WO2022142135A1 - 一种脱硫石膏基泡沫混凝土及制备方法和应用 - Google Patents

一种脱硫石膏基泡沫混凝土及制备方法和应用 Download PDF

Info

Publication number
WO2022142135A1
WO2022142135A1 PCT/CN2021/098459 CN2021098459W WO2022142135A1 WO 2022142135 A1 WO2022142135 A1 WO 2022142135A1 CN 2021098459 W CN2021098459 W CN 2021098459W WO 2022142135 A1 WO2022142135 A1 WO 2022142135A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
desulfurized gypsum
foam
aluminum
gypsum
Prior art date
Application number
PCT/CN2021/098459
Other languages
English (en)
French (fr)
Inventor
王文龙
杨世钊
姚星亮
王旭江
李敬伟
毛岩鹏
姚永刚
武双
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2022142135A1 publication Critical patent/WO2022142135A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/142Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing synthetic or waste calcium sulfate cements
    • C04B28/144Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing synthetic or waste calcium sulfate cements the synthetic calcium sulfate being a flue gas desulfurization product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the invention belongs to the technical field of foamed concrete, and particularly relates to a desulfurized gypsum-based foamed concrete and a preparation method and application thereof.
  • Desulfurization gypsum also known as flue gas desulfurization gypsum, sulfur gypsum or FGD gypsum, has the same main component as natural gypsum, calcium sulfate dihydrate, CaSO 4 ⁇ 2H 2 O, with a content of ⁇ 93%.
  • Desulfurized gypsum is a by-product of the FGD process, a technology that uses lime-limestone to recover sulfur dioxide from flue gas from burning coal or oil.
  • the technology is to grind lime-limestone into slurry, and make the SO 2 -containing flue gas after dust removal pass through a slurry scrubber to remove SO 2 .
  • the lime slurry reacts with SO 2 to generate calcium sulfate and calcium sulfite, and the calcium sulfite is converted into calcium sulfate by oxidation to obtain the industrial by-product gypsum, called desulfurized gypsum, which is widely used in building materials and other industries.
  • Foamed concrete is also known as lightweight concrete.
  • the cementitious material slurry and prefabricated foam are mixed and mixed to obtain concrete with the properties of light weight, thermal insulation, sound absorption and shock absorption, and water resistance.
  • the desulfurized gypsum is pretreated as a cementitious material for preparing foamed concrete, but the strength of the desulfurized gypsum-based foamed concrete is low, and due to the high solubility of the desulfurized gypsum in water, the water resistance of the product is poor, which in turn affects the desulfurization.
  • Overall properties of gypsum-based foamed concrete Therefore, the desulfurized gypsum itself cannot be used for the preparation of foamed concrete, cement and other cementitious materials for modification treatment, and composite preparation of foamed concrete.
  • the purpose of the present invention is to provide a desulfurized gypsum-based foamed concrete and its preparation method and application.
  • the technical scheme of the present invention is:
  • a desulfurized gypsum-based foam concrete comprising a composite cementitious material and foam, and 0.5-2L of foam is added to each 1kg of the composite cementitious material;
  • the composite cementitious material includes the following raw materials by weight: 70-90 parts of desulfurized gypsum, 10-30 parts of sulfur-aluminum-based high-active materials, 30-45 parts of water and 3-10 parts of additives;
  • the sulfur-aluminum-based highly active material includes the following raw materials by weight: 20-40 parts of desulfurized gypsum, 20-28 parts of aluminum ash, 25-30 parts of calcium carbide slag, and 16-25 parts of red mud.
  • Desulfurized gypsum, aluminum ash, calcium carbide slag, red mud, and the element types and structures contained in each component cooperate with each other to prepare a sulfur-aluminum-based high-activity material.
  • the sulfur-aluminum-based highly active material is composed of desulfurized gypsum, aluminum ash, carbide slag, and red mud, and then combined with desulfurized gypsum to form a composite cementitious material. Sulfur-aluminum-based high-activity materials are used as modified materials for desulfurization gypsum.
  • the resulting foamed concrete has good water resistance and strength.
  • 1-2.5 L of foam is added per 1 kg of composite cementitious material.
  • the composite cementitious material includes the following raw materials in parts by weight: 70-90 parts of desulfurized gypsum, 13-20 parts of sulfur-aluminum-based high active material, 40-45 parts of water and 3-10 parts of additives.
  • the sulfur-aluminum-based highly active material includes the following raw materials in parts by weight: 27-36 parts of desulfurized gypsum, 22-24 parts of aluminum ash, 25-29 parts of carbide slag, and 16-20 parts of red mud.
  • the four kinds of solid waste materials are selected and fired in a certain proportion to obtain sulfur-aluminum-based high-active materials, so that the composite cementitious material has better mechanical properties and water resistance.
  • the additives include water reducing agent, sodium gluconate, hydroxypropyl methyl cellulose ether, and polypropylene fibers, and the weight parts of each component in the additive in the composite gelling material are water reducing agent, respectively. 1-2 parts of sodium gluconate, 1-2 parts of sodium gluconate, 0-2 parts of hydroxypropyl methyl cellulose ether, 1-4 parts of polypropylene fiber; optional, 1-2 parts of water reducing agent, sodium gluconate 1-2 parts, 1-1.5 parts of hydroxypropyl methylcellulose ether, 2-3 parts of polypropylene fiber. Additives to make foam concrete better and more stable.
  • the foam includes the following raw materials in parts by weight, 1-2 parts of a foaming agent, and 30-60 parts of water.
  • the foaming agent is an anionic, nonionic, protein-based or polymer surfactant.
  • Desulfurized gypsum, aluminum ash, calcium carbide slag, and red mud are used as raw materials. After pre-mixing, calcination is performed to prepare sulfur-aluminum high-active materials;
  • the desulphurized gypsum-based foam concrete is obtained by mixing the composite cementitious material with the foam.
  • each raw material including desulfurized gypsum, aluminum ash, calcium carbide slag, and red mud is subjected to drying treatment before use.
  • the drying temperature of the desulfurized gypsum is 120-170° C., and the drying temperature is 20-60 min.
  • Desulfurized gypsum has a large water content, and by pre-drying, the hemihydrate gypsum is in the majority, so that the desulfurized gypsum has the gelatinity of building gypsum. Desulfurized gypsum cannot provide gelling properties without drying pretreatment.
  • the calcination temperature is 1220-1270° C., and the temperature is maintained for 30-50 minutes.
  • the foam is prepared by mixing a foaming agent with water and then foaming by a cement foaming machine.
  • the pressure of the air compressor is 3-6MPa.
  • the density of the foam is 30-40 kg/m 3 .
  • the third aspect is the application of the above-mentioned desulfurized gypsum-based foamed concrete in the field of construction.
  • the production raw materials of the desulfurized gypsum-based foam concrete prepared by the invention are all bulk industrial solid wastes, and the utilization rate of the desulfurized gypsum is 76-95%.
  • the desulfurized gypsum foam concrete prepared by the invention has the advantages of low bulk density, high strength and good water resistance. And the whole process makes good use of the waste heat generated by kiln calcination, and the calcination temperature is only 1250 °C, which is 150 °C lower than the production temperature of ordinary silicon cement, making the whole process more low-carbon and environmentally friendly.
  • the adoption of the present invention provides a new way for the utilization of industrial waste gypsum, and the application of the present invention not only brings considerable economic benefits, but also has significant social benefits.
  • Fig. 1 is the flow chart of the preparation method of desulfurized gypsum-based foam concrete
  • Fig. 2 is the experimental figure of the desulfurized gypsum-based foam concrete of embodiment 1;
  • Figure 3 is a comparison chart of the compressive strength changes of three kinds of cementitious materials.
  • a desulfurized gypsum-based foam concrete the concrete is made of composite cementitious material and foam, and the ratio of the composite cementitious material to the foam is as follows: 1.5L of foam is added to every 1kg of the composite cementitious material.
  • the sources of raw materials for preparing sulfur-aluminum-based high-active materials are: desulfurized gypsum is a by-product of flue gas desulfurization industry; red mud is waste of electrolytic aluminum industry; aluminum ash is slag in aluminum production process; calcium carbide slag is prepared from calcium carbide Residues from the acetylene process. These are all bulk industrial solid wastes.
  • the foam is produced by mixing the foaming agent (anionic, non-ionic, protein and polymer surfactants) with water and then stirring or prepared by a foaming machine.
  • a preparation method of desulfurized gypsum-based foam concrete comprises the following steps:
  • the foamed concrete slurry is poured into a mold, covered with a plastic film, left standing indoors for 2 days, then removed from the mold, and then covered with plastic film and placed at room temperature for curing to obtain desulfurized gypsum-based foamed concrete.
  • the properties of the desulphurized gypsum-based foamed concrete tested are shown in Table 1.
  • a kind of preparation method of desulfurized gypsum-based foam concrete comprises the following steps:
  • the foamed concrete slurry is poured into a mold, covered with a plastic film, left standing indoors for 2 days, then removed from the mold, and then covered with plastic film and placed at room temperature for curing to obtain desulfurized gypsum-based foamed concrete.
  • the properties of the tested desulphurized gypsum-based foamed concrete are shown in Table 2.
  • Example 1 The properties of the desulfurized gypsum-based foamed concrete prepared in Example 1 and Example 2 are similar. Although the ingredients are changed, after reasonable coordination between various solid wastes, the main mineral composition of the prepared sulfur-aluminum-based high-active material is the same. There is no significant change, and the coagulation performance of the produced desulfurized gypsum-based foam is basically the same.
  • a kind of preparation method of desulfurized gypsum-based foam concrete comprises the following steps:
  • foaming agent solution After foaming agent is diluted 40 times with water, configure foaming agent solution, add this solution to foaming machine to prepare foam, measure foam by volume, stand-by;
  • the foamed concrete slurry is poured into a mold, covered with a plastic film, left standing indoors for 2 days, then removed from the mold, and then covered with plastic film and placed at room temperature for curing to obtain desulfurized gypsum-based foamed concrete.
  • the properties of the tested desulphurized gypsum-based foamed concrete are shown in Table 3.
  • Example 3 Compared with Example 1, Example 3 lowers the calcination temperature, resulting in the formation of tetracalcium sulfoaluminate in the sulfur-aluminum-based high-active material is lower than the content shown in Example 1, and there is more mayenite, In turn, the performance of the desulfurized gypsum-based foamed concrete is affected. .
  • a kind of preparation method of desulfurized gypsum-based foam concrete comprises the following steps:
  • the foamed concrete slurry is poured into a mold, covered with a plastic film, left standing indoors for 2 days, then removed from the mold, and then covered with plastic film and placed at room temperature for curing to obtain desulfurized gypsum-based foamed concrete.
  • the properties of the tested desulphurized gypsum-based foamed concrete are shown in Table 4.
  • Example 4 increases the content of the sulfur-aluminum-based high-active material in the composite cementitious material, which in turn leads to hydration to produce more ettringite crystals, and the formed skeleton structure is enhanced, thereby improving the Strength and water resistance.
  • Figure 3 is a comparison of the compressive strength of the sulfur-aluminum-based high-active material prepared in Example 1, the composite cementitious material of 80 parts of gypsum and 20 parts of the sulfur-aluminum-based high-active material, and the desulfurized gypsum after pretreatment and drying, wherein The leftmost corresponding to each abscissa is the desulfurized gypsum after pretreatment and drying, the middle is the sulfur-aluminum-based high-active material, and the rightmost is the composite glue of 80 parts of gypsum and 20 parts of sulfur-aluminum-based high-active material It can be seen that after the sulfur-aluminum-based high-active material is mixed with the desulfurized gypsum, the compressive strength increases after 3 days and 28 days compared with the pure desulfurized gypsum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

提供一种脱硫石膏基泡沫混凝土及制备方法和应用。该混凝土包括复合胶凝材料和泡沫,每1kg复合胶凝材料中加入0.5-3L泡沫;复合胶凝材料包括如下重量份的原料:脱硫石膏70-90份、硫铝系高活性材料10-30份、水30-45份和添加剂3-10份;硫铝系高活性材料包括如下重量份的原料:脱硫石膏20-40份、铝灰20-28份、电石渣25-30份、赤泥16-25份。该混凝土提高了脱硫石膏的综合利用率,并有效解决了石膏基泡沫混凝土的强度和耐水性差的问题。

Description

一种脱硫石膏基泡沫混凝土及制备方法和应用 技术领域
本发明属于泡沫混凝土技术领域,具体涉及一种脱硫石膏基泡沫混凝土及制备方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
随着工业的发展,产生了大量的固体废弃物,由于固体废弃物成分复杂、含有重金属等问题,导致固体废弃物难以利用、大量堆放,对空气、土壤、水之造成严重的污染,严重危害人类健康。脱硫石膏又称排烟脱硫石膏、硫石膏或FGD石膏,主要成分和天然石膏一样,为二水硫酸钙CaSO 4·2H 2O,含量≥93%。脱硫石膏是FGD过程的副产品,FGD过程是一项采用石灰-石灰石回收燃煤或油的烟气中的二氧化硫的技术。该技术是把石灰-石灰石磨碎制成浆液,使经过除尘后的含SO 2的烟气通过浆液洗涤器而除去SO 2。石灰浆液与SO 2反应生成硫酸钙及亚硫酸钙,亚硫酸钙经氧化转化成硫酸钙,得到工业副产石膏,称为脱硫石膏,广泛用于建材等行业。
然而现有脱硫石膏的利用率仍然仅为七成,所以仍然导致有大量的脱硫石膏堆存。泡沫混凝土又称为轻质混凝土,胶凝材料浆体和预制泡沫搅拌混合,得到具有轻质、保温隔热、吸声缓震、耐水等性能的混凝土。目前,已有利用脱硫石膏预处理后作为制备泡沫混凝土的胶凝材料,但是脱硫石膏基泡沫混凝 土的强度低,且由于脱硫石膏的本身在水中的溶解度大,导致产品的耐水性差,进而影响脱硫石膏基泡沫混凝土的整体性能。所以脱硫石膏本身无法单独用于制备泡沫混凝土,水泥等其他胶凝材料改性处理,复合制备泡沫混凝土。
发明内容
针对上述现有技术中存在的问题,本发明的目的是提供一种脱硫石膏基泡沫混凝土及制备方法和应用。
为了解决以上技术问题,本发明的技术方案为:
一种脱硫石膏基泡沫混凝土,包括复合胶凝材料和泡沫,每1kg复合胶凝材料中加入0.5-2L泡沫;
复合胶凝材料包括如下重量份的原料:脱硫石膏70-90份、硫铝系高活性材料10-30份、水30-45份和添加剂3-10份;
硫铝系高活性材料包括如下重量份的原料:脱硫石膏20-40份、铝灰20-28份、电石渣25-30份、赤泥16-25份。
脱硫石膏和铝灰、电石渣、赤泥,各组分间所含元素种类和结构相互配合,制备得到一种硫铝系高活性材料。
脱硫石膏本身由于溶解度比较大,所以耐水性差,所以限制了利用率。通过脱硫石膏和铝灰、电石渣、赤泥组成硫铝系高活性材料,然后和脱硫石膏复合形成复合胶凝材料。硫铝系高活性材料作为脱硫石膏的改性材料。使得到的泡沫混凝土,具有较好的耐水性和强度。
在本发明的一些实施方式中,每1kg复合胶凝材料中加入1-2.5L泡沫。
在本发明的一些实施方式中,复合胶凝材料包括如下重量份的原料:脱硫石膏70-90份、硫铝系高活性材料13-20份、水40-45份和添加剂3-10份。
在本发明的一些实施方式中,硫铝系高活性材料包括如下重量份的原料: 脱硫石膏27-36份、铝灰22-24份、电石渣25-29份、赤泥16-20份。选择这四种固废材料以一定比例烧制得到硫铝系高活性材料,使复合胶凝材料具有更好的机械性能和耐水性。
在本发明的一些实施方式中,添加剂包括减水剂、葡萄糖酸钠、羟丙基甲基纤维素醚、聚丙烯纤维,添加剂中各组分占复合胶凝材料的重量份数分别为减水剂1-2份、葡萄糖酸钠1-2份、羟丙基甲基纤维素醚0-2份、聚丙烯纤维1-4份;可选的,减水剂1-2份、葡萄糖酸钠1-2份、羟丙基甲基纤维素醚1-1.5份、聚丙烯纤维2-3份。添加剂,使泡沫混凝土的性能更佳,浆体更稳定。
在本发明的一些实施方式中,泡沫包括如下重量份的原料,发泡剂1-2份、水30-60份。可选的,发泡剂为阴离子、非离子、蛋白类或高分子表面活性剂。
第二方面,上述脱硫石膏基泡沫混凝土的制备方法,具体步骤为:
脱硫石膏、铝灰、电石渣、赤泥为原料,粉磨预混后,进行煅烧,制备出硫铝系高活性材料;
然后将硫铝系高活性材料、脱硫石膏、水、添加剂混合得到复合胶凝材料;
将复合胶凝材料与泡沫混合得到脱硫石膏基泡沫混凝土。
在本发明的一些实施方式中,各原料包括脱硫石膏、铝灰、电石渣、赤泥在使用之前进行烘干处理。可选的,脱硫石膏的烘干温度为120-170℃,烘干温度为20-60min。脱硫石膏的含水量较大,通过预先进行烘干,使其半水石膏占多数,从而使得脱硫石膏具备建筑石膏的胶凝性。如果不进行烘干预处理,脱硫石膏无法提供胶凝性。
在本发明的一些实施方式中,煅烧温度为1220-1270℃,保温30-50min。
在本发明的一些实施方式中,泡沫的制备方法为将发泡剂与水混合后通过水泥发泡机进行发泡。可选的,空压机的压力的3-6MPa。
在本发明的一些实施方式中,泡沫的密度为30-40kg/m 3
第三方面,上述的脱硫石膏基泡沫混凝土在建筑领域中的应用。
本发明一个或多个技术方案具有以下有益效果:
本发明制得的脱硫石膏基泡沫混凝土生产原料全部为大宗工业固废,脱硫石膏的利用率为76-95%。同时本发明制得的脱硫石膏泡沫混凝土具有容重较低,强度高,耐水性好的优点。并且整个过程很好的利用了窑炉煅烧所产生的余热,并且煅烧温度仅为1250℃,比普硅水泥生产温度低了150℃,使得整个流程更加的低碳环保。采用本发明为工业废石膏的利用提供了一条新途径,应用本发明不仅带来可观的经济效益,而且具有显著的社会效益。
附图说明
构成本发明的一部分的说明书附图用来提供对本申请的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为脱硫石膏基泡沫混凝土的制备方法的流程图;
图2为实施例1的脱硫石膏基泡沫混凝土的实验图;
图3为三种胶凝材料的抗压强度变化对比图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、 组件和/或它们的组合。
下面结合实施例对本发明进一步说明
实施例1
一种脱硫石膏基泡沫混凝土,该混凝土由复合胶凝材料及泡沫制成,复合胶凝材料与泡沫的比例关系为:每1kg复合胶凝材料中加入1.5L泡沫。其中制备硫铝系高活性材料的原材料的来源为:脱硫石膏为烟气脱硫工业副产物;赤泥为电解铝行业废弃物;铝灰为铝生产工艺中的熔渣;电石渣为电石制取乙炔过程中的废渣。这都属于大宗工业固体废弃物。泡沫由泡沫剂(阴离子、非离子、蛋白类和高分子表面活性剂皆可)加水混合后告诉搅拌产生或由发泡机制备产生。
一种脱硫石膏基泡沫混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏27、赤泥20、铝灰24、电石渣29烘干后混合,待用;
(2)将混合好的原料加入到窑炉中煅烧,温度为1250℃保温30min,制备出硫铝系高活性材料,待用;
(3)将脱硫石膏利用煅烧产生的余热进行烘干处理,温度150℃,保温30min后,待用;
(4)将泡沫剂加水稀释40倍后,配置泡沫剂溶液,将该溶液加入发泡机中制备泡沫,按体积量取泡沫,待用;
(5)取80份烘干的脱硫石膏、20份硫铝系高活性材料及添加剂(减水剂1份、葡萄糖酸钠2份、羟丙基甲基纤维素醚1份、聚丙烯纤维2份)一起放入搅拌机中干拌均匀混合,加水40份快速搅拌1min,制备复合胶凝材料浆体;
(6)按每1kg复合胶凝材料中加入1.5L泡沫的比例,将泡沫加入复合胶凝材料浆体中,慢速搅拌3min,得到泡沫混凝土浆体;
将泡沫混凝土浆体浇筑入模具,用塑料薄膜包覆后,在室内静置2天后拆模,继续塑料薄膜包覆置于室温养护即可,即得到脱硫石膏基泡沫混凝土。测试脱硫石膏基泡沫混凝土的性能见表1。
表1实施例1脱硫石膏基泡沫混凝土的性能
Figure PCTCN2021098459-appb-000001
实施例2
相比于实施例1,一种脱硫石膏基泡沫混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏36份、赤泥16份、铝灰22份、电石渣26份烘干后混合,待用;
(2)将混合好的原料加入到窑炉中煅烧,温度为1250℃保温30min,制备出硫铝系高活性材料,待用;
(3)将脱硫石膏利用煅烧产生的余热进行烘干处理,温度150℃,保温30min后,待用;
(4)将泡沫剂加水稀释40倍后,配置泡沫剂溶液,将该溶液加入发泡机中制备泡沫,按体积量取泡沫,待用;
(5)取80份烘干的脱硫石膏、20份硫铝系高活性材料及添加剂(减水剂1份、葡萄糖酸钠2份、羟丙基甲基纤维素醚1份、聚丙烯纤维2份)一起放入搅拌机中干拌均匀混合,加水40份快速搅拌1min,制备复合胶凝材料浆体;
(6)按每1kg复合胶凝材料中加入1.5L泡沫的比例,将泡沫加入复合 胶凝材料浆体中,慢速搅拌3min,得到泡沫混凝土浆体;
将泡沫混凝土浆体浇筑入模具,用塑料薄膜包覆后,在室内静置2天后拆模,继续塑料薄膜包覆置于室温养护即可,即得到脱硫石膏基泡沫混凝土。测试脱硫石膏基泡沫混凝土的性能见表2。
表2实施例2脱硫石膏基泡沫混凝土的性能
Figure PCTCN2021098459-appb-000002
实施例1与实施例2所制备的脱硫石膏基泡沫混凝土的性能相类似,配料虽然改变,但经过各固废之间的合理配合后,所制备的硫铝系高活性材料的主要矿物组成并未发生太大改变,进而导致所生产的脱硫石膏基泡沫混凝性能基本保持一致。
实施例3
相比于实施例1,一种脱硫石膏基泡沫混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏27份、赤泥20份、铝灰24份、电石渣29份烘干后混合,待用;
(2)将混合好的原料加入到窑炉中煅烧,温度为1220℃保温30min,制备出硫铝系高活性材料,待用;
(3)将脱硫石膏利用煅烧产生的余热进行烘干处理,温度150℃,保温30min后,待用;
(4)将泡沫剂加水稀释40倍后,配置泡沫剂溶液,将该溶液加入发泡机 中制备泡沫,按体积量取泡沫,待用;
(5)取80份烘干的脱硫石膏、20份硫铝系高活性材料及添加剂(减水剂2份、葡萄糖酸钠1份、羟丙基甲基纤维素醚1.5份、聚丙烯纤维3份)一起放入搅拌机中干拌均匀混合,加水40份快速搅拌1min,制备复合胶凝材料浆体;
(6)按每1kg复合胶凝材料中加入1.5L泡沫的比例,将泡沫加入复合胶凝材料浆体中,慢速搅拌3min,得到泡沫混凝土浆体;
将泡沫混凝土浆体浇筑入模具,用塑料薄膜包覆后,在室内静置2天后拆模,继续塑料薄膜包覆置于室温养护即可,即得到脱硫石膏基泡沫混凝土。测试脱硫石膏基泡沫混凝土的性能见表3。
表3实施例3脱硫石膏基泡沫混凝土的性能
Figure PCTCN2021098459-appb-000003
实施例3相比于实施例1,降低了煅烧温度,导致硫铝系高活性材料中,硫铝酸四钙的生成量低于实施案例1所示的含量,存在较多的钙铝黄长石,进而影响了脱硫石膏基泡沫混凝土的性能。。
实施例4
相比于实施例1,一种脱硫石膏基泡沫混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏27份、赤泥20份、铝灰24份、电石渣29份烘干后混合,待用;
(2)将混合好的原料加入到窑炉中煅烧,温度为1250℃保温30min,制备出硫铝系高活性材料,待用;
(3)将脱硫石膏利用煅烧产生的余热进行烘干处理,温度150℃,保温30min后,待用;
(4)将泡沫剂加水稀释40倍后,配置泡沫剂溶液,将该溶液加入发泡机中制备泡沫,按体积量取泡沫,待用;
(5)取70份烘干的脱硫石膏、30份硫铝系高活性材料及添加剂(减水剂1份、葡萄糖酸钠2份、羟丙基甲基纤维素醚1份、聚丙烯纤维2份)一起放入搅拌机中干拌均匀混合,加水40份快速搅拌1min,制备复合胶凝材料浆体;
(6)按每1kg复合胶凝材料中加入1.5L泡沫的比例,将泡沫加入复合胶凝材料浆体中,慢速搅拌3min,得到泡沫混凝土浆体;
将泡沫混凝土浆体浇筑入模具,用塑料薄膜包覆后,在室内静置2天后拆模,继续塑料薄膜包覆置于室温养护即可,即得到脱硫石膏基泡沫混凝土。测试脱硫石膏基泡沫混凝土的性能见表4。
表4实施例4脱硫石膏基泡沫混凝土的性能
Figure PCTCN2021098459-appb-000004
实施例4相比于实施例1,增加了复合胶凝材料中的硫铝系高活性材料的含量,进而导致水化产生更多的钙矾石晶体,所构成的骨架结构增强,进而提高了强度和耐水性。
图3为实施例1中制备的硫铝系高活性材料、80份石膏和20份硫铝系高活性材料的复合的胶凝材料、预处理干燥后的脱硫石膏的抗压强度的对比,其 中每个横坐标对应的最左侧的为预处理干燥后的脱硫石膏,中间的为硫铝系高活性材料,最右侧的为80份石膏和20份硫铝系高活性材料的复合的胶凝材料,可以看到硫铝系高活性材料与脱硫石膏混合后,相比于单纯的脱硫石膏,在3天和28天后抗压强度增大。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种脱硫石膏基泡沫混凝土,其特征在于:包括复合胶凝材料和泡沫,每1kg复合胶凝材料中加入0.5-3L泡沫;
    复合胶凝材料包括如下重量份的原料:脱硫石膏70-90份、硫铝系高活性材料10-30份、水30-45份和添加剂3-10份;
    硫铝系高活性材料包括如下重量份的原料:脱硫石膏20-40份、铝灰20-28份、电石渣25-30份、赤泥16-25份。
  2. 如权利要求1所述的脱硫石膏基泡沫混凝土,其特征在于:每1kg复合胶凝材料中加入1-2.5L泡沫。
  3. 如权利要求1所述的脱硫石膏基泡沫混凝土,其特征在于:复合胶凝材料包括如下重量份的原料:脱硫石膏70-90份、硫铝系高活性材料13-20份、水40-45份和添加剂3-10份。
  4. 如权利要求1所述的脱硫石膏基泡沫混凝土,其特征在于:硫铝系高活性材料包括如下重量份的原料:脱硫石膏27-36份、铝灰22-24份、电石渣25-29份、赤泥16-20份。
  5. 如权利要求1所述的脱硫石膏基泡沫混凝土,其特征在于:添加剂包括减水剂、葡萄糖酸钠、羟丙基甲基纤维素醚、聚丙烯纤维,添加剂中各组分占复合胶凝材料的重量份数分别为减水剂1-2份、葡萄糖酸钠1-2份、羟丙基甲基纤维素醚0-2份、聚丙烯纤维1-4份;可选的,减水剂1-2份、葡萄糖酸钠1-2份、羟丙基甲基纤维素醚1-1.5份、聚丙烯纤维2-3份。
  6. 如权利要求1所述的脱硫石膏基泡沫混凝土,其特征在于:泡沫包括如下重量份的原料,发泡剂1-2份、水30-60份。
  7. 权利要求1-6任一所述的脱硫石膏基泡沫混凝土的制备方法,其特征在于:具体步骤为:
    脱硫石膏、铝灰、电石渣、赤泥为原料,粉磨预混后,进行煅烧,制备出硫铝系高活性材料;
    然后将硫铝系高活性材料、脱硫石膏、水、添加剂混合得到复合胶凝材料;
    将复合胶凝材料与泡沫混合得到脱硫石膏基泡沫混凝土。
  8. 如权利要求1所述的脱硫石膏基泡沫混凝土的制备方法,其特征在于:各原料包括脱硫石膏、铝灰、电石渣、赤泥在使用之前进行烘干处理;
    或,煅烧温度为1220-1270℃,保温30-50min。
  9. 如权利要求8所述的脱硫石膏基泡沫混凝土的制备方法,其特征在于:泡沫的制备方法为将发泡剂与水混合后通过水泥发泡机进行发泡;可选的,空压机的压力的3-6MPa;
    或,泡沫的密度为30-40kg/m 3
  10. 权利要求1-6任一所述的脱硫石膏基泡沫混凝土在建筑领域中的应用。
PCT/CN2021/098459 2020-12-31 2021-06-04 一种脱硫石膏基泡沫混凝土及制备方法和应用 WO2022142135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011639043.6 2020-12-31
CN202011639043.6A CN112624795B (zh) 2020-12-31 2020-12-31 一种脱硫石膏基泡沫混凝土及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022142135A1 true WO2022142135A1 (zh) 2022-07-07

Family

ID=75290079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098459 WO2022142135A1 (zh) 2020-12-31 2021-06-04 一种脱硫石膏基泡沫混凝土及制备方法和应用

Country Status (2)

Country Link
CN (1) CN112624795B (zh)
WO (1) WO2022142135A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340350A (zh) * 2022-10-18 2022-11-15 山东交通学院 水泥复合原状钛石膏基泡沫混凝土及其制备方法
CN115838263A (zh) * 2022-11-11 2023-03-24 安徽省公路桥梁工程有限公司 一种高强度轻质泡沫土及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624795B (zh) * 2020-12-31 2022-06-03 山东大学 一种脱硫石膏基泡沫混凝土及制备方法和应用
CN113185318B (zh) * 2021-06-07 2023-03-14 山东大学 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863193A (zh) * 2012-09-21 2013-01-09 武汉理工大学 一种超轻质泡沫混凝土及其制备方法
CN103771817A (zh) * 2012-10-24 2014-05-07 同济大学 一种脱硫石膏泡沫混凝土及其制备方法
CN106904849A (zh) * 2017-03-17 2017-06-30 山东大学 一种利用工业固废生产硫铝酸盐水泥联产硫酸的***和方法
CN107746288A (zh) * 2017-09-19 2018-03-02 江苏尼高科技有限公司 超轻泡沫石膏、填充超轻泡沫石膏的自保温混凝土砌块及砌块的制备方法
CN108794061A (zh) * 2018-08-20 2018-11-13 北京新时代寰宇科技发展有限公司 一种含复合掺合料的泡沫混凝土及其制备方法和应用
CN108821671A (zh) * 2018-07-17 2018-11-16 山东大学 一种全工业固废高强度即用型发泡混凝土材料及制备方法
CN112624795A (zh) * 2020-12-31 2021-04-09 山东大学 一种脱硫石膏基泡沫混凝土及制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633525B (zh) * 2012-04-27 2013-10-23 同济大学 一种以脱硫石膏为主要胶凝材料的泡沫混凝土
CN103011723B (zh) * 2012-12-12 2015-02-25 首钢总公司 大掺量钢渣泡沫混凝土砌块及其制备方法
CN103922622B (zh) * 2014-03-20 2015-11-04 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
CN104108912B (zh) * 2014-06-19 2016-04-06 广东省建筑科学研究院集团股份有限公司 一种轻质高性能泡沫混凝土及其制备方法
KR101574472B1 (ko) * 2015-05-29 2015-12-04 롯데건설 주식회사 미세 다공질 활성탄을 이용한 경량기포콘크리트용 결합재 조성물 및 경량기포콘크리트 조성물
CN110590249A (zh) * 2019-09-05 2019-12-20 张建华 一种生产泡沫混凝土的原材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863193A (zh) * 2012-09-21 2013-01-09 武汉理工大学 一种超轻质泡沫混凝土及其制备方法
CN103771817A (zh) * 2012-10-24 2014-05-07 同济大学 一种脱硫石膏泡沫混凝土及其制备方法
CN106904849A (zh) * 2017-03-17 2017-06-30 山东大学 一种利用工业固废生产硫铝酸盐水泥联产硫酸的***和方法
CN107746288A (zh) * 2017-09-19 2018-03-02 江苏尼高科技有限公司 超轻泡沫石膏、填充超轻泡沫石膏的自保温混凝土砌块及砌块的制备方法
CN108821671A (zh) * 2018-07-17 2018-11-16 山东大学 一种全工业固废高强度即用型发泡混凝土材料及制备方法
CN108794061A (zh) * 2018-08-20 2018-11-13 北京新时代寰宇科技发展有限公司 一种含复合掺合料的泡沫混凝土及其制备方法和应用
CN112624795A (zh) * 2020-12-31 2021-04-09 山东大学 一种脱硫石膏基泡沫混凝土及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BULLERJAHN FRANK, SCHMITT DIRK, BEN HAHA MOHSEN: "Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker", CEMENT AND CONCRETE RESEARCH., PERGAMON PRESS, ELMSFORD, NY., US, vol. 59, 1 May 2014 (2014-05-01), US , pages 87 - 95, XP055947309, ISSN: 0008-8846, DOI: 10.1016/j.cemconres.2014.02.004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340350A (zh) * 2022-10-18 2022-11-15 山东交通学院 水泥复合原状钛石膏基泡沫混凝土及其制备方法
CN115838263A (zh) * 2022-11-11 2023-03-24 安徽省公路桥梁工程有限公司 一种高强度轻质泡沫土及其制备方法

Also Published As

Publication number Publication date
CN112624795B (zh) 2022-06-03
CN112624795A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022142135A1 (zh) 一种脱硫石膏基泡沫混凝土及制备方法和应用
CN103771817B (zh) 一种脱硫石膏泡沫混凝土及其制备方法
WO2019080527A1 (zh) 石膏基机械喷涂抹灰砂浆及其制备方法和石膏基机械喷涂料浆
CN103496934B (zh) 一种磷石膏基面层粉刷石膏材料及其制备方法
CN106348643B (zh) 改性混凝土膨胀剂
CN107473685B (zh) 一种氟石膏基内墙抹灰材料及其生产工艺
CN102775106B (zh) 一种再生红砖砂干粉砂浆及其制造方法
CN101265069A (zh) 一种高强度耐水粉刷石膏及其生产方法
WO2022257231A1 (zh) 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法
CN105174890A (zh) 一种复合轻质隔墙条板及其制作方法
CN107805016B (zh) 混凝土面层直刮渗透粘合砂浆的生产方法
CN110218037B (zh) 一种湿排灰基充填材料及其制备方法和应用
CN103482898A (zh) 石膏砂浆调凝剂及其制备方法
CN105503109B (zh) 一种脱硫石膏基轻质高强吸声抹灰材料及其制备方法
CN105016636B (zh) 一种石膏矿渣发泡水泥保温板及其制备工艺
CN110041002A (zh) 一种磨细稻壳灰基复合掺合料及其应用
CN107382233A (zh) 一种添加高氯硅渣浆的加气砖
CN106145849A (zh) 一种免蒸压高强碱激发加气混凝土及其制备方法和应用
CN112851273B (zh) 一种铁尾矿砂基节能保温轻质混凝土及其制备方法、应用
CN111004007B (zh) 一种轻质粉刷石膏干料及其制备方法
CN108585698A (zh) 一种轻质隔墙板专用填缝砂浆
CN104003646A (zh) 一种干混砂浆用保水增稠材料及其应用
CN106045449A (zh) 一种二水石膏基防火涂料
CN109320188A (zh) 一种高强度防水石膏板复合材料与制备方法
CN113429145B (zh) 一种磷石膏改性制备水泥基湿拌砂浆集料的方法及砂浆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912896

Country of ref document: EP

Kind code of ref document: A1