WO2022147096A1 - Material containing thermoelectric generators - Google Patents

Material containing thermoelectric generators Download PDF

Info

Publication number
WO2022147096A1
WO2022147096A1 PCT/US2021/065479 US2021065479W WO2022147096A1 WO 2022147096 A1 WO2022147096 A1 WO 2022147096A1 US 2021065479 W US2021065479 W US 2021065479W WO 2022147096 A1 WO2022147096 A1 WO 2022147096A1
Authority
WO
WIPO (PCT)
Prior art keywords
tegs
thesystem
electrically conductive
coupled
conductive material
Prior art date
Application number
PCT/US2021/065479
Other languages
French (fr)
Inventor
Kamal JAFFREY
Original Assignee
Breakthrough Technologies, Llg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Breakthrough Technologies, Llg filed Critical Breakthrough Technologies, Llg
Publication of WO2022147096A1 publication Critical patent/WO2022147096A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • thermoelectricgenerator(TEG) isasolidstatedevicethatcangenerateelectrical energywhenexposedtotemperaturedifferences.
  • asystem includes asubstratematerialandathermoelectricgenerator (TEG)configuredwithinthesubstratematerial.
  • TOG thermoelectricgenerator
  • Oneormoreofthefollowingfeatures canbeincludedinthesystem inanyfeasible combination.
  • thesystem canincludeaheatgeneratingarticle.
  • Thesubstrate material canbepositionedinproximityoftheheatgeneratingarticle.
  • TheTEG canreceiveheat generatedbytheheatgeneratingarticle.
  • Theheatgeneratingarticle canbeincludedinatleast oneofanindustrialenvironment,amanufacturingenvironment,athermalprocessing environment,anautomobile,anairplane,aheatexchanger,oranHVAC system.
  • Thesystem canincludeafirstpluralityofTEGsthatcanbecoupledinparallelwithin thesubstratematerial.
  • Thesystem canincludeasecondpluralityofTEGsthatcanbecoupledin serieswithinthesubstratematerial.
  • Thesystem canincludeatleastonepiezoelectricsensor coupledtotheTEG,Thesubstratematerialcanincludeapluralityofvoidsformedbetweena pluralityofstructuralelementsincludedinthesubstratematerial.
  • TheTEG canbeconfigured withinatleastonevoidofthepluralityofvoids.
  • Thesubstratematerial canincludeaninsulative material.
  • Theinsulativematerial canincludeatleastoneofrockwool,slagwoolcellulose,glass wool,polystyrene,urethanefoam,ceramic,vermiculite,perlite,woolfiber,plantfiber, fiberglass,gypsum,afire-retardantinsulativematerial,avapor-retardantinsulativematerial.
  • Thesystem canincludeasubstratematerial,an electricallyconductivematerialcoupledtothesubstratematerial,andapluralityof thermoelectricgenerators(TEGs)coupledtotheelectricallyconductivematerial.
  • Oneormoreofthefollowingfeaturescanbein includedinthesystem inanyfeasible combination.
  • thesystem canincludeaheatsource.
  • Thesubstratematerialcanbe positionedinproximityoftheheatsourceandtheTEG receivesheatgeneratedbytheheat source.
  • Thesystem canincludea ceramicmaterialcoupledtotheelectricallyconductivematerial.
  • thermoelectricgenerator(TEG)in examples includedinthepluralityofTEGs.
  • Theelectricallyconductivematerialcanin cludeatleastone ofsilver,aluminum,copper,graphite,andanintrinsicallyconductingpolymer.
  • Non-transitorycomputerprogram products i.e.,physicallyembodiedcomputer program products
  • thatstoreinstructions whichwhenexecutedbyoneor moredataprocessorsofoneormorecomputingsystems,causesatleastonedataprocessorto perform operationsherein.
  • computersystems arealsodescribedthatmayincludeone ormoredataprocessorsandmemorycoupledtotheoneormoredataprocessors.
  • Thememory maytemporarilyorpermanentlystoreinstructionsthatcauseatleastoneprocessortoperform oneormoreoftheoperationsdescribedherein.Inaddition,methodscan mecanicplementedbyone ormoredataprocessorseitherwithinasinglecomputingsystem ordistributedamongtwoor morecomputingsystems.Suchcomputingsystemscanbeconnectedandcanexchangedata andorcommandsorotherinstructionsorthelikeviaoneormoreconnections, includinga connectionoveranetwork(e.g.theInternet,awireless
  • FIG.1 isadiagram ofanembodimentofasystem forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource
  • FIG.2 isadiagram ofanembodimentofaTEG includedinthesystem ofFIG.1;
  • FIG.3 isadiagram ofanadditionalembodimentofasystem forgeneratingelectrical powerfrom heatcollectedfrom aheatsource
  • FIG.4 isadiagram ofacross-sectionalview ofanembodimentofasystem for generatingelectricalpowerfrom heatcollectedfrom aheatsource
  • FIG.5 isadiagram ofacross-sectionalview ofanadditionalembodimentofasystem forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource
  • FIG.6 isadiagram ofanembodimentofaconfigurationofTEGsincludedinthe system forgeneratingelectricalpowershowninFIGS.1,4,and5;
  • FIG.7 isadiagram ofanadditionalembodimentofaconfigurationofTEGsincluded thesystem forgeneratingelectricalpowershowninFIGS.1,4,and5;
  • FIG.8 isadiagram ofanadditionalembodimentofaconfigurationofTEGsincluded thesystem forgeneratingelectricalpowershowninFIGS,1,4,and5;
  • FIG.9 isacross-sectionalview illustratingan examplecementkilnsystem thatmay perform thisprocess
  • FIG.10 isacross-sectionalview illustratingan exemplaryimplementationofawaste heatrecoverysystem usingwasteheatfrom cementkilns
  • FIG.11 showsanexampleoftheTEG modulethatmayincludeaTEG
  • FIG.12 isacross-sectionaldiagram .illustratinganotherexemplaryimplementationofa wasteheatrecoverysystem usingwasteheatfrom cementkilns;
  • FIGS.13A to13D illustrateexamplesoftheelectricpowergenerationsystem installed aroundacementkiln
  • FIG.14 isadiagram illustratingelectricalconnectionsaccordingtoanexemplary implementationofthepresentdisclosure.
  • FIG.15 isaflow chartillustratingamethodofcontrollingmodesofoperatingawaste heatrecoverysystem accordingtoanexemplaryimplementationofthepresentdisclosure.
  • a heatsource canincludeanyobject,equipment,humanbody,oranimalbodythatcanradiateheat.
  • Therate ofheattransferbetweenaheatsourceandtheenvironmentinwhichtheheatsourceislocated candependonthematerialoftheheatsource,environmentalconditions,aswellasthepresence ofanyinsulativematerialwhichmaybepresentonthesurfaceoftheheatsource.
  • Insulativeorinsulatingmaterialsplacedincontactwithorinproximityioheatsources canreceiveheatgeneratedbytheheatsourceandcanstoretheheatfrom theheatsource.
  • thecurrentsubjectmattercanin cludesystemsforcapturingheatemittedfrom aheatsource.
  • Thesystemscanin include asubstratematerial, suchasaninsulativeorinsulatingmaterialwhich canbeinproximityorincontactwithaheatsource.
  • Thesubstratematerial caninclude a pluralityofthermoelectricgeneratorswhichcanconvertheatintoelectricalenergy.
  • TheTEGs cangenerateelectricalenergyasaresultoftemperaturegradientsthatform withintheTEGs.
  • thecurrentsubjectmattercanfurther provideelectricalpowergenerationfrom ahumanoranimalheatsource.Forexample,the substratematerialincludingapluralityofTEGscanbeformedintoafabricandincorporatedinto clothingorwearableitemscapableofgeneratingelectricalpower.
  • FIG.1 showsadiagram showingoneembodimentofasystem 100generatingelectrical powerfrom heatcollectedfrom aheatsource115.AsshowninFIG.1,asubstratematerial105 cansurroundorotherwisebeappliedtoaheatsource 115.
  • thesubstrate material canbeaninsulativeoraninsulatingmaterial.
  • Theinsulativematerial canincluderock wool,slagwoolcellulose,glasswool,polystyrene,urethanefoam,ceramic,vermiculite,perlite, woolfiber,plantfiber,fiberglass,gypsum,afire-retardantinsulativematerial,avapor-retardant insulativematerial,andthelike.
  • thesubstratematerialcanbeanoninsulatingmaterial suchasafabric,mesh,orthelike.Theheatsource115canbecovered, wrapped,enveloped,orotherwisesurroundedbythesubstratematerial105.
  • Thesubstratematerial105 canincludeapluralityofinsulatingstructures110,The insulatingstructures110canincludestructuralelementswhichcanprovidesupporttothe substratematerial105.Forexample,aninsulatingstructure110canincludeoneormorefibers.
  • Thesubstratematerial105 canalsoincludeapluralityofvoidspaces135,Thevoidspaces135 canincludespacesorvoidswithinthesubstratematerial105whichdonotincludeinsulating structures110orsimilarlyconfiguredsupportstructures.Insomeembodiments,thevoidspaces 135canincludeair.Insomeembodiments,thevoidspacescanincludeathermaltransmission medium,suchasafluid,agel,agas,orthelike.
  • Thesubstratematerial105 canincludeavarietyofconfigurationsoftheinsulating structures110andthevoidspaces135,AsshowninFIG.1,thesubstratematerial105is configuredwitharepeatingpatternofaninsulationstructure110followedbyavoidspace135, Insomeembodiments,theconfigurationofinsulationstructures110andvoidspaces135canbe non-repeatingandcanincludeapluralityofinsulationstructures110followedbyapluralityof voidspaces135.
  • Thesubstratematerial105 canincludeavarietyofnon-limitingconfigurations ofinsulationstructures110andvoidspaces135.
  • Thesubstratematerial105cancoverorsurroundaheatsource 115 Insome embodiments, thesubstratematerial105canbeinproximitywiththeheatsource 115.Insome embodiments,thesubstratematerial105canbeinthermalcontactwiththeheatsource 115.
  • the heatsource115 canincludeanyarticle,object,structure,orbeingcapableofgeneratingheat.
  • theheatsource 115 canincludeequipmentassociatedwith anindustrialenvironment,amanufacturingenvironment,athermalprocessingenvironment,an automobile,anairplane,aheatexchanger,aheating,ventilation,andair-conditioning(HVAC) system,orthelike.
  • theheatsource 115 canincludeacomponentofan industrialenvironment,amanufacturingenvironment,athermalprocessingenvironment,an automobile,anairplane,aheatexchanger,aHVAC system,suchasakiln,amotor,ahose,a heatercore,aradiator,orthelike.
  • theheatsource 115 caninclude a humanbodyorananimalbody.
  • Thesubstratematerial105 canincludeoneormorethermoelectricgenerators(TEGs) 120.Forexample,asshowninFIG.1,thesubstratematerial105includesapluralityofTEGs 120, e.g.,TEG 120A,120B,and120C.EachTEG 120canbeconfiguredwithinavoidspace 135.When thesubstratematerial105ispositionedinproximityoftheheatsource 115,the TEGs120canbereceiveheatgeneratedbytheheatsource 115,TheTEG 120cangenerate electricalpowerfrom temperaturegradientassociatedwiththeheatsource115andthe environment includingtheheatsource115.TheTEGs120canbecoupledviaanelectrical conduit125, suchasawire.Insomeembodiments,theTEGs120canbecoupledviathe electricalconduit125inseries.Insomeembodiments,theTEGs120canbecoupledviathe electricalconduit125inparallel.
  • thesubstratematerial105 canincludeapiezoelectricgenerator 130.
  • Thepiezoelectricgenerator130 canbecoupledtoaTEG 120, suchasTEG 120C shownin FIG.1.
  • Thepiezoelectricgenerator130 can generateelectricalenergyasaresultofchangesin pressure,acceleration,temperature,sixain,andorforce.
  • FIG.2 showsanexampleofanexampleconfiguration200ofaTEG 120.
  • Theillustratedembodiment showsfirst,secondandthird conductivemembers230,235,240.
  • Thefirstconductivemember230 iscoupledtoafirstendof thep-typesemiconductor225,thethirdconductivemember240iscoupledtoafirstendthen- typesemicon
  • thefirstthermallyconductiveelement205 canreceiveheatfrom an externalheatsource suchthatitcanbeatatemperatureT2a,andthesecondthermally conductiveelement210canbeatatemperatureT2b,whereT2a> T2b.Insomeembodiments, heatcanbeextractedfrom thesecondthermallyconductiveelement210toensurethatT2a> T2b.
  • Thefirstthermallyconductiveelement205andthesecondthermallyconductiveelement 210 cancreatethermalgradientsacrossthep-typesemiconductor225andthen-type semiconductor220,whichcancausemajoritychargecarriersinthep-typesemiconductor225 andthen-typesemiconductor220tomoveawayfrom thefirstthermallyconductiveelement205 andtowardthesecondthermallyconductiveelement210,andcancauseminoritychargecarriers tomoveintheoppositedirection.
  • electronsinthen-typesemiconductor220 can movetowardthesecond
  • FIG.3 showsanadditionalembodimentofasystem forgeneratingelectricalpower from heatcollectedfrom aheatsource.Asshown in.FIG,3,theheatsource305canincludea humanbody.Insomeembodiments,theheatsource305can includeananimalbody.A system 310canbeconfiguredinproximityorappliedtotheheatsource305andheatgeneratedbythe heatsource305canbecollectedbythesystem 310andusedtogenerateelectricalpower.In someembodiments,thesystem 310canincludefabric,clothing,orarticleswhichcanbeapplied toorwornonahumanorananimalbody,
  • FIG.4 showsadiagram ofacross-sectionalview 400ofanembodimentofasystem 310forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource.
  • Thesystem 310 canincludeaheatsource305.Theheatsourcecanbeinthermal contactwithasubstratematerial105. Insomeembodiments,thesubstratematerial105canbe aninsulativeoraninsulatingmaterial. Theinsulativematerialcanincluderockwool,slagwool cellulose,glasswool,polystyrene,urethanefoam,ceramic,vermiculite,perlite,woolfiber,plant fiber,fiberglass,gypsum,afire-retardantinsulativematerial,avapor-retardantinsulative material.Insomeembodiments,thesubstratematerialcanbeanon-insulatingmaterial,suchas afabric,amesh,orthelike.Thesubstratematerial105canincludeoneormoreTEGs120 coupledviaanelectricalconduit125.Insomeembodiments,oneormoreoftheTEGscanbe coupledwithapiezoelectricgenerator130. Thesystem 310 alsoincludesanelectrically
  • Thesystem 310 canalsoincludeaceramicmaterial410couplestotheelectrically conductivematerial405.
  • FIG.5 showsadiagram 500ofacross-sectionalview ofanadditionalembodimentofa system 310forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource.
  • thesystem 310shownindiagram 500 canincludeasubstratematerial105,whichcanfurtherincludeapluralityofTEGs120coupled viaanelectricalconduit125.OneormoreoftheTEGs120canbecoupledtoapiezoelectric generator130,
  • thesystem 310 canapluralityofelectricallyconductivematerials 405andapluralityofceramicmaterials410.
  • asshowninFIG.5,afirstceramic material4I0A canbeinterfacedwiththeheatsource305.
  • a firstelectricallyconductive material405A canbeconfiguredbetweenthefirstceramicmaterial410A andthesubstrate material105.
  • a secondelectricallyconductivematerial405B canbealsocoupledtothe substratematerial105.
  • a secondceramicmaterial410B canbecoupledtothesecond electricallyconductivematerial405B,Additionalnon-limitingpluralitiesofelectrically conductivematerials405andadditionalnon-limitingpluralitiesofceramicmaterials410canbe includedinthesystem 310.
  • FIG,6isadiagram 600ofanembodimentofaconfigurationofTEGsin cludedinthe system iOO,310forgeneratingelectricalpowerasshowninFIGS.1,4,and5.Asshownin FIG,6,thesystem 100.310includeapluralityofTEGs120arrangedinamatrixconfiguration.
  • TheTEGs120 canbecoupledviaoneormoreelectricalconduits125.AsshowninFIG.6,a firstelectricalconduit125A couplesafirstpluralityofTEGs120,asecondelectricalconduit 125B couplesasecondpluralityofTEGs120,andathirdelectricalconduit125C couplesathird pluralityofTEGs120.Althoughtheelectricalconduits125areshowncouplingtheTEGs120 inahorizontalarrangement,theelectricalconduits125cancoupletheTEGs120inaverticalor adiagonalarrangementaswell.
  • FIG.7 isadiagram 700ofanadditionalembodimentofaconfigurationofTEGs includedthesystem 100,310forgeneratingelectricalpowershowninFIGS.1,4,and5.As showninFIG.7,thesystem 100,310includesapluralityofTEGs120arrangedinaradial configuration.
  • Theradialconfiguration canincludeacentrallyorientedTEG 120A and a pluralityofTEGs12013locatedradiallyfrom thecentrallyorientedTEG 120A.
  • TheTEGs120 shownintheradialconfigurationofFIG.7 canbecoupledviatheelectricalconduit125.
  • FIG.8 isadiagram 800ofanadditionalembodimentofaconfigurationofTEGs includedthesystem 100,310forgeneratingelectricalpowershowninFIGS.1,4,and5.As showninFIG.8,thesystem 100,310includesmultipleconfigurationsofTEGs120,For example,afirstconfiguration805canincludeTEGs120arrangedinaringorradial configuration.A secondconfiguration810canincludeTEGs120arrangesinamatrix configuration. Thefirstconfiguration805ofTEGs120canbeconfiguredinafirstlocationof thesystem 100,310andthesecondconfiguration810ofTEGs120canbeconfiguredina second,differentlocationofthesystem 100,310.
  • Anaspectofthepresentdisclosure providesasystem thatmayrecuperateheat dissipatingfrom akilntogenerateelectricalpowerusingthermoelectricgenerators(TEGs), whichmayconvertheatintoelectricalenergy.
  • TheTEGs maygenerateelectricalenergyasa resultoftemperaturegradientswithintheTEGs.A portionoftheheatfrom thekilnmaybe deliveredtooneormoreTEGs,therebycreatingthetemperaturegradient,andtheTEGsmay generateelectricalenergy.
  • a typicalprocessofmanufacturingcementin cludesgrindingamixtureoflimestone andclayorshaletomakeafine "rawmix,”heatingtherawmixtosinteringtemperature(upto about1450°C)inacementkiln,andgrindingtheresultingclinkertomakecement.
  • the heatingstage therawmixisfedintoakilnandgraduallyheatedbycontactwiththehotgasses from combustionofthekilnfuel.'Typically,apeaktemperatureof1400-1450°C isrequiredto completethereaction.
  • FIG.9 isacross-sectionalview illustratinganexamplecementkiln system thatmayperform thisprocess.
  • anexamplewasteheatrecoverysystem mayincludeatleast onethermoelectricgenerator(TEG),andatleastcoolingelementorlayer.
  • TEGs whichmay alsobereferredtoasSeebeckgenerators,maybesolidstatedevicesthatconvertaheatflux (temperaturedifference)intoelectricalenergybytakingadvantageoftheSeebeckeffect.
  • One sideofaTEG maybecoupledtoahotsurface,andtheothersidemaybecoupledtoacold surface.
  • TECs whichmaybereferredtoasPeltierdevices,Peltierheatpumps,andsolidstate refrigerators, may receive a DC electric current, and may utilize energy in the electric current to transfer heat from one side of the device to the other side of the device.
  • TEGs may be used to convert heat to electric power.
  • the efficiency of TEGs may be sensitive to thermal gradients across semiconductors used within the TEGs. Therefore, TECs may be used to manage temperature gradients across semiconductors in the TEC
  • FIG, 10 is a cross-sectional view illustrating an exemplary implementation of a waste heat recovery system 1000 using waste heat from cement kilns.
  • the waste heat recovery system 1000 may surround a heat source 1010.
  • the heat source 1010 may have a substantially cylindrical shape.
  • the heat source 1010 may include a cement kiln.
  • the waste heat recovery system 1000 may include a base block 1020 disposed around the heat source 1010.
  • the base block 1020 may include (e.g., be made of) anodized aluminum, aluminum, aluminum alloys, copper, copper alloys, or the like.
  • the material for the base block 1020 is not limited thereto, but may include other materials that generally have a high thermal conductivity, a high temperature operability, a corrosion resistance, and the like.
  • thermoelectric generator (TEG) module 1030 having a first end and a second end, in which the first end of the TEG module 1030 is thermally coupled to the base block 1020 and configured io receive at least a portion of the heat dissipated from the heat source 1010.
  • a cooling layer 1040 can include a third end and a fourth end, in which the third end of the cooling 1040 is thermally coupled to the second end of the TEG module 1030.
  • the cooling layer 1040 may including circulating liquid, such as a coolant, that absorbs heat from the TEG module 1030 and rejects the heat into the environment at another location.
  • the cooling layer 1040 can include thermoelectric coolers (TECs) for actively cooling a side of die TEG module 1030.
  • TECs thermoelectric coolers
  • FIG. 1 1 shows an example of the TEG module 1030 that may include a TEG 1108.
  • the TEG module 1030 may include the TEG 1 108, and a load 1 106.
  • the TEG 1108 may include a first thermally conductive element 1 102. which may be referred to as a ’’hot member" on a first end of the TEG 1 108, and a second thermally conductive element 1104. which may be referred to as a "cold member” on a second end of die TEG 1108.
  • the TEG 1108 may include at least one n-type semiconductor 1110 and at least one p-type semiconductor 1112 that may be disposed between the first thermally conductive element 1102 and the second thermally conductive element 1104 and may be coupled in series by a number of conductive members.
  • the illustrated implementation shows first, second, and third conductive members 1114, 1116, 1118.
  • Thefirstconductivemember1114 maybecoupledtoafirstendofthep-type semiconductor354,thethirdconductivemember1118maybecoupledtoafirstendofthen- typesemiconductor,andthesecondconductivemember1116maybecoupledtosecondendsof thep-typeandn-typesemiconductors1112,1110suchthatthep-typesemiconductor1112and then-typesemiconductor1110maybecoupledinseries.
  • Thefirstandthirdconductive members1114,1118maybeelectricallycoupledtoaload1106 suchthatpowermaybe deliveredtotheload 1106from theTEG 1108,
  • Theload 1106 mayincludeanelectricalcircuit, device,orsystem tosupplythegeneratedelectricpowerbacktothekilnsystem tooperate variouselectricalcomponents,variousenergy/electricitystoragesystemssuchasbatteries, andoranelectricalcircuitorsystem tosupplythegeneratedelectricitytoconventionalgrid
  • thefirstthermallyconductiveelement1102 mayreceiveheatfrom an externalheatsource suchthatitmaybeatatemperatureTIla,andthesecondthermally conductiveelement1104maybeatatemperatureTllb,whereTlla>TIlb.Insome embodiments,heatmaybeextractedfrom thesecondthermallyconductiveelement1104to ensurethatTl1a> Tllb.
  • ThefirstthermallyconductiveelementI102andthesecondthermally conductiveelement1104 maycreatethermalgradientsacrossthep-typesemiconductor1112and then-typesemiconductor1110,whichmaycausemajoritychargecarriersinthep-type semiconductor1112andthen-typesemiconductor1110tomoveawayfrom thefirstthermally conductiveelement1102andtowardthesecondthermallyconductiveelement1104,andmay causeminoritychargecarrierstomoveintheoppositedirection. Accordingingly,electronsintheretypesemiconductor1110maymovetoward
  • FIG,12 isacross-sectionaldiagram illustratinganexemplaryimplementationofa wasteheatrecoverysystem 1200usingwasteheatfrom cementkilns.
  • Thewasteheatrecovery system 1200 maysurroundaheatsource1210.Inimplementations,theheatsource1210may haveasubstantiallycylindricalshape.
  • Theheatsource1210 mayincludeacementkiln.
  • the wasteheatrecoverysystem 1200 mayincludeaTEG layer1220disposedaroundtheheatsource 1210.
  • Thematerialforthebaseblockisnotlimitedthereto,but mayincludeother materialsthatgenerallyhaveahighthermalconductivity,ahightemperatureoperability,a corrosionresistance,andthelike.One
  • theTEG module1030 maygenerateelectricpowerfrom theheatthat dissipatesfrom theheatsource1010,andcoolinglayer1030canprovecoolingforthecold memberoftheTEG module1030.Therefore,theoutputpowerand/orefficiencyofthewaste heatrecoverysystem maybeincreased.
  • thebaseblock 1020 mayinclude aheatexchanger1050disposedonasidethatfacestheheatsource1010.
  • Theheatexchanger 1050 mayfacilitatemoreefficientheattransferbetweentheheatsource1010(e.g.,kilnsurface) andthebaseblock 1020viaconvectiveandradiativeheattransfer.
  • Theheatexchanger1050 mayinclude(e.g..bemadeof)anodizedaluminum,aluminum,aluminum alloys,copper,copper alloys,orthelike.
  • Thematerialfortheheatexchanger1050isnotlimitedthereto,but may includeothermaterialsthatgenerallyhaveahighthermalconductivity,ahightemperature operability,acorrosionresistance,andthelike.
  • atemperaturesensor 1070 maybeincludedtomeasureatemperatureofasurfaceoftheheatsource1010.
  • theheatsource(e.g.,cementkiln) maysometimesrequireacool-downfor maintenancepurposes,operationalpurposes,orduetoamalfunction.
  • anelectricpowermaybeprovidedtotheTEG suchthatthefirstendofthe TEG iscooledandthesecondendoftheTEG isheated.
  • thesurfaceoftheheat source mayreceiveanactivecoolingbytheinverseoperationoftheTEG,andtheheatsource maybecooledmorequickly,
  • apluralityofthewasteheatrecoveryapparatusmaybedisposed adjacentto(e.g.,around;proximateto)theheatsource(e.g.,cementkiln)tosurroundtheentire outersurfaceoftheheatsourcetomaximizetheportionofthescavengedheat.Cementkilns mayprovideathermalinputtothebaseblockandmaintainthetemperatureoftheTEG hot membertemperatureatabout350°C.ThecoolinglayermaymaintaintheTEG coldmember temperatureatabout30°C.However,theoperationtemperaturesofthesystem isnotlimited theretoandmayvarybasedontheamountofheatdissipationfrom theheatsource,ambient conditions,orthelike.
  • FIGS,13A to 13D illustrateexamplesoftheelectricpowergenerationsystem installed aroundacementkiln.
  • FIG,13A illustratesanexampleofacementkiln 1300withnoelectric powergenerationsystem installed.
  • FIG.13B illustratesanexampleofacementkiln 1300with anexemplaryimplementationofanelectricpowergenerationsystem 1302installedaroundthe kiln 1300.
  • FIG.13C illustratestheelectricpowergenerationsystem 1302inanopen configurationfordemonstrationpurposes.
  • FIG.13D illustratesaninnersideconfigurationofthe electricpowergenerationsystem 1302viewedfrom thebaseblockside(e.g.,correspondingto baseblock 1020).
  • FIG.14 isadiagram illustratingelectricalconnectionsincludedinasystem 1400 accordingioanexemplaryimplementationofthepresentdisclosure.AsshowninFIG.14,the electricitygeneratedbyaTEG 1430maybecollectedataTEG driver1450.Inimplementations inwhichTECsareutilizedinthecoolinglayer,aportionoftheinputpowermaybesuppliedtoa TEC.'driver1460.
  • TheTEC driver1460 maysupplyelectricalpowertoaTEC?1440basedona TEC controlsignalgeneratedbyacontroller1470.
  • InimplementationsinwhichTECsarenot utilizedinthecoolinglayer,thecontroller1470 mayprovideacontrolsignaltoacoolinglayer tocontrolcirculationofthecoolantliquid.
  • TheTEG driver1450 maysupplypoweroutputtoan externalload1420,therebyachievinganetpowergeneration.
  • Thecontroller1470 mayreceivedatafrom environmentalsensors1490,andgenerate controlsignalsbasedontheenvironmentaldata.
  • Theenvironmentaldata mayincludeambient temperature,ambienthumidity,windspeed,winddirection,precipitationdata,orthelike.
  • the controller1470 may alsoreceiveakilnsurfacetemperaturedatafrom atemperaturesensor1480.
  • thecontroller1470 maydelivera controlsignaltotheTEG driver1450tocausetheTEG drivertoelectricallydisconnecttheTEG 1430andstopextractingpowerfrom theTEG 1430.
  • thecontroller1470 maydeliveracontrolsignaltotheTEG driver 1450tocausetheTEG drivertosupplyelectricitytotheTEG 1430suchthattheTEG 1430 operatesinacoolingmodeandisusedtocoolthekilnsurface.
  • Thesecondpresettemperature maybegreaterthanthefirstpresettemperature.Insomeimplementations,thesecondpreset temperaturemaybelessthanthefirstpresettemperature.
  • FIG.15 isaflow chartillustratingamethodof1500forcontrollingmodesofoperating awasteheatrecoverysystem accordingtoanexemplaryimplementationofthepresent disclosure.
  • thewasteheatrecoverysystem mayreceiveheatfrom aheatsource.
  • thewasteheatrecoverysystem mayreceiveheatfrom aheatsource.
  • thewasteheatrecoverysystem mayreceiveheatfrom aheatsource.
  • step 1520 electricitymaybegeneratedinaTEG usingthereceivedheat.
  • step 1530 aportion ofthegeneratedelectricitymaybesuppliedtoaTEC tocausetheTEC tocoolthecoldmember oftheTEG,InimplementationsinwhichthecoolinglayerdoesnotincludeaTEC (e.g.,where thecoolinglayerincludesacirculatingcoolantliquid),step 1530canbeomitted.
  • Step 1540 atemperatureof theheatsourcemaybemonitored.Whenthemeasuredtemperatureislowerthanafirstpreset temperature,thecycle
  • the controller maysubsequentlyevaluate whetherthetemperatureishigherthanasecondpreset temperature(1550).When themeasuredtemperatureislessthanthesecondpresettemperature, thecontrollermaycausetoelectricallydisconnecttheTEG suchthatnopowerisgeneratedfrom theTEG (1560),Whenthemeasuredtemperatureisgreaterthanorequaltothesecondpreset temperature,thecontrollermayactivateacoolingmode,inwhichthecontrollermaycauseto supplyelectricitytotheTEG tooperateitsuchthattheTEG coolsthesurfaceoftheheatsource (1570). Thetemperaturemonitoringloop(1540,1550,1560,and1570)mayberepeateduntil themeasuredtemperaturebecomeslessthanthefirstpresettemperature,inwhichcasethe controllermaycausethewasteheatrecoverysystem tooperateinthepowergenerationmode.

Abstract

Some implementations of the current subject matter can include systems for capturing heat emitted from a heat source. The systems can include a substrate material, such as an insulative or insulating material which can be in proximity or in contact with a heat source. The substrate material can include a plurality of thermoelectric generators (TEGs) which can convert heat into electrical energy. The TEGs can generate electrical energy as a result of temperature gradients that form within the TEGs. The current subject matter can result in electrical power generation from heat sources via an insulating material that is easily applied, formed on or within, or surrounding a heat source. In some implementations, the current subject matter can allow for electrical power to be generated from heat sources in a wide variety of industrial, automotive, manufacturing and thermal processing environments. Related apparatus, systems, techniques, and articles are also described.

Description

MATERIAL CONTAINING THERMOELECTRIC GENERATORS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] 'ThisapplicationclaimsprioritytoU.S.ProvisionalApplicationNo.63/132,027filedon December30,2020,thedisclosureofwhichisherebyincorporatedbyreferenceinitsentirety.
TECHNICAL FIELD
[0002] Thecurrentsubjectmatterisgenerallyrelatedtothermoelectricgenerators.
BACKGROUND
[0003] A thermoelectricgenerator(TEG)isasolidstatedevicethatcangenerateelectrical energywhenexposedtotemperaturedifferences.TEGscanbeutilizedinavarietyof applicationstogenerateelectricityfrom heatwhichmayotherwisebedissipatedtothe atmosphereorlocalenvironment.
[0004] Insulativematerialcanretainheatgeneratedbyorradiatingfrom aheatsourcesothat theheatmaybepreventedfrom dissipatingintotheatmosphere,localenvironment,or surroundingobjects.Insulativematerialscanbeappliedtoheatsourcessuchasaperson, equipment,and/orcomponentsofequipment.
SUMMARY
[0005] Inanaspect,asystem includesasubstratematerialandathermoelectricgenerator (TEG)configuredwithinthesubstratematerial.
[0006] Oneormoreofthefollowingfeaturescanbeincludedinthesystem inanyfeasible combination.Forexample,thesystem canincludeaheatgeneratingarticle.Thesubstrate materialcanbepositionedinproximityoftheheatgeneratingarticle.TheTEG canreceiveheat generatedbytheheatgeneratingarticle.Theheatgeneratingarticlecanbeincludedinatleast oneofanindustrialenvironment,amanufacturingenvironment,athermalprocessing environment,anautomobile,anairplane,aheatexchanger,oranHVAC system. [0007] Thesystem canincludeafirstpluralityofTEGsthatcanbecoupledinparallelwithin thesubstratematerial.Thesystem canincludeasecondpluralityofTEGsthatcanbecoupledin serieswithinthesubstratematerial.Thesystem canincludeatleastonepiezoelectricsensor coupledtotheTEG,Thesubstratematerialcanincludeapluralityofvoidsformedbetweena pluralityofstructuralelementsincludedinthesubstratematerial.TheTEG canbeconfigured withinatleastonevoidofthepluralityofvoids.Thesubstratematerialcanincludeaninsulative material.Theinsulativematerialcanincludeatleastoneofrockwool,slagwoolcellulose,glass wool,polystyrene,urethanefoam,ceramic,vermiculite,perlite,woolfiber,plantfiber, fiberglass,gypsum,afire-retardantinsulativematerial,avapor-retardantinsulativematerial. Thesubstratematerialcanbeintheform ofafabric.Thefabriccanbeincludedasaportionof anarticleofclothing.
[0008] Inanotheraspect,asystem isprovided.Thesystem canincludeasubstratematerial,an electricallyconductivematerialcoupledtothesubstratematerial,andapluralityof thermoelectricgenerators(TEGs)coupledtotheelectricallyconductivematerial.
[0009] Oneormoreofthefollowingfeaturescanbeincludedinthesystem inanyfeasible combination.Forexample,thesystem canincludeaheatsource.Thesubstratematerialcanbe positionedinproximityoftheheatsourceandtheTEG receivesheatgeneratedbytheheat source.Theheatsourcecanincludeahumanbodyoranimalbody.Thesystem canincludea ceramicmaterialcoupledtotheelectricallyconductivematerial.Thesubstratematerialandthe electricallyconductivematerialcanbecoupledsoastoform afabric.
[0010] ThepluralityofTEGscanbepositionedwithinthefabricinamatrixconfiguration,a linearconfiguration,aradialconfiguration,oraconfigurationinwhichafirstportionofthe pluralityofTEGsatafirstlocationarearrangeddifferentlyfrom asecondportionoftheplurality ofTEGsatasecondlocation.ThefirstpluralityofTEGscanbecoupledinparalleltothe electricallyconductivematerial.TiresecondpluralityofTEGscanbecoupledinseriestothe electricallyconductivematerial.
[0011] Thesystem caninchideatleastonepiezoelectricsensorcoupledtoatleastone thermoelectricgenerator(TEG)includedinthepluralityofTEGs.Thefabriccanbeinchidedas aportionofanarticleofclothing.Theelectricallyconductivematerialcanincludeatleastone ofsilver,aluminum,copper,graphite,andanintrinsicallyconductingpolymer.
[0012] Non-transitorycomputerprogram products(i.e.,physicallyembodiedcomputer program products)arealsodescribedthatstoreinstructions,whichwhenexecutedbyoneor moredataprocessorsofoneormorecomputingsystems,causesatleastonedataprocessorto perform operationsherein.Similarly,computersystemsarealsodescribedthatmayincludeone ormoredataprocessorsandmemorycoupledtotheoneormoredataprocessors.Thememory maytemporarilyorpermanentlystoreinstructionsthatcauseatleastoneprocessortoperform oneormoreoftheoperationsdescribedherein.Inaddition,methodscanbeimplementedbyone ormoredataprocessorseitherwithinasinglecomputingsystem ordistributedamongtwoor morecomputingsystems.Suchcomputingsystemscanbeconnectedandcanexchangedata andorcommandsorotherinstructionsorthelikeviaoneormoreconnections,includinga connectionoveranetwork(e.g.theInternet,awirelesswideareanetwork,alocalareanetwork, awideareanetwork,awirednetwork,orthelike),viaadirectconnectionbetweenoneormore ofthemultiplecomputingsystems,etc.
[0013] Thedetailsofoneormorevariationsofthesubjectmatterdescribedhereinaresetforth intheaccompanyingdrawingsandthedescriptionbelow.Otherfeaturesandadvantagesofthe subjectmatterdescribedhereinwillbeapparentfrom thedescriptionanddrawings,andfrom the claims.
DESCRIPTION OFDRAWINGS
[0014] FIG.1isadiagram ofanembodimentofasystem forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource;
[0015] FIG.2isadiagram ofanembodimentofaTEG includedinthesystem ofFIG.1;
[0016] FIG.3isadiagram ofanadditionalembodimentofasystem forgeneratingelectrical powerfrom heatcollectedfrom aheatsource;
[0017] FIG.4isadiagram ofacross-sectionalview ofanembodimentofasystem for generatingelectricalpowerfrom heatcollectedfrom aheatsource; [0018] FIG.5isadiagram ofacross-sectionalview ofanadditionalembodimentofasystem forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource;
[0019] FIG.6isadiagram ofanembodimentofaconfigurationofTEGsincludedinthe system forgeneratingelectricalpowershowninFIGS.1,4,and5;
[0020] FIG.7isadiagram ofanadditionalembodimentofaconfigurationofTEGsincluded thesystem forgeneratingelectricalpowershowninFIGS.1,4,and5;
[0021] FIG.8isadiagram ofanadditionalembodimentofaconfigurationofTEGsincluded thesystem forgeneratingelectricalpowershowninFIGS,1,4,and5;
[0022] FIG.9isacross-sectionalview illustratingan examplecementkilnsystem thatmay perform thisprocess;
[0023] FIG.10isacross-sectionalview illustratingan exemplaryimplementationofawaste heatrecoverysystem usingwasteheatfrom cementkilns;
[0024] FIG.11showsanexampleoftheTEG modulethatmayincludeaTEG;
[0025] FIG.12isacross-sectionaldiagram .illustratinganotherexemplaryimplementationofa wasteheatrecoverysystem usingwasteheatfrom cementkilns;
[0026] FIGS.13A to13D illustrateexamplesoftheelectricpowergenerationsystem installed aroundacementkiln;
[0027] FIG.14isadiagram illustratingelectricalconnectionsaccordingtoanexemplary implementationofthepresentdisclosure;and
[0028] FIG.15isaflow chartillustratingamethodofcontrollingmodesofoperatingawaste heatrecoverysystem accordingtoanexemplaryimplementationofthepresentdisclosure.
DETAILED DESCRIPTION
[0029] Certainexemplaryembodimentswillnow bedescribedtoprovideanoverall understandingoftheprinciplesofthestructure,function,manufacture,anduseofthesystems, devices,andmethodsdisclosedherein.Oneormoreexamplesoftheseembodimentsare illustratedintheaccompanyingdrawings.Thoseskilledintheartwillunderstandthatthe systems,devices,andmethodsspecificallydescribedhereinandillustratedintheaccompanying drawingsarenon-limitingexemplaryembodimentsandthatthescopeofthepresentinventionis definedsolelybytheclaims.Thefeaturesillustratedordescribedinconnectionwithone exemplaryembodimentmaybecombinedwiththefeaturesofotherembodiments.Such modificationsandvariationsareintendedtobeincludedwithinthescopeofthepresent invention.Further,inthepresentdisclosure,like-namedcomponentsoftheembodiments generallyhavesimilarfeatures,andthuswithinaparticularembodimenteachfeatureofeach like-namedcomponentisnotnecessarilyfullyelaboratedupon.
[0030] Heatemittedfrom heatsourcesisoftenreleasedintotheenvironment.A heatsource canincludeanyobject,equipment,humanbody,oranimalbodythatcanradiateheat.Therate ofheattransferbetweenaheatsourceandtheenvironmentinwhichtheheatsourceislocated candependonthematerialoftheheatsource,environmentalconditions,aswellasthepresence ofanyinsulativematerialwhichmaybepresentonthesurfaceoftheheatsource.Insulative materialcanbeusedtoenveloporsurroundaheatsourcesothattheamountofheatreleasedinto theenvironmentbytheheatsourceisreduced.
[0031] Insulativeorinsulatingmaterialsplacedincontactwithorinproximityioheatsources canreceiveheatgeneratedbytheheatsourceandcanstoretheheatfrom theheatsource.The capturedheatisoftenheldwithintheinsulativematerialand/orcanbegraduallyreleasedintothe environment.Thus,theheatcapturedbytheinsulativematerialisoftenwastedandnotmade availableforotherpurposes.Itcanbedesirabletoutilizeaninsulativematerialtocollectheat from theheatsourcesothattheheatcanberedirectedforotherusesorrepurposed.Insulative materialscanenablecollectionofheatfrom aheatsourcebutarelimitedintheirabilityto redirectorrepurposetheheatforotherpurposes,
[0032] Animprovedinsulativematerialcanutilizeheatemittedfrom aheatsourceto generate electricalpower.Temperaturegradientscanexistbetweenaheatsourceandanenvironment into whichtheheatsourceisemittingheat.Heatcanpassfrom theheatsource,throughthe insulativematerial,andberadiatedintotheenvironmentasaresultofthetemperaturegradient, Animprovedinsulatingmaterialcancapturetheheatpassingfrom theheatsourcetothe environmentandcangenerateelectricalpowerusingoneormorethermoelectricgenerator (TEG)s.Theelectricalpowercanbeutilizedfurtherinavarietyofapplications. Inanaspect, thecurrentsubjectmattercanincludesystemsforcapturingheatemittedfrom aheatsource. Thesystemscanincludeasubstratematerial,suchasaninsulativeorinsulatingmaterialwhich canbeinproximityorincontactwithaheatsource.Thesubstratematerialcanincludea pluralityofthermoelectricgeneratorswhichcanconvertheatintoelectricalenergy.TheTEGs cangenerateelectricalenergyasaresultoftemperaturegradientsthatform withintheTEGs. Thecurrentsubjectmattercanresultinelectricalpowergenerationfrom heatsourcesviaan insulatingmaterialthatiseasilyapplied,formedonorwithin,orsurroundingaheatsource.In someimplementations,thecurrentsubjectmattercanallow forelectricalpowertobegenerated from heatsourcesinawidevarietyofindustrial,automotive,manufacturingandthermal processingenvironments.Insomeimplementations,thecurrentsubjectmattercanfurther provideelectricalpowergenerationfrom ahumanoranimalheatsource.Forexample,the substratematerialincludingapluralityofTEGscanbeformedintoafabricandincorporatedinto clothingorwearableitemscapableofgeneratingelectricalpower.
[0033] Insomeimplementations,thesubstratematerialcanincludeoneormorelibersthatare woventogether,knittedtogether,orbonded(e.g.,chemicallybonded)together.Thaiis,insome implementations,thesubstratematerialcanbeintheform ofafabric.Insomeimplementations, theoneormorefiberscanbemonofilamentfibers,whereasinotherimplementations,theoneor moreliberscanbemultifilamentfibers.Insomeimplementations,atleastonefiberoftheoneor morefiberscanbeamonofilamentliberandanotheratleastoneUberoftheoneormorefibers canbeamultifilamentfiber.Asusedherein,theterm “monofilamentfibers”hasitsown ordinaryandcustomarymeaningandcanincludefibersformedofasinglefilament.Asused herein,theterm “multifilamentfibers”hasitsownordinaryandcustomarymeaningandcan includefibersformedoftwoormorefilamentsthatareassociatedwithoneanothertoform a unitarystructure.
[0034] FIG.1showsadiagram showingoneembodimentofasystem 100generatingelectrical powerfrom heatcollectedfrom aheatsource115.AsshowninFIG.1,asubstratematerial105 cansurroundorotherwisebeappliedtoaheatsource115.Insomeembodiments,thesubstrate materialcanbeaninsulativeoraninsulatingmaterial.Theinsulativematerialcanincluderock wool,slagwoolcellulose,glasswool,polystyrene,urethanefoam,ceramic,vermiculite,perlite, woolfiber,plantfiber,fiberglass,gypsum,afire-retardantinsulativematerial,avapor-retardant insulativematerial,andthelike.Insomeembodiments,thesubstratematerialcanbeanoninsulatingmaterial,suchasafabric,mesh,orthelike.Theheatsource115canbecovered, wrapped,enveloped,orotherwisesurroundedbythesubstratematerial105.
[0035] Thesubstratematerial105canincludeapluralityofinsulatingstructures110,The insulatingstructures110canincludestructuralelementswhichcanprovidesupporttothe substratematerial105.Forexample,aninsulatingstructure110canincludeoneormorefibers. Thesubstratematerial105canalsoincludeapluralityofvoidspaces135,Thevoidspaces135 canincludespacesorvoidswithinthesubstratematerial105whichdonotincludeinsulating structures110orsimilarlyconfiguredsupportstructures.Insomeembodiments,thevoidspaces 135canincludeair.Insomeembodiments,thevoidspacescanincludeathermaltransmission medium,suchasafluid,agel,agas,orthelike.
[0036] Thesubstratematerial105canincludeavarietyofconfigurationsoftheinsulating structures110andthevoidspaces135,AsshowninFIG.1,thesubstratematerial105is configuredwitharepeatingpatternofaninsulationstructure110followedbyavoidspace135, Insomeembodiments,theconfigurationofinsulationstructures110andvoidspaces135canbe non-repeatingandcanincludeapluralityofinsulationstructures110followedbyapluralityof voidspaces135.Thesubstratematerial105canincludeavarietyofnon-limitingconfigurations ofinsulationstructures110andvoidspaces135.
[0037] Thesubstratematerial105cancoverorsurroundaheatsource115.Insome embodiments,thesubstratematerial105canbeinproximitywiththeheatsource115.Insome embodiments,thesubstratematerial105canbeinthermalcontactwiththeheatsource115.The heatsource115canincludeanyarticle,object,structure,orbeingcapableofgeneratingheat. Forexample,insomeembodiments,theheatsource115canincludeequipmentassociatedwith anindustrialenvironment,amanufacturingenvironment,athermalprocessingenvironment,an automobile,anairplane,aheatexchanger,aheating,ventilation,andair-conditioning(HVAC) system,orthelike.Insomeembodiments,theheatsource115canincludeacomponentofan industrialenvironment,amanufacturingenvironment,athermalprocessingenvironment,an automobile,anairplane,aheatexchanger,aHVAC system,suchasakiln,amotor,ahose,a heatercore,aradiator,orthelike.Insomeembodiments,theheatsource115canincludea humanbodyorananimalbody.
[0038] Thesubstratematerial105canincludeoneormorethermoelectricgenerators(TEGs) 120.Forexample,asshowninFIG.1,thesubstratematerial105includesapluralityofTEGs 120,e.g.,TEG 120A,120B,and120C.EachTEG 120canbeconfiguredwithinavoidspace 135.Whenthesubstratematerial105ispositionedinproximityoftheheatsource115,the TEGs120canbereceiveheatgeneratedbytheheatsource115,TheTEG 120cangenerate electricalpowerfrom temperaturegradientassociatedwiththeheatsource115andthe environmentincludingtheheatsource115.TheTEGs120canbecoupledviaanelectrical conduit125,suchasawire.Insomeembodiments,theTEGs120canbecoupledviathe electricalconduit125inseries.Insomeembodiments,theTEGs120canbecoupledviathe electricalconduit125inparallel.
[0039] AsshowninFIG.1,thesubstratematerial105canincludeapiezoelectricgenerator 130.Thepiezoelectricgenerator130canbecoupledtoaTEG 120,suchasTEG 120C shownin FIG.1.Thepiezoelectricgenerator130can generateelectricalenergyasaresultofchangesin pressure,acceleration,temperature,sixain,andorforce.
[0040] FIG.2showsanexampleofanexampleconfiguration200ofaTEG 120.TheTEG 120canbecoupledtoaload215.TheTEG 120canincludeafirstthermallyconductiveelement 205,whichcanbereferredtoasa "hotmember"onafirstendoftheTEG 120,andasecond thermallyconductiveelement210,whichcanbereferredtoasa "coldmember"onasecondend oftheTEG 120.TheTEG 120canincludeatleastonen-typesemiconductor220andatleast onep-typesemiconductor225thatcanbepositionedbetweenthefirstthermallyconductive element205andthesecondthermallyconductiveelement210andcanbecoupledinseriesbya numberofconductivemembers.Theillustratedembodimentshowsfirst,secondandthird conductivemembers230,235,240.Thefirstconductivemember230iscoupledtoafirstendof thep-typesemiconductor225,thethirdconductivemember240iscoupledtoafirstendthen- typesemiconductor220,andthesecondconductivemember235iscoupledtosecondendsofthe p-typeandn-typesemiconductors225,220suchthatthep-typesemiconductor225andthen- typesemiconductor220arecoupledinseries.Thefirstandthirdconductivemembers230,240 canbeelectricallycoupledtoaload215suchthatpowercanbedeliveredtotheload215from theTEG 120.
[0041] Inoperation,thefirstthermallyconductiveelement205canreceiveheatfrom an externalheatsourcesuchthatitcanbeatatemperatureT2a,andthesecondthermally conductiveelement210canbeatatemperatureT2b,whereT2a> T2b.Insomeembodiments, heatcanbeextractedfrom thesecondthermallyconductiveelement210toensurethatT2a> T2b.Thefirstthermallyconductiveelement205andthesecondthermallyconductiveelement 210cancreatethermalgradientsacrossthep-typesemiconductor225andthen-type semiconductor220,whichcancausemajoritychargecarriersinthep-typesemiconductor225 andthen-typesemiconductor220tomoveawayfrom thefirstthermallyconductiveelement205 andtowardthesecondthermallyconductiveelement210,andcancauseminoritychargecarriers tomoveintheoppositedirection.Accordingly,electronsinthen-typesemiconductor220can movetowardthesecondthermallyconductiveelement210,andpositivelycharge "holes"inthe p-typesemiconductor225canmovetowardthesecondthermallyconductiveelement210.This chargemotioncancreateavoltagepotentialacrosseachsemiconductor220,225,Sincethe semiconductors220,225arecoupledinserieswithinacircuit,currentcanflow.Therefore, electronscan{ravelfrom then-typesemiconductor220,throughthethirdconductivemember 240,throughtheload215,tothefirstconductivemember230,throughthep-typesemiconductor 225,tothesecondconductivemember235,andbacktothen-typesemiconductor220to completethecircuit.Therefore,theTEG 120cangenerateelectricpower,whichcanbe deliveredfrom theTEG 120totheload215,Bycontrollinghow muchheatisdeliveredtothe firstthermallyconductiveelement205and/orhow muchheatisextractedfrom thesecond thermallyconductiveelement210.thetemperaturegradientsacrossthe.semiconductors220,225 canbecontrolled,efficiencyoftheTEG canbeoptimized,andpowergenerationcanbe controlled.
[0042] FIG.3showsanadditionalembodimentofasystem forgeneratingelectricalpower from heatcollectedfrom aheatsource.Asshown in.FIG,3,theheatsource305canincludea humanbody.Insomeembodiments,theheatsource305can includeananimalbody.A system 310canbeconfiguredinproximityorappliedtotheheatsource305andheatgeneratedbythe heatsource305canbecollectedbythesystem 310andusedtogenerateelectricalpower.In someembodiments,thesystem 310canincludefabric,clothing,orarticleswhichcanbeapplied toorwornonahumanorananimalbody,
[0043] FIG.4showsadiagram ofacross-sectionalview 400ofanembodimentofasystem 310forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource.Thecross-sectional view 400canrepresentacross-sectionalview ofthesystem 310asembodiedinafabric,which maybeusedforexampleintheconstructionofanarticleofclothing.Thesystem 310includes similarcomponentsasthesystem 100shownanddescribedinrelationtoFIG.1.
[0044] Thesystem 310canincludeaheatsource305.Theheatsourcecanbeinthermal contactwithasubstratematerial105. Insomeembodiments,thesubstratematerial105canbe aninsulativeoraninsulatingmaterial.Theinsulativematerialcanincluderockwool,slagwool cellulose,glasswool,polystyrene,urethanefoam,ceramic,vermiculite,perlite,woolfiber,plant fiber,fiberglass,gypsum,afire-retardantinsulativematerial,avapor-retardantinsulative material.Insomeembodiments,thesubstratematerialcanbeanon-insulatingmaterial,suchas afabric,amesh,orthelike.Thesubstratematerial105canincludeoneormoreTEGs120 coupledviaanelectricalconduit125.Insomeembodiments,oneormoreoftheTEGscanbe coupledwithapiezoelectricgenerator130.Thesystem 310alsoincludesanelectrically conductivematerial405.Theelectricallyconductivematerial405canincludesilver,aluminum, copper,graphite,anintrinsicallyconductingpolymer,and/oracombinationthereof.The electricallyconductivematerial405andthesubstratematerial105canbecoupledsoastoform a fabric.TheTEGs120canbecoupledinparalleltotheelectricallyconductivematerial405.In someembodiments,theTEGs120canbecoupledinseriestotheelectricallyconductivematerial 405.
[0045] Thesystem 310canalsoincludeaceramicmaterial410couplestotheelectrically conductivematerial405.
[0046] FIG.5showsadiagram 500ofacross-sectionalview ofanadditionalembodimentofa system 310forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource.The componentsoftheadditionalembodimentofsystem 310showninFIG.5aresimilartothose shownanddescribedinrelationtoFIG.4.Forexample,thesystem 310shownindiagram 500 canincludeasubstratematerial105,whichcanfurtherincludeapluralityofTEGs120coupled viaanelectricalconduit125.OneormoreoftheTEGs120canbecoupledtoapiezoelectric generator130,
[0047] AsshowninFIG.5,thesystem 310canapluralityofelectricallyconductivematerials 405andapluralityofceramicmaterials410. Forexample,asshowninFIG.5,afirstceramic material4I0A canbeinterfacedwiththeheatsource305.A firstelectricallyconductive material405A canbeconfiguredbetweenthefirstceramicmaterial410A andthesubstrate material105.A secondelectricallyconductivematerial405B canbealsocoupledtothe substratematerial105.A secondceramicmaterial410B canbecoupledtothesecond electricallyconductivematerial405B,Additionalnon-limitingpluralitiesofelectrically conductivematerials405andadditionalnon-limitingpluralitiesofceramicmaterials410canbe includedinthesystem 310.
[0048] FIG,6isadiagram 600ofanembodimentofaconfigurationofTEGsincludedinthe system iOO,310forgeneratingelectricalpowerasshowninFIGS.1,4,and5.Asshownin FIG,6,thesystem 100.310includeapluralityofTEGs120arrangedinamatrixconfiguration. TheTEGs120canbecoupledviaoneormoreelectricalconduits125.AsshowninFIG.6,a firstelectricalconduit125A couplesafirstpluralityofTEGs120,asecondelectricalconduit 125B couplesasecondpluralityofTEGs120,andathirdelectricalconduit125C couplesathird pluralityofTEGs120.Althoughtheelectricalconduits125areshowncouplingtheTEGs120 inahorizontalarrangement,theelectricalconduits125cancoupletheTEGs120inaverticalor adiagonalarrangementaswell.
[0049] FIG.7isadiagram 700ofanadditionalembodimentofaconfigurationofTEGs includedthesystem 100,310forgeneratingelectricalpowershowninFIGS.1,4,and5.As showninFIG.7,thesystem 100,310includesapluralityofTEGs120arrangedinaradial configuration.TheradialconfigurationcanincludeacentrallyorientedTEG 120A anda pluralityofTEGs12013locatedradiallyfrom thecentrallyorientedTEG 120A.TheTEGs120 shownintheradialconfigurationofFIG.7canbecoupledviatheelectricalconduit125. [0050] FIG.8isadiagram 800ofanadditionalembodimentofaconfigurationofTEGs includedthesystem 100,310forgeneratingelectricalpowershowninFIGS.1,4,and5.As showninFIG.8,thesystem 100,310includesmultipleconfigurationsofTEGs120,For example,afirstconfiguration805canincludeTEGs120arrangedinaringorradial configuration.A secondconfiguration810canincludeTEGs120arrangesinamatrix configuration.Thefirstconfiguration805ofTEGs120canbeconfiguredinafirstlocationof thesystem 100,310andthesecondconfiguration810ofTEGs120canbeconfiguredina second,differentlocationofthesystem 100,310.
[0051] Someimplementationsofthecurrentsubjectmatercanbeusedforrecoveringwaste heatfrom industrialfacilitiesthatgeneratelargeamountsofheat.Forexample,thefollowing descriptionincludesanimplementationoftheenergyrecoverysystem togenerateelectricpower usingwasteheatfrom cementkilns.
[0052] Cementkilnscanbeusedforthepyroprocessingstageofmanufacturingvarioustypes ofcements,inwhichcalcium carbonatereactswithsilica-bearingmineralstoform amixtureof calcium silicate.Duringthepyroprocessingstate,cementkilnsdissipateasubstantialamountof heatthroughthekilnwalls,whichisrejectedtooutsideambientair.Accordingly,thereis energythatisventedaswasteheat.
[0053] Anaspectofthepresentdisclosureprovidesasystem thatmayrecuperateheat dissipatingfrom akilntogenerateelectricalpowerusingthermoelectricgenerators(TEGs), whichmayconvertheatintoelectricalenergy.TheTEGsmaygenerateelectricalenergyasa resultoftemperaturegradientswithintheTEGs.A portionoftheheatfrom thekilnmaybe deliveredtooneormoreTEGs,therebycreatingthetemperaturegradient,andtheTEGsmay generateelectricalenergy.Toimprovethepoweroutputand/ortheefficiencyoftheTEGs,one ormorecoolingelements,suchasaliquidcoolant(sometimesreferredtoasablackhole),or anothertypeofcoolingelement,suchasthermoelectriccoolers(TECs)maybeincludedto managethetemperaturegradientswithintheTEGs.Byrecuperatingthedissipatingheat,which wouldotherwisebewasted,andconvertingittoelectricalenergy,overallenergyconsumption canbereduce.Thegeneratedelectricitymaybeputbacktothekilnsystem tooperatevarious electricalsystems,storedinvariousenergyelectricitystoragesystems,e.g.,bateries,and/or suppliedtoconventionalgridelectricity.Inanotheraspectofthepresentdisclosure,thesystem canprovideatemperaturemonitoringofthekilnsurface.Elymonitoringthekilnsurface temperature,operationsafetycanbeimproved.Further,theTEGsmaybeoperatedtoprovidea coolingtothekilnsurface.Forexample,coolingofthekilnsurfacemaybeactivatedwhenthe kilnsurfaceisoverheated,andtherebyimprovingthesafety.Coolingtirekilnsurfacebythe TEGsmay reducerequiredtimetocooldowntirekilnformaintenancepurposes,operational purposes,ordueioamalfunction.
[0054] Insomeimplementations,ratherthanusingTEGstomanagetemperaturegradients withintheTEGs,otherheatremovaldevicesmaybeused.Forexample,acombinationoffans andheatsinks,oralayerofliquidcoolantcirculatingadjacenttheTEG units,maybeusedto providecontrolledforcedconvectioniomanagethetemperaturegradientswithintheTEGs.
[0055] A typicalprocessofmanufacturingcementincludesgrindingamixtureoflimestone andclayorshaletomakeafine "rawmix,"heatingtherawmixtosinteringtemperature(upto about1450°C)inacementkiln,andgrindingtheresultingclinkertomakecement.Inthe heatingstage,therawmixisfedintoakilnandgraduallyheatedbycontactwiththehotgasses from combustionofthekilnfuel.'Typically,apeaktemperatureof1400-1450°C isrequiredto completethereaction.Thepartialmeltingcausesthematerialtoaggregateintolumpsor nodules,typicallyofdiameterof1-10mm,whichiscalled'’clinker,'’Thehotclinkernextfalls into acooler,whichrecoversmostofitsheat,andcoolstheclinkertoaround100°C,atwhich temperatureitcanbeconvenientlyconveyedtostorage.
[0056] Somecementkilnsystemsaredesignedtoaccomplishtheseprocesses.Thecement kilnscanhave(e.g.,include)acircularcylindricalshapeandcattberotatedaboutthecentralaxis ofthecylindricalshapetofacilitatemixingofthereactants.Thistypeofkilncanalsobe referredtoasarotarykiln.FIG.9isacross-sectionalview illustratinganexamplecementkiln system thatmayperform thisprocess.
[0057] Insomeimplementations,anexamplewasteheatrecoverysystem mayincludeatleast onethermoelectricgenerator(TEG),andatleastcoolingelementorlayer.TEGs,whichmay alsobereferredtoasSeebeckgenerators,maybesolidstatedevicesthatconvertaheatflux (temperaturedifference)intoelectricalenergybytakingadvantageoftheSeebeckeffect.One sideofaTEG maybecoupledtoahotsurface,andtheothersidemaybecoupledtoacold surface.TECs,whichmaybereferredtoasPeltierdevices,Peltierheatpumps,andsolidstate refrigerators, may receive a DC electric current, and may utilize energy in the electric current to transfer heat from one side of the device to the other side of the device. TEGs may be used to convert heat to electric power. However, the efficiency of TEGs may be sensitive to thermal gradients across semiconductors used within the TEGs. Therefore, TECs may be used to manage temperature gradients across semiconductors in the TECs.
[0058] FIG, 10 is a cross-sectional view illustrating an exemplary implementation of a waste heat recovery system 1000 using waste heat from cement kilns. The waste heat recovery system 1000 may surround a heat source 1010. In implementations, the heat source 1010 may have a substantially cylindrical shape. The heat source 1010 may include a cement kiln. The waste heat recovery system 1000 may include a base block 1020 disposed around the heat source 1010. The base block 1020 may include (e.g., be made of) anodized aluminum, aluminum, aluminum alloys, copper, copper alloys, or the like. The material for the base block 1020 is not limited thereto, but may include other materials that generally have a high thermal conductivity, a high temperature operability, a corrosion resistance, and the like. A thermoelectric generator (TEG) module 1030 having a first end and a second end, in which the first end of the TEG module 1030 is thermally coupled to the base block 1020 and configured io receive at least a portion of the heat dissipated from the heat source 1010. A cooling layer 1040 can include a third end and a fourth end, in which the third end of the cooling 1040 is thermally coupled to the second end of the TEG module 1030. The cooling layer 1040 may including circulating liquid, such as a coolant, that absorbs heat from the TEG module 1030 and rejects the heat into the environment at another location. In some implementations, the cooling layer 1040 can include thermoelectric coolers (TECs) for actively cooling a side of die TEG module 1030.
[0059] FIG. 1 1 shows an example of the TEG module 1030 that may include a TEG 1108. The TEG module 1030 may include the TEG 1 108, and a load 1 106. The TEG 1108 may include a first thermally conductive element 1 102. which may be referred to as a ’’hot member" on a first end of the TEG 1 108, and a second thermally conductive element 1104. which may be referred to as a "cold member" on a second end of die TEG 1108. The TEG 1108 may include at least one n-type semiconductor 1110 and at least one p-type semiconductor 1112 that may be disposed between the first thermally conductive element 1102 and the second thermally conductive element 1104 and may be coupled in series by a number of conductive members. The illustrated implementation shows first, second, and third conductive members 1114, 1116, 1118.Thefirstconductivemember1114maybecoupledtoafirstendofthep-type semiconductor354,thethirdconductivemember1118maybecoupledtoafirstendofthen- typesemiconductor,andthesecondconductivemember1116maybecoupledtosecondendsof thep-typeandn-typesemiconductors1112,1110suchthatthep-typesemiconductor1112and then-typesemiconductor1110maybecoupledinseries.Thefirstandthirdconductive members1114,1118maybeelectricallycoupledtoaload1106suchthatpowermaybe deliveredtotheload 1106from theTEG 1108,Theload 1106mayincludeanelectricalcircuit, device,orsystem tosupplythegeneratedelectricpowerbacktothekilnsystem tooperate variouselectricalcomponents,variousenergy/electricitystoragesystemssuchasbatteries, andoranelectricalcircuitorsystem tosupplythegeneratedelectricitytoconventionalgrid electricity.However,theload1106isnotlimitedthereto,andtheload 1106mayincludeany deviceorsystem thatcanutilizethegeneratedelectricity.
[0060] Inoperation,thefirstthermallyconductiveelement1102mayreceiveheatfrom an externalheatsourcesuchthatitmaybeatatemperatureTIla,andthesecondthermally conductiveelement1104maybeatatemperatureTllb,whereTlla>TIlb.Insome embodiments,heatmaybeextractedfrom thesecondthermallyconductiveelement1104to ensurethatTl1a> Tllb.ThefirstthermallyconductiveelementI102andthesecondthermally conductiveelement1104maycreatethermalgradientsacrossthep-typesemiconductor1112and then-typesemiconductor1110,whichmaycausemajoritychargecarriersinthep-type semiconductor1112andthen-typesemiconductor1110tomoveawayfrom thefirstthermally conductiveelement1102andtowardthesecondthermallyconductiveelement1104,andmay causeminoritychargecarrierstomoveintheoppositedirection.Accordingly,electronsintheretypesemiconductor1110maymovetowardthesecondthermallyconductiveelement1104,and positivelycharged "holes"inthep-typesemiconductor1112maymovetowardthesecond thermallyconductiveelement1104.Thischargemotionmaycreateavoltagepotentialacross eachsemiconductor1110,1112.Sincethesemiconductors1110,1112arecoupledinseries withinacircuit,currentmayflow.Therefore,electronsmaytravelfrom then-type semiconductor1110,throughthethirdconductivemember1118,throughtheload1106,tothe firstconductivemember1114,throughthep-typesemiconductor1112,tothesecondconductive member1116,andbacktothen-typesemiconductor1110tocompletethecircuit.Therefore,the TEG 1108maygenerateelectricpower,whichmaybedeliveredfrom theTEG 1108totheload 1106.Byadjustingtheamountofheatthatisdeliveredtothefirstthermallyconductiveelement 1102andortheamountofheatthatisextractedfrom thesecondthermallyconductiveelement 1104,thetemperaturegradientsacrossthesemiconductors1110,1112maybeadjusted, efficiencyand/oroutputpoweroftheTEG maybeoptimized,andpowergenerationmaybe adjusted,
[0061] FIG,12isacross-sectionaldiagram illustratinganexemplaryimplementationofa wasteheatrecoverysystem 1200usingwasteheatfrom cementkilns.Thewasteheatrecovery system 1200maysurroundaheatsource1210.Inimplementations,theheatsource1210may haveasubstantiallycylindricalshape.Theheatsource1210mayincludeacementkiln.The wasteheatrecoverysystem 1200mayincludeaTEG layer1220disposedaroundtheheatsource 1210.TheTEG layer1220canincludeabaselayerformedofoneormorebaseblocksthatcan include(e.g.,bemadeof}anodizedaluminum,aluminum,aluminum alloys,copper,copper alloys,orthelike.Thematerialforthebaseblockisnotlimitedthereto,butmayincludeother materialsthatgenerallyhaveahighthermalconductivity,ahightemperatureoperability,a corrosionresistance,andthelike.Oneormorethermoelectricgenerator(TEG)modulescanbe includedinTEG layer1220eachhavingafirstendandasecondend,inwhichthefirstendof theTEG layer1220isthermallycoupledtothebaseblockandconfiguredtoreceiveatleasta portionoftheheatdissipatedfrom theheatsource1210.Insomeimplementations,multiple TEG modulescanbeintegratedvertically(e.g.,withrespecttothecenteroftheheatsource 1210)toimproveefficiency.A coolinglayer1230canincludeathirdendandafourthend,in whichthethirdendofthecoolinglayer1230isthermallycoupledtothesecondendoftheTEG layer1220.Thecoolinglayer1230mayincludingcirculatingliquid,suchasacoolant,that absorbsheatfrom theTEG layer1220andrejectstheheatintotheenvironmentatanother location.Insomeimplementations,TECscanbeincludedin thecoolinglayer1230.
[0062] Inoperation,theTEG module1030maygenerateelectricpowerfrom theheatthat dissipatesfrom theheatsource1010,andcoolinglayer1030canprovecoolingforthecold memberoftheTEG module1030.Therefore,theoutputpowerand/orefficiencyofthewaste heatrecoverysystem maybeincreased.
[0063] ReferringagaintoFIG.10,insomeimplementations,thebaseblock 1020mayinclude aheatexchanger1050disposedonasidethatfacestheheatsource1010.Theheatexchanger 1050mayfacilitatemoreefficientheattransferbetweentheheatsource1010(e.g.,kilnsurface) andthebaseblock 1020viaconvectiveandradiativeheattransfer.Theheatexchanger1050 mayinclude(e.g..bemadeof)anodizedaluminum,aluminum,aluminum alloys,copper,copper alloys,orthelike.Thematerialfortheheatexchanger1050isnotlimitedthereto,butmay includeothermaterialsthatgenerallyhaveahighthermalconductivity,ahightemperature operability,acorrosionresistance,andthelike.Insomeimplementations,atemperaturesensor 1070maybeincludedtomeasureatemperatureofasurfaceoftheheatsource1010.The temperaturesensor1070maybeathermocouple,aresistancetemperaturedetector(RTD),an infraredsensor,orthelike.Whenthetemperatureofthesurfaceoftheheatsource 1010is greaterthanamaximum operationtemperatureoftheTEG,theelectricloadmaybe disconnectedfrom theTEG ioprotecttheTEG from beingdamagedbythehightemperature. Thewasteheatrecoverysystem 1000mayalsoincludeaheatsink 1060disposedonthesecond endoftheTEC module1040.Theheatsink 1060mayfacilitateheatrejectionfrom thehot surfaceoftheTEC.'module1040.
[0064] Inoperation,theheatsource(e.g.,cementkiln)maysometimesrequireacool-downfor maintenancepurposes,operationalpurposes,orduetoamalfunction.Whentheheatsource requirescooling,anelectricpowermaybeprovidedtotheTEG suchthatthefirstendofthe TEG iscooledandthesecondendoftheTEG isheated.Accordingly,thesurfaceoftheheat sourcemayreceiveanactivecoolingbytheinverseoperationoftheTEG,andtheheatsource maybecooledmorequickly,
[0065] Inimplementations,apluralityofthewasteheatrecoveryapparatusmaybedisposed adjacentto(e.g.,around;proximateto)theheatsource(e.g.,cementkiln)tosurroundtheentire outersurfaceoftheheatsourcetomaximizetheportionofthescavengedheat.Cementkilns mayprovideathermalinputtothebaseblockandmaintainthetemperatureoftheTEG hot membertemperatureatabout350°C.ThecoolinglayermaymaintaintheTEG coldmember temperatureatabout30°C.However,theoperationtemperaturesofthesystem isnotlimited theretoandmayvarybasedontheamountofheatdissipationfrom theheatsource,ambient conditions,orthelike.
[0066] FIGS,13A to 13D illustrateexamplesoftheelectricpowergenerationsystem installed aroundacementkiln.FIG,13A illustratesanexampleofacementkiln 1300withnoelectric powergenerationsystem installed.FIG.13B illustratesanexampleofacementkiln 1300with anexemplaryimplementationofanelectricpowergenerationsystem 1302installedaroundthe kiln 1300.FIG.13C illustratestheelectricpowergenerationsystem 1302inanopen configurationfordemonstrationpurposes.FIG.13D illustratesaninnersideconfigurationofthe electricpowergenerationsystem 1302viewedfrom thebaseblockside(e.g.,correspondingto baseblock 1020).
[0067] FIG.14isadiagram illustratingelectricalconnectionsincludedinasystem 1400 accordingioanexemplaryimplementationofthepresentdisclosure.AsshowninFIG.14,the electricitygeneratedbyaTEG 1430maybecollectedataTEG driver1450.Inimplementations inwhichTECsareutilizedinthecoolinglayer,aportionoftheinputpowermaybesuppliedtoa TEC.'driver1460.TheTEC driver1460maysupplyelectricalpowertoaTEC?1440basedona TEC controlsignalgeneratedbyacontroller1470.InimplementationsinwhichTECsarenot utilizedinthecoolinglayer,thecontroller1470mayprovideacontrolsignaltoacoolinglayer tocontrolcirculationofthecoolantliquid.TheTEG driver1450maysupplypoweroutputtoan externalload1420,therebyachievinganetpowergeneration.
[0068] Thecontroller1470mayreceivedatafrom environmentalsensors1490,andgenerate controlsignalsbasedontheenvironmentaldata.Theenvironmentaldatamayincludeambient temperature,ambienthumidity,windspeed,winddirection,precipitationdata,orthelike.The controller1470mayalsoreceiveakilnsurfacetemperaturedatafrom atemperaturesensor1480. Whenthetemperaturedataisaboveafirstpresettemperature,thecontroller1470maydelivera controlsignaltotheTEG driver1450tocausetheTEG drivertoelectricallydisconnecttheTEG 1430andstopextractingpowerfrom theTEG 1430.Whenthetemperaturedataisabovea secondpresettemperature,thecontroller1470maydeliveracontrolsignaltotheTEG driver 1450tocausetheTEG drivertosupplyelectricitytotheTEG 1430suchthattheTEG 1430 operatesinacoolingmodeandisusedtocoolthekilnsurface.Thesecondpresettemperature maybegreaterthanthefirstpresettemperature.Insomeimplementations,thesecondpreset temperaturemaybelessthanthefirstpresettemperature.
[0069] FIG.15isaflow chartillustratingamethodof1500forcontrollingmodesofoperating awasteheatrecoverysystem accordingtoanexemplaryimplementationofthepresent disclosure.Instep 1510,thewasteheatrecoverysystem mayreceiveheatfrom aheatsource.In step 1520,electricitymaybegeneratedinaTEG usingthereceivedheat.Instep 1530,aportion ofthegeneratedelectricitymaybesuppliedtoaTEC tocausetheTEC tocoolthecoldmember oftheTEG,InimplementationsinwhichthecoolinglayerdoesnotincludeaTEC (e.g.,where thecoolinglayerincludesacirculatingcoolantliquid),step 1530canbeomitted.Steps1510, 1520,and 1530maybereferredtoasapowergenerationmode.Instep 1540,atemperatureof theheatsourcemaybemonitored.Whenthemeasuredtemperatureislowerthanafirstpreset temperature,thecyclemayberepeatedandthesystem maymaintainthepowergenerationmode. Whenthemeasuretemperatureisgreaterthanorequaltothefirstpresettemperature,the controllermaysubsequentlyevaluatewhetherthetemperatureishigherthanasecondpreset temperature(1550).Whenthemeasuredtemperatureislessthanthesecondpresettemperature, thecontrollermaycausetoelectricallydisconnecttheTEG suchthatnopowerisgeneratedfrom theTEG (1560),Whenthemeasuredtemperatureisgreaterthanorequaltothesecondpreset temperature,thecontrollermayactivateacoolingmode,inwhichthecontrollermaycauseto supplyelectricitytotheTEG tooperateitsuchthattheTEG coolsthesurfaceoftheheatsource (1570).Thetemperaturemonitoringloop(1540,1550,1560,and1570)mayberepeateduntil themeasuredtemperaturebecomeslessthanthefirstpresettemperature,inwhichcasethe controllermaycausethewasteheatrecoverysystem tooperateinthepowergenerationmode. Alarmsmaybegeneratedwhendetectingthatthemeasuredtemperatureishigherthanthefirst presettemperatureorthesecondpresettemperature.Thealarmsmaybevisibleand/oraudible, andarenotlimitedtoanyparticularmeans.Anyalarmsknownintheartmaybeused.
[0070] Exemplarytechnicaleffectsofthesubjectmatterdescribedhereinincludetheabilityto collectandconvertheatemittedfrom aheatsourceintoelectricalpowerusingasubstrate materialthatcanbereadilyandeasilyappliedtoaheatsource.Inthisway,electricalpowercan begeneratedfrom heatwhichmayotherwisebelosttotheenvironment,therebyincreasing overallenergyutilizationinvariousindustrialprocesses,suchasincementmanufacturing processes.Althoughafew variationshavebeendescribedindetailabove,othermodificationsor additionsarepossible.Forexample,thesubjectmatterdescribedhereinisnotlimitedto applicationwithincementkilns,andmayalsobeappliedtoarticlesinproximityofheat generatingobjectsinordertoscavengeandrecuperatewasteheat.Forexample,thesubject matterdescribedhereincanbeincludedin,butisnotlimitedto,insulativematerialsand wearablearticles.Thesubjectmatterdescribedhereincanbeappliedtoothermaterialsor articleswhichinterfacewithaheatsourcetoscavengeandrecuperatewasteheatforthepurpose ofgeneratingelectricalpower.
[0071] Oneormoreaspectsorfeaturesofthesubjectmatterdescribedhereincanberealizedin digitalelectroniccircuitry,integratedcircuitry,speciallydesignedapplicationspecificintegrated circuits(ASICs),fieldprogrammablegatearrays(FPGAs)computerhardware,firmware, software,and/orcombinationsthereof.Thesevariousaspectsorfeaturescaninclude implementationinoneormorecomputerprogramsthatareexecutableandorinterpretableona programmablesystem includingatleastoneprogrammableprocessor,whichcanbespecialor generalpurpose,coupledtoreceivedataandinstructionsfrom,andtotransmitdataand instructionsto.astoragesystem,atleastoneinputdevice,andatleastoneoutputdevice.The programmablesystem orcomputingsystem mayinchideclientsandservers.A clientandserver aregenerallyremotefrom eachotherandtypicallyinteractthroughacommunicationnetwork. Therelationshipofclientandserverarisesbyvirtueofcomputerprogramsrunningonthe respectivecomputersandhavingaclient-serverrelationshiptoeachother.
[0072] Thesecomputerprograms,whichcanalsobereferredtoasprograms,software, softwareapplications,applications,components,orcode,includemachineinstructionsfora programmableprocessor,andcanbeimplementedinahigh-levelprocedurallanguage,an object-orientedprogramminglanguage,afunctionalprogramminglanguage,alogical programminglanguage,and'orinassembly/niachinelanguage.Asusedherein,theterm "machine-readablemedium"referstoanycomputerprogram product,apparatusand/ordevice, suchasforexamplemagneticdiscs,opticaldisks,memory,andProgrammableLogicDevices (PLDs),usedtoprovidemachineinstructionsand/ordatatoaprogrammableprocessor, includingamachine-readablemedium thatreceivesmachine.instructionsasamachine-readable signal.Theterm "machine-readablesignal"referstoanysignalusedtoprovidemachine instructionsand/ordatatoaprogrammableprocessor.Themachine-readablemedium canstore suchmachineinstructionsnon-transitorily,suchasforexampleaswouldanon-transienisolid- statememory'oramagneticharddriveoranyequivalentstoragemedium.Themachine-readable medium canalternativelyoradditionallystoresuchmachineinstructionsinatransientmanner, suchasforexampleaswouldaprocessorcacheorotherrandom accessmemoryassociatedwith oneormore physicalprocessorcores. [0073] Toprovideforinteractionwithauser,oneormoreaspectsorfeaturesofthesubject matterdescribedhereincanbeimplementedonacomputerhavingadisplaydevice,suchasfor exampleacathoderaytube(CRT)oraliquidcrystaldisplay(LCD)oralightemittingdiode (LED)monitorfordisplayinginformationtotheuserandakeyboardandapointingdevice,such asforexampleamouseoratrackball,bywhichtheusermayprovideinputtothecomputer. Otherkindsofdevicescanbeusedtoprovideforinteractionwithauseraswell.Forexample, feedbackprovidedtotheusercanbeanyform ofsensoryfeedback,suchasforexamplevisual feedback,auditoryfeedback,ortactilefeedback;andinputfrom theusermaybereceivedinany form,includingacoustic,speech,ortactileinput.Otherpossibleinputdevicesincludetouch screensorothertouch-sensitivedevicessuchassingleormulti-pointresistiveorcapacitive trackpads,voicerecognitionhardwareandsoftware,opticalscanners,opticalpointers,digital imagecapturedevicesandassociatedinterpretationsoftware,andthelike.
[0074] Inthedescriptionsaboveandintheclaims,phrasessuchas "atleastoneor1 or "oneor moreof mayoccurfollowedbyaconjunctivelistofelementsorfeatures.Theterm "and/or" mayalsooccurinalistoftwoormoreelementsorfeatures.Unlessotherwiseimplicitlyor explicitlycontradictedbythecontextinwhichitisused,suchaphraseisintendediomeanany ofthelistedelementsorfeaturesindividuallyoranyoftherecitedelementsorfeaturesin combinationwithanyoftheotherrecitedelementsorfeatures.Forexample,thephrases "at leastoneofA andB;" "oneormoreofA andB;"and "A and/orB"areeachintendedtomean "A alone,B alone,orA andB together," A similar.interpretationisalsointendedforlistsincluding threeormoreitems.Forexample,thephrases "atleastoneofA,B,andC;" "oneormoreofA, B,andC;"and "A,B.and/orC"areeachintendedtomean "A alone,B alone,Cialone,A andB together.A andC together,B andC together,orA andB andC together," Inaddition,useofthe term "basedon,"aboveandintheclaimsisintendedto mean, "basedatleastinparton,”such thatanunrecitedfeatureorelementisalsopermissible.
[0075] Thesubjectmatterdescribedhereincanbeembodiedinsystems,apparatus,methods, and/orarticlesdependingonthedesiredconfiguration.Theimplementationssetforthinthe foregoingdescriptiondonotrepresentallimplementationsconsistentwiththesubjectmatter describedherein.Instead,theyaremerelysomeexamplesconsistentwithaspectsrelatedtothe describedsubjectmatter.Althoughafew variationshavebeendescribedindetailabove,other modificationsoradditionsarepossible.Inparticular,furtherfeaturesand/orvariationscanbe providedinadditiontothosesetforthherein.Forexample,theimplementationsdescribedabove canbedirectedtovariouscombinationsandsubcombinationsofthedisclosedfeaturesandor combinationsandsubcombinationsofseveralfurtherfeaturesdisclosedabove.Tnaddition,the logicflowsdepictedintheaccompanyingfiguresand/ordescribedhereindonotnecessarily requiretheparticularordershown,orsequentialorder,toachievedesirableresults.Other implementationsmaybewithinthescopeofthefollowingclaims.

Claims

WHAT ISCLAIMED IS:
1. Ailsystem comprising: asubstratematerial;and athermoelectricgenerator(TEG)configuredwithinthesubstratematerial,
2. Thesystem ofclaim 1,furthercomprisingaheatgeneratingarticle,whereinthesubstrate materialispositionedinproximityoftheheatgeneratingarticleandtheTEG receives heatgeneratedbytheheatgeneratingarticle,
3. 'Filesystem ofclaim 2,whereintheheatgeneratingarticleisincludedinatleastoneofan industrialenvironment,amanufacturingenvironment,athermalprocessingenvironment, anautomobile,anairplane,aheatexchanger,oranHVAC system,
4. Thesystem ofanyoneoftheprecedingclaims,comprisingafirstpluralityofTEGsare coupledinparallelwithinthesubstratematerial,
5. Thesystem ofanyoneoftheprecedingclaims,comprisingasecondpluralityofTEGs arecoupledinserieswithinthesubstratematerial.
6. Thesystem ofanyoneoftheprecedingclaims,furthercomprisingatleastone piezoelectricsensorcoupledtotheTEG,
7. Thesystem ofanyoneoftheprecedingclaims,whereinthesubstratematerialincludesa pluralityofvoidsformedbetweenapluralityofstructuralelementsincludedinthe substratematerialandtheTEG isconfiguredwithinatleastonevoidofthepluralityof voids,
8. Thesystem ofanyoneoftheprecedingclaims,whereinthesubstratematerialisan insulativematerial.
9. Thesystem ofclaim 8,whereintheinsulativematerialincludesatleastoneofrockwool, slagwoolcellulose,glasswool,polystyrene,urethanefoam,ceramic,vermiculite,perlite, woolliber,plantfiber,fiberglass,gypsum,afire-retardantinsulativematerial,avaporretardantinsulativematerial.
10. The system of any one of the preceding claims, w herein tire substrate material is in the form of a fabric.
11. The system of claim 10, wherein the fabric is inc hided as a portion of an article of clothing.
12. An system comprising: a substrate material; an electrically conductive material coupled to the substrate material; and a plurality of thermoelectric generators (TEGs) coupled to the electrically conductive material.
13. The system of claim 12, further comprising a heat source, wherein the substrate material is positioned in proximity of the heat source and the TEG recei ves heat generated by the heat source.
14. The system of claim 13, wherein the heat source is a human body or an animal body.
15. The system of any one of claims 12-14, further comprising a ceramic material coupled to the electrically conductive material.
16. The system of any one of claims 12-15, wherein the substrate material and the electrically conductive material are coupled so as to form a fabric.
17. The system of claim 16, wherein the plurality of TEGs are positioned within the fabric in a matrix configuration, a Linear configuration, a radial configuration, or a configuration in which a first portion of the plurality of TEGs at a first location are arranged di fferently from a second portion of the plurality of TEGs at a second location.
18. The system of claim 17, wherein a first plurality of TEGs are coupled .in parallel to the electrically conductive material.
19. The system of claim 17, wherein a second plurality of TEGs are coupled in series to the electrically conductive material.
20. The system of claim 16, wherein the fabric is included as a portion of an article of clothing.
21 . The system of any one of claims 12-20, further comprising at least one piezoelectric sensor coupled to at least one thermoelectric generator (TEG) included in the plurality of TEGs.
22. The system of any one of clai ms 12-21 , wherein the electrically conductive material includes at least one of silver, aluminum, copper, graphite, and intrinsically conducting polymer.
PCT/US2021/065479 2020-12-30 2021-12-29 Material containing thermoelectric generators WO2022147096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063132027P 2020-12-30 2020-12-30
US63/132,027 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022147096A1 true WO2022147096A1 (en) 2022-07-07

Family

ID=80050836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/065479 WO2022147096A1 (en) 2020-12-30 2021-12-29 Material containing thermoelectric generators

Country Status (1)

Country Link
WO (1) WO2022147096A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000309A1 (en) * 2007-06-29 2009-01-01 Jeffrey Gerard Hershberger Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
US20120227778A1 (en) * 2011-03-11 2012-09-13 Imec Thermoelectric Textile
US20140174496A1 (en) * 2012-12-21 2014-06-26 Georgia Tech Research Corporation Hybrid generator using thermoelectric generation and piezoelectric generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000309A1 (en) * 2007-06-29 2009-01-01 Jeffrey Gerard Hershberger Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
US20120227778A1 (en) * 2011-03-11 2012-09-13 Imec Thermoelectric Textile
US20140174496A1 (en) * 2012-12-21 2014-06-26 Georgia Tech Research Corporation Hybrid generator using thermoelectric generation and piezoelectric generation

Similar Documents

Publication Publication Date Title
US3129116A (en) Thermoelectric device
US20100006132A1 (en) Stacked Thermoelectric Modules
US6679064B2 (en) Wafer transfer system with temperature control apparatus
JP2014160873A (en) Cooling box for components or circuits
WO2010004550A2 (en) Split thermo-electric structure and devices and systems that utilize said structure
JP5018168B2 (en) Antenna device
RU2011144115A (en) THERMOELECTRIC MODULE WITH INSULATED SUBSTRATE
Brownell et al. Optimal design of thermoelectric generators embedded in a thermal resistance network
US20160315242A1 (en) Thermoelectric conversion module
JP2014504007A (en) Thermoelectric element and method for producing thermoelectric element
WO2022147096A1 (en) Material containing thermoelectric generators
Jia et al. Design and parameter study of a thermoelectric generator for waste heat recycling in flexible micro-light-emitting diodes
KR20020019786A (en) Thermoelectric cooling module with temperature sensor
KR20120009161A (en) Thermo electric cooler using flexible substrate and method for manufacturing the same
KR101384981B1 (en) Thermoelectric device having structure capable of improving thermal efficiency
US3110628A (en) Thermoelectric assembly
Semenyuk et al. Novel thermoelectric modules for cooling powerful LEDs: Experimental results
Korhonen et al. Estimating the specific heat capacity and heating of electronic sensors and devices
JP2018166184A (en) Power module
Shelekhov et al. Evaluation of new possibilities of using thermoelectric generators in systems of renewable energy sources (RES)
JPH08306965A (en) Thermoelectric conversion module for generation
JP2001053342A (en) Thermoelectric heater and cooler
US5901030A (en) Electrostatic chuck employing thermoelectric cooling
RU2335036C2 (en) Thermobattery
US20240032425A1 (en) Multilevel thermoelectric cooling stack with thermal guard rings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848444

Country of ref document: EP

Kind code of ref document: A1