WO2022141654A1 - 具备半导体辅助热泵的电子设备散热装置 - Google Patents

具备半导体辅助热泵的电子设备散热装置 Download PDF

Info

Publication number
WO2022141654A1
WO2022141654A1 PCT/CN2021/070345 CN2021070345W WO2022141654A1 WO 2022141654 A1 WO2022141654 A1 WO 2022141654A1 CN 2021070345 W CN2021070345 W CN 2021070345W WO 2022141654 A1 WO2022141654 A1 WO 2022141654A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
cooling
semiconductor
group
Prior art date
Application number
PCT/CN2021/070345
Other languages
English (en)
French (fr)
Inventor
夏春秋
赵党生
娄耀郏
李恒
Original Assignee
北京市鑫全盛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市鑫全盛科技有限公司 filed Critical 北京市鑫全盛科技有限公司
Publication of WO2022141654A1 publication Critical patent/WO2022141654A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means

Definitions

  • the present invention relates to the field of heat dissipation of electronic equipment, in particular to a heat dissipation device for electronic equipment with a semiconductor-assisted heat pump.
  • a relatively efficient air-cooled heat dissipation device is a heat pipe fin set heat dissipation device.
  • both ends of the heat pipe are in contact with the high-temperature heat source and the heat dissipation fin group.
  • the heat exchange medium undergoes a continuous cycle of endothermic evaporation and exothermic condensation. With the reciprocation of these two physical phenomena, the heat pipe is completed. The process of absorbing and releasing heat from a heat source to a set of fins.
  • Semiconductor refrigeration is a refrigeration technology that can be applied in various fields. It has the advantages of compact structure, small size, strong reliability, rapid refrigeration, simple operation, easy to achieve high-precision temperature control, and no environmental pollution. Semiconductor refrigeration uses semiconductor materials to form a P-N junction, and applies current to both ends for refrigeration, which directly converts electrical energy into heat energy.
  • a semiconductor refrigeration unit is used to provide refrigeration directly to electronic equipment.
  • the cold end of the semiconductor refrigeration unit directly contacts the heating surface of the electronic equipment, and the hot end is installed with a conventional air-cooled radiator or a water-cooled radiator.
  • the current problem is that the heating power of electronic equipment usually has a wide range of variation, and a semiconductor refrigeration unit that matches the maximum thermal power of the electronic equipment needs to be equipped, so the energy consumption of the heat dissipation device is huge; , it also needs to be equipped with a larger volume of air-cooled or water-cooled heat sinks; therefore, the purchase cost and use cost are much higher than those of traditional electronic equipment heat sinks.
  • the invention adopts a low-power semiconductor refrigeration unit, utilizes the working characteristics of the gas-liquid two-phase phase change heat transfer of the working medium in the heat pipe, and promotes the cooling of the working medium in the heat pipe by conducting the small cold energy of the semiconductor refrigeration sheet to the heat dissipation end of the heat pipe. Condensation, reducing the temperature of the condensed working medium, and realizing a more efficient circulation of the working medium in the driving heat pipe, so as to achieve the purpose of achieving greater heat removal power and reducing the thermal resistance of the heat sink of electronic equipment.
  • the cooling conduction components of the semiconductor-assisted heat pump are arranged in the fins to release cooling, and share a part of the fan that originally needed to dissipate heat from the fins, therefore, to achieve the same heat dissipation effect, the fan can operate at a lower speed at a lower speed. It effectively reduces the power consumption of the cooling fan and the noise level of the system.
  • the purpose of the present invention is to provide a heat dissipation device for electronic equipment with a semiconductor auxiliary heat pump, which can form a low temperature area around the heat pipe of the heat pipe fin group, promote the condensation of the working medium in the heat pipe, and then realize a higher working medium in the driving heat pipe. Efficient circulation, in addition to a certain degree of direct heat exchange with the heat pipe fin bank.
  • the present invention provides an electronic equipment heat dissipation device with a semiconductor auxiliary heat pump.
  • the electronic equipment heat dissipation device includes a main heat dissipation fin group, a first heat pipe group, a first heat absorption module and a semiconductor auxiliary heat pump.
  • the first heat pipe group includes a heat absorption end and a heat dissipation end; the heat absorption end of the first heat pipe group is closely attached to the heating area of the electronic device through the first heat absorption module, and the heat dissipation end of the first heat pipe group is penetrated on the main heat dissipation fin group ;
  • the semiconductor auxiliary heat pump includes a semiconductor refrigeration unit and a cold heat conduction component.
  • the semiconductor refrigeration unit has a cold surface and a hot surface.
  • a part of the cold heat conduction component is arranged at one end of the cold surface to absorb cold energy, and the other part is arranged on the main heat dissipation fin group.
  • On or on the first heat pipe group to transmit and exchange cold energy.
  • the cold energy conduction assembly includes a cold energy absorption unit and a cold energy transmission and exchange unit; the cold energy absorption unit is arranged close to the cold surface; a part of the cold energy transmission and exchange unit is arranged in the cold energy absorption unit , and the other part is arranged in the main heat dissipation fin group.
  • the semiconductor-assisted heat pump further includes a heat dissipation conduction unit and a set of auxiliary heat dissipation fins.
  • the heat dissipation and conduction unit includes a second heat absorption module and a second heat pipe group; the second heat absorption module is arranged close to the heat surface; a part of the second heat pipe group is arranged in the second heat absorption module, and the other part is passed through the auxiliary heat dissipation fins s.
  • the auxiliary heat dissipation fin group is disposed adjacent to the main heat dissipation fin group, and there is a heat isolation zone between the main heat dissipation fin group and the auxiliary heat dissipation fin group.
  • the heat dissipation device of the electronic equipment further includes a main cooling fan, which is arranged on the main cooling fin group or on the auxiliary cooling fin group, and is used for cooling the main cooling fin group and the auxiliary cooling fin group.
  • a main cooling fan which is arranged on the main cooling fin group or on the auxiliary cooling fin group, and is used for cooling the main cooling fin group and the auxiliary cooling fin group.
  • Group provides forced convection air.
  • the heat dissipation device for electronic equipment provided with the semiconductor-assisted heat pump of the present invention has the following beneficial effects: the cooling energy generated by the cooling-conducting component of the semiconductor-assisted heat pump is input into the heat pipe fin group, and the heat pipe fin group is A low temperature area is formed around the heat pipe, which promotes the condensation and circulation efficiency of the heat pipe, and can also absorb heat from the heat pipe fin group.
  • the core temperature of the heat source of the electronic device can be lowered, and the maximum dethermal power of the electronic device can also be increased.
  • the cooling conduction component of the semiconductor-assisted heat pump it shares a part of the role of the fan. When the same heat dissipation effect is achieved, the fan can reduce the speed to reduce the noise.
  • FIG. 1 is a schematic structural diagram of an electronic device heat sink and a CPU according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a semiconductor-assisted heat pump according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a semiconductor-assisted heat pump according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a semiconductor-assisted heat pump according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first heat absorption module according to an embodiment of the present invention.
  • 1-CPU 2-first heat-absorbing module, 3-first heat pipe group, 31-heat-absorbing end, 32-radiating end, 4-main cooling fin group, 5-semiconductor refrigeration unit, 51-cold surface, 52 -Hot surface, 6-cooling conduction assembly, 61-cooling absorption unit, 62-cooling transmission and exchange unit, 63-cooling conduction block, 64-cooling conduction liquid circuit, 7-cooling conduction unit, 71- The second heat absorption module, 72 - the second heat pipe group, 8 - the main cooling fan, 9 - the auxiliary cooling fin group, and 10 - the auxiliary cooling fan.
  • a heat dissipation device for electronic equipment with a semiconductor-assisted heat pump includes a main heat dissipation fin group 4 , a main heat dissipation fan 8 , and a first heat pipe group 3 . , the first heat absorption module 2 and the semiconductor auxiliary heat pump.
  • the main cooling fan 8 is disposed on the main cooling fin group 4 and used to provide forced convection air into the main cooling fin group 4 .
  • the first heat pipe group 3 includes a heat absorption end 31 and a heat dissipation end 32 .
  • the heat absorbing end 31 of the first heat pipe group 3 is closely attached to the heat generating area of the electronic device through the first heat absorbing module 2 , and the heat dissipation end 32 of the first heat pipe group 3 is penetrated on the main heat dissipation fin group 4 .
  • the semiconductor auxiliary heat pump includes: a semiconductor refrigeration unit 5 and a cooling conduction component 6 .
  • the semiconductor refrigeration unit 5 has a cold surface 51 and a hot surface 52 .
  • a part of the cooling conduction assembly 6 is arranged at one end of the cold surface 51 to absorb cooling, and the other part is arranged in the main heat dissipation fin group 4 or on the first heat pipe group 3 to transmit and exchange cooling.
  • the cooling conduction assembly 6 includes a cooling absorption unit 61 and a cooling transmission and exchange unit 62 .
  • the cold energy absorbing unit 61 is disposed in close contact with the cold surface 51 .
  • a part of the cooling transfer and exchange unit 62 is arranged in the cooling absorption unit 61 , and another part of the cooling transfer and exchange unit 62 is inserted through the main heat dissipation fin group 4 in parallel with the heat dissipation end 32 of the first heat pipe group 3 .
  • the cooling conduction component 6 may also adopt a cooling conduction block 63 , and the cooling conduction block 63 is closely attached to the main heat dissipation fin group 4 and is disposed on the main heat dissipation fin group 4 , A part of the heat dissipation end 32 of the first heat pipe group 3 is exposed outside the main heat dissipation fin group 4 , and the exposed part of the heat dissipation end 32 of the first heat pipe group 3 is penetrated in the cooling conduction block 63 .
  • the cooling conduction block 63 in this embodiment can be made of a copper block with better heat conduction efficiency, but the present invention is not limited to this.
  • the cooling conduction component 6 may also adopt multiple cooling conduction liquid loops 64 , and a part of the multiple cooling conduction liquid loops 64 is disposed close to the cold surface 51 , and the other part is connected to the first cooling surface 51 .
  • the heat-dissipating ends 32 of the heat pipe group 3 pass through the main heat-dissipating fin group 4 in parallel, and the other parts of the plurality of cooling-conducting liquid loops 64 are located between the heat-dissipating ends 32 of the first heat-pipe group 3, and the cooling-conducting liquid loops 64 is filled with coolant.
  • the electronic equipment heat dissipation device with the semiconductor auxiliary heat pump further includes a circulation pump (not shown), the circulation pump is arranged on the plurality of cooling conduction liquid circuits 64 , and the circulation pump is used to assist the cooling liquid in the plurality of cooling liquids.
  • a quantity of conductive liquid circulates within the circuit 64 .
  • the first heat absorbing module 2 of the heat sink for electronic equipment may be composed of two pieces, and a groove matching the first heat pipe group 3 is provided between the two pieces, and the first heat pipe The heat absorbing end 31 of the group 3 passes through the groove.
  • One of the first heat-absorbing modules 2 is disposed close to the heat-generating area of the CPU 1 of the electronic device.
  • the semiconductor-assisted heat pump further includes a heat dissipation conduction unit 7 , an auxiliary heat dissipation fin group 9 and an auxiliary heat dissipation fan 10 .
  • the heat dissipation and conduction unit 7 includes a second heat absorption module 71 and a second heat pipe group 72 .
  • the second heat absorption module 71 is disposed close to the heat surface 52
  • a part of the second heat pipe group 72 is disposed in the second heat absorption module 71 .
  • Another part of the second heat pipe group 72 is penetrated in the auxiliary heat dissipation fin group 9 .
  • the auxiliary cooling fan 10 is arranged on the auxiliary cooling fin group 9 .
  • the cold surface 51 of the semiconductor refrigeration unit 5 generates cooling capacity by cooling, while the hot surface 52 generates heat by heating. In this way, in terms of energy conservation, the semiconductor refrigeration unit 5 can work normally while cooling and dissipating heat.
  • the auxiliary heat dissipation fin group 9 and the main heat dissipation fin group 4 may be disposed adjacent to each other, for example, but not limited to, the heat isolation strips of the heat dissipation fins are arranged side by side, or in the form of stacking, but in principle the auxiliary heat dissipation fin group 9 There must be a certain heat isolation zone between the heat dissipation fin group 9 and the main heat dissipation fin group 4 , that is to say, it is better not to have direct heat conduction between the auxiliary heat dissipation fin group 9 and the main heat dissipation fin group 4 .
  • the secondary heat dissipation fin set 9 is disposed on the opposite side of the main heat dissipation fin set 4 and the main heat dissipation fan 8 .
  • the auxiliary cooling fan 10 can also be arranged between the main cooling fin group 4 and the auxiliary cooling fin group 9 , and the auxiliary cooling fan 10 is used for forcibly extracting convective air from the main cooling fin group 4 and forcing Blow convective air into the auxiliary heat dissipation fin group 9 .
  • the auxiliary cooling fan 10 is further disposed on a side (not shown) of the auxiliary cooling fin set 9 away from the main cooling fin set 4 , and the auxiliary cooling fan 10 is used to force the cooling fin set 9 from the auxiliary cooling fin set 9 . and the main cooling fin group 4 to extract convection air.
  • the auxiliary cooling fan 10 and the auxiliary cooling fin group 9 can also be arranged separately, not in combination with the main cooling fin group 4, but preferably in combination with the main cooling fin group 4 and the main cooling fan 8, In this way, the spatial arrangement is more favorable.
  • the number of cooling fans (including the main cooling fan 8 and the auxiliary cooling fan 10 ) is not limited, and one or more cooling fans may be provided on the main cooling fin group 4 and the auxiliary cooling fin group 9 respectively. Alternatively, one or more cooling fans may be arranged on the combination of the main cooling fin group 4 and the auxiliary cooling fin group 9 .
  • main cooling fins 4 , the main cooling fan 8 , the auxiliary cooling fin group 9 and the auxiliary cooling fan 10 are only exemplary, and the present invention is not limited thereto.
  • the semiconductor-assisted heat pump can also be replaced by other types of refrigeration equipment such as micro-compressors.
  • the heat dissipation device for electronic equipment provided with the semiconductor-assisted heat pump of the present invention has the following advantages: the cooling energy generated by the cooling-conducting components of the semiconductor-assisted heat pump is input into the heat pipe fin group, and the heat pipe fin group is formed around the heat pipe of the heat pipe fin group.
  • the low temperature area promotes the condensation and circulation efficiency of the heat pipe, and can also absorb heat from the heat pipe fin group.
  • the core temperature of the heat source of the electronic device can be lowered, and the maximum dethermal power of the electronic device can also be increased.
  • due to the effect of the cooling conduction component of the semiconductor-assisted heat pump it shares part of the role of the fan.
  • the fan can reduce the speed to reduce the noise. Due to the auxiliary heat dissipation effect of the cooling conduction component of the semiconductor auxiliary heat pump, the applicability of the electronic equipment heat dissipation device is more extensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开了一种具备半导体辅助热泵的电子设备散热装置,电子设备散热装置包括主散热鳍片组、第一热管组、第一吸热模块以及半导体辅助热泵。第一热管组包括吸热端及散热端;第一热管组的吸热端通过第一吸热模块紧贴电子设备的发热区,第一热管组的散热端穿设在主散热鳍片组上;半导体辅助热泵包括半导体制冷单元及冷量传导组件,半导体制冷单元具有冷面及热面,冷量传导组件的一部分设置在冷面一端用以吸取冷量,另一部分设置在主散热鳍片组上或设置在第一热管组上用以传输和交换冷量。本发明之具备半导体辅助热泵的电子设备散热装置,可在第一热管组中的热管周围形成低温区域,促进第一热管组热管内的工质冷凝和循环,提升其工作效率。

Description

具备半导体辅助热泵的电子设备散热装置 技术领域
本发明是关于电子设备散热领域,特别是关于一种具备半导体辅助热泵的电子设备散热装置。
背景技术
中央处理器(CPU)或图像处理器(GPU)等电子设备在工作中会产生大量的热量,这些热量如不及时散走,则会严重降低其性能甚至损害寿命,因此提高和优化散热装置的散热能力变得越来越重要。
目前比较高效的风冷散热装置为热管鳍片组散热装置。在该类装置中,热管两端分别与高温热源和散热鳍片组接触,在热管内部,换热介质进行持续的吸热蒸发和放热冷凝循环,伴随这两个物理现象往复出现,热管完成从热源吸热和放热给鳍片组的过程。
半导体制冷是一种可应用于多种领域的制冷技术,具有结构紧凑、体积小、可靠性强、制冷迅速、操作简单、容易实现高精度的温度控制、无环境污染等优点。半导体制冷利用半导体材料组成P-N结,通过两端施加电流进行制冷,将电能直接转换为热能。
现有技术中比较常见的由散热风扇、散热鳍片、热管组成的常规电子散热装置存在的问题是:由于受到电子设备安装空间、***噪音、风扇能力、热管数量等条件的限制,常规电子散热装置的体量和性能已遇到发展瓶颈,当电子设备功率超过热管的最大传热量Qmax时,其散热性能迅速恶化,电子设备核心温度急剧上升。
在其他一些现有技术中有采用半导体制冷单元直接给电子设备提供制冷的方式,半导体制冷单元的冷端直接接触电子设备发热表面,热端安装常规 风冷散热器或水冷散热器。目前存在的问题是:电子设备发热功率通常具有很大的变化范围,需要配备与电子设备最大热功率相匹配的半导体制冷单元,因此散热装置的能耗巨大;同时为了给大功率半导体制冷单元散热,还需要配备较大体量的风冷或水冷散热装置;因此购置成本和使用成本远高于传统电子设备散热装置。
本发明采用小功率的半导体制冷单元,利用热导管内工质气液两相相变传热的工作特征,通过将半导体制冷片微小的冷量传导给热管的散热端,促进热管内工质的冷凝,降低工质冷凝后的温度,实现驱动热管内工质更高效率地循环,从而达到实现更大的解热功率以及降低电子设备散热装置热阻的目的。
此外,由于半导体辅助热泵的冷量传导组件布置在鳍片中释放冷量,分担了原本需要为鳍片散热的风扇的一部分作用,因此,在达到同样散热效果时,风扇可以在较低转速下运行,有效降低了散热风扇的功耗和***噪音水平。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种具备半导体辅助热泵的电子设备散热装置,其,可在热管鳍片组的热管周围形成低温区域,促进热管内工质的冷凝,进而实现驱动热管内工质更高效率地循环,另外还可以和热管鳍片组进行一定程度的直接热交换。
为实现上述目的,本发明提供了一种具备半导体辅助热泵的电子设备散热装置,电子设备散热装置包括主散热鳍片组、第一热管组、第一吸热模块以及半导体辅助热泵。第一热管组包括吸热端及散热端;第一热管组的吸热 端通过第一吸热模块紧贴电子设备的发热区,第一热管组的散热端穿设在主散热鳍片组上;半导体辅助热泵包括半导体制冷单元及冷量传导组件,半导体制冷单元具有冷面及热面,冷量传导组件的一部分设置在冷面一端用以吸取冷量,另一部分设置在主散热鳍片组上或设置在第一热管组上用以传输和交换冷量。
在一优选的实施方式中,冷量传导组件包括冷量吸收单元以及冷量传输和交换单元;冷量吸收单元紧贴冷面设置;冷量传输和交换单元的一部分设置在冷量吸收单元内,另一部分设置在主散热鳍片组内。
在一优选的实施方式中,半导体辅助热泵还包括散热传导单元以及副散热鳍片组。散热传导单元包括第二吸热模块及第二热管组;第二吸热模块紧贴热面设置;第二热管组的一部分设置在第二吸热模块中,另一部分穿设在副散热鳍片组内。
在一优选的实施方式中,副散热鳍片组与主散热鳍片组相邻设置,主散热鳍片组与副散热鳍片组之间存在热量隔离带。
在一优选的实施方式中,电子设备散热装置还包括主散热风扇,其设置在主散热鳍片组上或者设置在副散热鳍片组上,并用以向主散热鳍片组和副散热鳍片组提供强制对流空气。
与现有技术相比,本发明的具备半导体辅助热泵的电子设备散热装置具有以下有益效果:半导体辅助热泵的冷量传导组件产生的冷量输入至热管鳍片组中,在热管鳍片组的热管周围形成低温区域,促进热管的冷凝和循环效率,另外可以从热管鳍片组吸热。通过这种效应,可以降低电子器件热源的核心温度,还可以提高电子器件的最大解热功率。此外,由于半导体辅助热泵的冷量传导组件的效应,分担了风扇的一部分作用,达到同样散热效果时,风扇可以调低转速,达到降低噪音的效果。
附图说明
图1是根据本发明一实施方式的电子设备散热装置与CPU的结构示意图;
图2是根据本发明一实施方式的半导体辅助热泵的结构示意图;
图3是根据本发明另一实施方式的半导体辅助热泵的结构示意图;
图4是根据本发明又一实施方式的半导体辅助热泵的结构示意图;
图5是根据本发明一实施方式的第一吸热模块的结构示意图。
主要附图标记说明:
1-CPU,2-第一吸热模块,3-第一热管组,31-吸热端,32-散热端,4-主散热鳍片组,5-半导体制冷单元,51-冷面,52-热面,6-冷量传导组件,61-冷量吸收单元,62-冷量传输和交换单元,63-冷量传导块,64-冷量传导液体回路,7-散热传导单元,71-第二吸热模块,72-第二热管组,8-主散热风扇,9-副散热鳍片组,10-副散热风扇。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
如图1至图4所示,根据本发明优选实施方式的一种具备半导体辅助热泵的电子设备散热装置,电子设备散热装置包括主散热鳍片组4、主散热风扇8、第一热管组3、第一吸热模块2以及半导体辅助热泵。主散热风扇8设置在主散热鳍片组4上,并用以向主散热鳍片组4内提供强制对流空气。第一热管组3包括吸热端31及散热端32。第一热管组3的吸热端31通过第一吸热模块2紧贴电子设备的发热区,第一热管组3的散热端32穿设在主散热鳍片组4上。半导体辅助热泵包括:半导体制冷单元5及冷量传导组件6。半导体制冷单元5具有冷面51及热面52。冷量传导组件6的一部分设置在冷面51一端用以吸取冷量,另一部分设置在主散热鳍片组4中或者设置在第一热管组3上,用以传输和交换冷量。
请参阅图2,在一些实施方式中,冷量传导组件6包括冷量吸收单元61以及冷量传输和交换单元62。冷量吸收单元61紧贴冷面51设置。冷量传输和交换单元62的一部分设置在冷量吸收单元61内,冷量传输和交换单元62另一部分与第一热管组3的散热端32平行地穿设在主散热鳍片组4上。
请参阅图3,在一些实施方式中,冷量传导组件6还可以采用冷量传导块63,冷量传导块63紧贴主散热鳍片组4并设置在主散热鳍片组4的上,第一热管组3的散热端32的一部分露出主散热鳍片组4之外,且第一热管组3的散热端32的露出部分穿设在冷量传导块63内。本实施例的冷量传导块63可以采用热传导效率较好的铜块制造,但本发明并不以此为限。
请参阅图4,在一些实施方式中,冷量传导组件6也可以采用多个冷量传导液体回路64,多个冷量传导液体回路64的一部分紧贴冷面51设置,另一部分与第一热管组3的散热端32平行地穿设在主散热鳍片组4上,且多个冷量传导液体回路64的另一部分位于第一热管组3的散热端32之间,冷量传导液体回路64内充填有冷却液。
在一些实施方式中,具备半导体辅助热泵的电子设备散热装置还包括循环泵(未绘示),循环泵设置在多个冷量传导液体回路64上,循环泵用以辅助冷却液在多个冷量传导液体回路64内循环。
如图5所示,在一些实施方式中,电子设备散热装置的第一吸热模块2可以由两片组成,两片之间设置有与第一热管组3相匹配的沟槽,第一热管组3的吸热端31穿设在沟槽内。第一吸热模块2的其中一片紧贴电子设备的CPU1的发热区设置。
请参阅图2至图4,在一些实施方式中,半导体辅助热泵还包括散热传导单元7、副散热鳍片组9以及副散热风扇10。散热传导单元7包括第二吸热模块71及第二热管组72,第二吸热模块71紧贴热面52设置,第二热管组72的一部分设置在第二吸热模块71中。第二热管组72的另一部分穿设在副散热鳍片组9内。副散热风扇10设置在副散热鳍片组9上。半导体制冷单元5的冷面51制冷产生冷量,同时热面52制热产生热量,这样从能量守恒来讲,半导体制冷单元5才可一面制冷一面散热的正常工作。
在一些实施方式中,副散热鳍片组9与主散热鳍片组4可以临近设置, 例如是但不限于散热鳍片的热量隔离带相通的并排设置,或者堆叠的形式设置,但是原则上副散热鳍片组9与主散热鳍片组4之间一定存在着一定的热量隔离带,也就是说副散热鳍片组9与主散热鳍片组4之间最好不要发生直接的热传导。
请参阅图2至图4,在一些实施方式中,副散热鳍片组9设置在主散热鳍片组4和主散热风扇8相对的一侧。
在一些实施方式中,副散热风扇10也可以设置在主散热鳍片组4和副散热鳍片组9之间,副散热风扇10用以强制从主散热鳍片组4内抽取对流空气和强制向副散热鳍片组9内吹如对流空气。
在一些实施方式中,副散热风扇10还设置在副散热鳍片组9的远离主散热鳍片组4的一侧(未绘示),副散热风扇10用以强制从副散热鳍片组9和主散热鳍片组4抽取对流空气。
在一些实施方式中,副散热风扇10和副散热鳍片组9也可以单独设置,不与主散热鳍片组4组合设置,但是优选与主散热鳍片组4以及主散热风扇8组合设置,这样空间布置更加有利。
在一些实施方式中,散热风扇(包括主散热风扇8和副散热风扇10)的数量并不限定,可以在主散热鳍片组4和副散热鳍片组9上分别设置一个或者多个散热风扇,也可以在主散热鳍片组4和副散热鳍片组9的组合体上设置一个或者多个散热风扇。
上述的主散热鳍片内4、主散热风扇8、副散热鳍片组9以及副散热风扇10的设置形式都只是示例性的,本发明并不以此为限。
在一些实施方式中,半导体辅助热泵还也可以替换为微型压缩机等其他类型的制冷设备。
综上所述,本发明的具备半导体辅助热泵的电子设备散热装置具有以下优点:半导体辅助热泵的冷量传导组件产生的冷量输入至热管鳍片组中,在热管鳍片组的热管周围形成低温区域,促进热管的冷凝和循环效率,另外可以从热管鳍片组吸热。通过这种效应,可以降低电子器件热源的核心温度,还可以提高电子器件的最大解热功率。此外,由于半导体辅助热泵的冷量传导组件的效应,分担了风扇的一部分作用,达到同样散热效果时,风扇可以 调低转速,达到降低噪音的效果。由于半导体辅助热泵的冷量传导组件的辅助散热作用,使得电子设备散热装置的适用性更加广泛。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (5)

  1. 一种具备半导体辅助热泵的电子设备散热装置,其特征在于,所述电子设备散热装置包括:
    主散热鳍片组;
    第一热管组,其包括吸热端及散热端;
    第一吸热模块,所述第一热管组的吸热端通过所述第一吸热模块紧贴所述电子设备的发热区,所述第一热管组的散热端穿设在所述主散热鳍片组上;以及
    半导体辅助热泵,其包括:
    半导体制冷单元,其具有冷面及热面;及
    冷量传导组件,其一部分设置在所述冷面一端用以吸取冷量,另一部分设置在所述主散热鳍片组上或设置在所述第一热管组上用以传输和交换冷量。
  2. 如权利要求1所述的具备半导体辅助热泵的电子设备散热装置,其特征在于,所述冷量传导组件包括:
    冷量吸收单元,其紧贴所述冷面设置;以及
    冷量传输和交换单元,其一部分设置在所述冷量吸收单元内,另一部分设置在所述主散热鳍片组内。
  3. 如权利要求1所述的具备半导体辅助热泵的电子设备散热装置,其特征在于,所述半导体辅助热泵还包括:
    散热传导单元,其包括:
    第二吸热模块,其紧贴所述热面设置;及
    第二热管组,其一部分设置在所述第二吸热模块中;以及
    副散热鳍片组,所述第二热管组的另一部分穿设在所述副散热鳍片组内。
  4. 如权利要求3所述的具备半导体辅助热泵的电子设备散热装置,其特征在于,所述副散热鳍片组与所述主散热鳍片组相邻设置,所述主散热鳍片组与所述副散热鳍片组之间存在热量隔离带。
  5. 如权利要求1所述的具备半导体辅助热泵的电子设备散热装置,其特征在于,所述电子设备散热装置还包括散热风扇,其设置在所述主散热鳍片组上或者设置在所述副散热鳍片组上,并用以向所述主散热鳍片组和所述副散热鳍片组提供强制对流空气。
PCT/CN2021/070345 2020-12-31 2021-01-05 具备半导体辅助热泵的电子设备散热装置 WO2022141654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011642167.XA CN112799485A (zh) 2020-12-31 2020-12-31 具备半导体辅助热泵的电子设备散热装置
CN202011642167.X 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022141654A1 true WO2022141654A1 (zh) 2022-07-07

Family

ID=75809313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070345 WO2022141654A1 (zh) 2020-12-31 2021-01-05 具备半导体辅助热泵的电子设备散热装置

Country Status (2)

Country Link
CN (1) CN112799485A (zh)
WO (1) WO2022141654A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165077A (ja) * 1998-11-24 2000-06-16 Matsushita Refrig Co Ltd 電子機器用放熱装置
US6880346B1 (en) * 2004-07-08 2005-04-19 Giga-Byte Technology Co., Ltd. Two stage radiation thermoelectric cooling apparatus
US20050257532A1 (en) * 2004-03-11 2005-11-24 Masami Ikeda Module for cooling semiconductor device
US7177152B1 (en) * 2004-12-15 2007-02-13 Yuan-Hsin Sun Collective and restrictive inhalant and radiating device for appliances
US20080266788A1 (en) * 2007-04-30 2008-10-30 Yuan-Hsin Sun Radiation device for computer or electric appliances
US20110179806A1 (en) * 2010-01-28 2011-07-28 Mitsubishi Electric Corporation Cooling apparatus
EP2363881A1 (en) * 2010-03-01 2011-09-07 Cpumate Inc. Heat-Dissipating Device for Supplying Cold Airflow
CN104729143A (zh) * 2013-12-18 2015-06-24 现代自动车株式会社 具有热电元件的热交换器
WO2019025021A1 (de) * 2017-08-02 2019-02-07 Wind Plus Sonne Gmbh Kontaminationsfrei kühlbare, umschlossene, bei betrieb wärme abgebende, elektrische und/oder elektronische bauteile und geräte

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165077A (ja) * 1998-11-24 2000-06-16 Matsushita Refrig Co Ltd 電子機器用放熱装置
US20050257532A1 (en) * 2004-03-11 2005-11-24 Masami Ikeda Module for cooling semiconductor device
US6880346B1 (en) * 2004-07-08 2005-04-19 Giga-Byte Technology Co., Ltd. Two stage radiation thermoelectric cooling apparatus
US7177152B1 (en) * 2004-12-15 2007-02-13 Yuan-Hsin Sun Collective and restrictive inhalant and radiating device for appliances
US20080266788A1 (en) * 2007-04-30 2008-10-30 Yuan-Hsin Sun Radiation device for computer or electric appliances
US20110179806A1 (en) * 2010-01-28 2011-07-28 Mitsubishi Electric Corporation Cooling apparatus
EP2363881A1 (en) * 2010-03-01 2011-09-07 Cpumate Inc. Heat-Dissipating Device for Supplying Cold Airflow
CN104729143A (zh) * 2013-12-18 2015-06-24 现代自动车株式会社 具有热电元件的热交换器
WO2019025021A1 (de) * 2017-08-02 2019-02-07 Wind Plus Sonne Gmbh Kontaminationsfrei kühlbare, umschlossene, bei betrieb wärme abgebende, elektrische und/oder elektronische bauteile und geräte

Also Published As

Publication number Publication date
CN112799485A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN104851857B (zh) 一种芯片冷却***
WO2017148050A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却***
WO2017036283A1 (zh) 一种用于循环冷却***的半导体制冷装置
CN101242729A (zh) 毛细微槽群与热电组合热控制方法及***
CN104197612B (zh) 一种半导体冰箱的高效散热组件
CN108153401A (zh) 一种计算机服务器散热装置
CN104792200A (zh) 一种带有亲液涂层的脉动热管换热器
CN101001514A (zh) 液冷式散热装置及散热单元
US20110192572A1 (en) Heat exchanger
CN114003111A (zh) 一种用于计算机芯片的散热设备
CN111664733A (zh) 一种微通道换热器结合热管的散热装置
WO2022141654A1 (zh) 具备半导体辅助热泵的电子设备散热装置
CN215529706U (zh) 散热装置
CN102736711A (zh) 冷凝装置结构改良及其散热模组
CN213545202U (zh) 一种基于热电制冷的平板热管式cpu散热装置
CN213876641U (zh) 具备半导体辅助热泵的电子设备散热装置
TW201941677A (zh) 伺服器之擴展散熱器設計
CN104850197A (zh) 带有复合底板的重力热管式芯片散热器
CN108419416A (zh) 一种igbt用的高散热量热管散热器
CN111366018B (zh) 半导体制冷用散热组件及半导体制冷设备
CN212812457U (zh) 电子设备
CN112256113A (zh) 一种基于热电制冷的平板热管式cpu散热装置
TWM612965U (zh) 水冷頭附加鰭片散熱器
CN207909067U (zh) 一种计算机服务器散热装置
CN108282983B (zh) 两相流热传结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912437

Country of ref document: EP

Kind code of ref document: A1