变压器铁芯在工作时噪音低的目的。
进一步地,激光刻蚀的功率为1~2mJ/mm 2,能够进一步降低由本发明的取向硅钢制备得到的变压器铁芯在工作时的噪音。
进一步地,在本发明的制造方法中,基于下述公式确定挠度差:
挠度差=5.38-5.41×e -W/1.02
其中,W为单面激光刻蚀的功率,单位为mJ/mm 2。挠度差的单位为mm。
上述挠度差和绝缘涂层量差的计算公式,是基于发明人在特定刻痕设备条件下,改变 硅钢基板的厚度、激光刻蚀功率以及涂层配方、厚度等参数,根据获得的试验数据进行拟合得到的经验公式。
进一步地,基于下述公式确定绝缘涂层量差:
绝缘涂层量差=3×10 -5-0.407×挠度差
涂绝缘层涂覆量差的单位为g/m 2
进一步地,在第一表面上的绝缘涂层量为4.0~4.5g/m 2
绝缘涂层厚度过薄,绝缘涂层赋予基板的张力小,磁性优化不足。绝缘涂层厚度过厚,影响成品的叠片系数,同时容易在剪切加工过程出现掉粉、白边等缺陷。
进一步地,硅钢基板的厚度H为:0.18mm≤H≤0.23mm。
一般取向硅钢基板成品厚度≥0.18mm;当基板厚度>0.23mm,由于厚度变厚,刚度变强,在表面形成绝缘涂层后对因激光刻蚀导致的应力分布不均的敏感性变弱,刻蚀导致的应力不均匀分布引发的挠度差变小,不能适用于上述的经验公式。
进一步地,绝缘涂液的组分按质量百分比计为:磷酸二氢铝、磷酸二氢镁中的至少一种:2%~25%,胶体二氧化硅:4%~16%,铬酸酐:0.15%~4.50%,余量为水及其他不可避免的杂质。
绝缘涂层用于提高硅钢基板表面的绝缘性,现有技术中广泛采用的绝缘涂液是以铬酐、胶体SiO 2和Mg、Al的磷酸盐为主的水溶液。
进一步地,本发明中硅钢基板按照现有技术采用下述步骤制得:步骤a,冶炼和铸造;步骤b,加热;步骤c,常化;步骤d,冷轧;步骤e,脱碳退火;步骤f,成品退火;步骤g,热拉伸退火。
进一步地,在上述步骤c中,对硅钢基板采用两段式常化处理:首先加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;再以10℃/s~70℃/s的冷却速度冷却到室温。
进一步地,在上述步骤d中,冷轧采用一次冷轧或带中间退火步骤的二次冷轧。
进一步地,在上述步骤e中,在800~900℃进行一次再结晶退火,然后再硅钢基板的表面涂覆退火隔离剂。
在现有技术的取向硅钢的制备工艺中,高温成品退火前需要在硅钢基板表面涂敷退火隔离剂,例如氧化镁等,防止高温下钢板之间彼此粘结。
进一步地,在上述步骤f中,控制退火温度为1100~1200℃,保温时间20~30h。
进一步地,在上述步骤g中,首先将硅钢基板加热到800~900℃,保温10~30s,然后 以5℃/s~50℃/s的冷却速度冷却至室温。
另一方面,本发明提供了一种低磁致伸缩取向硅钢,该取向硅钢的刻痕面和非刻痕面磁致伸缩偏差很小,且该取向硅钢具有良好的平均磁致伸缩。
采用本发明的低磁致伸缩取向硅钢制成的铁芯所产生的振动小,从而使得具有此类铁芯的变压器的整体噪音水平低。
为了实现上述目的,本发明提出了一种低磁致伸缩取向硅钢,其采用上述的低磁致伸缩取向硅钢的制造方法制得,取向硅钢的第一表面和第二表面的磁致伸缩偏差≤2db(A),并且取向硅钢的平均磁致伸缩≤55db(A)。
本发明的低磁致伸缩取向硅钢及其制造方法相较于现有技术具有如下的优点以及有益效果:
采用本发明的制造方法,可以根据刻痕后钢板的刻痕面和非刻痕面的挠度差获得第一表面和第二表面的绝缘涂层量差,以调整刻痕面(第一表面)和非刻痕面(第二表面)的绝缘涂层张力,从而降低刻痕面和非刻痕面的磁致伸缩偏差。
本发明中,制得的低磁致伸缩取向硅钢可以实现取向硅钢刻痕面和非刻痕面的磁致伸缩偏差≤2db(A),平均磁致伸缩≤55db(A),由该低磁致伸缩取向硅钢制成的铁芯所产生的振动小,从而使得具有此类铁芯的变压器的整体噪音水平低。
附图说明
图1显示了本发明取向硅钢的刻痕面磁致伸缩随激光刻痕能量密度变化的曲线;
图2显示了对本发明的硅钢基板进行单面激光刻蚀后,硅钢基板第一表面和第二表面的挠度差随激光刻痕能量密度变化的曲线。
图3显示了本发明的硅钢基板在挠度差不同的情况下保持平直所需要的第一表面和第二表面的绝缘涂层量差。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节 实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1-6和对比例1-4
实施例1-6的硅钢基板和对比例1-4的对比钢板均采用以下步骤制得:
冶炼和铸造:按照表1所示的化学成分进行冶炼,铸造成板坯。
加热:加热到1200~1280℃,保温1~4h,热轧成带钢。
常化:采用两段式常化处理,首先加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;随后以10℃/s~70℃/s的冷却速度冷却到室温。
冷轧:采用一次冷轧或带中间退火步骤的二次冷轧。
脱碳退火:在800~900℃温度下进行一次再结晶退火,然后涂覆退火隔离剂。
成品退火:退火温度1100~1200℃,保温20-30hr。
热拉伸退火:首先加热到800~900℃,保温10-30s,然后以5℃/s~50℃/s的冷速降温到室温,得到硅钢基板。
需要说明的是,在本发明中,本发明实施例1-6的取向硅钢的相关操作和具体制造工艺参数均满足本发明技术方案优选的设计规范要求,而对比例1-4的对比钢板并没有根据激光刻痕引起的两面挠度差来对相对应的涂绝缘层涂覆量差进行控制。
表1列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板中硅钢基板的各化学元素质量百分比及成品厚度,下列实施例中硅钢基板化学组分的余量为Fe及其他不可避免的杂质。
表1.
Figure PCTCN2022071200-appb-000001
在本发明中,为了获取具有目标性能的取向硅钢需要对硅钢基板进行单面激光刻蚀;基于激光刻蚀的功率确定第一表面和第二表面的挠度差,基于挠度差确定绝缘涂层量差;然后在第一表面和第二表面上形成绝缘涂层以获得取向硅钢。硅钢基板表面的涂层量需要 满足:第二表面上的绝缘涂层量大于第一表面上的绝缘涂层量,且第一表面和第二表面上的绝缘涂层量满足绝缘涂层量差。
本发明实施例1-6的取向硅钢和对比例1-4的对比钢板所涂覆的绝缘涂液的具体化学成分按质量百分比计可以为:磷酸二氢铝或磷酸二氢镁中的至少一种:2%~25%;胶体二氧化硅:4%~16%;铬酸酐:0.15%~4.50%;其余为水及其他不可避免的杂质。
表2列出了实施例1-6的硅基钢板和对比例1-4的对比钢板表面所涂覆的绝缘涂液的具体化学成分。
表2.(wt%,余量为水和其他不可避免的杂质)
编号 磷酸二氢铝 磷酸二氢镁 胶体二氧化硅 铬酸酐
实施例1 2% 0 4% 0.15%
实施例2 0 2% 8% 1%
实施例3 4% 4% 10% 2%
实施例4 8% 8% 14% 3%
实施例5 25% 0 16% 4%
实施例6 0 25% 16% 4.5%
对比例1 12% 0 16% 4.5%
对比例2 0 8% 10% 2%
对比例3 10% 10% 15% 3%
对比例4 10% 5% 15% 2%
表3-1列出了实施例1-6的硅基钢板和对比例1-4的对比钢板的制造工艺的具体参数。
表3-1.
Figure PCTCN2022071200-appb-000002
表3-2列出了对实施例1-6的硅基钢板和对比例1-4的对比钢板进行单面激光刻蚀的功率和最终获得的取向硅钢的挠度差、表面的绝缘涂层量以及两个表面的绝缘涂层量差。
表3-2.
Figure PCTCN2022071200-appb-000003
Figure PCTCN2022071200-appb-000004
将制得的实施例1-6的取向硅钢和对比例1-4的对比钢板分别取样,并采用非接触式的激光多普勒振动仪TD9600(Laser Doppler Vibrometers)测量各实施例和对比例的钢板样品在B=1.7T、f=-2MPa(变压器的实际工况中,取向硅钢受2-3MPa的压应力)条件下的磁致伸缩性能(磁致伸缩速度声压水平LvA),具体测量方法可以参见IEC(International Electrotechnical Commission)技术报告-IEC/TP 62581,经测量,将所得的各实施例和对比例的磁致伸缩性能的测试结果则列于表4中。
表4列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板的性能测试结果。
表4.
Figure PCTCN2022071200-appb-000005
相应地,进一步地采用上述实施例1-6的取向硅钢和对比例1-4的对比钢板分别制得240KVA的三相变压器,并对各实施例和对比例所制得的三相变压器在50Hz、1.7T的磁化条件下进行噪音检测(GB/T 1094.10-2003),并将所得的测试结果列于表5中。
表5列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板制得的240KVA三相变压器的噪音测试结果。
表5.
编号 噪音
  db(A)
实施例1 54.5
实施例2 54
实施例3 54.3
实施例4 55.9
实施例5 56
实施例6 56.2
对比例1 58.5
对比例2 60.6
对比例3 60.2
对比例4 60.4
结合表4和表5可以看出,相较于对比例1-4,本发明各实施例的性能更优,各实施例低磁致伸缩取向硅钢的第一表面和第二表面的磁致伸缩偏差明显小于对比例1-4的对比钢板。
如表4所示,实施例1-6的取向硅钢的第一表面和第二表面的磁致伸缩偏差均≤2db(A),且其平均磁致伸缩均≤55db(A)。进而,如表5所示,相较于对比例1-4,采用实施例1-6的低噪音特性取向硅钢制得的240KVA三相变压器的整体噪音水平明显更低。
图1显示了本发明取向硅钢的刻痕面磁致伸缩随激光刻痕能量密度变化的曲线,阴影部分对应实施例2-4中的取向硅钢的相应性能。可以看出,随着激光刻痕能量密度的增大,磁性能改善率先增大后趋于稳定,磁致伸缩性能先降低后增大。
图2显示了对本发明的硅钢基板进行单面激光刻蚀后,硅钢基板第一表面和第二表面的挠度差随激光刻痕能量密度变化的曲线,阴影部分对应实施例2-4中的硅钢基板的相应性能。可以看出,随着激光刻蚀能量密度的增大,硅钢基板的第一表面和第二表面的挠度差先呈指数增加,后趋于稳定。
图3显示了本发明的硅钢基板在第一表面和第二表面的挠度差不同的情况下保持平直所需要的第一表面和第二表面的绝缘涂层量差,阴影部分对应实施例2-4中的硅钢基板的相应性能。可以看出,为保持取向硅钢成品的平直,降低两面的磁致伸缩偏差,需要根据激光刻蚀导致的挠度差来调整第一表面和第二表面的绝缘涂层涂覆量差。
综上所述,本发明中低磁致伸缩取向硅钢的制造方法可以根据单面激光刻蚀后硅钢基板的刻痕面和非刻痕面的挠度数值差,调整刻痕面和非刻痕面绝缘涂层张力差,降低取向硅钢的刻痕面和非刻痕面的磁致伸缩偏差。
采用上述制造方法制得的低磁致伸缩取向硅钢可以实现取向硅钢刻痕面和非刻痕面的磁致伸缩偏差≤2db(A),平均磁致伸缩≤55db(A),由该低磁致伸缩取向硅钢制成的铁芯所产生的振动小,从而使得具有此类铁芯的变压器的整体噪音水平低。
虽然通过参照本发明的某些优选实施方式,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。本领域技术人员可以在形式上和细节上对其作各种改变,包括做出若干简单推演或替换,而不偏离本发明的精神和范围。

Claims (12)

  1. 一种低磁致伸缩取向硅钢的制造方法,所述取向硅钢包括硅钢基板和所述硅钢基板表面的绝缘涂层,其特征在于,所述制造方法包括:
    对所述硅钢基板进行单面激光刻蚀,所述硅钢基板中进行所述单面激光刻蚀的一面为第一表面,与所述第一表面相对设置的一面为第二表面;
    基于所述激光刻蚀的功率确定所述第一表面和所述第二表面的挠度差,基于所述挠度差确定所述第一表面和所述第二表面上的绝缘涂层量差;
    在所述第一表面和所述第二表面上形成所述绝缘涂层,所述第二表面上的绝缘涂层量大于所述第一表面上的绝缘涂层量,且所述第一表面和所述第二表面上的绝缘涂层量满足所述绝缘涂层量差。
  2. 如权利要求1所述的制造方法,其特征在于,形成绝缘涂层的方法为:在所述第一表面和所述第二表面上涂覆绝缘涂液,对所述绝缘涂液进行烘烤和烧结,以在所述第一表面和所述第二表面上形成绝缘涂层。
  3. 如权利要求1所述的制造方法,其特征在于,所述激光刻蚀的功率为0.5~2.5mJ/mm 2
  4. 如权利要求3所述的制造方法,其特征在于,所述激光刻蚀的功率为1~2mJ/mm 2
  5. 如权利要求1所述的制造方法,其特征在于,基于下述公式确定所述挠度差:
    挠度差=5.38-5.41×e -W/1.02
    其中,W为所述激光刻蚀的功率,单位为mJ/mm 2,所述挠度差的单位为mm。
  6. 如权利要求5所述的制造方法,其特征在于,基于下述公式确定所述绝缘涂层量差:
    绝缘涂层量差=3×10 -5-0.407×挠度差
    所述绝缘涂层量差的单位为g/m 2
  7. 如权利要求1所述的制造方法,其特征在于,所述第一表面上的绝缘涂层量为4.0~4.5g/m 2
  8. 如权利要求1所述的制造方法,其特征在于,所述硅钢基板的厚度H为:0.18mm≤H≤0.23mm。
  9. 如权利要求2所述的制造方法,其特征在于,以质量百分比计,所述绝缘涂液的组分为:
    磷酸二氢铝、磷酸二氢镁中的至少一种:2%~25%;
    胶体二氧化硅:4%~16%;
    铬酸酐:0.15%~4.50%;
    余量为水及其他不可避免的杂质。
  10. 如权利要求1所述的制造方法,其特征在于,所述硅钢基板依次采用下述步骤而制得:
    步骤a、冶炼和铸造;
    步骤b、加热;
    步骤c、常化;
    步骤d、冷轧;
    步骤e、脱碳退火;
    步骤f、成品退火;
    步骤g、热拉伸退火。
  11. 如权利要求10所述的制造方法,其特征在于,所述制造方法满足下述制造工艺中的至少一项:
    在所述步骤c中,对所述硅钢基板采用两段式常化处理:首先将所述硅钢基板加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;再以10℃/s~70℃/s的冷却速度冷却到室温;
    在所述步骤d中,采用一次冷轧或带中间退火步骤的二次冷轧;
    在所述步骤e中,在800~900℃进行一次再结晶退火,然后在所述硅钢基板的表面涂覆退火隔离剂;
    在所述步骤f中,控制退火温度为1100~1200℃,保温时间为20~30h;
    在所述步骤g中,首先将所述硅钢基板加热到800~900℃,保温10~30s,然后以5℃/s~50℃/s的冷却速度冷却至室温。
  12. 一种低磁致伸缩取向硅钢,其特征在于,采用如权利要求1-11中任意一项所述的制造方法制得,所述第一表面和所述第二表面的磁致伸缩偏差≤2db(A),所述取向硅钢的平均磁致伸缩≤55db(A)。
PCT/CN2022/071200 2021-01-11 2022-01-11 一种低磁致伸缩取向硅钢及其制造方法 WO2022148468A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/259,898 US20240071661A1 (en) 2021-01-11 2022-01-11 Low-Magnetostrictive Oriented Silicon Steel and Manufacturing Method Therefor
JP2023541062A JP2024502594A (ja) 2021-01-11 2022-01-11 低磁歪配向ケイ素鋼及びその製造方法
EP22736629.1A EP4261853A4 (en) 2021-01-11 2022-01-11 LOW MAGNETIC STRICTION SILICON STEEL AND PRODUCTION PROCESS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031202.2 2021-01-11
CN202110031202.2A CN114762911B (zh) 2021-01-11 2021-01-11 一种低磁致伸缩取向硅钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2022148468A1 true WO2022148468A1 (zh) 2022-07-14

Family

ID=82357974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071200 WO2022148468A1 (zh) 2021-01-11 2022-01-11 一种低磁致伸缩取向硅钢及其制造方法

Country Status (5)

Country Link
US (1) US20240071661A1 (zh)
EP (1) EP4261853A4 (zh)
JP (1) JP2024502594A (zh)
CN (1) CN114762911B (zh)
WO (1) WO2022148468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241574A1 (zh) * 2022-06-13 2023-12-21 宝山钢铁股份有限公司 一种低磁致伸缩取向硅钢板的制造方法及取向硅钢板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363677A (en) * 1980-01-25 1982-12-14 Nippon Steel Corporation Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
JP2009263782A (ja) * 2008-03-31 2009-11-12 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012031519A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052233A (ja) * 2010-08-05 2012-03-15 Jfe Steel Corp 方向性電磁鋼板の製造方法
CN103080352A (zh) * 2010-08-06 2013-05-01 杰富意钢铁株式会社 方向性电磁钢板
CN104203486A (zh) * 2012-04-27 2014-12-10 新日铁住金株式会社 方向性电磁钢板及其制造方法
CN105339510A (zh) * 2013-06-19 2016-02-17 杰富意钢铁株式会社 取向性电磁钢板及使用该取向性电磁钢板的变压器铁芯
CN106029917A (zh) 2014-02-28 2016-10-12 杰富意钢铁株式会社 低噪声变压器用取向性电磁钢板及其制造方法
CN106460111A (zh) 2014-05-09 2017-02-22 新日铁住金株式会社 低铁损且低磁致伸缩的方向性电磁钢板
CN107210109A (zh) 2015-02-05 2017-09-26 杰富意钢铁株式会社 取向性电磁钢板及其制造方法以及变压器噪声特性的预测方法
CN111748731A (zh) * 2019-03-28 2020-10-09 宝山钢铁股份有限公司 低磁致伸缩取向硅钢及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964922A (en) * 1989-07-19 1990-10-23 Allegheny Ludlum Corporation Method for domain refinement of oriented silicon steel by low pressure abrasion scribing
JPH0387314A (ja) * 1989-08-29 1991-04-12 Babcock Hitachi Kk 低鉄損方向性珪素鋼板の製造方法
KR101551781B1 (ko) * 2011-12-26 2015-09-09 제이에프이 스틸 가부시키가이샤 방향성 전자 강판
CN104018068B (zh) * 2014-06-12 2017-01-11 国家电网公司 一种厚度为0.18mm的高磁感取向硅钢的制备方法
CN106282512B (zh) * 2015-05-11 2018-03-30 宝山钢铁股份有限公司 低噪音变压器用取向硅钢片制造方法
CN107881411B (zh) * 2016-09-29 2019-12-31 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
KR102009834B1 (ko) * 2017-12-26 2019-08-12 주식회사 포스코 이방향성 전기강판 및 그의 제조방법
CN110306030B (zh) * 2019-08-07 2021-09-24 包头市威丰稀土电磁材料股份有限公司 一种激光刻痕机在纵剪线上的应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363677A (en) * 1980-01-25 1982-12-14 Nippon Steel Corporation Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
JP2009263782A (ja) * 2008-03-31 2009-11-12 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012031519A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052233A (ja) * 2010-08-05 2012-03-15 Jfe Steel Corp 方向性電磁鋼板の製造方法
CN103080352A (zh) * 2010-08-06 2013-05-01 杰富意钢铁株式会社 方向性电磁钢板
CN104203486A (zh) * 2012-04-27 2014-12-10 新日铁住金株式会社 方向性电磁钢板及其制造方法
CN105339510A (zh) * 2013-06-19 2016-02-17 杰富意钢铁株式会社 取向性电磁钢板及使用该取向性电磁钢板的变压器铁芯
CN106029917A (zh) 2014-02-28 2016-10-12 杰富意钢铁株式会社 低噪声变压器用取向性电磁钢板及其制造方法
CN106460111A (zh) 2014-05-09 2017-02-22 新日铁住金株式会社 低铁损且低磁致伸缩的方向性电磁钢板
CN107210109A (zh) 2015-02-05 2017-09-26 杰富意钢铁株式会社 取向性电磁钢板及其制造方法以及变压器噪声特性的预测方法
CN111748731A (zh) * 2019-03-28 2020-10-09 宝山钢铁股份有限公司 低磁致伸缩取向硅钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261853A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241574A1 (zh) * 2022-06-13 2023-12-21 宝山钢铁股份有限公司 一种低磁致伸缩取向硅钢板的制造方法及取向硅钢板

Also Published As

Publication number Publication date
JP2024502594A (ja) 2024-01-22
CN114762911A (zh) 2022-07-19
EP4261853A4 (en) 2024-06-12
US20240071661A1 (en) 2024-02-29
EP4261853A1 (en) 2023-10-18
CN114762911B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
JP5115641B2 (ja) 方向性電磁鋼板およびその製造方法
JP6084351B2 (ja) 方向性電磁鋼板およびその製造方法
RU2578296C2 (ru) Текстурированный лист из электротехнической стали и способ снижения потерь в железе
WO2013058239A1 (ja) 方向性電磁鋼板およびその製造方法
RU2526642C1 (ru) Лист из текстурированной электротехнической стали
WO2012017695A1 (ja) 方向性電磁鋼板
JP2012036446A (ja) 方向性電磁鋼板およびその製造方法
US20200362433A1 (en) Method for manufacturing stress-relief-annealing-resistant, low-iron-loss grain-oriented silicon steel
JPH0717960B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
CN114561512B (zh) 用激光刻痕脱碳板以改善取向硅钢片磁致伸缩的方法
WO2022148468A1 (zh) 一种低磁致伸缩取向硅钢及其制造方法
JP5906654B2 (ja) 方向性電磁鋼板の製造方法
JP2012172191A (ja) 方向性電磁鋼板の製造方法
JP2012031516A (ja) 方向性電磁鋼板の製造方法
CN114807559B (zh) 一种低损耗低磁致伸缩取向硅钢材料及其制备方法
JP5729014B2 (ja) 方向性電磁鋼板の製造方法
WO2023241574A1 (zh) 一种低磁致伸缩取向硅钢板的制造方法及取向硅钢板
JP5565307B2 (ja) 方向性電磁鋼板の製造方法
CN112159935B (zh) 一种具有低噪声特性的高磁感取向硅钢及生产方法
JPWO2009093492A1 (ja) 磁気特性の優れた方向性電磁鋼板
JP4311230B2 (ja) 方向性電磁鋼板
WO2024002209A1 (zh) 取向硅钢及其制造方法
CN114381584B (zh) 一种用于取向硅钢表面的绝缘涂层涂液、取向硅钢板及其制造方法
JP2013234342A (ja) 磁区細分化処理方法および方向性電磁鋼板
JP5712626B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18259898

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023541062

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022736629

Country of ref document: EP

Effective date: 20230710

NENP Non-entry into the national phase

Ref country code: DE