WO2022143913A1 - 一种多层共挤石塑地板及其制造方法 - Google Patents

一种多层共挤石塑地板及其制造方法 Download PDF

Info

Publication number
WO2022143913A1
WO2022143913A1 PCT/CN2021/143142 CN2021143142W WO2022143913A1 WO 2022143913 A1 WO2022143913 A1 WO 2022143913A1 CN 2021143142 W CN2021143142 W CN 2021143142W WO 2022143913 A1 WO2022143913 A1 WO 2022143913A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
weight
stone
parts
plastic
Prior art date
Application number
PCT/CN2021/143142
Other languages
English (en)
French (fr)
Inventor
宋剑刚
王劲松
符家进
晏鹏
Original Assignee
浙江永裕家居股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202023347070.4U external-priority patent/CN215889144U/zh
Priority claimed from CN202011641442.6A external-priority patent/CN112746719A/zh
Application filed by 浙江永裕家居股份有限公司 filed Critical 浙江永裕家居股份有限公司
Priority to EP21893118.6A priority Critical patent/EP4050179A4/en
Priority to US17/664,420 priority patent/US20220275653A1/en
Publication of WO2022143913A1 publication Critical patent/WO2022143913A1/zh
Priority to US18/361,846 priority patent/US20230383546A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/107Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials composed of several layers, e.g. sandwich panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • B29C48/495Feed-blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/732Floor coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/20Particles characterised by shape
    • B32B2264/203Expanded, porous or hollow particles
    • B32B2264/2032Hollow spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/301Average diameter smaller than 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/302Average diameter in the range from 100 nm to 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/40Pretreated particles
    • B32B2264/402Pretreated particles with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/102Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials of fibrous or chipped materials, e.g. bonded with synthetic resins

Definitions

  • This specification relates to the technical field of floor manufacturing, in particular to a multi-layer co-extruded stone-plastic floor and a manufacturing method thereof.
  • Stone plastic floor is a multi-layer structure PVC floor, which has the advantages of mildew resistance, moisture resistance, fire resistance, wear resistance, simple installation and long service life, and is widely used in indoor floor decoration.
  • the substrate layer in the multi-layer stone-plastic floor is extruded through a thermal fusion process with natural stone powder (calcium carbonate powder) and polymer resin (polyvinyl chloride) as the main raw materials.
  • natural stone powder calcium carbonate powder
  • polymer resin polyvinyl chloride
  • One of the embodiments of this specification provides a multi-layer co-extruded stone-plastic floor
  • the multi-layer co-extruded stone-plastic floor includes at least one co-extruded stone-plastic layer
  • the co-extruded stone-plastic layer from top to bottom at least includes: a stable layer, a stone-plastic rigid layer and a second stable layer
  • the first stable layer and the second stable layer have a dimensional change rate of 0-0.12% at -15°C to 80°C
  • the first At least one of the stabilization layer, the stone-plastic rigid layer and the second stabilization layer comprises ACR/nano-SiO 2 composite particles.
  • Another aspect of the present specification provides a method for manufacturing a multi-layer co-extruded stone-plastic floor, the method comprising: mixing materials of at least one layer of a first stable layer and a second stable layer to obtain a first mixture, and mixing the first stable layer
  • a first mixture is obtained by mixing and stirring, wherein the first mixture includes ACR/nano-SiO 2 composite particles;
  • a second mixture is obtained by mixing the materials of the stone-plastic rigid layer, and a second mixture is obtained by stirring the second mixture ingredients, wherein the second mixture comprises ACR/nano-SiO 2 composite particles;
  • the first mixture and the second mixture are extruded through an extruder to extrude a co-extruded stone plastic layer, and the co-extruded stone plastic
  • the layer includes a three-layer structure, which are the first stable layer, the stone-plastic rigid layer and the second stable layer in order from top to bottom.
  • FIG. 1 is a cross-sectional view of a co-extruded stone plastic layer according to some embodiments of the present specification
  • FIG. 2 is a cross-sectional view of a multi-layer co-extruded stone-plastic floor according to some embodiments of the present specification
  • FIG. 3 is a flow chart of a method for manufacturing a multi-layer co-extruded stone-plastic floor according to some embodiments of the present specification.
  • FIG. 1 is a cross-sectional view of a co-extruded stone plastic layer according to some embodiments of the present specification.
  • the co-extruded stone-plastic floor can be a multi-layer structure floor.
  • the co-extruded stone-plastic floor may include at least one or more co-extruded stone-plastic layers.
  • the co-extruded stone-plastic layer refers to a structure that provides support for the co-extruded stone-plastic floor.
  • the co-extruded stone-plastic layer can provide the main strength or hardness for the co-extruded stone-plastic floor.
  • the co-extruded stone-plastic layer of the co-extruded stone-plastic floor may be a multi-layer structure.
  • the co-extruded stone-plastic layer can include: a stable layer and a stone-plastic rigid layer.
  • a stabilizing layer may refer to a structural layer that stabilizes other layers in the floor when they are deformed.
  • the stone-plastic rigid layer can be a structural layer that provides floor strength and support.
  • the number of layers of the stabilizing layer and/or the stone-plastic rigid layer in the co-extruded stone-plastic layer may be one or more layers, and the composition of the stabilizing layer or the stone-plastic rigid layer of each layer may be the same or different.
  • the order between different layers in the co-extruded stone-plastic layer may be that the stone-plastic rigid layer is located between the stable layers, or the stone-plastic rigid layer may be located above the stable layer.
  • two adjacent layers can be connected in various ways. For example, it is connected by an adhesive, and the adhesive refers to a substance that makes the objects adhere to each other, and the adhesive can be PLA resin, phenolic resin, and the like. For another example, they are connected by thermocompression bonding. It can be understood that the connection manners between different adjacent layers may be the same or different.
  • the co-extruded stone-plastic layer may include two stable layers and one layer of stone-plastic rigid layer. As shown in FIG. 1 , the co-extruded stone-plastic layer 100 may include, in order from top to bottom: a first stable layer 101 , a stone-plastic rigid layer 102 and a second stabilizing layer 103 .
  • the first stabilizing layer may refer to a structural layer used to stabilize other layers in the co-extruded stone-plastic floor.
  • the first stabilizing layer may be provided when other layers (eg, UV coating, wear-resistant layer, etc.) above the first stabilizing layer in the co-extruded stone-plastic floor (eg, the co-extruded stone-plastic floor 200 ) expand and contract during thermal expansion Structural layers that pull down. See below for more details on other layers.
  • the first stabilizing layer can cause the layer to undergo little or no deformation under the external force of other layers (eg, other layers above the first stabilizing layer).
  • the deformation is less than 0.13mm.
  • 1psi 0.006895Mpa.
  • the first stable layer can be a rigid material layer, that is, the material used can prevent the layer from deforming under the action of external force, thereby ensuring the compressive strength of the stone-plastic floor and preventing brittle fracture.
  • the first stabilizing layer has a dimensional change rate of 0-0.12% at -15°C-80°C.
  • the composition of the first stabilization layer may include ACR/nano-SiO 2 composite particles.
  • ACR/nano-SiO 2 composite particles are based on ACR (acrylate copolymer, acrylate copolymer) and nano-SiO 2 composite generated chemical substances.
  • the ACR/nano-SiO 2 composite particles may be nanoparticles.
  • the particle size range of the composite particles is between 20-80 nm. It can be understood that the particle size of the composite particles can be determined based on the nano-SiO 2 that generates the composite particles.
  • the ACR/nano-SiO 2 composite particles can be generated by various composite methods.
  • ACR/nano- SiO2 composite particles can be obtained by physical mixing or mechanical mixing of ACR and nano-SiO2.
  • ACR and nano-SiO 2 can be chemically mixed to obtain ACR/nano-SiO 2 composite particles.
  • the surface-modified nano-SiO 2 particles are dispersed in the acrylate monomer, and the allyl group is introduced to undergo a polymerization reaction with the monomer to obtain a grafted polymer chain to form an ACR/nano-SiO 2 composite particle.
  • the composite particles prepared by the mini-emulsion polymer of acrylic monomer of nano-SiO2 modified by methacrylic acid-3-trimethoxysilane (MPS) coupling agent are examples of the composite particles prepared by the mini-emulsion polymer of acrylic monomer of nano-SiO2 modified by methacrylic acid-3-trimethoxysilane (MPS) coupling agent.
  • MPS methacrylic acid-3-trimethoxysilane
  • the second stabilizing layer may refer to a structural layer used to stabilize other layers in the co-extruded stone-plastic floor.
  • the second stable layer can be provided when other layers above the second stable layer in the co-extruded stone-plastic floor (eg, the first stable layer, stone-plastic rigid layer, UV coating, wear-resistant layer, etc.) expand and contract during thermal expansion Structural layers that pull down.
  • the second stabilizing layer has a dimensional change rate of 0-0.12% at -15°C-80°C.
  • the composition of the second stabilization layer may include ACR/nano-SiO 2 composite particles.
  • ACR/nano-SiO 2 composite particles reference may be made to the foregoing, and no further description will be given.
  • the stone-plastic rigid layer refers to the structural layer used to provide the strength and support of the co-extruded stone-plastic floor.
  • the composition of the stone-plastic rigid layer may include ACR/nano-SiO 2 composite particles.
  • the components of the stone-plastic rigid layer, the first stabilizing layer and the second stabilizing layer may further include other components, as described later.
  • Setting the co-extruded stone-plastic layer on the floor as a three-layer structure can effectively control the overall stability of the multi-layer co-extruded stone-plastic floor and effectively control the warped tile shape caused by the shrinkage of other layers of the multi-layer co-extruded stone-plastic floor.
  • the setting of the stone-plastic rigid layer in the co-extruded stone-plastic layer ensures the strength of the multi-layer co-extruded stone-plastic floor, and improves the heat resistance and creep resistance of the multi-layer co-extruded stone-plastic floor.
  • ACR/nano-SiO 2 composite particle components in the floor (for example, a stabilizing layer or a stone-plastic rigid layer), the performance of the floor can be significantly improved.
  • ACR/nano-SiO 2 composite particles are nanoparticles, and nanoparticles have size effect, local field effect, quantum effect, etc., which can make them show excellent performance that conventional materials do not have, including improving the strength of the floor, and by improving the floor's strength Vicat softening point to improve the thermal deformation resistance of the floor.
  • the co-extruded stone-plastic floor may contain other layers besides the co-extruded stone-plastic layer.
  • the multi-layer co-extruded stone-plastic floor may further include at least one of the following structural layers: UV coating, wear-resistant layer, and color filter layer.
  • UV coating wear-resistant layer
  • color filter layer color filter layer
  • the ACR grafting rate on the surface of the ACR/nano-SiO 2 composite particles may be 70-110%.
  • the ACR graft ratio refers to the efficiency of combining other functional groups with chemical bonds in the compound molecular formula of the acrylate copolymer.
  • Other functional groups refer to atoms or atomic groups added to the compounds themselves that determine the chemical properties of organic compounds.
  • other functional groups may be methyl, epoxy, and the like.
  • the components of the first stable layer and the second stable layer in the multi-layer co-extruded stone-plastic floor are set to include 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic fillers, and 1.5 parts by weight of Polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 part by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano-SiO2 composite particles with different graft ratios, 0.5 part by weight of carbon black ;
  • the components of the stone-plastic rigid layer in the multi-layer co-extruded stone-plastic floor are set as: 100 parts by weight of polyvinyl chloride, 360 parts by weight of inorganic filler, 1.2 parts by weight of polyethylene wax, 5 parts by weight of stabilizer, 1.0 parts by weight of stearic acid, 10 parts by weight of ACR/nano-SiO2 composite particles with different graft ratios, and 10 parts by weight of glass micro
  • Test results include the impact strength of multi-layer co-extruded stone-plastic floors.
  • Impact strength is the energy absorbed per unit cross-sectional area when the sample is broken or fractured under the action of impact load.
  • a shock load is a load that acts on an object at a very high speed in a short period of time.
  • the experimental data show that under the same composition, when the graft ratio of ACR/nano-SiO 2 composite particles is 70%, 85%, 100% and 110%, the material has impact resistance, and the performance is obviously better than that of ACR/nano-SiO 2
  • the graft ratio of 0% can be understood that when the nano-SiO 2 particles are mixed with ACR, ACR is not combined with SiO 2 through chemical bonds, and ACR is not modified.
  • the level of impact resistance can reflect the toughening effect of the material. The better the impact resistance, the better the toughening effect.
  • ACR/nano-SiO 2 composite particles with a surface ACR graft ratio of 70-110% has a better toughening effect.
  • the ACR/nano-SiO 2 composite particles can be dispersed into fine particles suspended in the polyvinyl chloride PVC, thereby increasing the toughening effect of the polyvinyl chloride PVC, making the toughening effect of the polyvinyl chloride PVC with composite particles significantly better than nano SiO2 particles and unmodified ACR copolymer.
  • the ACR grafting rate on the surface of the ACR/nano-SiO 2 composite particles may be 70%.
  • the stone-plastic floor has a better toughening effect.
  • the ACR grafting rate on the surface of the ACR/nano-SiO 2 composite particles may be 85%.
  • the stone-plastic floor has a better toughening effect, and at the same time, the stone-plastic floor has the impact resistance, impact strength, static bending strength, elongation at break displacement, warping The curvature reaches the optimum value of product design comprehensive performance.
  • the ACR grafting rate on the surface of the ACR/nano-SiO 2 composite particles may be 100%.
  • the stone-plastic floor has the best toughening effect.
  • the ACR grafting rate on the surface of the ACR/nano-SiO 2 composite particles may be 110%.
  • the stone-plastic floor also has a good toughening effect.
  • the stabilizing layer and the stone-plastic rigid layer may be composed of multiple components, and may also contain polyvinyl chloride in addition to the aforementioned ACR/nano-SiO2 composite particles.
  • the stone-plastic rigid layer may comprise polyvinyl chloride.
  • At least one of the first stabilizing layer and the second stabilizing layer may comprise polyvinyl chloride.
  • the mass content of polyvinyl chloride in the stone-plastic rigid layer may be 18-21%. In some embodiments, the mass content of polyvinyl chloride in at least one of the first stabilizing layer and the second stabilizing layer may be 25-30%. In some embodiments, the amount of the ACR/nano-SiO 2 composite particles is 10-15% of the mass content of polyvinyl chloride in the corresponding layer. For example, the ACR/nano-SiO 2 composite particles in the stone-plastic rigid layer are 10-15% of the mass content of polyvinyl chloride in the stone-plastic rigid layer.
  • the mass content of polyvinyl chloride in the stone-plastic rigid layer may be 18%.
  • the mass content of polyvinyl chloride in at least one of the first stable layer and the second stable layer may be 25%.
  • the amount of ACR/nano-SiO2 composite particles may be 10% of the mass content of polyvinyl chloride in the corresponding layer.
  • the mass content of polyvinyl chloride in the stone-plastic rigid layer may be 19.5%.
  • the mass content of polyvinyl chloride in at least one of the first stable layer and the second stable layer may be 27%.
  • the amount of the ACR/nano-SiO 2 composite particles may be 12.5% of the mass content of polyvinyl chloride in the corresponding layer.
  • the mass content of polyvinyl chloride in the stone-plastic rigid layer may be 20%.
  • the mass content of polyvinyl chloride in at least one layer of the first stable layer and the second stable layer may be 28%.
  • the amount of the ACR/nano-SiO 2 composite particles may be 13% of the mass content of polyvinyl chloride in the corresponding layer.
  • the mass content of polyvinyl chloride in the stone-plastic rigid layer may be 21%.
  • the mass content of polyvinyl chloride in at least one layer of the first stable layer and the second stable layer may be 30%.
  • the amount of the ACR/nano-SiO 2 composite particles may be 15% of the mass content of polyvinyl chloride in the corresponding layer.
  • the stone-plastic rigid layer may include: 10-15 parts by weight of ACR/nano-SiO 2 composite particles.
  • the content of the ACR/nano-SiO 2 composite particles may be 12.5 parts by weight.
  • the components of the first stable layer and the second stable layer of the multi-layer co-extruded stone-plastic floor are set as follows: 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic fillers, and 1.5 parts by weight of polyvinyl chloride.
  • the stone-plastic rigid layer of the stone-plastic floor is set as follows: 100 parts by weight of polyvinyl chloride, 360 parts by weight of inorganic filler, 1.2 parts by weight of polyethylene wax, 5 parts by weight of stabilizer, 1.0 parts by weight of stearic acid, 10 parts by weight of stearic acid
  • the contents of glass microbeads and ACR/nano- SiO2 composite particles are used as variables.
  • Test results include: impact strength, static bending strength, thermal deformation Vicat and heating warpage.
  • the impact strength is the energy absorbed by the unit cross-sectional area when the sample is broken or fractured under the action of the impact load.
  • Static flexural strength is the compressive strength of the specimen when it is bent to fracture.
  • Thermal deformation Vicat is the temperature at which a sample is pressed into a depth of 1mm by a 1mm 2 indenter in a liquid heat transfer medium under a certain load and a certain constant temperature rise.
  • Heating warpage refers to the degree to which the surface of the object is distorted when it recovers to 23 ⁇ 2°C after being heated at 80°C for 6 hours.
  • the impact strength is 2.0KJ/m 2 ;
  • the static bending strength is 20MPa;
  • the thermal deformation Vicat is 45°C;
  • the heating warpage is 1.5mm;
  • the impact strength is 13.0KJ/m 2 ;
  • the static bending strength is 32MPa;
  • the thermal deformation Vicat is 65°C;
  • the heating warpage is 0.3mm;
  • the impact strength is 13.2KJ/m 2 ;
  • the static bending strength is 32MPa;
  • the thermal deformation Vicat is 65°C;
  • the heating warpage is 0.28mm;
  • the impact strength is 13.5KJ/m 2 ;
  • the static bending strength is 32MPa;
  • the thermal deformation Vicat is 65°C;
  • the heating warpage is 0.3mm;
  • the impact strength is 12.5KJ/m 2 ; the static bending strength is 30MPa; the thermal deformation Vicat is 65°C; and the heating warpage is 0.70mm.
  • the experimental data show that under the same other components, when the content of ACR/nano-SiO 2 composite particles in the stone-plastic rigid layer is 10 parts, 12.5 parts, and 15 parts, the impact resistance, thermal stability and performance of the stone-plastic floor are good. It is obviously better than the case when the content of ACR/nano-SiO 2 composite particles is 0 parts. It can be understood that when the stone-plastic rigid layer adopts 10-15 parts by weight of ACR/nano-SiO 2 composite particles, the stone-plastic floor has better impact resistance and good thermal stability.
  • the content of the ACR/nano-SiO 2 composite particles in the stone-plastic rigid layer may be 10 parts by weight.
  • the plastic rigid layer contains 10 parts by weight of ACR/nano-SiO 2 composite particles, the stone-plastic floor has better impact resistance and thermal stability.
  • the content of the ACR/nano-SiO 2 composite particles in the stone-plastic rigid layer may be 12.5 parts by weight.
  • the plastic rigid layer contains 12.5 parts by weight of ACR/nano-SiO 2 composite particles, the stone-plastic floor has good impact resistance and thermal stability.
  • the content of the ACR/nano-SiO 2 composite particles in the stone-plastic rigid layer may be 13 parts by weight.
  • the plastic rigid layer contains 13 parts by weight of ACR/nano-SiO 2 composite particles, the stone-plastic floor has the best impact resistance and thermal stability.
  • the content of the ACR/nano-SiO 2 composite particles in the stone-plastic rigid layer may be 15 parts by weight.
  • the plastic rigid layer contains 15 parts by weight of ACR/nano-SiO 2 composite particles, the stone plastic floor has better impact resistance and thermal stability.
  • the stone-plastic rigid layer may also contain glass beads.
  • Glass microbeads can be understood as hollow glass spheres with tiny dimensions.
  • the density of glass microbeads can be 0.50-0.70 g/cm 3 , and the particle size can be between 45-55 ⁇ m.
  • the glass microspheres may be modified hollow glass microspheres.
  • Modified hollow glass microspheres refer to hollow glass microspheres whose properties are changed. Changes in properties may include changes in the lipophilicity of the surface, different states (eg, dispersibility or fluidity in the molten state, etc.).
  • the content of glass microbeads may be 10-15% of the mass content of polyvinyl chloride in the stone-plastic rigid layer.
  • the content of glass microbeads may be 10% of the mass content of polyvinyl chloride in the stone-plastic rigid layer.
  • the content of glass microbeads may be 12.5% of the mass content of polyvinyl chloride in the stone-plastic rigid layer.
  • the content of glass microbeads may be 14% of the mass content of polyvinyl chloride in the stone-plastic rigid layer.
  • the content of glass microbeads may be 15% of the mass content of polyvinyl chloride in the rigid stone-plastic layer.
  • Adding glass microbeads to PVC, which is a component of the stone-plastic rigid layer, can improve the processing fluidity of the material, and at the same time, it can effectively improve the strength, creep resistance, and heat-resistant stability of the rigid stone-plastic layer of the floor, so that the floor can be used in the process of use. Not easily deformed.
  • the composition of the stone-plastic rigid layer includes 10-15 parts by weight of glass microbeads.
  • the content of glass microbeads may be 12.5 parts by weight.
  • the first stable layer and the second stable layer of the multi-layer co-extruded stone-plastic floor are set to: 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic fillers, 1.5 parts by weight of polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 parts by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano-SiO2 composite particles, 0.5 parts by weight of carbon black;
  • the stone plastic rigid layer is set as: 100 parts by weight of polyvinyl chloride, 360 parts by weight of inorganic filler, 1.2 parts by weight of polyethylene wax, 5 parts by weight of stabilizer, 1.0 parts by weight of stearic acid, 10 parts by weight of ACR/nano-SiO 2 composite particles, glass microbead content as variables.
  • the test results include: static bending strength, elongation at break displacement, heating warpage, heating dimensional change rate, thermal deformation Vicat.
  • the elongation displacement at break refers to the amount of displacement that an object undergoes when it is crushed.
  • the heating dimensional change rate refers to how much the size of the object changes when the object is heated at 80 °C for 6 hours and returns to 23 ⁇ 2 °C.
  • the experimental data show that when the other components are the same, when the content of glass microbeads in the stone-plastic rigid layer is 10, 12.5 and 15 parts, the impact resistance and thermal stability of the stone-plastic floor are good, and the performance is obviously better than that of glass microbeads.
  • the composition of the stone-plastic rigid layer adopts glass beads with a content of 10-15 parts by weight, and the stone-plastic floor has good impact resistance and thermal stability.
  • the content of glass microbeads in the stone-plastic rigid layer may be 10 parts by weight.
  • the plastic rigid layer contains 10 parts by weight of glass beads, the stone plastic floor has better impact resistance and thermal stability.
  • the content of glass microbeads in the stone-plastic rigid layer may be 12.5 parts by weight.
  • the plastic rigid layer contains 12.5 parts by weight of glass microbeads, the stone plastic floor has better impact resistance and thermal stability.
  • the content of glass microbeads in the stone-plastic rigid layer may be 14 parts by weight.
  • the plastic rigid layer contains 14 parts by weight of glass beads, the stone plastic floor has better impact resistance and thermal stability.
  • the content of glass microspheres in the stone-plastic rigid layer may be 15 parts by weight.
  • the plastic rigid layer contains 15 parts by weight of glass microbeads, the stone plastic floor has better impact resistance and thermal stability.
  • the stabilizing layer and the stone-plastic rigid layer may also contain other components.
  • the components of the stone-plastic rigid layer may also contain inorganic fillers, polyethylene wax, stabilizers, stearic acid or other additives, such as colorants, plasticizers, and the like.
  • the stabilizing layer (the first stabilizing layer and/or the second stabilizing layer) may contain, in addition to polyvinyl chloride, inorganic filler, polyethylene wax, stabilizer, stearic acid, oxidized polyethylene wax, carbon black or other additives, etc.
  • the ratio of other components of the stabilization layer and the stone-plastic rigid layer can be selected according to different situations.
  • the composition of the stabilizing layer may include 100 parts by weight of polyvinyl chloride, 12.5 parts by weight of ACR/nano-SiO2 composite particles and the following components: At least one: 240 parts by weight of inorganic fillers, 1.2 parts by weight of polyethylene wax, 8 parts by weight of stabilizers, 1.1 parts by weight of stearic acid, 0.4 parts by weight of oxidized polyethylene wax, and 0.3 parts by weight of carbon black.
  • the composition of the stone-plastic rigid layer further comprises 100 parts by weight of polyvinyl chloride and at least one of the following components: 392.5 parts by weight of inorganic filler, 1.5 parts by weight of polyethylene Wax, 6.5 parts by weight of stabilizer, 1.3 parts by weight of stearic acid.
  • Stabilizers refer to reagents that keep the structure of polymer compounds stable.
  • the stabilizer may be calcium stearate, dibasic lead salt, and the like.
  • the inorganic fillers can be understood as added inorganic fillers.
  • the inorganic fillers may include silicate-based inorganic fillers, carbonate-based inorganic fillers, and sulfate-based inorganic fillers.
  • the silicate-based inorganic filler may be china clay, mica powder, talc powder, feldspar powder, and the like.
  • the carbonate-based inorganic fillers can be heavy calcium carbonate, light calcium carbonate, ultrafine calcium carbonate, and the like.
  • the sulfate-based inorganic fillers can be barium sulfate, lithopone, and the like.
  • the thickness of the wear-resistant layer is 0.3mm
  • the thickness of the co-extruded stone-plastic layer is 3.7mm
  • the first stable layer is 0.95mm
  • the rigid layer is 1.8mm
  • the second stable layer is 0.95mm.
  • the rigid layer components are: 100 parts by weight of polyvinyl chloride, 360 parts by weight of inorganic fillers, 1.2 parts by weight of polyethylene wax, 5 parts by weight of stabilizer, 1.0 parts by weight of stearic acid, 10 parts by weight of ACR/ Nano-SiO 2 composite particles, 10 parts by weight of glass microbeads.
  • the first stabilization layer composition is set to be different.
  • the test results include: normal temperature warpage, heating warpage, heating dimensional change rate, low temperature dimensional change rate.
  • the warpage at room temperature refers to the degree to which the surface of the object is distorted when the object is at 25°C.
  • the low temperature dimensional change rate refers to how much the size of the object changes when the object is at a low temperature of -18 °C for 6 hours and recovers to 23 ⁇ 2 °C.
  • the components of the stable layer are: 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic filler, 1.5 parts by weight of polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 part by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano-SiO 2 composite particles, and 0.5 parts by weight of carbon black, the warpage at room temperature is 0.20mm, the warpage when heated is 0.25mm, the heating dimensional change rate is 0.05%, and the low temperature dimension The rate of change is 0.06%;
  • the components of the stable layer are: 100 parts by weight of polyvinyl chloride, 240 parts by weight of inorganic fillers, 1.2 parts by weight of polyethylene wax, 7.5 parts by weight of stabilizer, 1.1 parts by weight of stearic acid, 0.4 parts by weight of oxidized polyethylene wax, 12.5 parts by weight of ACR/nano-SiO 2 composite particles, and 12.5 parts by weight of carbon black, the normal temperature warpage is 0.30mm, the heating warpage is 0.50mm, the heating dimensional change rate is 0.08%, and the low temperature dimensional The rate of change is 0.09%;
  • the components of the stabilizing layer are: 100 parts by weight of polyvinyl chloride, 210 parts by weight of inorganic filler, 0.9 part by weight of polyethylene wax, 6 parts by weight of stabilizer, 0.8 part by weight of stearic acid, 0.2 part by weight of stearic acid of oxidized polyethylene wax, 10 parts by weight of ACR/nano-SiO 2 composite particles, and 0.5 parts by weight of carbon black, the normal temperature warpage is 0.35mm, the heating warpage is 0.60mm, the heating dimensional change rate is 0.075%, and the low temperature dimensional The rate of change is 0.10%;
  • the components of the stable layer are: 100 parts by weight of polyvinyl chloride, 180 parts by weight of inorganic filler, 0.9 part by weight of polyethylene wax, 6 parts by weight of stabilizer, 0.8 part by weight of stearic acid, 0.2 part by weight of stearic acid of oxidized polyethylene wax, 10 parts by weight of ACR/nano-SiO 2 composite particles, and 0.5 parts by weight of carbon black, the warpage at room temperature is 0.75mm, the warpage when heated is 0.90mm, the heating dimensional change rate is 0.18%, and the size at low temperature is 0.18%. The rate of change is 0.20%;
  • the components of the stable layer are: 100 parts by weight of polyvinyl chloride, 300 parts by weight of inorganic filler, 1.5 parts by weight of polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 part by weight
  • the oxidized polyethylene wax, 15 parts by weight of ACR/nano-SiO 2 composite particles, and 0.5 parts by weight of carbon black are used, the warpage at room temperature is 0.65mm, the warpage at heating is 1.50mm, the heating dimensional change rate is 0.13%, and the size at low temperature is 0.13%. The rate of change is 0.15%.
  • the experimental data shows that under the condition that the thickness of each layer and the composition of the stone-plastic rigid layer are the same, 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic filler, 1.5 parts by weight of polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 parts by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano-SiO 2 composite particles, and 0.5 parts by weight of carbon black, the floor has better deformation resistance and thermal stability.
  • the first stabilizing layer comprises the following components: 100 parts by weight of polyvinyl chloride, 210-270 parts by weight of inorganic fillers, 0.9-1.5 parts by weight of polyethylene wax, 6-10 parts by weight of stabilizer, 0.8-1.4 parts by weight of stearic acid, 0.2-0.6 parts by weight of oxidized polyethylene wax, 10-15 parts by weight of ACR/nano-SiO2 composite particles, 0.1-0.5 parts by weight of carbon Black, the floor has better resistance to deformation and thermal stability.
  • These experimental data may serve as the basis for the related examples.
  • the first stabilizing layer comprises the following components: 100 parts by weight polyvinyl chloride, 210-270 parts by weight inorganic filler, 0.9-1.5 parts by weight polyethylene Wax, 6-10 parts by weight of stabilizer, 0.8-1.4 parts by weight of stearic acid, 0.2-0.6 parts by weight of oxidized polyethylene wax, 10-15 parts by weight of ACR/nano-SiO2 composite particles, 0.1-0.5 parts by weight of carbon black.
  • the first stabilizing layer may include the following components: 100 parts by weight polyvinyl chloride, 210 parts by weight inorganic filler, 0.9 parts by weight polyethylene wax, 6 parts by weight parts by weight of stabilizer, 0.8 part by weight of stearic acid, 0.2 part by weight of oxidized polyethylene wax, 10 parts by weight of ACR/nano-SiO2 composite particles, and 0.1 part by weight of carbon black.
  • the first stabilizing layer may include the following components: 100 parts by weight polyvinyl chloride, 240 parts by weight inorganic filler, 1.2 parts by weight polyethylene wax, 8 parts by weight parts by weight of stabilizer, 1.1 part by weight of stearic acid, 0.4 part by weight of oxidized polyethylene wax, 12.5 parts by weight of ACR/nano-SiO 2 composite particles, and 0.3 part by weight of carbon black.
  • the first stabilizing layer may include the following components: 100 parts by weight polyvinyl chloride, 270 parts by weight inorganic filler, 1.5 parts by weight polyethylene wax, 10 parts by weight parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 part by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano-SiO 2 composite particles, and 0.5 part by weight of carbon black.
  • the thickness of the first stabilizing layer can range from 0.55mm to 1.15mm
  • the thickness of the stone-plastic rigid layer can range from 1.8mm to 2.2mm
  • the thickness of the first stabilizing layer can range from 1.8mm to 2.2mm. The range can be between 0.55mm and 1.15mm.
  • the thickness ratio of the stabilizing layer (the first stabilizing layer or the second stabilizing layer) and the stone-plastic rigid layer may be 1:1.8 ⁇ 2.2. In some embodiments, the thicknesses of the first stabilizing layer, the second stabilizing layer and the stone-plastic rigid layer may be the same or different. For example, the thickness ratio of the first stabilizing layer, the stone-plastic rigid layer and the second stabilizing layer may be 1:1.8 ⁇ 2.2:1.
  • the thickness of the first stable layer is different, which will have different effects on the performance test results of the multi-layer co-extruded stone-plastic floor. Specifically, the specific impact of the performance test results can be reflected by the following set of experiments.
  • the components of the first stable layer and the second stable layer are set as: 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic filler, 1.5 parts by weight of polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 parts by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano - SiO composite particles, 0.5 parts by weight of carbon black; stone-plastic rigid layer components are set as: 100 parts by weight of poly Vinyl chloride, 360 parts by weight of inorganic fillers, 1.2 parts by weight of polyethylene wax, 5 parts by weight of stabilizer, 1.0 parts by weight of stearic acid, 10 parts by weight of ACR/nano SiO 2 composite particles, 10 parts by weight of glass microbeads.
  • the first stable layer of different thickness is used to test the performance of the floor in terms of normal temperature warpage, heating warpage, heating dimensional change rate, and low temperature dimensional change rate.
  • the thickness of the wear-resistant layer is 0.3mm
  • the thickness of the co-extruded stone plastic layer is 3.7mm
  • the thickness of the first stable layer is 0.95mm
  • the thickness of the rigid layer is 1.8mm
  • the thickness of the second stable layer is 0.95mm.
  • Normal temperature warpage is 0.20mm
  • heating warpage is 0.25mm
  • heating dimensional change rate at 80°C is 0.05%
  • -18°C low temperature dimensional change rate is 0.06%
  • the thickness of the wear-resistant layer is 0.3mm, the thickness of the co-extruded base material is 3.7mm, the thickness of the first stable layer is 0.75mm, the thickness of the rigid layer is 2.0mm, and the thickness of the second stable layer is 0.95mm.
  • the test results are: Normal temperature warpage is 0.70mm; heating warpage is 0.70mm; heating dimensional change rate at 80°C is 0.12%; -18°C low temperature dimensional change rate is 0.20%;
  • the thickness of the wear-resistant layer is 0.3mm
  • the thickness of the co-extruded stone-plastic layer is 3.7mm
  • the thickness of the first stable layer is 0.55mm
  • the thickness of the rigid layer is 2.2mm
  • the thickness of the second stable layer is 0.95mm.
  • Normal temperature warpage is 0.85mm
  • heating warpage is 0.70mm
  • heating dimensional change rate at 80°C is 0.25%
  • -18°C low temperature dimensional change rate is 0.22%
  • the thickness of the wear-resistant layer is 0.3mm
  • the thickness of the co-extruded stone plastic layer is 3.7mm
  • the thickness of the first stable layer is 1.15mm
  • the thickness of the rigid layer is 1.8mm
  • the thickness of the second stable layer is 0.75mm.
  • Normal temperature warpage is 1.0mm
  • heating warpage is 1.2mm
  • heating dimensional change rate at 80°C is 0.30%
  • -18°C low temperature dimensional change rate is 0.18%.
  • the thickness ratio of the first stabilizing layer to the stone-plastic rigid layer may be 1:1.8. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness ratio of the first stabilizing layer to the stone-plastic rigid layer may be 1:1.9. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness ratio of the first stabilizing layer to the stone-plastic rigid layer may be 1:2.0. Through the setting of the thickness ratio, the plastic floor has better heat resistance and stability.
  • the thickness ratio of the first stabilizing layer to the stone-plastic rigid layer may be 1:2.2. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness of the second stable layer is different, which will have different effects on the performance test results of the multi-layer co-extruded stone-plastic floor. Specifically, the specific impact of the performance test results can be reflected by the following set of experiments.
  • the components of the first stable layer and the second stable layer are set as: 100 parts by weight of polyvinyl chloride, 270 parts by weight of inorganic filler, 1.5 parts by weight of polyethylene wax, 10 parts by weight of stabilizer, 1.4 parts by weight of stearic acid, 0.6 parts by weight of oxidized polyethylene wax, 15 parts by weight of ACR/nano - SiO composite particles, 0.5 parts by weight of carbon black; stone-plastic rigid layer components are set as: 100 parts by weight of poly Vinyl chloride, 360 parts by weight of inorganic fillers, 1.2 parts by weight of polyethylene wax, 5 parts by weight of stabilizer, 1.0 parts by weight of stearic acid, 10 parts by weight of ACR/nano SiO 2 composite particles, 10 parts by weight of glass microbeads.
  • the second stable layer of different thickness was used to test the performance of the floor in terms of normal temperature warpage, heating warpage, heating dimensional change rate, and low temperature dimensional change rate.
  • the thickness of the wear-resistant layer is 0.3mm, and the thickness of the co-extruded stone-plastic layer is 3.7mm.
  • the first stable layer is 0.95mm, the rigid layer is 1.8mm, and the second stable layer is 0.95mm.
  • the test results are: the warpage at room temperature is 0.20mm; heating warpage is 0.25mm; heating dimensional change rate at 80°C is 0.05%; -18°C low temperature dimensional change rate is 0.06%;
  • the thickness of the wear-resistant layer is 0.3mm, and the thickness of the co-extruded stone-plastic layer is 3.7mm.
  • the first stable layer is 0.95mm, the rigid layer is 2.0mm, and the second stable layer is 0.75mm.
  • the test results are: the warpage at room temperature is 1.20mm; heating warpage is 1.0mm; heating dimensional change rate at 80°C is 0.18%; -18°C low temperature dimensional change rate is 0.23%;
  • the thickness of the wear-resistant layer is 0.3mm, and the thickness of the co-extruded stone plastic layer is 3.7mm, of which the first stable layer is 0.95mm, the rigid layer is 2.2mm, and the second stable layer is 0.55mm.
  • the test results are: the warpage at room temperature is 2.0mm; heating warpage is 2.5mm; heating dimensional change rate at 80°C is 0.25%; -18°C low temperature dimensional change rate is 0.35%;
  • the thickness of the wear-resistant layer is 0.3mm, and the thickness of the co-extruded stone-plastic layer is 3.7mm.
  • the first stable layer is 0.75mm, the rigid layer is 1.8mm, and the second stable layer is 1.15mm.
  • the test results are: the warpage at room temperature is 0.80mm; heating warpage is 0.70mm; heating dimensional change rate at 80°C is 0.20%; -18°C low temperature dimensional change rate is 0.25%.
  • the thickness ratio of the second stabilizing layer to the stone-plastic rigid layer may be 1:1.8. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness ratio of the second stabilizing layer to the stone-plastic rigid layer may be 1:1.9. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness ratio of the second stabilizing layer to the stone-plastic rigid layer may be 1:2.0. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness ratio of the second stabilizing layer to the stone-plastic rigid layer may be 1:2.2. By setting this thickness, the stone-plastic floor has better heat resistance and stability.
  • the thickness ratio of the first stable layer, the stone-plastic rigid layer and the second stable layer is 1:1.8 to 2.2:1, can the first stable layer and the second stable layer satisfy the temperature between -15°C and 80°C.
  • the dimensional change rate at °C is 0-0.12%, which makes the stone-plastic floor have better heat resistance and stability. If the thickness ratio of the first stabilizing layer, the stone-plastic rigid layer and the second stabilizing layer is not 1:1.8 ⁇ 2.2:1, the dimensional change rate of the first stabilizing layer and the second stabilizing layer at -15°C ⁇ 80°C will be greater than 0-0.12%, the heat resistance and stability of the stone-plastic floor are poor.
  • FIG. 2 is a cross-sectional view of a multi-layer co-extruded stone-plastic floor according to some embodiments of the present specification.
  • the multi-layer co-extruded stone-plastic floor includes a co-extruded stone-plastic layer 100 , a UV coating 210 , a wear-resistant layer 220 and a color filter layer 230 .
  • the UV coating 210 may be a polyurethane UV-curable coating layer coated on the surface.
  • the UV coating is abrasion-resistant, stain-resistant, waterproof and moisture-resistant.
  • the wear layer 220 may be a structural layer that slows down mechanical wear.
  • the thickness of the wear-resistant layer affects the thickness of the first stabilizing layer and the second stabilizing layer. Specifically, when the thickness of the wear-resistant layer is larger, the greater the strength provided by the rigid structure layer is required, and the larger the thickness of the first stable layer and the second stable layer is.
  • the thickness ratio of the first stable layer, the stone-plastic rigid layer, and the second stable layer can be 1:2.2:1;
  • the thickness ratio of the first stable layer, the stone-plastic rigid layer, and the second stable layer can be 1:2.0:1.
  • the color filter layer 230 may be a decorative layer structure layer in the floor structure, and may provide effects such as color and pattern.
  • adjacent two of the UV coating, the wear layer and the color filter layer may be connected in various ways. For example, by means of adhesives. For another example, they are connected by thermocompression bonding. It can be understood that the connection manners between different adjacent layers may be the same or different.
  • FIG. 3 is a flow chart of a manufacturing method for preparing a multi-layer co-extruded stone-plastic floor according to some embodiments of the present specification.
  • Step 301 mixing the materials of at least one layer of the first stable layer and the second stable layer to obtain a first mixture, and stirring the first mixture to obtain a first ingredient.
  • the material of the first stabilizing layer refers to the raw materials required for manufacturing the first stabilizing layer.
  • the material of the second stabilizing layer refers to the raw materials required for manufacturing the second stabilizing layer.
  • the first mixture refers to the material obtained by mixing the components in the first stable layer or the second stable layer in the proportions shown in FIG. 1 .
  • the first ingredient refers to the material obtained by subjecting the first mixture to a processing process.
  • the processing process may include one or more of stirring and heating operations, cooling and cooling operations, and the like.
  • the first mixture may include ACR/nano-SiO2 composite particles.
  • ACR/nano-SiO2 composite particles please refer to the description of FIG. 1 .
  • the materials of at least one layer of the first stable layer and the second stable layer can be fed into a high-speed mixer through an automatic metering system, stirred and heated to 110-125°C, and then sent to a low-speed mixer to cool down to After 45 ⁇ 60 °C, put it into the discharging tank to obtain the first ingredient.
  • the automatic metering system can be a digital system for quantitative proportioning of various materials.
  • the high-speed mixer can be a mixer with a rotating speed in the range of 860r/min-1500r/min, self-friction heating or a built-in heating device.
  • the low-speed mixer can be a mixer with a rotating speed in the range of 325r/min-650r/min and a built-in cooling device.
  • the discharge tank can be a tank used to collect the agitated material.
  • Step 302 mixing the materials of the stone-plastic rigid layer to obtain a second mixture, and stirring the second mixture to obtain a second ingredient.
  • the material of the stone-plastic rigid layer refers to the raw materials required for the manufacture of the stone-plastic rigid layer.
  • the second mixture refers to the material obtained by mixing according to the proportions of the components in the stone-plastic rigid layer in FIG. 1 .
  • the second ingredient refers to the substance obtained by subjecting the second mixture to the processing process.
  • the processing process may include one or more of stirring and heating operations, cooling and cooling operations, and the like.
  • the second mixture may include ACR/nano-SiO 2 composite particles.
  • ACR/nano-SiO 2 composite particles please refer to the description of FIG. 1 .
  • the material of the stone-plastic rigid layer can be fed into a high-speed mixer through an automatic metering system, stirred and heated to 110-125°C, then sent to a low-speed mixer to cool down to 45-60°C, and then put into In the discharge tank, the second ingredient is obtained.
  • the material of the stone-plastic rigid layer can be fed into a high-speed mixer through an automatic metering system, stirred and heated to 115°C, then sent to a low-speed mixer to cool down to 55°C, and then put into a discharge tank , to get the second ingredient.
  • step 301 For the definitions of the automatic metering system, the high-speed mixer, the low-speed mixer, and the discharge tank, please refer to the description of step 301 .
  • Step 303 extruding the first mixture and the second mixture through an extruder to extrude a co-extruded stone plastic layer.
  • the extruder refers to a device that passes the plastic raw material in a viscous flow state after heating through an extrusion die to form a mold body with a cross-section similar to the shape of the mold.
  • the viscous flow state refers to the mechanical state of the amorphous polymer under the action of high temperature and large external force for a long time.
  • the extruder may include a non-coextrusion extruder and a coextrusion extruder.
  • a non-coextrusion extruder may include a main extruder and a die having channels of a certain cross-sectional shape.
  • the co-extrusion extruder can include a main extruder, an auxiliary extruder, a blanking device, a PLC control system, a distributor, and a die with a channel with a certain cross-sectional shape.
  • the blanking device is arranged on the main extruder, and the main extrusion
  • the extruder and the distributor are connected through the confluence core channel
  • the auxiliary extruder and the distributor are connected through the confluence core channel
  • the distributor is connected with the mold
  • the PLC control system is used to control the operation of the extruder and its supporting equipment.
  • the co-extrusion extruder used in the embodiments of the present specification is an existing co-extrusion extruder in the market, which will not be repeated here.
  • the manufacturing method of extruding the co-extruded stone plastic layer through an extruder may be as follows: put the first compound into the main extruder and the auxiliary extruder on the co-extrusion extruder for plasticization and extrusion to The upper and lower flow channels of the distributor; then put the second mixture into another extruder, extrude the rigid layer of stone plastic to the middle flow channel of the distributor, so as to form a multi-layer structure in the distributor, and then enter the mold; finally, in the mold In the process, three-layer co-extruded stone plastic layer is obtained by extrusion molding.
  • the extruded co-extruded stone-plastic layer enters the calendering roller group for calendering to fix the thickness, and then is laminated with the color film and the wear-resistant layer, and the embossing roller rolls the texture for one-time forming to obtain the stone-plastic floor.
  • a calender roll set is a device that uses rollers to apply pressure to a material to create a texture.
  • the set of calender rolls may include four rolls, five rolls, or six rolls, or the like.
  • Calendering to determine the thickness refers to the final thickness of the substrate after the surface of the extruded substrate is compacted and troweled.
  • Embossing rollers refer to rollers used to emboss concave and convex patterns on the surface of objects.
  • the color filter layer and the wear-resistant layer please refer to the relevant description of FIG. 2 .
  • the material of at least one layer of the first stable layer and the second stable layer may include, based on 363.5 parts by weight of the first stable layer or the second stable layer, 90-110 parts by weight of polyvinyl chloride, 10- 15 parts by weight of ACR/nano-SiO2 composite particles and at least one of the following materials: 210-270 parts by weight of inorganic filler, 0.9-1.5 parts by weight of polyethylene wax, 6-10 parts by weight of stabilizer, 0.8-1.4 parts by weight of stearic acid, 0.2-0.6 parts by weight of oxidized polyethylene wax, and 0.1-0.5 parts by weight of carbon black.
  • the material of the stone-plastic rigid layer may include 90-110 parts by weight of polyvinyl chloride, 10-15 parts by weight of ACR/nano-SiO2 composite particles, and the following materials At least one of: 360-425 parts by weight of inorganic filler, 1.2-1.8 parts by weight of polyethylene wax, 5-8 parts by weight of stabilizer, 1.0-1.6 parts by weight of stearic acid and 10-15 parts by weight of glass microbeads.
  • composition of the first stabilizing layer, the second stabilizing layer, and the stone-plastic rigid layer please refer to the relevant description in FIG. 1 .
  • the ACR grafting rate on the surface of the ACR/nano-SiO 2 composite particles in the above materials may be 70-110%.
  • the definition of the ACR graft ratio please refer to the description of FIG. 1 .
  • polyvinyl chloride is also included in the second compound.
  • Polyvinyl chloride is also included in the first compound.
  • the dosage of ACR/nano-SiO2 composite particles is 10-15% of the mass content of polyvinyl chloride in the corresponding mixture.
  • the amount of ACR/nano-SiO2 composite particles can be 12.5% of the mass content of polyvinyl chloride in the corresponding mixture.
  • the amount of ACR/nano-SiO2 composite particles being the mass content of polyvinyl chloride in the corresponding mixture please refer to the description of FIG. 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请实施例公开了一种多层共挤石塑地板。所述多层共挤石塑地板包括:至少一个共挤石塑层,所述共挤石塑层从上到下至少包括:第一稳定层、石塑刚性层和第二稳定层;所述第一稳定层和所述第二稳定层,在-15℃-80℃时尺寸变化率均为0-0.12%;所述第一稳定层、所述石塑刚性层和所述第二稳定层中至少一层包含ACR/纳米SiO 2复合粒子。本说明书通过在地板石塑刚性层上下添加稳定层,并在地板材料中加入ACR/纳米SiO 2复合粒子,可以在保证地板强度的同时,提高地板材料的热稳定性,减少地板材料热变形。

Description

一种多层共挤石塑地板及其制造方法
交叉引用
本申请要求于2020年12月31日提交的中国专利申请No.202011641442.6和于2020年12月31日提交的中国专利申请No.202023347070.4的优先权,其全部内容通过引用结合于此。
技术领域
本说明书涉及地板制造技术领域,特别涉及一种多层共挤石塑地板及其制造方法。
背景技术
石塑地板(SPC)是一种多层结构PVC地板,具有防霉、防潮、防火、耐磨、安装简单、使用寿命长等优点,广泛用于室内地面装饰。一般多层石塑地板中的基材层以天然石粉(碳酸钙粉)和高分子树脂(聚氯乙烯)为主要原料通过热融合工艺挤出成型。为了降低成本,通常会加入大量无机填料。但是,PVC材料热稳定性差,加入无机填料会增加材料脆性,且因为地板加入了氯化聚氯乙烯(CPE)助剂,CPE增韧导致地板维卡软化点降低,更容易发生翘曲变形、拱起、锁扣脱落断裂的现象,减少使用寿命。
因此,有必要提供一种热稳定性能好、不易产生热变形的石塑地板。
发明内容
本说明书实施例之一提供一种多层共挤石塑地板,所述多层共挤石塑地板包括至少一个共挤石塑层,所述共挤石塑层从上到下至少包括:第一稳定层、石塑刚性层和第二稳定层;所述第一稳定层和所述第二稳定层,在-15℃-80℃时尺寸变化率均为0-0.12%;所述第一稳定层、所述石塑刚性层和所述第二稳定层中至少一层包含ACR/纳米SiO 2复合粒子。
本说明书另一方面提供一种多层共挤石塑地板的制造方法,所述方法包括:将第一稳定层、第二稳定层至少一层的物料混合得到第一混料,将所述第一混料搅拌得到第一配料,其中所述第一混料包含ACR/纳米SiO 2复合粒子;将石塑刚性层的物料混合得到第二混料,将所述第二混料搅拌得到第二配料,其中所述第二混料包含ACR/ 纳米SiO 2复合粒子;将所述第一混料和所述第二混料经过挤出机挤出共挤石塑层,所述共挤石塑层包括三层结构,从上到下依次为所述第一稳定层、所述石塑刚性层和所述第二稳定层。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的共挤石塑层的剖视图;
图2是根据本说明书一些实施例所示的多层共挤石塑地板的剖视图;
图3是根据本说明书一些实施例所示的多层共挤石塑地板的制造方法流程图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的***所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本说明书一些实施例所示的共挤石塑层的剖视图。
共挤石塑地板可以为多层结构的地板。在一些实施例中,共挤石塑地板可以至少包括一个或多个共挤石塑层。共挤石塑层是指为共挤石塑地板提供支撑的结构,例如,共挤石塑层可以为共挤石塑地板提供主要的强度或硬度等。
在一些实施例中,共挤石塑地板的共挤石塑层可以是多层结构。共挤石塑层可以包括:稳定层和石塑刚性层。稳定层可以是指当地板中其他层发生变形时,稳定其他层的结构层。石塑刚性层可以是提供地板强度和支撑力的结构层。
在一些实施例中,共挤石塑层中稳定层和/或石塑刚性层的层数可以是一层或多层,每一层的稳定层或石塑刚性层的成分可以相同或不同。
在一些实施例中,共挤石塑层中不同层之间顺序可以是石塑刚性层位于稳定层之间,也可以是石塑刚性层位于稳定层之上。在一些实施例中,相邻两层之间可以通过多种方式相连。例如,通过粘结剂相连,粘结剂是指使物体相互粘结的物质,粘结剂可以为PLA树脂、酚醛树脂等。又例如,通过热压贴合方式相连。可以理解的,不同相邻两层之间的连接方式可以相同或不同。
在一些实施例中,共挤石塑层中可以包括两层稳定层、一层石塑刚性层,如图1所述,共挤石塑层100从上到下依次可以包括:第一稳定层101、石塑刚性层102和第二稳定层103。
第一稳定层可以是指用于稳定共挤石塑地板中其他层的结构层。例如,第一稳定层可以为共挤石塑地板(如,共挤石塑地板200)中第一稳定层以上的其他层(例如,UV涂层、耐磨层等)热胀冷缩时提供向下拉力的结构层。关于其他层的更多细节参见后文。
在一些实施例中,第一稳定层可以使得该层在受到其他层(如,第一稳定层以上的其他层)外力作用下,变形很小或不发生变形。例如,在压强为2000psi(Pounds per square inch,磅平方英寸)外力作用下,形变小于0.13mm。其中,1psi=0.006895Mpa。例如,第一稳定层可以是刚性材料层,即所用材料可以防止该层在外力作用下变形,从而保证石塑地板的抗压强度,防止脆性断裂。
在一些实施例中,第一稳定层在-15℃-80℃时尺寸变化率为0-0.12%。
在一些实施例中,第一稳定层的成分可以包括ACR/纳米SiO 2复合粒子。
ACR/纳米SiO 2复合粒子是基于ACR(acrylate copolymer,丙烯酸酯类共聚物)和纳米SiO 2复合生成的化学物质。在一些实施例中,ACR/纳米SiO 2复合粒子可以为纳米粒子。例如,复合粒子粒径大小范围在20-80nm之间。可以理解的,复合粒子的粒径大小可以基于生成复合粒子的纳米SiO 2确定。
在一些实施例中,ACR/纳米SiO 2复合粒子可以通过多种复合方式生成。例如,ACR与纳米SiO2可以通过物理混合或机械混合得到ACR/纳米SiO 2复合粒子。又例 如,ACR与纳米SiO2可以通过化学混合得到ACR/纳米SiO 2复合粒子。
在一些实施例中,通过改性剂表面改性的纳米SiO 2粒子分散在丙烯酸酯单体中,引入烯丙基与单体发生聚合反应而得到接枝聚合物链,形成ACR/纳米SiO2复合粒子。例如,经甲基丙烯酸-3-三甲氧基硅烷(MPS)偶联剂改性纳米SiO2的丙烯酸单体的细乳液聚合物所制得的复合粒子。
在一些实施例中,第二稳定层可以是指用于稳定共挤石塑地板中其他层的结构层。例如,第二稳定层可以为共挤石塑地板中第二稳定层以上的其他层(例如,第一稳定层、石塑刚性层、UV涂层、耐磨层等)热胀冷缩时提供向下拉力的结构层。
在一些实施例中,第二稳定层可以使得该层在受到其他层(如,第二稳定层以上的其他层)外力作用下变形很小或不发生变形。例如,在压强为2000psi(Pounds per square inch,磅平方英寸)外力作用下,形变小于0.13mm。其中,1psi=0.006895Mpa。与第一稳定层类似,第二稳定层可以为刚性材料层。
在一些实施例中,第二稳定层在-15℃-80℃时尺寸变化率为0-0.12%。
在一些实施例中,第二稳定层的成分可以包括ACR/纳米SiO 2复合粒子。关于ACR/纳米SiO 2复合粒子可以参见前文,不再赘述。
石塑刚性层是指用于提供共挤石塑地板强度和支撑力的结构层。
在一些实施例中,石塑刚性层的成分可以包括ACR/纳米SiO 2复合粒子。
在一些实施例中,石塑刚性层、第一稳定层和第二稳定层的成分还可以包括其它成分,具体参见后文。
将地板上的共挤石塑层设置为三层结构,可有效控制多层共挤石塑地板整体稳定性,有效控制多层共挤石塑地板其它层收缩带来的翘曲瓦状。同时,共挤石塑层中的石塑刚性层的设置保证了多层共挤石塑地板强度,提高了多层共挤石塑地板耐热性及抗蠕变能力。
而且,通过在地板中(例如,稳定层或石塑刚性层)添加ACR/纳米SiO 2复合粒子成分,可以明显提高地板的性能。ACR/纳米SiO 2复合粒子为纳米粒子,纳米粒子具有尺寸效应、局域场效应、量子效应等,能使其表现出常规材料不具备的优异性能,包括提高地板的强度,以及通过提高地板的维卡软化点,提高地板的抗热变形能力。
如前所述,共挤石塑地板除了包含共挤石塑层以外,还可以包含其他层。在一些实施例中,多层共挤石塑地板还可以包括以下结构层的至少一种:UV涂层、耐磨层、彩膜层。关于UV涂层、耐磨层、彩膜层的更多内容,请参见图2及其描述。
在一些实施例中,ACR/纳米SiO 2复合粒子表面ACR接枝率可以为70-110%。
ACR接枝率是指在丙烯酸酯类共聚物的化合物分子式上通过化学键结合其它官能团的效率。其它官能团是指除化合物本身新增的决定有机化合物的化学性质的原子或原子团。例如,其他官能团可以为甲基、环氧基等。
ACR/纳米SiO 2复合粒子接枝率不同,对多层共挤石塑地板的性能检测结果会有不同影响。具体的,关于性能检测结果的具体影响,可以通过如下一组实验体现。
在该组实验中,将多层共挤石塑地板中的第一稳定层、第二稳定层组分设置为:包括100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的不同接枝率的ACR/纳米SiO2复合粒子、0.5重量份的炭黑;将多层共挤石塑地板中的石塑刚性层组分设置为:100重量份的聚氯乙烯、360重量份的无机填料、1.2重量份的聚乙烯蜡、5重量份的稳定剂、1.0重量份的硬脂酸、10重量份的不同接枝率的ACR/纳米SiO2复合粒子、10重量份的玻璃微珠。
测试结果包括多层共挤石塑地板的冲击强度。冲击强度是试样在冲击载荷的作用下折断或折裂时,单位截面积所吸收的能量。冲击载荷是指在很短的时间内,以很大的速度作用在物体上的载荷。
测试结果如下:
(1)当ACR/纳米SiO 2复合粒子接枝率0%时,多层共挤石塑地板的冲击强度为1.8KJ/m 2
(2)当ACR/纳米SiO 2复合粒子接枝率70%时,多层共挤石塑地板的冲击强度为10.5KJ/m 2
(3)当ACR/纳米SiO 2复合粒子接枝率85%时,多层共挤石塑地板的冲击强度为10.8KJ/m 2
(4)当ACR/纳米SiO 2复合粒子接枝率100%时,多层共挤石塑地板的冲击强度为11.3KJ/m 2
(5)当ACR/纳米SiO 2复合粒子接枝率110%时,多层共挤石塑地板的冲击强度为10.8KJ/m 2
实验数据表明,在组分相同的情况下,ACR/纳米SiO 2复合粒子接枝率为70%、85%、100%和110%时,材料具有抗冲击性能,性能明显优于ACR/纳米SiO 2复合粒子接枝率为0%时的情况。接枝率为0%可以理解为纳米SiO 2粒子在与ACR进行混合 时,ACR未与SiO 2通过化学键结合,ACR未发生改性。抗冲击性能的高低能够反映物质的增韧效果,抗冲击性能越好,增韧效果也就越好。可以理解的,采用表面ACR接枝率为70-110%的ACR/纳米SiO 2复合粒子,具有较好的增韧效果。同时,ACR/纳米SiO 2复合粒子能分散为细小粒子悬浮于聚氯乙烯PVC中,从而增加聚氯乙烯PVC的增韧效果,使得具有复合粒子的聚氯乙烯PVC的增韧效果明显优于纳米SiO 2粒子和未改性ACR共聚物。这些实验数据可以作为相关实施例的基础。
在一些实施例中,ACR/纳米SiO 2复合粒子表面ACR接枝率可以为70%。采用表面ACR接枝率为70%的ACR/纳米SiO 2复合粒子,石塑地板具有较佳增韧效果。
在一些实施例中,ACR/纳米SiO 2复合粒子表面ACR接枝率可以为85%。采用表面ACR接枝率为85%的ACR/纳米SiO 2复合粒子,石塑地板具有较佳增韧效果,同时石塑地板的抗冲击效果、冲击强度、静曲强度、断裂伸长位移、翘曲度达到产品设计综合性能最佳值。
在一些实施例中,ACR/纳米SiO 2复合粒子表面ACR接枝率可以为100%。采用表面ACR接枝率为100%的ACR/纳米SiO 2复合粒子,石塑地板具有最好的增韧效果。
在一些实施例中,ACR/纳米SiO 2复合粒子表面ACR接枝率可以为110%。采用表面ACR接枝率为110%的ACR/纳米SiO 2复合粒子,石塑地板也具有较好的增韧效果。
如前所述,稳定层和石塑刚性层可以由多个成分组成,除了前述的ACR/纳米SiO2复合粒子以外,还可以包含聚氯乙烯。在一些实施例中,石塑刚性层可以包含聚氯乙烯。第一稳定层和第二稳定层中至少一层可以包含聚氯乙烯。
在一些实施例中,石塑刚性层中聚氯乙烯质量含量可以为18~21%。在一些实施例中,第一稳定层、第二稳定层中至少一层的聚氯乙烯质量含量可以为25~30%。在一些实施例中,ACR/纳米SiO 2复合粒子的用量为相应层中聚氯乙烯质量含量的10-15%。例如,石塑刚性层中的ACR/纳米SiO 2复合粒子为石塑刚性层中聚氯乙烯质量含量的10-15%。
在一些实施例中,石塑刚性层中聚氯乙烯质量含量可以为18%。第一稳定层、第二稳定层中至少一层的聚氯乙烯质量含量可以为25%。在一些实施例中,ACR/纳米SiO2复合粒子的用量可以为相应层中聚氯乙烯质量含量的10%。
在一些实施例中,石塑刚性层中聚氯乙烯质量含量可以为19.5%。第一稳定层、 第二稳定层中至少一层的聚氯乙烯质量含量可以为27%。在一些实施例中,ACR/纳米SiO 2复合粒子的用量可以为相应层中聚氯乙烯质量含量的12.5%。
在一些实施例中,石塑刚性层中聚氯乙烯质量含量可以为20%。第一稳定层、第二稳定层中至少一层的聚氯乙烯质量含量可以为28%。在一些实施例中,ACR/纳米SiO 2复合粒子的用量可以为相应层中聚氯乙烯质量含量的13%。
在一些实施例中,石塑刚性层中聚氯乙烯质量含量可以为21%。第一稳定层、第二稳定层中至少一层的聚氯乙烯质量含量可以为30%。在一些实施例中,ACR/纳米SiO 2复合粒子的用量可以为相应层中聚氯乙烯质量含量的15%。
在一些实施例中,基于526.8重量份的石塑刚性层,石塑刚性层可以包括:10-15重量份的ACR/纳米SiO 2复合粒子。例如,基于526.8重量份的石塑刚性层,ACR/纳米SiO 2复合粒子含量可以是12.5重量份。
ACR/纳米SiO 2复合粒子的组分含量不同,对多层共挤石塑地板的性能检测结果会有不同影响。具体的,关于性能检测结果的具体影响,可以通过如下一组实验体现。
在该组试验中,将多层共挤石塑地板的第一稳定层、第二稳定层组分均设置为:100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO2复合粒子、0.5重量份的炭黑;将多层共挤石塑地板的石塑刚性层设置为:100重量份的聚氯乙烯、360重量份的无机填料、1.2重量份的聚乙烯蜡、5份稳定剂、1.0重量份的硬脂酸、10重量份的玻璃微珠、ACR/纳米SiO 2复合粒子含量作为变量。
测试结果包括:冲击强度、静曲强度、热变形维卡和加热翘曲度。其中,冲击强度是试样在冲击载荷的作用下折断或折裂时,单位截面积所吸收的能量。静曲强度是试件受力弯曲到断裂时所承受的压力强度。热变形维卡是试样于液体传热介质中,在一定的载荷、一定的等速升温条件下,被1mm 2的压针压入1mm深度时的温度。加热翘曲度是指物体表面在80℃加热6小时后恢复到23±2℃时,物体表面发生扭曲的程度。
测试结果如下:
(1)石塑刚性层ACR/纳米SiO 2复合粒子含量0份时,冲击强度为2.0KJ/m 2;静曲强度为20MPa;热变形维卡为45℃;加热翘曲为1.5mm;
(2)石塑刚性层ACR/纳米SiO 2复合粒子含量10份时,冲击强度为13.0KJ/m 2;静曲强度为32MPa;热变形维卡为65℃;加热翘曲为0.3mm;
(3)石塑刚性层ACR/纳米SiO 2复合粒子含量12.5份时,冲击强度为13.2KJ/m 2; 静曲强度为32MPa;热变形维卡为65℃;加热翘曲为0.28mm;
(4)石塑刚性层ACR/纳米SiO 2复合粒子含量15份时,冲击强度为13.5KJ/m 2;静曲强度为32MPa;热变形维卡为65℃;加热翘曲为0.3mm;
(5)石塑刚性层ACR/纳米SiO 2复合粒子含量20份时,冲击强度为12.5KJ/m 2;静曲强度为30MPa;热变形维卡为65℃;加热翘曲为0.70mm。
实验数据表明,在其他组分相同的情况下,石塑刚性层ACR/纳米SiO 2复合粒子含量为10份、12.5份、15份时,石塑地板的抗冲击性能,热稳定性好,性能明显优于ACR/纳米SiO 2复合粒子含量为0份时的情况。可以理解的,当石塑刚性层采用10-15重量份的ACR/纳米SiO 2复合粒子,石塑地板具有较好的抗冲击性能且热稳定性好。这些实验数据可以作为相关实施例的基础。
在一些实施例中,ACR/纳米SiO 2复合粒子在石塑刚性层的含量可以为10重量份。当塑刚性层中,含有10重量份的ACR/纳米SiO 2复合粒子,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,ACR/纳米SiO 2复合粒子在石塑刚性层的含量可以为12.5重量份。当塑刚性层中,含有12.5重量份的ACR/纳米SiO 2复合粒子,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,ACR/纳米SiO 2复合粒子在石塑刚性层的含量可以为13重量份。当塑刚性层中,含有13重量份的ACR/纳米SiO 2复合粒子,石塑地板具有最好的抗冲击性能和热稳定性。
在一些实施例中,ACR/纳米SiO 2复合粒子在石塑刚性层的含量可以为15重量份。当塑刚性层中,含有15重量份的ACR/纳米SiO 2复合粒子,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,石塑刚性层还可以包含玻璃微珠。玻璃微珠可以理解为是一种尺寸微小的空心玻璃球体。玻璃微珠的密度可以是0.50-0.70g/cm 3,粒径可以在45-55μm之间。
在一些实施例中,玻璃微珠可以是改性空心玻璃微珠。改性空心玻璃微珠是指性能发生改变的空心玻璃微珠。性能发生改变可以包括:表面的亲油性能变化、不同状态(例如,熔融状态下分散性或流动性等)。在一些实施例中,玻璃微珠含量可以是石塑刚性层中聚氯乙烯质量含量的10-15%。例如,玻璃微珠含量可以是石塑刚性层中聚氯乙烯质量含量的10%。又例如,玻璃微珠含量可以是石塑刚性层中聚氯乙烯质量含量 的12.5%。又例如,玻璃微珠含量可以是石塑刚性层中聚氯乙烯质量含量的14%。又例如,玻璃微珠含量可以是石塑刚性层中聚氯乙烯质量含量的15%。
在石塑刚性层的成分聚氯乙烯中添加玻璃微珠,能提高物料加工流动性,同时能有效提高地板刚性石塑层强度,抗蠕变能力,耐热稳定性,使地板在使用过程中不易变形。
在一些实施例中,基于526.8重量份的石塑刚性层,石塑刚性层的成分包括10-15重量份的玻璃微珠。例如,基于526.8重量份的石塑刚性层,玻璃微珠含量可以是12.5重量份。
玻璃微珠的组分含量不同,对多层共挤石塑地板的性能检测结果会有不同影响。具体的,关于性能检测结果的具体影响,可以通过如下一组实验体现。
在该组实验中,将多层共挤石塑地板的第一稳定层、第二稳定层设置为:100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO2复合粒子、0.5重量份的炭黑;将多层共挤石塑地板的石塑刚性层设置为:100重量份的聚氯乙烯、360重量份的无机填料、1.2重量份的聚乙烯蜡、5重量份的稳定剂、1.0重量份的硬脂酸、10重量份的ACR/纳米SiO 2复合粒子、玻璃微珠含量作为变量。
测试结果包括:静曲强度、断裂伸长位移、加热翘曲、加热尺寸变化率、热变形维卡。其中,断裂伸长位移是指物体压断时所经过的位移量。加热尺寸变化率是指物体在80℃加热6小时后恢复到23±2℃时,物体尺寸变化的多少程度。
测试结果如下:
(1)石塑刚性层玻璃微珠含量0份时,静曲强度为20MPa;断裂伸长位移为14mm;加热翘曲为1.2mm;加热尺寸变化率为0.190%;热变形维卡为45℃;
(2)石塑刚性层玻璃微珠含量10份时,静曲强度为32MPa;断裂伸长位移为12mm;加热翘曲为0.25mm;加热尺寸变化率为0.050%;热变形维卡为65℃;
(3)石塑刚性层玻璃微珠含量12.5份时,静曲强度为32.5MPa;断裂伸长位移为11mm;加热翘曲为0.35mm;加热尺寸变化率为0.060%;热变形维卡为65℃;
(4)石塑刚性层玻璃微珠含量15份时,静曲强度为34MPa;断裂伸长位移为10mm;加热翘曲为0.35mm;加热尺寸变化率为0.055%;热变形维卡为65℃;
(5)石塑刚性层玻璃微珠含量20份时,静曲强度为36MPa;断裂伸长位移为4mm;加热翘曲为0.80mm;加热尺寸变化率为0.220%;热变形维卡为55℃。
实验数据表明,在其他组分相同的情况下,石塑刚性层玻璃微珠含量为10份、12.5份、15份时,石塑地板抗冲击性能和热稳定性好,性能明显优于玻璃微珠含量为0份时的情况。可以理解的,石塑刚性层的成分采用含量为10-15重量份的玻璃微珠,石塑地板抗冲击性能和热稳定性好。这些实验数据可以作为相关实施例的基础。
在一些实施例中,玻璃微珠在石塑刚性层的含量可以为10重量份。当塑刚性层中,含有10重量份的玻璃微珠,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,玻璃微珠在石塑刚性层的含量可以为12.5重量份。当塑刚性层中,含有12.5重量份的玻璃微珠,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,玻璃微珠在石塑刚性层的含量可以为14重量份。当塑刚性层中,含有14重量份的玻璃微珠,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,玻璃微珠在石塑刚性层的含量可以为15重量份。当塑刚性层中,含有15重量份的玻璃微珠,石塑地板具有较好的抗冲击性能和热稳定性。
在一些实施例中,稳定层和石塑刚性层中还可以包含其他成分。例如,石塑刚性层的成分除了包含聚氯乙烯以外,还可以包含无机填料、聚乙烯蜡、稳定剂、硬脂酸或其他添加剂等,例如,着色剂、增塑剂等。又例如,稳定层(第一稳定层和/或第二稳定层)除了包含聚氯乙烯以外,还可以包含无机填料、聚乙烯蜡、稳定剂、硬脂酸、氧化聚乙烯蜡、炭黑或其他添加剂等。
在一些实施例中,稳定层和石塑刚性层其他成分比例可以根据不同情况进行选择。例如,基于353.5重量份的稳定层第一稳定层和/或第二稳定层,稳定层的成分可以包含100重量份的聚氯乙烯、12.5重量份的ACR/纳米SiO2复合粒子以及以下成分中的至少一种:240重量份的无机填料、1.2重量份的聚乙烯蜡、8重量份的稳定剂、1.1重量份的硬脂酸、0.4重量份的氧化聚乙烯蜡、0.3重量份的炭黑。又例如,基于526.8重量份的石塑刚性层,石塑刚性层的成分还包含100重量份的聚氯乙烯以及以下成分中的至少一种:392.5重量份的无机填料、1.5重量份的聚乙烯蜡、6.5重量份的稳定剂、1.3重量份的硬脂酸。
稳定剂是指保持高分子化合物结构稳定的试剂。例如,稳定剂可以为硬脂酸钙、二碱式铅盐等。
无机填料可以理解为加入的无机填充物。无机填料可以包括硅酸盐类无机填料、碳酸盐类无机填料和硫酸盐类无机填料。例如,硅酸盐类无机填料可以为陶土、云母粉、滑石粉、长石粉等。碳酸盐类无机填料可以为重质碳酸钙、轻质碳酸钙和超细碳酸钙等。 硫酸盐类无机填料可以为硫酸钡和立德粉等。
第一稳定层组分含量不同,对多层共挤石塑地板的性能检测结果会有不同影响。具体的,关于性能检测结果的具体影响,可以通过如下一组实验体现。
在下述试验中耐磨层厚度0.3mm,共挤石塑层厚度3.7mm,其中第一稳定层0.95mm,刚性层1.8mm,第二稳定层0.95mm,多层共挤石塑地板的石塑刚性层组分为:100重量份的聚氯乙烯、360重量份的无机填料、1.2重量份的聚乙烯蜡、5重量份的稳定剂、1.0重量份的硬脂酸、10重量份的ACR/纳米SiO 2复合粒子、10重量份的玻璃微珠。第一稳定层组分设置为不同。
测试结果包括:常温翘曲、加热翘曲、加热尺寸变化率、低温尺寸变化率。其中,常温翘曲是指物体在25℃时,物体表面发生扭曲的程度。低温尺寸变化率是指物体在-18℃低温6小时,恢复到23±2℃时,物体尺寸变化的多少程度。
测试结果如下:
(1)稳定层组分为:100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑时,常温翘曲为0.20mm,加热翘曲为0.25mm,加热尺寸变化率为0.05%,低温尺寸变化率为0.06%;
(2)稳定层组分为:100重量份的聚氯乙烯、240重量份的无机填料、1.2重量份的聚乙烯蜡、7.5重量份的稳定剂、1.1重量份的硬脂酸、0.4重量份的氧化聚乙烯蜡、12.5重量份的ACR/纳米SiO 2复合粒子、12.5重量份的炭黑时,常温翘曲为0.30mm,加热翘曲为0.50mm,加热尺寸变化率为0.08%,低温尺寸变化率为0.09%;
(3)稳定层组分为:100重量份的聚氯乙烯、210重量份的无机填料、0.9重量份的聚乙烯蜡、6重量份的稳定剂、0.8重量份的硬脂酸、0.2重量份的氧化聚乙烯蜡、10重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑时,常温翘曲为0.35mm,加热翘曲为0.60mm,加热尺寸变化率为0.075%,低温尺寸变化率为0.10%;
(4)稳定层组分为:100重量份的聚氯乙烯、180重量份的无机填料、0.9重量份的聚乙烯蜡、6重量份的稳定剂、0.8重量份的硬脂酸、0.2重量份的氧化聚乙烯蜡、10重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑时,常温翘曲为0.75mm,加热翘曲为0.90mm,加热尺寸变化率为0.18%,低温尺寸变化率为0.20%;
(5)稳定层组分为:100重量份的聚氯乙烯、300重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15 重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑时,常温翘曲为0.65mm,加热翘曲为1.50mm,加热尺寸变化率为0.13%,低温尺寸变化率为0.15%。
实验数据表明,在各层厚度,石塑刚性层组分相同的情况下,100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑时,地板有较好的抗变形能力和热稳定性。
可以理解的,基于363.5重量份的第一稳定层,第一稳定层包含以下组分:100重量份的聚氯乙烯、210-270重量份的无机填料、0.9-1.5重量份的聚乙烯蜡、6-10重量份的稳定剂、0.8-1.4重量份的硬脂酸、0.2-0.6重量份的氧化聚乙烯蜡、10-15重量份的ACR/纳米SiO2复合粒子、0.1-0.5重量份的炭黑,地板有较好的抗变形能力和热稳定性。这些实验数据可以作为相关实施例的基础。
在一些实施例中,基于363.5重量份的第一稳定层,第一稳定层包含以下组分:100重量份的聚氯乙烯、210-270重量份的无机填料、0.9-1.5重量份的聚乙烯蜡、6-10重量份的稳定剂、0.8-1.4重量份的硬脂酸、0.2-0.6重量份的氧化聚乙烯蜡、10-15重量份的ACR/纳米SiO2复合粒子、0.1-0.5重量份的炭黑。
在一些实施例中,基于363.5重量份的第一稳定层,第一稳定层可以包含以下组分:100重量份的聚氯乙烯、210重量份的无机填料、0.9重量份的聚乙烯蜡、6重量份的稳定剂、0.8重量份的硬脂酸、0.2重量份的氧化聚乙烯蜡、10重量份的ACR/纳米SiO2复合粒子、0.1重量份的炭黑。第一稳定层中该组分配比的设置,地板有较好的抗变形能力和热稳定性。
在一些实施例中,基于363.5重量份的第一稳定层,第一稳定层可以包含以下组分:100重量份的聚氯乙烯、240重量份的无机填料、1.2重量份的聚乙烯蜡、8重量份的稳定剂、1.1重量份的硬脂酸、0.4重量份的氧化聚乙烯蜡、12.5重量份的ACR/纳米SiO 2复合粒子、0.3重量份的炭黑。第一稳定层中该组分配比的设置,地板有较好的抗变形能力和热稳定性。
在一些实施例中,基于363.5重量份的第一稳定层,第一稳定层可以包含以下组分:100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑。第一稳定层中该组分配比的设置,地板有较好的抗变形能力和热稳定性。
在一些实施例中,第一稳定层的厚度范围取值可以在0.55mm~1.15mm之间,石塑刚性层的厚度范围取值可以在1.8mm~2.2mm之间,第一稳定层的厚度范围取值可以在0.55mm~1.15mm之间。
在一些实施例中,稳定层(第一稳定层或第二稳定层)和石塑刚性层厚度比例可以为1:1.8~2.2。在一些实施例中,第一稳定层、第二稳定层和石塑刚性层两两之间的厚度可以相同也可以不同。例如,第一稳定层、石塑刚性层以及第二稳定层厚度比例可以为1:1.8~2.2:1。
第一稳定层厚度不同,对多层共挤石塑地板的性能检测结果会有不同影响。具体的,关于性能检测结果的具体影响,可以通过如下一组实验体现。
在该组实验中,第一稳定层、第二稳定层组分设置为:100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑;石塑刚性层组分设置为:100重量份的聚氯乙烯、360重量份的无机填料、1.2重量份的聚乙烯蜡、5重量份的稳定剂、1.0重量份的硬脂酸、10重量份的ACR/纳米SiO 2复合粒子、10重量份的玻璃微珠。在不同实验用例中采用不同厚度的第一稳定层,对地板在常温翘曲、加热翘曲、加热尺寸变化率、低温尺寸变化率方面的性能进行测试。
测试结果如下:
(1)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层厚度为0.95mm,刚性层厚度为1.8mm,第二稳定层厚度为0.95mm,测试结果为:常温翘曲度为0.20mm;加热翘曲度为0.25mm;80℃的加热尺寸变化率0.05%;-18℃低温尺寸变化率为0.06%;
(2)耐磨层厚度为0.3mm,共挤基材厚度为3.7mm,其中第一稳定层厚度为0.75mm,刚性层厚度为2.0mm,第二稳定层厚度为0.95mm,测试结果为:常温翘曲度为0.70mm;加热翘曲度为0.70mm;80℃的加热尺寸变化率0.12%;-18℃低温尺寸变化率为0.20%;
(3)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层厚度为0.55mm,刚性层厚度为2.2mm,第二稳定层厚度为0.95mm,测试结果为:常温翘曲度为0.85mm;加热翘曲度为0.70mm;80℃的加热尺寸变化率0.25%;-18℃低温尺寸变化率为0.22%;
(4)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层厚度为 1.15mm,刚性层厚度为1.8mm,第二稳定层厚度为0.75mm,测试结果为:常温翘曲度为1.0mm;加热翘曲度为1.2mm;80℃的加热尺寸变化率0.30%;-18℃低温尺寸变化率为0.18%。
实验数据表明,在稳定层、刚性层组分如上述情况,第二稳定层厚度一定的条件下,第一稳定层厚度为0.95mm时,石塑地板具有较好的耐热性和稳定性,明显优于厚度为0.75mm、0.55mm、1.15mm的情况。这些数据可以作为相关实施例的基础。
在一些实施例中,第一稳定层与石塑刚性层的厚度比可以是1:1.8。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
在一些实施例中,第一稳定层与石塑刚性层的厚度比可以是1:1.9。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
在一些实施例中,第一稳定层与石塑刚性层的厚度比可以是1:2.0。通过该厚度的比的设置,塑地板具有较好的耐热性和稳定性。
在一些实施例中,第一稳定层与石塑刚性层的厚度比可以是1:2.2。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
第二稳定层厚度不同,对多层共挤石塑地板的性能检测结果会有不同影响。具体的,关于性能检测结果的具体影响,可以通过如下一组实验体现。
在该组实验中,第一稳定层、第二稳定层组分设置为:100重量份的聚氯乙烯、270重量份的无机填料、1.5重量份的聚乙烯蜡、10重量份的稳定剂、1.4重量份的硬脂酸、0.6重量份的氧化聚乙烯蜡、15重量份的ACR/纳米SiO 2复合粒子、0.5重量份的炭黑;石塑刚性层组分设置为:100重量份的聚氯乙烯、360重量份的无机填料、1.2重量份的聚乙烯蜡、5重量份的稳定剂、1.0重量份的硬脂酸、10重量份的ACR/纳米SiO 2复合粒子、10重量份的玻璃微珠。在不同实验用例中采用不同厚度的第二稳定层,对地板在常温翘曲、加热翘曲、加热尺寸变化率、低温尺寸变化率方面的性能进行测试。
测试结果如下:
(1)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层0.95mm,刚性层1.8mm,第二稳定层0.95mm,测试结果为:常温翘曲度为0.20mm;加热翘曲度为0.25mm;80℃的加热尺寸变化率0.05%;-18℃低温尺寸变化率为0.06%;
(2)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层0.95mm,刚性层2.0mm,第二稳定层0.75mm,测试结果为:常温翘曲度为1.20mm;加热翘曲度为1.0mm;80℃的加热尺寸变化率0.18%;-18℃低温尺寸变化率为0.23%;
(3)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层0.95mm,刚性层2.2mm,第二稳定层0.55mm,测试结果为:常温翘曲度为2.0mm;加热翘曲度为2.5mm;80℃的加热尺寸变化率0.25%;-18℃低温尺寸变化率为0.35%;
(4)耐磨层厚度为0.3mm,共挤石塑层厚度为3.7mm,其中第一稳定层0.75mm,刚性层1.8mm,第二稳定层1.15mm,测试结果为:常温翘曲度为0.80mm;加热翘曲度为0.70mm;80℃的加热尺寸变化率0.20%;-18℃低温尺寸变化率为0.25%。
实验数据表明,在稳定层、刚性层组分如上述情况,第一稳定层厚度一定的条件下,第二稳定层厚度为0.95mm时,石塑地板具有较好的耐热性和稳定性,明显优于厚度为0.75mm、0.55mm、1.15mm的情况。这些数据可以作为相关实施例的基础。
在一些实施例中,第二稳定层与石塑刚性层的厚度比可以是1:1.8。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
在一些实施例中,第二稳定层与石塑刚性层的厚度比可以是1:1.9。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
在一些实施例中,第二稳定层与石塑刚性层的厚度比可以是1:2.0。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
在一些实施例中,第二稳定层与石塑刚性层的厚度比可以是1:2.2。通过该厚度的设置石塑地板具有较好的耐热性和稳定性。
综上可知,只有当第一稳定层、石塑刚性层以及第二稳定层厚度比例为1:1.8~2.2:1时,才能使得第一稳定层和第二稳定层满足在-15℃~80℃时尺寸变化率为0~0.12%,让石塑地板具有较好的耐热性和稳定性。若第一稳定层、石塑刚性层以及第二稳定层厚度比例不满足为1:1.8~2.2:1,第一稳定层和第二稳定层在-15℃~80℃时尺寸变化率将大于0~0.12%,石塑地板的耐热性和稳定性较差。
图2是根据本说明书一些实施例所示的多层共挤石塑地板的剖视图。
在一些实施例中,多层共挤石塑地板包括共挤石塑层100、UV涂层210、耐磨层220以及彩膜层230。
UV涂层210可以是涂覆在表面的聚氨酯紫外光固化涂料层。在一些实施例中,UV涂层具有耐磨、抗污、防水防潮的效果。
耐磨层220可以是减缓机械磨损的结构层。
在一些实施例中,耐磨层厚度影响第一稳定层、第二稳定层的厚度。具体地,当耐磨层厚度越大,需要刚性结构层提供的强度越大,则第一稳定层、第二稳定层厚度 越大。例如,多层共挤石塑地板总厚度一定的情况下,当耐磨层厚度为0.3mm时,第一稳定层、石塑刚性层、第二稳定层厚度比例可以是1:2.2:1;当耐磨层厚度为0.40mm时,第一稳定层、石塑刚性层、第二稳定层厚度比例可以是1:2.0:1。
彩膜层230可以是地板结构中的装饰层结构层,可以提供颜色、图案等效果。
在一些实施例中,UV涂层、耐磨层和彩膜层中的相邻两层之间可以通过多种方式相连。例如,通过粘结剂相连。又例如,通过热压贴合方式相连。可以理解的,不同相邻两层之间的连接方式可以相同或不同。
图3是根据本说明书一些实施例所示的制备多层共挤石塑地板的制造方法流程图。
步骤301,将第一稳定层和第二稳定层中至少一层的物料混合得到第一混料,将第一混料搅拌得到第一配料。
关于第一稳定层、第二稳定层的定义可以参见图1的说明。第一稳定层的物料是指用于制造第一稳定层所需的原材料。关于第一稳定层的物料的具体内容,可参见图1的说明。第二稳定层的物料是指用于制造第二稳定层所需的原材料。关于第二稳定层的物料的具体内容,可参见图1的说明。第一混料是指按照图1中第一稳定层或第二稳定层中各成分的比例混合得到的物质。第一配料是指将第一混料经过加工处理过程后得到的物质。加工处理过程可以包括搅拌升温操作、降温冷却操作等一种或多种。
在一些实施例中,第一混料可以包括ACR/纳米SiO2复合粒子。关于ACR/纳米SiO2复合粒子的定义可以参见图1的说明。
在一些实施例中,可以将第一稳定层、第二稳定层至少一层的物料,通过自动计量***进入高速搅拌机,搅拌升温至110~125℃后,将物料送入低速搅拌机内降温冷却至45~60℃后,放入出料罐内,得到第一配料。
自动计量***可以是对各种物料进行定量配比的数字***。
高速搅拌机可以是转速在860r/min-1500r/min范围内,自摩擦升温或内置有加热装置的搅拌机。
低速搅拌机可以是转速在325r/min-650r/min范围内,内置有散热装置的搅拌机。出料罐可以是用来收集搅拌后物料的罐。
步骤302,将石塑刚性层的物料混合得到第二混料,将第二混料搅拌得到第二配料。
关于石塑刚性层的定义可以参见图1的说明。石塑刚性层的物料是指用于制造 石塑刚性层所需的原材料。关于石塑刚性层的物料的具体内容,可参见图1的说明。第二混料是指按照图1中石塑刚性层中各成分的比例混合得到的物质。第二配料是指将第二混料经过加工处理过程后得到的物质。加工处理过程可以包括搅拌升温操作、降温冷却操作等中的一种或多种。
在一些实施例中,第二混料可以包括ACR/纳米SiO 2复合粒子。关于ACR/纳米SiO 2复合粒子的定义可以参见图1的说明。
在一些实施例中,可以将石塑刚性层的物料,通过自动计量***进入高速搅拌机,搅拌升温至110~125℃后,将物料送入低速搅拌机内降温冷却至45~60℃后,放入出料罐内,得到第二配料。
在一些实施例中,可以将石塑刚性层的物料,通过自动计量***进入高速搅拌机,搅拌升温至115℃后,将物料送入低速搅拌机内降温冷却至55℃后,放入出料罐内,得到第二配料。
关于自动计量***、高速搅拌机、低速搅拌机、出料罐的定义可以参见步骤301的说明。
步骤303,将所述第一混料和所述第二混料经过挤出机挤出共挤石塑层。
关于共挤石塑层的定义可以参见图1的说明。挤出机是指将加热后呈粘流状态的塑料原料通过挤塑模具而成为截面与模具形状相仿的模体的装置。粘流状态是指无定形高分子聚合物长时间在较高温度和较大外力作用下所处的力学状态。在一些实施例中,挤出机可以包括非共挤挤出机和共挤挤出机。非共挤挤出机可以包括主挤出机以及具有一定截面形状的通道的模具。共挤挤出机可以包括主挤出机、辅挤出机、下料装置、PLC控制***、分配器以及具有一定截面形状的通道的模具,下料装置设置在主挤出机上,主挤出机与分配器通过合流芯通道相连,辅挤出机与分配器通过合流芯通道相连,分配器与所述模具相连,PLC控制***用于控制挤出机及其配套设备的运行。本说明书实施例采用的共挤挤出机为市面上现有的共挤挤出机,在此不再赘述。
在一些实施例中,经过挤出机挤出共挤石塑层的制造方法可以是:将第一混料投入一共挤挤出机上的主挤出机和辅挤出机中塑化挤出到分配器上下流道;然后将第二混料投入另一挤出机中,挤出石塑刚性层到分配器中间流道,从而在分配器形成多层结构,然后进入模具;最后,在模具中,挤出成型得到三层共挤石塑层。
在一些实施例中,挤出共挤石塑层进入压延辊组压光定厚,然后与彩膜、耐磨层贴合,压纹辊辊压纹理一次成型,得到石塑地板。压延辊组是指用辊筒向材料施加压 力使之产生纹理的装置。例如,压延辊组可以包括四辊、五辊或六辊等。压光定厚是指将挤出基板表面压实、抹光后,确定基板的最终厚度。压纹辊是指用于向物体表面压凹凸花纹的辊筒。关于彩膜层、耐磨层的定义可以参见图2相关描述。
在一些实施例中,第一稳定层、第二稳定层至少一层的物料,基于363.5重量份的第一稳定层或第二稳定层,可以包括90-110重量份的聚氯乙烯、10-15重量份的ACR/纳米SiO2复合粒子以及以下物料中的至少一种:210-270重量份的无机填料、0.9-1.5重量份的聚乙烯蜡、6-10重量份的稳定剂、0.8-1.4重量份的硬脂酸、0.2-0.6重量份的氧化聚乙烯蜡和0.1-0.5重量份的炭黑。
在一些实施例中,基于526.8重量份的石塑刚性层,石塑刚性层的物料可以包括90-110重量份的聚氯乙烯、10-15重量份的ACR/纳米SiO2复合粒子以及以下物料中的至少一种:360-425重量份的无机填料、1.2-1.8重量份的聚乙烯蜡、5-8重量份的稳定剂、1.0-1.6重量份的硬脂酸和10-15重量份的玻璃微珠。
关于第一稳定层、第二稳定层、石塑刚性层的成分的更多细节参见图1中相关描述。
在一些实施例中,上述物料中ACR/纳米SiO 2复合粒子表面ACR接枝率可以为70-110%。关于ACR接枝率的定义,可参见图1的说明。
在一些实施例中,第二混料中还包含聚氯乙烯。第一混料中还包含聚氯乙烯。ACR/纳米SiO2复合粒子的用量为相应混料中聚氯乙烯质量含量的10-15%。
在一些实施例中,ACR/纳米SiO2复合粒子的用量可以为相应混料中聚氯乙烯质量含量的12.5%。关于ACR/纳米SiO2复合粒子的用量为相应混料中聚氯乙烯质量含量的更多细节,可参见图1的说明。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的***组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的***。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (17)

  1. 一种多层共挤石塑地板,其特征在于,包括:
    至少一个共挤石塑层,所述共挤石塑层从上到下至少包括:第一稳定层、石塑刚性层和第二稳定层;
    所述第一稳定层和所述第二稳定层,在-15℃-80℃时尺寸变化率均为0-0.12%;
    所述第一稳定层、所述石塑刚性层和所述第二稳定层中至少一层包含ACR/纳米SiO 2复合粒子。
  2. 根据权利要求1所述的多层共挤石塑地板,其特征在于,所述ACR/纳米SiO 2复合粒子表面ACR接枝率为70-110%。
  3. 根据权利要求1所述的多层共挤石塑地板,其特征在于,所述共挤石塑层从上到下依次包括:所述第一稳定层、所述石塑刚性层和所述第二稳定层,所述第一稳定层、所述石塑刚性层以及所述第二稳定层厚度比例为1:1.8~2.2:1。
  4. 根据权利要求3所述的多层共挤石塑地板,其特征在于,所述石塑刚性层还包含聚氯乙烯,所述第一稳定层、所述第二稳定层中至少一层还包含聚氯乙烯,所述ACR/纳米SiO 2复合粒子的用量为相应层中所述聚氯乙烯质量含量的10-15%。
  5. 根据权利要求4所述的多层共挤石塑地板,其特征在于,所述石塑刚性层中聚氯乙烯质量含量为18-21%。
  6. 根据权利要求4所述的多层共挤石塑地板,其特征在于,所述第一稳定层、所述第二稳定层中至少一层中聚氯乙烯质量含量为25%-30%。
  7. 根据权利要求4所述的多层共挤石塑地板,其特征在于,基于526.8重量份的所述石塑刚性层,所述石塑刚性层的成分包括10-15重量份的ACR/纳米SiO2复合粒子。
  8. 根据权利要求7所述的多层共挤石塑地板,其特征在于,所述石塑刚性层还包含玻璃微珠,用量为所述石塑刚性层中聚氯乙烯质量含量的10%-15%。
  9. 根据权利要求8所述的多层共挤石塑地板,其特征在于,基于526.8重量份的所述石塑刚性层,所述石塑刚性层的成分还包括10-15重量份的玻璃微珠。
  10. 根据权利要求9所述的多层共挤石塑地板,其特征在于,基于526.8重量份的所述石塑刚性层,所述石塑刚性层的成分还包括90-110重量份的聚氯乙烯以及以下成分中的至少一种:
    360-425重量份的无机填料、1.2-1.8重量份的聚乙烯蜡、5-8重量份的稳定剂、1.0-1.6重量份的硬脂酸。
  11. 根据权利要求4所述的多层共挤石塑地板,其特征在于,基于363.5重量份的所述第一稳定层或所述第二稳定层,所述第一稳定层和所述第二稳定层的成分包括90-110重量份的聚氯乙烯、10-15重量份的ACR/纳米SiO 2复合粒子以及以下成分中的至少一种:
    210-270重量份的无机填料、0.9-1.5重量份的聚乙烯蜡、6-10重量份的稳定剂、0.8-1.4重量份的硬脂酸、0.2-0.6重量份的氧化聚乙烯蜡、0.1-0.5重量份的炭黑。
  12. 根据权利要求1所述的多层共挤石塑地板,其特征在于,所述多层共挤石塑地板还包括以下结构层的至少一种:UV涂层、耐磨层、彩膜层。
  13. 一种如权利要求1~12任一项所述的多层共挤石塑地板的制造方法,其特征在于,包括以下步骤:
    将第一稳定层和第二稳定层中至少一层的物料混合得到第一混料,将所述第一混料搅拌得到第一配料,其中所述第一混料包含ACR/纳米SiO 2复合粒子;
    将石塑刚性层的物料混合得到第二混料,将所述第二混料搅拌得到第二配料,其中所述第二混料包含ACR/纳米SiO 2复合粒子;
    将所述第一混料和所述第二混料经过挤出机挤出共挤石塑层,所述共挤石塑层包括三层结构,从上到下依次为所述第一稳定层、所述石塑刚性层和所述第二稳定层。
  14. 根据权利要求13所述的多层共挤石塑地板的制造方法,其特征在于,基于363.5重量份的所述第一稳定层或第二稳定层,所述第一稳定层或第二稳定层的物料包括90-110重量份的聚氯乙烯、10-15重量份的ACR/纳米SiO 2复合粒子以及以下物料中的至少一种:210-270重量份的无机填料、0.9-1.5重量份的聚乙烯蜡、6-10重量份的稳定剂、0.8-1.4重量份的硬脂酸、0.2-0.6重量份的氧化聚乙烯蜡和0.1-0.5重量份的炭黑。
  15. 根据权利要求13所述的多层共挤石塑地板的制造方法,其特征在于,基于526.8重量份的所述石塑刚性层,所述石塑刚性层的物料包括90-110重量份的聚氯乙烯、10-15重量份的ACR/纳米SiO 2复合粒子以及以下物料中的至少一种:
    360-425重量份的无机填料、1.2-1.8重量份的聚乙烯蜡、5-8重量份的稳定剂、1.0-1.6重量份的硬脂酸和10-15重量份的玻璃微珠。
  16. 根据权利要求13所述的多层共挤石塑地板的制造方法,其特征在于,所述ACR/纳米SiO 2复合粒子表面ACR接枝率为70-110%。
  17. 根据权利要求16所述的多层共挤石塑地板的制造方法,其特征在于,所述第二混料中还包含聚氯乙烯,所述第一混料中还包含聚氯乙烯,所述ACR/纳米SiO 2复合粒子的用量为相应混料中所述聚氯乙烯质量含量的10-15%。
PCT/CN2021/143142 2020-12-31 2021-12-30 一种多层共挤石塑地板及其制造方法 WO2022143913A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21893118.6A EP4050179A4 (en) 2020-12-31 2021-12-30 CO-EXTRUDED MULTI-LAYER PLASTIC STONE EFFECT FLOORING AND METHOD OF MANUFACTURING THEREOF
US17/664,420 US20220275653A1 (en) 2020-12-31 2022-05-22 Multi-layer co-extrusion stone plastic floors and manufacturing methods thereof
US18/361,846 US20230383546A1 (en) 2020-12-31 2023-07-29 Multi-layer co-extrusion stone plastic floors and manufacturing methods thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202023347070.4 2020-12-31
CN202023347070.4U CN215889144U (zh) 2020-12-31 2020-12-31 一种多层共挤石塑地板
CN202011641442.6A CN112746719A (zh) 2020-12-31 2020-12-31 一种多层共挤石塑地板及其制造方法
CN202011641442.6 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/664,420 Continuation-In-Part US20220275653A1 (en) 2020-12-31 2022-05-22 Multi-layer co-extrusion stone plastic floors and manufacturing methods thereof

Publications (1)

Publication Number Publication Date
WO2022143913A1 true WO2022143913A1 (zh) 2022-07-07

Family

ID=82260286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143142 WO2022143913A1 (zh) 2020-12-31 2021-12-30 一种多层共挤石塑地板及其制造方法

Country Status (3)

Country Link
US (1) US20220275653A1 (zh)
EP (1) EP4050179A4 (zh)
WO (1) WO2022143913A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445637A (zh) * 2008-12-23 2009-06-03 广东工业大学 一种纳米SiO2/ACR复合粒子的制备方法及其应用
CN103289235A (zh) * 2013-06-08 2013-09-11 广东华声电器股份有限公司 一种pvc彩色共挤料及其应用
CN110593521A (zh) * 2019-09-03 2019-12-20 浙江永裕竹业股份有限公司 一种装饰面复合spc石塑地板
CN110593520A (zh) * 2019-08-20 2019-12-20 浙江永裕竹业股份有限公司 一种共挤spc石塑地板
CN112746719A (zh) * 2020-12-31 2021-05-04 浙江永裕家居股份有限公司 一种多层共挤石塑地板及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106223569A (zh) * 2016-01-15 2016-12-14 上海协承昌化工有限公司 一种复合地板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445637A (zh) * 2008-12-23 2009-06-03 广东工业大学 一种纳米SiO2/ACR复合粒子的制备方法及其应用
CN103289235A (zh) * 2013-06-08 2013-09-11 广东华声电器股份有限公司 一种pvc彩色共挤料及其应用
CN110593520A (zh) * 2019-08-20 2019-12-20 浙江永裕竹业股份有限公司 一种共挤spc石塑地板
CN110593521A (zh) * 2019-09-03 2019-12-20 浙江永裕竹业股份有限公司 一种装饰面复合spc石塑地板
CN112746719A (zh) * 2020-12-31 2021-05-04 浙江永裕家居股份有限公司 一种多层共挤石塑地板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050179A4 *

Also Published As

Publication number Publication date
US20220275653A1 (en) 2022-09-01
EP4050179A4 (en) 2023-07-12
EP4050179A1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
US11041060B2 (en) Inorganic material composite
CN112746719A (zh) 一种多层共挤石塑地板及其制造方法
WO2018098899A1 (zh) 一种石塑地板及其制备方法
CN1984771B (zh) 具有可印刷的无光面热塑性塑料制品
EP1637561B1 (en) Gloss reducing polymer composition
US20170136735A1 (en) Engineered Plank and its Manufacturing Method
CN1082560A (zh) 聚合薄膜
CN111441555A (zh) 一种spc石塑地板及其制备方法
US20220203664A1 (en) Composite crystal flooring and manufacturing method thereof
WO2022143913A1 (zh) 一种多层共挤石塑地板及其制造方法
CN111088875B (zh) 一种pvc瓦及其制备方法
EP0893473A1 (en) Thermoplastic acrylic sheet compositions and their use
CN107849303B (zh) 聚(氯乙烯)基材及其制造方法
US20230383546A1 (en) Multi-layer co-extrusion stone plastic floors and manufacturing methods thereof
CN85106057A (zh) 人造大理石制品
CN215889144U (zh) 一种多层共挤石塑地板
CN108859302B (zh) A2级防火铜复合板及其生产方法
US11285694B1 (en) Composite decorative board and manufacturing method thereof
KR20000071589A (ko) 열가소성 아크릴 시트 조성물 및 고압 적층 화장판에 대한대체물로서의 그의 용도
CN113150469A (zh) Pvc基板、其制备方法及pvc复合地板
CN102827419A (zh) 一种易分散、易加工的聚丙烯复合材料的制备方法
JPH09272777A (ja) 熱可塑性樹脂組成物およびそれを用いた積層物
CN110948978B (zh) 一种含有氧化物颗粒接枝物的夹芯板及其制造方法
CN112919926B (zh) 一种轻质石塑地板
US20230235574A1 (en) Rigid polymeric modular flooring plank with cpvc and method of making same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021893118

Country of ref document: EP

Effective date: 20220527

NENP Non-entry into the national phase

Ref country code: DE