WO2022139334A1 - 방향성 전기강판 및 그 자구미세화 방법 - Google Patents

방향성 전기강판 및 그 자구미세화 방법 Download PDF

Info

Publication number
WO2022139334A1
WO2022139334A1 PCT/KR2021/019216 KR2021019216W WO2022139334A1 WO 2022139334 A1 WO2022139334 A1 WO 2022139334A1 KR 2021019216 W KR2021019216 W KR 2021019216W WO 2022139334 A1 WO2022139334 A1 WO 2022139334A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grooves
groove
electrical steel
grain
Prior art date
Application number
PCT/KR2021/019216
Other languages
English (en)
French (fr)
Inventor
권오열
김우신
송재화
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2023537528A priority Critical patent/JP2024500836A/ja
Priority to CN202180085715.XA priority patent/CN116710578A/zh
Priority to US18/268,407 priority patent/US20240024985A1/en
Priority to EP21911401.4A priority patent/EP4266331A4/en
Publication of WO2022139334A1 publication Critical patent/WO2022139334A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • It relates to a grain-oriented electrical steel sheet and a magnetic domain refining method thereof. Specifically, it relates to a grain-oriented electrical steel sheet capable of securing electrical insulation as well as iron loss characteristics by combining continuous grooves and discontinuous grooves, and a magnetic domain refining method thereof.
  • grain-oriented electrical steel sheet is used as a transformer iron core material using electromagnetic induction in dry or inflow environments, it requires adhesion and corrosion resistance of the coating material in the final product sheet state.
  • Grain-oriented electrical steel sheet contains a large amount of Si, and through melting, casting, hot rolling, hot-rolled sheet annealing, cold rolling and high-temperature annealing processes, the texture of the secondary recrystallized grains is changed to the same Goss orientation as the rolling direction ( ⁇ 110 ⁇ 001>).
  • Oriented functional steel sheet Oriented functional steel sheet.
  • the magnetic domain refining technology of grain-oriented electrical steel sheet is a technology to improve iron loss characteristics by reducing the 180 ⁇ domain width within the secondary crystal grains when a magnetic field is applied. is applied to thick products.
  • the technology that can secure the magnetic domain refining effect even after SRA (Stress Relief Annealing) is called Permanent Magnetic Domain Refinement Technology.
  • This permanent magnetic domain refining technology is used as a transformer iron core that requires molding and heat treatment due to its technical characteristics, and it is necessary to secure electrical insulation as well as iron loss characteristics of the iron core in a dry (wet) type environment above room temperature.
  • a grain-oriented electrical steel sheet and a magnetic domain refining method thereof are provided.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet capable of securing electrical insulation as well as iron loss characteristics by combining continuous grooves and discontinuous grooves, and a method for refining magnetic domains thereof.
  • a grain-oriented electrical steel sheet includes a linear groove formed on one or both sides of the electrical steel sheet in a direction crossing the rolling direction (X 1 direction); and dotted grooves arranged on one or both sides of the electrical steel sheet in a direction crossing the rolling direction (X 2 direction), wherein a plurality of linear grooves and dotted grooves are formed along the rolling direction, and dotted grooves
  • the spacing D3 between the dotted grooves with respect to the arrangement direction (X 2 direction) is 0.02 to 1.7 times the spacing D2 between the dotted grooves with respect to the rolling direction.
  • the interval D3 between the dotted grooves in the dotted groove arrangement direction (X 2 direction) may be 0.01 to 9.00 mm, and the interval D2 between the dotted grooves in the rolling direction may be 1.8 mm to 5.0 mm.
  • the distance D1 between the grooves on the line with respect to the rolling direction may be 0.2 to 3 times the distance D2 between the grooves on the line with respect to the rolling direction.
  • Linear grooves and dotted grooves may be formed on one surface of the steel sheet.
  • the depth of the linear groove and the dotted groove may be 5 to 15% of the thickness of the steel sheet.
  • the longitudinal direction of the linear grooves and the arrangement direction of the dotted grooves may form an angle of 75 to 105° with the rolling direction.
  • Two to ten linear grooves may be intermittently formed along the vertical direction of rolling of the steel sheet.
  • the dotted groove may have a diameter ( LG ) of 0.02 mm to 0.4 mm with respect to the dotted groove arrangement direction (X 2 direction).
  • a magnetic domain refining method of a grain-oriented electrical steel sheet comprises the steps of preparing a grain-oriented electrical steel sheet; Forming a linear groove by irradiating a continuous oscillation frequency laser on one or both surfaces of the grain-oriented electrical steel sheet in a direction crossing the rolling direction; and irradiating a pulsed oscillation frequency laser to one or both surfaces of the grain-oriented electrical steel sheet in a direction crossing the rolling direction to form a dotted groove.
  • the interval D3 between the dotted grooves with respect to the dotted groove arrangement direction (X 2 direction) is a dotted groove with respect to the rolling direction. It is 0.02 to 1.7 times the interval (D2) between the livers.
  • the frequency (F q ) of the laser may be 20 kHz to 100 kHz.
  • the duty of the laser may be 50% or less.
  • the energy density of the laser may be 0.5 to 2 J/mm 2 .
  • the beam length in the vertical direction of the steel sheet rolling of the laser may be 50 to 750 ⁇ m, and the beam width in the steel sheet rolling direction of the laser may be 10 to 30 ⁇ m.
  • the coercive force and the iron loss are improved, and at the same time, the electrical insulation properties are also improved.
  • FIG 1 and 2 are schematic views of a rolling surface (ND surface) of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG 3 is a schematic diagram of a cross-section (TD surface) of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a groove according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the shape of a laser beam according to an embodiment of the present invention.
  • first, second and third etc. are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • FIG. 1 and 2 show a schematic diagram of a grain-oriented electrical steel sheet 10 that has been refined into a magnetic domain according to an embodiment of the present invention.
  • the grain-oriented electrical steel sheet 10 is on one side 11 or both sides 11 and 12 of the electrical steel sheet, in a direction crossing the rolling direction (RD direction) a linear groove 20 formed in (X 1 direction); and a dotted groove 30 formed on one surface 11 or both surfaces 11 and 12 of the electrical steel sheet and arranged in a direction crossing the rolling direction (X 2 direction).
  • a plurality of linear grooves 20 and dotted grooves 30 are formed along the rolling direction, and the distance D3 between the dotted grooves in the dotted groove arrangement direction (X 2 direction) is the dotted groove in the rolling direction. It is 0.02 to 1.7 times the interval (D2) between the livers.
  • the linear groove 20 and the point groove 30 by forming the linear groove 20 and the point groove 30 at the same time, it is possible to improve the magnetic properties and the electrical insulating properties at the same time.
  • the linear groove 20 or the dotted groove 30 is formed alone, there is a problem in the occurrence of a heel-up due to an increase in the groove depth in order to secure the magnetic characteristics, and thus the magnetic characteristics and electrical insulation properties are inferior.
  • magnetic properties and electrical insulating properties can be improved at the same time.
  • the ratio (D3/D2) of the spacing (D3) between the point-like grooves to the dotted groove arrangement direction (X 2 direction) and the spacing (D2) between the point-like grooves with respect to the rolling direction (D3/D2) is also important do.
  • the dotted groove 30 becomes similar to the linear groove, and it is difficult to obtain the effect of simultaneously forming the linear groove 20 or the dotted groove 30 .
  • this ratio when this ratio is too large, it becomes the same shape as that in which the point groove 30 is not substantially formed, and it is difficult to obtain the effect of forming the linear groove 20 or the point groove 30 at the same time. Therefore, the interval D3 between the dotted grooves with respect to the dotted groove arrangement direction (X 2 direction) needs to be 0.02 to 1.7 times the distance D2 between the dotted grooves with respect to the rolling direction. More specifically, it needs to be 0.30 to 1.7 times. More specifically, it needs to be 0.65 to 1.7 times.
  • the distance between the grooves 20 on the line is indicated by D1
  • the space between the grooves 30 on the point with respect to the rolling direction is indicated by D2.
  • the interval between the dotted grooves with respect to the dotted groove arrangement direction (X 2 direction) is indicated by D3.
  • an arbitrary linear groove 20 and the linear groove closest to the arbitrary linear groove 20 (20) is defined as the interval (D1) between the grooves.
  • an arbitrary point-like groove 30 and the point-like groove 30 closest to the rolling direction are defined as the interval D2 between the point-like grooves.
  • an arbitrary dotted groove 30 and a dotted groove 30 closest to the dotted groove arrangement direction (X 2 direction) are defined as the interval D2 between the dotted grooves.
  • the maximum of the linear groove 20 center line and the dotted groove 30 Define the spacing based on the outline.
  • the linear groove 20 and the dotted groove 30 are substantially parallel, but when they are not parallel, the closest positions are considered as intervals.
  • the average value of each interval D1, D2, D3, that is, the sum of the intervals D1, D2, D3 A value divided by the number may satisfy the above-described range.
  • the interval D3 between the dotted grooves in the dotted groove arrangement direction (X 2 direction) may be 0.01 to 9.00 mm, and the interval D2 between the dotted grooves in the rolling direction may be 1.8 mm to 5.0 mm. If the interval D3 between the dotted grooves with respect to the dotted groove arrangement direction (X 2 direction) is too large, the effect of forming only the linear grooves 20, not the dotted grooves 30, occurs, so that the magnetic and insulating properties are reduced. can be inferior When the interval D2 between the grooves in the shape of a point in the rolling direction is too small, an effect in which only the grooves 30, not the grooves 20, are formed, which may result in inferior magnetism and insulation.
  • the interval D2 between the grooves in the form of points with respect to the rolling direction is too large, an effect in which only the grooves 20 in the form of a line are formed may occur, and the magnetism and insulation may be inferior.
  • the interval (D3) between the point-like grooves in the direction of arrangement of the point-like grooves (X 2 direction) is 0.1 to 3.0 mm
  • the interval (D2) between the point-like grooves in the rolling direction is .2.0 mm to 4.0 mm can
  • the distance D1 between the linear grooves 20 in the rolling direction may be 0.2 to 3.0 times the distance D2 between the point grooves 30 in the rolling direction.
  • FIG. 3 illustrates a case in which one point-shaped groove 30 is formed between the linear grooves 20, that is, a case in which D2/D1 is 1, but is not limited thereto.
  • the distance D1 between the linear grooves 20 with respect to the rolling direction may be 0.5 to 1.5 times the distance D2 between the grooves 30 on the line with respect to the rolling direction.
  • the distance D1 between the grooves 20 on the line with respect to the rolling direction is 2 to 15 mm may be.
  • the distance (D1) between the linear grooves 20 with respect to the rolling direction, the distance between the dotted grooves 30 with respect to the rolling direction (D2), and the distance between the dotted grooves with respect to the dotted groove arrangement direction (X 2 direction) ( D3) may have a constant interval within the entire electrical steel sheet. Specifically, all the intervals (D1, D2, D3) in the entire electrical steel sheet may correspond to within 10% of the average interval (D1, D2, D3). More specifically, it may correspond to within 1%.
  • the linear groove 20 and the dotted groove 30 are formed on one surface 11 of the steel plate, but is not limited thereto.
  • the linear groove 20 may be formed on one surface 11 of the steel sheet, and the point groove 30 may be formed on the other surface 12 of the steel sheet.
  • the distance D2 between the grooves 30 in the form of points may be 0.2 to 0.5 times the distance D1 between the grooves 20 in the form of a line.
  • the average value of each of the intervals D1 and D2 may satisfy the above-described range.
  • the interval D2 between the grooves 30 in the form of points may be 0.2 to 0.4 times the interval D1 between the grooves 20 in the line.
  • the distance D2 between the grooves 30 in the form of points may be 2 to 2.8 times the distance D1 between the grooves 20 in the form of a line.
  • the linear groove 20 and the dotted groove 30 refer to a portion in which a portion of the surface of the steel sheet is removed by irradiation with laser, plasma, ion beam, or the like.
  • the shape of the linear groove 20 is expressed in a wedge shape
  • the shape of the point groove 30 is expressed as a semicircle, but this is only an example, and a square, trapezoidal, U-shaped, W It may be formed in various shapes, such as a shape.
  • the depth (HG ) of the linear groove 20 or the dotted groove 30 may be 5 to 15% of the thickness of the steel sheet.
  • the depth of the groove ( HG ) is too shallow, it is difficult to obtain an appropriate iron loss improvement effect.
  • the depth of the groove ( HG ) is too deep, the structure properties of the steel sheet 10 may be greatly changed due to strong laser irradiation, or magnetic properties may be deteriorated by forming a large amount of heel-up and spatter. Accordingly, it is possible to control the depth of the linear groove 20 or the dotted groove 30 within the above-described range.
  • the solidified alloy layer 40 has a thickness (H c ) of 0.1 ⁇ m to 3 ⁇ m.
  • H c thickness of the solidified alloy layer 40
  • the solidified alloy layer includes recrystallization having an average particle diameter of 1 to 10 ⁇ m, and is distinguished from other steel sheet portions.
  • an insulating film layer 50 may be formed on the linear groove 20 or the dotted groove 30 .
  • the longitudinal direction (X 1 direction) of the linear grooves 20 or the arrangement direction (X 2 direction) of the point grooves 30 and the rolling direction (RD direction) form a right angle, but , but is not limited thereto.
  • the longitudinal direction (X 1 direction) of the linear grooves 20 or the arrangement direction (X 2 direction) of the point grooves 30 may form an angle of 75 to 105°.
  • it can contribute to improving the iron loss of the grain-oriented electrical steel sheet. More specifically, it may be 75 to 88° or 97 to 105°.
  • linear grooves 20 are continuously formed along the rolling vertical direction (TD direction), but is not limited thereto.
  • 2 to 10 linear grooves 20 may be intermittently formed along the rolling vertical direction (TD direction) of the steel sheet. When formed intermittently in this way, it can contribute to improving the iron loss of the grain-oriented electrical steel sheet.
  • the dotted groove 30 may have a diameter ( LG ) of 0.02 mm to 0.40 mm with respect to the dotted groove arrangement direction (X 2 direction). Through an appropriate diameter (L G ), it can contribute to improving the iron loss of grain-oriented electrical steel sheet.
  • a diameter (L G ) with respect to the dotted groove arrangement direction (X 2 direction) may be 0.05 mm to 0.3 mm.
  • a magnetic domain refining method of a grain-oriented electrical steel sheet comprises the steps of preparing a grain-oriented electrical steel sheet (10); Forming a linear groove 20 by irradiating a laser on one or both surfaces of the grain-oriented electrical steel sheet 10 in a direction crossing the rolling direction (RD direction), and irradiating a continuous oscillation frequency laser; and irradiating a pulsed oscillation frequency laser to one or both surfaces of the grain-oriented electrical steel sheet 10 in a direction crossing the rolling direction to form a dotted groove 30 .
  • a grain-oriented electrical steel sheet 10 is prepared.
  • the magnetic domain refining method and the shape of the linear groove 20 and the point groove 30 to be formed have its characteristics, and a grain-oriented electrical steel sheet that is a target of domain refining can be used without limitation.
  • the effect of the present invention is expressed regardless of the alloy composition of the grain-oriented electrical steel sheet. Therefore, a detailed description of the alloy composition of the grain-oriented electrical steel sheet will be omitted.
  • the grain-oriented electrical steel sheet may be a grain-oriented electrical steel sheet rolled from a slab to a predetermined thickness through hot rolling and cold rolling.
  • grain-oriented electrical steel sheet after primary recrystallization annealing or secondary recrystallization annealing may be used.
  • a laser is irradiated to one surface 11 of the grain-oriented electrical steel sheet in a direction crossing the rolling direction (RD direction) to form a linear groove 20 .
  • the energy density (Ed) of the laser may be 0.5 to 2J/mm 2 .
  • the linear groove 20 of an appropriate depth is not formed, and it is difficult to obtain an effect of improving iron loss.
  • the linear groove 20 having a too thick depth is formed, so it is difficult to obtain an effect of improving iron loss.
  • the beam length L in the vertical direction (TD direction) of the steel sheet rolling of the laser may be 50 to 750 ⁇ m.
  • the laser irradiation time is too short, an appropriate groove cannot be formed, and it is difficult to obtain an effect of improving iron loss.
  • the beam length L in the rolling vertical direction (TD direction) is too long, the laser irradiation time is too long, and a linear groove 20 of too thick depth is formed, so that it is difficult to obtain an effect of improving iron loss.
  • the laser beam width (W) in the steel sheet rolling direction (RD direction) may be 10 to 30 ⁇ m. If the beam width W is too short or long, the width of the linear groove 20 may be short or long, and it may not be possible to obtain an appropriate magnetic domain refining effect.
  • the beam shape is shown in an elliptical shape in FIG. 5 , it is not limited by a shape such as a spherical shape or a rectangular shape.
  • a laser having an output of 10 W to 100 kW may be used, and a laser of Gaussian Mode, Single Mode, and Fundamental Gaussian Mode may be used. It is a TEMoo type beam, and the M2 value may have a value ranging from 1.0 to 1.2.
  • a dotted groove 30 is formed.
  • the above-described steps of forming the linear grooves 20 and forming the dotted grooves 30 may be performed without limitation of the time line and the latter. Specifically, after the step of forming the linear groove 20, the point groove 30 may be formed. Also, after the step of forming the dotted groove 30, the linear groove 20 may be formed. In addition, it is also possible to form the linear groove 20 and the point groove 30 at the same time.
  • the laser energy density, shape, output, and type may be the same as in the step of forming the linear groove 20 described above.
  • a pulsed oscillation frequency laser is a laser in which the output of a laser beam changes with time, unlike a continuous oscillation frequency laser. Since there is such an output change, a groove is not formed in a portion where the laser peak energy is low, but a groove is formed only in a portion where the laser peak energy is high, thereby forming the dotted groove 30 .
  • the frequency F q of the laser and the interval D2 between the dotted grooves in the rolling direction may satisfy Equation 1 below.
  • Equation 1 [F q ] represents the frequency (Hz) of the laser in the step of forming the point-like grooves, and [D2] represents the spacing (mm) between the point-like grooves with respect to the rolling direction.)
  • Equation 1 needs to be 111 to 2000 mm.s.
  • the frequency (F q ) of the laser may be 20 to 100 kHz. In the above range, the dotted groove 30 is appropriately formed, so that the magnetic and insulating properties can be improved at the same time.
  • the duty of the laser may be 50% or less. Duty is, in the time waveform with respect to the output of the laser beam, the ratio (T b ) of [ the time of irradiation with an output of 10% or more of the maximum output (Pmax)] to [output modulation period time] (T a ) /T a ).
  • T b the ratio of [ the time of irradiation with an output of 10% or more of the maximum output (Pmax)] to [output modulation period time] (T a ) /T a ).
  • the magnetic domain refining method of a grain-oriented electrical steel sheet according to an embodiment of the present invention may further include forming an insulating film layer.
  • the step of forming the insulating film layer may be included after the step of preparing the grain-oriented electrical steel sheet, after the step of forming the linear groove, or after the step of forming the dotted groove. More specifically, it may be included after the step of forming a linear groove and a dotted groove.
  • a method of forming the insulating film layer may be used without particular limitation, and, for example, the insulating film layer may be formed by applying an insulating coating solution containing a phosphate.
  • the insulating coating solution it is preferable to use a coating solution containing colloidal silica and metal phosphate.
  • the metal phosphate may be Al phosphate, Mg phosphate, or a combination thereof, and the content of Al, Mg, or a combination thereof relative to the weight of the insulating coating solution may be 15% by weight or more.
  • Cold rolling, primary recrystallization annealing and secondary recrystallization annealing were prepared to prepare a grain-oriented electrical steel sheet with a thickness of 0.30 mm. 1.0kW for this electrical steel sheet.
  • the width W of the laser beam is 20 ⁇ m, and the length L of the laser beam is 600 ⁇ m.
  • the energy density of the laser was 1.5 J/mm 2 .
  • the interval between the grooves on the line was 2.5 mm.
  • the groove depth is shown in Table 1 below.
  • the width W of the laser beam is 20 ⁇ m, and the length L of the laser beam is 500 ⁇ m.
  • the energy density of the laser was 1.5 J/mm 2 .
  • Table 1 below shows the spacing (D2) between the dotted grooves in the rolling direction, the spacing (D3) between the dotted grooves in the arrangement direction, and the groove depth.
  • Table 1 shows an embodiment of the present invention.
  • the coercive force was measured at 50 Hz and 1.7T.
  • the iron loss was measured as the iron loss value (W 17/50 ) when the frequency was 50 Hz when the value of magnetic flux density was 1.7 Telsa.
  • Example 1 6.5 5.0 1.8 0.036 0.5 5 0.02 17.9 0.82 8
  • Example 2 7.0 7.0 2.5 0.750 1.0 10 0.30 17.8 0.79 6
  • Example 3 9.0 9.0 3.5 2.275 2.0 3 0.65 17.9 0.80
  • Example 4 9.0 13.0 5.0 8.500 2.5 5 1.7 17.7 0.81 20
  • Comparative Example 1 3.0 4.2 2.5 0.025 0.5 10 0.01 19.7 0.90 95

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판은 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향(X1 방향)으로 형성된 선상의 그루브; 및 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향(X2 방향)으로 배열되어 형성된 점상의 그루브를 포함하고, 선상의 그루브 및 점상의 그루브는 압연방향을 따라 복수개 형성되고, 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배이다.

Description

방향성 전기강판 및 그 자구미세화 방법
방향성 전기강판 및 그 자구미세화 방법에 관한 것이다. 구체적으로 연속 그루브 및 불연속 그루브를 조합하여, 철손 특성과 더불어 전기절연성을 확보할 수 있는 방향성 전기강판 및 그의 자구미세화 방법에 관한 것이다.
방향성 전기강판은 건식 혹은 유입식 환경하에서 전자기 유도현상을 이용한 변압기 철심소재로 사용되기 때문에, 최종 제품판 상태에서 코팅재의 밀착성과 내식성을 요구한다.
방향성 전기강판은 Si를 다량 함유하며 용해, 주조, 열연, 열연판소둔, 냉연 및 고온소둔공정 등을 통해 2차재결정립의 집합조직을 압연방향과 동일한 Goss 방위({110}<001>)로 배향시킨 기능성 강판이다. 특별히, 방향성 전기강판의 자구미세화기술은 자장인가 시 2차결정립내 180˚ 자구 폭을 감소시킴으로써 철손 특성을 개선시키는 기술로서, 0.20mm 두께 이하의 극박물부터 0.30mm 두께에 이르는 후물재까지 넓은 범위의 두께 제품에 적용되고 있다. 자구미세화기술 중 철손 개선 효과를 응력완화소둔열처리 (SRA, Stress Relief Annealing)후에도 자구미세화 효과를 확보할 수 있는 기술을 영구자구미세화기술(Permanent Magnetic Domain Refinement Technology)이라 한다. 이 영구자구미세화기술은 기술적 특성 때문에 성형 및 열처리를 필요로 하는 변압기 철심으로 사용되고, 건(습)식의 상온이상의 환경에서 철심의 철손 특성과 더불어 전기절연성을 확보 하는 것이 필요하다.
방향성 전기강판 및 그의 자구미세화 방법을 제공한다. 구체적으로, 연속 그루브 및 불연속 그루브를 조합하여, 철손 특성과 더불어 전기절연성을 확보할 수 있는 방향성 전기강판 및 그의 자구미세화 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 의한 방향성 전기강판은 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향(X1 방향)으로 형성된 선상의 그루브; 및 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향(X2 방향)으로 배열되어 형성된 점상의 그루브를 포함하고, 선상의 그루브 및 점상의 그루브는 압연방향을 따라 복수개 형성되고, 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배이다.
점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)이 0.01 내지 9.00 mm이고, 압연방향에 대한 점상의 그루브 간의 간격(D2)이 1.8mm 내지 5.0mm일 수 있다.
압연방향에 대한 선상의 그루브 간의 간격(D1)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.2 내지 3배일 수 있다.
선상의 그루브 및 점상의 그루브는 강판의 일면에 형성될 수 있다.
선상의 그루브 및 점상의 그루브의 깊이는 강판 두께의 5 내지 15%일 수 있다.
선상의 그루브의 길이 방향 및 점상의 그루브의 배열 방향은 압연방향과 75 내지 105°의 각도를 이룰 수 있다.
선상의 그루브는 상기 강판의 압연 수직 방향을 따라 2개 내지 10개 단속적으로 형성될 수 있다.
점상의 그루브는 점상의 그루브 배열 방향(X2 방향)에 대한 지름(LG)이 0.02mm 내지 0.4mm일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 자구미세화 방법은 방향성 전기강판을 준비하는 단계; 방향성 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향으로 연속형 발진주파수 레이저를 조사하여, 선상의 그루브를 형성하는 단계; 및 방향성 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향으로 펄스형 발진주파수 레이저를 조사하여, 점상의 그루브를 형성하는 단계를 포함한다.
선상의 그루브를 형성하는 단계 및 상기 점상의 그루브를 형성하는 단계를 복수회 수행하여, 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배이다.
점상의 그루브를 형성하는 단계에서, 레이저의 주파수(Fq)는 20kHz 내지 100 kHz일 수 있다.
점상의 그루브를 형성하는 단계에서, 레이저의 듀티는 50% 이하일 수 있다.
선상의 그루브를 형성하는 단계 및 점상의 그루브를 형성하는 단계에서, 레이저의 에너지 밀도는 0.5 내지 2 J/mm2일 수 있다.
그루브를 형성하는 단계 및 점상의 그루브를 형성하는 단계에서, 레이저의 강판 압연 수직 방향의 빔 길이가 50 내지 750㎛이고, 레이저의 강판 압연 방향의 빔 폭이 10 내지 30㎛일 수 있다.
본 발명의 일 구현예에 따르면, 연속 그루브 및 불연속 그루브를 조합하여 형성함으로써, 보자력과 철손 개선되며, 동시에 전기절연특성도 개선된다.
도 1 및 도 2는 본 발명의 일 실시예에 의한 방향성 전기강판의 압연면(ND면)의 모식도이다.
도 3은 본 발명의 일 실시예에 의한 방향성 전기강판의 단면(TD면)의 모식도이다.
도 4는 본 발명의 일 실시예에 의한 그루브의 모식도이다.
도 5는 본 발명의 일 실시예에 의한 레이저 빔의 형상을 나타낸 모식도이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1 및 도 2에서는 본 발명의 일 실시예에 의해 자구미세화된 방향성 전기강판(10)의 모식도를 나타낸다.
도 1 및 도 2에서 나타나듯이, 본 발명의 일 실시예에 의한 방향성 전기강판(10)은 전기강판의 일면(11) 또는 양면(11, 12)에, 압연방향(RD방향)과 교차하는 방향(X1 방향)으로 형성된 선상의 그루브(20); 및 전기강판의 일면(11) 또는 양면(11, 12)에, 압연방향과 교차하는 방향(X2 방향)으로 배열되어 형성된 점상의 그루브(30)를 포함한다.
선상의 그루브(20) 및 점상의 그루브(30)는 압연방향을 따라 복수개 형성되고, 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배이다.
본 발명의 일 실시예에 의하면 선상의 그루브(20) 및 점상의 그루브(30)를 동시에 형성하여, 자성특성과 전기절연성특성을 동시에 개선할 수 있다. 예컨데, 선상의 그루브(20) 또는 점상의 그루브(30)를 단독으로 형성할 시, 자성특성 확보를 위해 홈 깊이 증가로 인한 힐업 발생이 문제되어, 자성특성 및 전기 절연성이 열위된다. 본 발명의 일 실시예에서는 이를 조합함으로써, 자성특성과 전기절연성특성을 동시에 개선할 수 있다.
본 발명의 일 실시예에서 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3) 및 압연방향에 대한 점상의 그루브 간의 간격(D2)의 비(D3/D2)가 또한 중요하다.
이 비가 너무 작을 경우, 점상의 그루브(30)가 선상의 그루브와 유사한 형태가 되어, 선상의 그루브(20) 또는 점상의 그루브(30)를 동시에 형성한 효과를 얻기 어렵다. 또한 이 비가 너무 클 경우, 점상의 그루브(30)가 실질적으로 형성되지 않는 것과 동일한 형태가 되어, 선상의 그루브(20) 또는 점상의 그루브(30)를 동시에 형성한 효과를 얻기 어렵다. 따라서, 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배가 될 필요가 있다. 더욱 구체적으로 0.30 내지 1.7배가 될 필요가 있다. 더욱 구체적으로 0.65 내지 1.7배가 될 필요가 있다.
도 3에서는 선상의 그루브(20) 간의 간격을 D1으로 표시하였고, 압연방향에 대한 점상의 그루브(30) 간의 간격을 D2로 표시하였다. 도 2에서 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격을 D3으로 표시하였다. 도 1과 같이, 복수의 선상의 그루브(20) 및 복수의 점상의 그루브(30)가 형성된 경우, 임의의 선상의 그루브(20) 및 그 임의의 선상의 그루브(20)와 가장 가까운 선상의 그루브(20)를 그루브 간의 간격(D1)으로 정의한다. 또한, 임의의 점상의 그루브 (30)와 압연방향으로 가장 가까운 점상의 그루브(30)를 점상의 그루브 간의 간격(D2)으로 정의한다. 또한 도 3에서 나타나듯이, 임의의 점상의 그루브(30)와 점상의 그루브 배열 방향(X2 방향)으로 가장 가까운 점상의 그루브(30)를 점상의 그루브 간의 간격(D2)으로 정의한다.
또한 본 발명의 일 실시예에서 선상의 그루브(20) 및 점상의 그루브(30)에 압연방향(RD방향)으로 두께가 존재하므로, 선상의 그루브(20) 중심선과 점상의 그루브(30)의 최외곽선을 기준으로 간격을 정의한다. 또한, 본 발명의 일 실시예에서 선상의 그루브(20) 및 점상의 그루브(30)는 실질적으로 평행하나, 평행하지 않은 경우, 가장 가까운 위치를 간격으로 본다. 또한, 복수의 선상의 그루브(20) 및 복수의 점상의 그루브(30)가 형성된 경우, 각각의 간격(D1, D2, D3)의 평균 값, 즉 간격(D1, D2, D3)의 총합을 전체 개수로 나눈 값이 전술한 범위를 만족할 수 있다.
점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)이 0.01 내지 9.00 mm이고, 압연방향에 대한 점상의 그루브 간의 간격(D2)이 1.8mm 내지 5.0mm 일 수 있다. 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)이 너무 클 경우, 점상의 그루브(30)가 아닌 선상의 그루브(20)만이 형성된 효과가 발생하여, 자성 및 절연성이 열위될 수 있다. 압연방향에 대한 점상의 그루브 간의 간격(D2)이 너무 작을 경우, 선상의 그루브(20)가 아닌 점상의 그루브(30)만이 형성된 효과가 발생하여, 자성 및 절연성이 열위될 수 있다. 반대로, 압연방향에 대한 점상의 그루브 간의 간격(D2)이 너무 클 경우, 선상의 그루브(20)만이 형성된 효과가 발생하여, 자성 및 절연성이 열위될 수 있다. 더욱 구체적으로 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)이 0.1 내지 3.0 mm이고, 압연방향에 대한 점상의 그루브 간의 간격(D2)이 .2.0mm 내지 4.0mm일 수 있다.
압연방향에 대한 선상의 그루브(20) 간의 간격(D1)은 압연방향에 대한 점상의 그루브(30) 간의 간격(D2)의 0.2 내지 3.0 배일 수 있다.
도 3에서는 선상의 그루브(20) 사이에 점상의 그루브(30)가 한 개 형성된 경우, 즉 D2/D1이 1인 경우를 나타내었으나, 이에 제한되지 않는다.
압연방향에 대한 선상의 그루브(20) 간의 간격(D1)이 너무 클 경우, 점상의 그루브(30)만이 형성된 효과가 발생하여, 자성 및 절연성이 열위될 수 있다. 반대로, 압연방향에 대한 선상의 그루브(20) 간의 간격(D1)이 너무 작을 경우, 선상의 그루브(20)만이 형성된 효과가 발생하여, 자성 및 절연성이 열위될 수 있다. 더욱 구체적으로 압연방향에 대한 선상의 그루브(20) 간의 간격(D1)은 압연방향에 대한 점상의 그루브(30) 간의 간격(D2)의 0.5 내지 1.5 배일 수 있다.
더욱 구체적으로, 압연방향에 대한 선상의 그루브(20) 간의 간격(D1)은 2 내지 15 mm일 수 있다.
압연방향에 대한 선상의 그루브(20) 간의 간격(D1), 압연방향에 대한 점상의 그루브(30) 간의 간격(D2) 및 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 전체 전기강판 내에서 그 간격이 일정할 수 있다. 구체적으로 전체 전기강판 내의 모든 간격(D1, D2, D3)이 평균 간격(D1, D2, D3)의 10% 이내에 해당할 수 있다. 더욱 구체적으로 1% 이내에 해당할 수 있다.
도 1 및 도 2에서는 선상의 그루브(20) 및 점상의 그루브(30)가 강판의 일면(11)에 형성된 것을 나타내었으나, 이에 제한되는 것은 아니다. 예컨데, 선상의 그루브(20)는 강판의 일면(11)에 형성되고, 점상의 그루브(30)는 강판의 타면(12)에 형성되는 것도 가능하다.
예컨데, D2/D1이 1보다 작은 경우도 가능하다. 더욱 구체적으로 점상의 그루브(30) 간의 간격(D2)은 선상의 그루브(20) 간의 간격(D1)의 0.2 내지 0.5 배일 수 있다. 이 경우, 전술한 것과 같이, 각각의 간격(D1, D2)의 평균 값이 전술한 범위를 만족할 수 있다. 더욱 구체적으로 점상의 그루브(30) 간의 간격(D2)은 선상의 그루브(20) 간의 간격(D1)의 0.2 내지 0.4 배가 될 수 있다.
또한, 반대로 D2/D1이 1보다 큰 경우도 가능하다. 더욱 구체적으로 점상의 그루브(30) 간의 간격(D2)은 선상의 그루브(20) 간의 간격(D1)의 2 내지 2.8 배일 수 있다.
도 3에 나타나듯이, 선상의 그루브(20) 및 점상의 그루브(30)는 강판의 표면 일부가 레이저, 플라즈마, 이온빔 등의 조사에 의해 제거된 부분을 의미한다. 도 1에서는 선상의 그루브(20)의 형상이 쐐기형으로 표현되어 있고, 점상의 그루브(30)의 형상이 반원형으로 표현되어 있으나, 이는 일 예에 불과하고, 사각형, 사다리꼴형, U자형, W형 등 다양한 형태로 형성될 수 있다.
도 4에서는 본 발명의 일 실시예에 의한 선상의 그루브(20) 또는 점상의 그루브(30)의 모식도를 나타낸다. 선상의 그루브(20) 또는 점상의 그루브(30)의 깊이(HG)는 강판 두께의 5 내지 15%일 수 있다. 그루브의 깊이(HG)가 너무 얕으면, 적절한 철손 개선효과를 얻기 어렵다. 그루브의 깊이(HG)가 너무 깊으면, 강한 레이저 조사로 인하여 강판(10)의 조직 특성을 크게 변화시키거나, 다량의 힐업 및 스패터를 형성하여 자성을 열화시킬 수 있다. 따라서 전술한 범위로 선상의 그루브(20) 또는 점상의 그루브(30)의 깊이를 제어할 수 있다.
도 4에 나타나듯이, 선상의 그루브(20) 또는 점상의 그루브(30)의 하부에 형성된 응고합금층(40)을 포함하고, 응고합금층(40)은 두께(Hc)가 0.1㎛ 내지 3㎛일 수 있다. 응고합금층(40)의 두께를 적절히 제어함으로써, 2차 재결정 형성에는 영향을 미치지 않고 최종 절연코팅 후 홈 부에 스파이크 도메인(spike domain)만을 형성하게 한다. 응고합금층(40) 두께가 너무 두꺼우면, 1차 재결정시 재결정에 영향을 미치기 때문에 2차 재결정 소둔 후 2차 재결정의 고스 집적도가 열위함으로 2차 재결정 강판에 레이저 조사를 실시하여도 철손개선효과 특성을 확보하지 못할 수 있다. 응고합금층은 평균 입경이 1 내지 10㎛인 재결정을 포함하며, 다른 강판 부분과 구분된다.
도 4에 나타나듯이, 선상의 그루브(20) 또는 점상의 그루브(30)의 상부에는 절연피막층(50)이 형성될 수 있다.
도 1 및 도 2에서는 선상의 그루브(20)의 길이 방향(X1 방향) 또는 점상의 그루브(30)의 배열 방향(X2 방향)과 압연방향(RD방향)이 직각을 형성하는 것으로 나타나 있으나, 이에 제한되는 것은 아니다. 예컨데, 선상의 그루브(20)의 길이 방향(X1 방향) 또는 점상의 그루브(30)의 배열 방향(X2 방향)은 75 내지 105°의 각도를 이룰 수 있다. 전술한 각도를 형성할 시, 방향성 전기강판의 철손을 개선하는 데에 기여할 수 있다. 더욱 구체적으로 75 내지 88° 또는 97 내지 105°일 수 있다.
도 1에서는 선상의 그루브(20)가 압연 수직 방향(TD방향)을 따라 연속적으로 형성된 것으로 나타나 있으나, 이에 제한되는 것은 아니다. 예컨데, 선상의 그루브(20)는 강판의 압연 수직 방향(TD방향)을 따라 2개 내지 10개 단속적으로 형성될 수 있다. 이처럼 단속적으로 형성할 시, 방향성 전기강판의 철손을 개선하는 데에 기여할 수 있다.
점상의 그루브(30)는 점상의 그루브 배열 방향(X2 방향)에 대한 지름(LG)이 0.02mm 내지 0.40mm 일 수 있다. 적절한 지름(LG)을 통해 방향성 전기강판의 철손을 개선하는 데에 기여할 수 있다. 점상의 그루브 배열 방향(X2 방향)에 대한 지름(LG)이 0.05mm 내지 0.3mm 일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 자구미세화 방법은 방향성 전기강판(10)을 준비하는 단계; 방향성 전기강판(10)의 일면 또는 양면에, 압연방향(RD방향)과 교차하는 방향으로 레이저를 조사하여, 연속형 발진주파수 레이저를 조사하여, 선상의 그루브(20)를 형성하는 단계; 및 방향성 전기강판(10)의 일면 또는 양면에, 압연방향과 교차하는 방향으로 펄스형 발진주파수 레이저를 조사하여, 점상의 그루브(30)를 형성하는 단계를 포함한다.
먼저 방향성 전기강판(10)을 준비한다. 본 발명의 일 실시예에서는 자구미세화 방법 및 형성되는 선상의 그루브(20) 및 점상의 그루브(30)의 형상에 그 특징이 있는 것으로서, 자구미세화의 대상이 되는 방향성 전기강판은 제한 없이 사용할 수 있다. 특히, 방향성 전기강판의 합금 조성과는 관계 없이 본 발명의 효과가 발현된다. 따라서, 방향성 전기강판의 합금 조성에 대한 구체적인 설명은 생략하기로 한다.
본 발명의 일 실시예에서 방향성 전기강판은 슬라브로부터 열간 압연 및 냉간 압연을 통해 소정의 두께로 압연된 방향성 전기강판을 사용할 수 있다. 또한 1차 재결정 소둔 또는 2차 재결정 소둔을 마친 방향성 전기강판을 사용할 수 있다.
다음으로, 방향성 전기강판의 일면(11)에, 압연방향(RD방향)과 교차하는 방향으로 레이저를 조사하여, 선상의 그루브(20)를 형성한다.
이 때, 레이저의 에너지 밀도(Ed)는 0.5 내지 2J/mm2일 수 있다. 에너지 밀도가 너무 작은 경우, 적절한 깊이의 선상의 그루브(20)가 형성되지 않고, 철손 개선 효과를 얻기 어렵다. 반대로 에너지 밀도가 너무 큰 경우에도, 너무 두꺼운 깊이의 선상의 그루브(20)가 형성되어, 철손 개선 효과를 얻기 어렵다.
도 5에서는 레이저 빔의 형상에 대한 모식도를 나타내었다. 선상의 그루브(20)를 형성하는 단계에서, 레이저의 강판 압연 수직 방향(TD방향)의 빔 길이(L)가 50 내지 750 ㎛일 수 있다. 압연 수직 방향(TD방향)의 빔 길이(L)가 너무 짧으면, 레이저가 조사되는 시간이 너무 짧아, 적절한 그루브를 형성할 수 없고, 철손 개선 효과를 얻기 어렵다. 반대로 압연 수직 방향(TD방향)의 빔 길이(L)가 너무 길면, 레이저가 조사되는 시간이 너무 길어, 너무 두꺼운 깊이의 선상의 그루브(20)가 형성되어, 철손 개선 효과를 얻기 어렵다.
레이저의 강판 압연 방향(RD방향)의 빔 폭(W)는 10 내지 30㎛일 수 있다. 빔 폭(W)이 너무 짧거나 길면, 선상의 그루브(20)의 폭이 짧거나 길어지고, 적절한 자구 미세화 효과를 얻을 수 없게 될 수 있다.
도 5에서는 빔 형상을 타원형으로 나타내었으나, 구형, 혹은 직사각형 등 형상의 제한을 받지 않는다.
레이저로는 10 W 내지 100 kW 출력을 갖는 레이저를 사용할 수 있으며, Gaussian Mode, Single Mode, Fundamental Gaussian Mode의 레이저를 사용할 수 있다. TEMoo 형태 빔이며, M2값은 1.0 내지 1.2 범위 값을 가질 수 있다.
다음으로, 방향성 전기강판(10)의 일면 또는 양면에, 압연방향(RD방향)과 교차하는 방향으로 펄스형 발진주파수 레이저를 조사하여, 점상의 그루브(30)를 형성한다.
전술한, 선상의 그루브(20)를 형성하는 단계 및 점상의 그루브(30)를 형성하는 단계는 시간 선, 후의 제한 없이, 수행될 수 있다. 구체적으로, 선상의 그루브(20)를 형성하는 단계 이후, 점상의 그루브(30)를 형성할 수 있다. 또한 점상의 그루브(30)를 형성하는 단계 이후, 선상의 그루브(20)를 형성할 수 있다. 또한, 선상의 그루브(20) 및 점상의 그루브(30)를 동시에 형성하는 것도 가능하다.
점상의 그루브(30)를 형성하는 단계에서, 레이저의 에너지 밀도, 형상, 출력, 종류는 전술한 선상의 그루브(20)를 형성하는 단계와 동일한 레이저를 사용할 수 있다.
다만, 선상의 그루브(20)를 형성하는 단계와는 달리 점상의 그루브(30)를 형성하는 단계에서, 펄스형 발진주파수 레이저를 조사할 수 있다. 펄스형 발진주파수 레이저란 연속형 발진주파수 레이저와는 달리 시간에 대한 레이저 빔의 출력 변화가 있는 레이저이다. 이처럼 출력 변화가 있기 때문에, 레이저 피크 에너지가 낮은 부분에서는 그루브가 형성되지 않고, 높은 부분에서만 그루브가 형성되어 점상의 그루브(30)가 형성된다.
점상의 그루브(30)를 형성하는 단계에서 레이저의 주파수(Fq) 및 압연방향에 대한 점상의 그루브 간의 간격(D2)이 하기 식 1을 만족할 수 있다.
[식 1]
11mm·s≤ [Fq] / [D2] ≤ 20000mm·s
(식 1에서 [Fq]는 점상의 그루브를 형성하는 단계에서 레이저의 주파수(Hz)를 나타내고, [D2]는 압연방향에 대한 점상의 그루브 간의 간격(mm)을 나타낸다.)
이 비가 너무 작을 경우, 점상의 그루브(30)가 선상의 그루브와 유사한 형태가 되어, 선상의 그루브(20) 또는 점상의 그루브(30)를 동시에 형성한 효과를 얻기 어렵다. 또한 이 비가 너무 클 경우, 점상의 그루브(30)가 실질적으로 형성되지 않는 것과 동일한 형태가 되어, 선상의 그루브(20) 또는 점상의 그루브(30)를 동시에 형성한 효과를 얻기 어렵다. 더욱 구체적으로 식 1 값이 111 내지 2000mm.s가 될 필요가 있다.
레이저의 주파수(Fq)는 20내지 100kHz가 될 수 있다. 전술한 범위에서 점상의 그루브(30)가 적절히 형성되어, 자성 및 절연성을 동시에 향상시킬 수 있다.
레이저의 듀티는 50% 이하일 수 있다. 듀티는, 레이저 빔의 출력에 대한 시간 파형에 있어서, [출력 변조 주기 시간](Ta)에 대한 [최대 출력(Pmax)의 10% 이상의 출력으로 조사한 시간](Tb)의 비(Tb/Ta)를 나타낸다. 듀티가 적절히 조절되어야 점상의 그루브(30)가 적절히 형성되어, 자성 및 절연성을 동시에 향상시킬 수 있다. 더욱 구체적으로 2 내지 30%일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 자구미세화 방법은 절연 피막층을 형성하는 단계를 더 포함할 수 있다. 절연 피막층을 형성하는 단계는 방향성 전기강판을 준비하는 단계 이후, 선상의 그루브를 형성하는 단계 이후, 또는 점상의 그루브를 형성하는 단계 이후에 포함될 수 있다. 더욱 구체적으로 선상의 그루브 및 점상의 그루브를 형성하는 단계 이후 포함될 수 있다. 선상의 그루브 및 점상의 그루브를 형성한 이후, 절연 피막층을 형성할 시, 절연코팅을 1회만 진행하여도 된다는 점에서 장점이 있다.
절연 피막층을 형성하는 방법은 특별히 제한 없이 사용할 수 있으며, 일예로, 인산염을 포함하는 절연 코팅액을 도포하는 방식으로 절연 피막층을 형성할 수 있다. 이러한 절연 코팅액은 콜로이달 실리카와 금속인산염을 포함하는 코팅액을 사용하는 것이 바람직하다. 이 때 금속인산염은 Al 인산염, Mg 인산염, 또는 이들의 조합일 수 있으며, 절연 코팅액의 중량 대비 Al, Mg, 또는 이들의 조합의 함량은 15 중량% 이상일 수 있다.
이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
실험예 1
냉간압연, 1차 재결정 소둔 및 2차 재결정 소둔한 두께 0.30mm의 방향성 전기강판을 준비하였다. 이 전기강판에 1.0kW. M2=1.07의 Gaussian mode의 연속파 레이저를 조사하여, RD방향과 86° 각도의 선상의 그루브를 형성하였다. 레이저 빔의 폭(W)은 20㎛ 이고, 레이저 빔의 길이(L)는 600㎛이다. 레이저의 에너지 밀도는 1.5 J/mm2였다. 선상의 그루브간의 간격은 2.5mm 였다. 그루브 깊이를 하기 표 1에 표시하였다.
이 전기강판에 500W의 평균 출력, M2=1.2의 펄스형 레이저를 조사하여 RD방향과 86° 각도의 점상의 그루브를 형성하였다. 레이저 빔의 폭(W)은 20㎛ 이고, 레이저 빔의 길이(L)는 500㎛이다. 레이저의 에너지 밀도는 1.5 J/mm2였다. 압연 방향으로의 점상의 그루브 간의 간격(D2), 배열 방향으로의 점상의 그루브 간의 간격(D3), 그루브 깊이를 하기 표 1에 표시하였다.
그루브 형성 이후, 산세 및 브러쉬 하고, 절연코팅을 하였다. 표 1은 본 발명의 실시 예를 나타내고 있다.
이후, 840℃에서 열처리하고, 보자력, 철손 및 절연성을 측정하여 하기 표 1에 정리하였다.
보자력은 50Hz, 1.7T에서 측정하였다.
철손은 자속밀도의 값이 1.7 Telsa 일 때 주파수가 50Hz인 경우의 철손 값(W17/50)으로 측정하였다.
절연성은 ASTM A717의 Franklin Insulation Teset방법으로 측정하였다.
선상 그루브 깊이(%) 점상 그루브 깊이(%) 압연 방향으로의 점상 그루브 간격(D2, mm) 배열 방향으로의 점상 그루브 간격(D3, mm) 점상 그루브 형성시 레이저 주파수(kHz) 점상 그루브 형성시 레이저 듀티(%) D3/D2 보자력
(A/m)
철손(W/kg) 절연성(mA)
실시예 1 6.5 5.0 1.8 0.036 0.5 5 0.02 17.9 0.82 8
실시예 2 7.0 7.0 2.5 0.750 1.0 10 0.30 17.8 0.79 6
실시예 3 9.0 9.0 3.5 2.275 2.0 3 0.65 17.9 0.80 15
실시예 4 9.0 13.0 5.0 8.500 2.5 5 1.7 17.7 0.81 20
비교예 1 3.0 4.2 2.5 0.025 0.5 10 0.01 19.7 0.90 95
비교예 2 3.0 4.0 5.0 9.000 2.5 5 1.80 19.6 0.91 88
표 1에서 나타나는 것과 같이, 실시예 1 내지 실시예 4는 압연 방향으로의 점상 그루브 간 간격(D2) 및 배열 방향(X2 방향)으로의 점상 그루브 간 간격(D3)이 적절히 조절되어, 보자력, 철손 및 절연성이 동시에 우수함을 확인할 수 있다.
반면, 비교예 1은 배열 방향(X2 방향)으로의 점상 그루브 간 간격(D3)이 너무 좁아, 실질적으로 선상 그루브만이 형성된 경우와 유사하였으며, 보자력, 철손 및 절연성이 열위함을 확인할 수 있다.
비교예 2는 배열 방향(X2 방향)으로의 점상 그루브 간 간격(D3)이 너무 넓어, 보자력, 철손 및 절연성이 열위함을 확인할 수 있다.
본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
[부호의 설명]
10: 방향성 전기강판, 11: 강판의 일면,
12: 강판의 타면, 20 : 선상의 그루브,
30 : 점상의 그루브, 40: 응고합금층,
50 : 절연피막층

Claims (13)

  1. 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향(X1 방향)으로 형성된 선상의 그루브; 및
    상기 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향(X2 방향)으로 배열되어 형성된 점상의 그루브를 포함하고,
    상기 선상의 그루브 및 상기 점상의 그루브는 압연방향을 따라 복수개 형성되고,
    상기 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배인 방향성 전기강판.
  2. 제1항에 있어서,
    상기 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)이 0.01 내지 9.0 mm이고, 상기 압연방향에 대한 점상의 그루브 간의 간격(D2)이 1.8 내지 5.0mm 인 방향성 전기강판.
  3. 제1항에 있어서,
    상기 압연방향에 대한 선상의 그루브 간의 간격(D1)은 상기 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.2 내지 3배인 방향성 전기강판.
  4. 제1항에 있어서,
    상기 선상의 그루브 및 상기 점상의 그루브는 강판의 일면에 형성되는 방향성 전기강판.
  5. 제1항에 있어서,
    상기 선상의 그루브 및 상기 점상의 그루브의 깊이는 강판 두께의 5 내지 15%인 방향성 전기강판.
  6. 제1항에 있어서,
    상기 선상의 그루브의 길이 방향 및 점상의 그루브의 배열 방향은 상기 압연방향과 75 내지 105°의 각도를 이루는 방향성 전기강판.
  7. 제1항에 있어서,
    상기 선상의 그루브는 상기 강판의 압연 수직 방향을 따라 2개 내지 10개 단속적으로 형성된 방향성 전기강판.
  8. 제1항에 있어서,
    상기 점상의 그루브는 상기 점상의 그루브 배열 방향(X2 방향)에 대한 지름이 0.02내지 0.4mm인 방향성 전기강판.
  9. 방향성 전기강판을 준비하는 단계;
    상기 방향성 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향으로 연속형 발진주파수 레이저를 조사하여, 선상의 그루브를 형성하는 단계; 및
    상기 방향성 전기강판의 일면 또는 양면에, 압연방향과 교차하는 방향으로 펄스형 발진주파수 레이저를 조사하여, 점상의 그루브를 형성하는 단계를 포함하고,
    상기 선상의 그루브를 형성하는 단계 및 상기 점상의 그루브를 형성하는 단계를 복수회 수행하여, 상기 선상의 그루브 및 상기 점상의 그루브를 압연방향을 따라 복수개 형성하고,
    상기 점상의 그루브 배열 방향(X2 방향)에 대한 점상의 그루브 간의 간격(D3)은 압연방향에 대한 점상의 그루브 간의 간격(D2)의 0.02 내지 1.7배인 방향성 전기강판의 자구미세화 방법.
  10. 제9항에 있어서,
    상기 점상의 그루브를 형성하는 단계에서, 레이저의 주파수(Fq)는 20kHz 내지 100kHz인 방향성 전기강판의 자구미세화 방법.
  11. 제9항에 있어서,
    상기 점상의 그루브를 형성하는 단계에서, 레이저의 듀티는 50% 이하인 방향성 전기강판의 자구미세화 방법.
  12. 제9항에 있어서,
    상기 선상의 그루브를 형성하는 단계 및 상기 점상의 그루브를 형성하는 단계에서, 상기 레이저의 에너지 밀도는 0.5 내지 2 J/mm2인 방향성 전기강판의 자구미세화 방법.
  13. 제9항에 있어서,
    상기 선상의 그루브를 형성하는 단계 및 상기 점상의 그루브를 형성하는 단계에서, 상기 레이저의 강판 압연 수직 방향의 빔 길이가 50 내지 750㎛이고, 상기 레이저의 강판 압연 방향의 빔 폭이 10 내지 30㎛인 방향성 전기강판의 자구미세화 방법.
PCT/KR2021/019216 2020-12-21 2021-12-16 방향성 전기강판 및 그 자구미세화 방법 WO2022139334A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023537528A JP2024500836A (ja) 2020-12-21 2021-12-16 方向性電磁鋼板およびその磁区微細化方法
CN202180085715.XA CN116710578A (zh) 2020-12-21 2021-12-16 取向电工钢板及其磁畴细化方法
US18/268,407 US20240024985A1 (en) 2020-12-21 2021-12-16 Grain-oriented electrical steel sheet, and magnetic domain refining method therefor
EP21911401.4A EP4266331A4 (en) 2020-12-21 2021-12-16 GRAIN-ORIENTED MAGNETIC STEEL SHEET AND MAGNETIC DOMAIN REFINEMENT METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200179813A KR102415741B1 (ko) 2020-12-21 2020-12-21 방향성 전기강판 및 그 자구미세화 방법
KR10-2020-0179813 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022139334A1 true WO2022139334A1 (ko) 2022-06-30

Family

ID=82159670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019216 WO2022139334A1 (ko) 2020-12-21 2021-12-16 방향성 전기강판 및 그 자구미세화 방법

Country Status (6)

Country Link
US (1) US20240024985A1 (ko)
EP (1) EP4266331A4 (ko)
JP (1) JP2024500836A (ko)
KR (1) KR102415741B1 (ko)
CN (1) CN116710578A (ko)
WO (1) WO2022139334A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320922A (ja) * 1994-03-31 1995-12-08 Kawasaki Steel Corp 鉄損の低い一方向性電磁鋼板
KR20080106305A (ko) * 2006-04-07 2008-12-04 신닛뽄세이테쯔 카부시키카이샤 방향성 전자 강판의 제조 방법
KR20160019919A (ko) * 2016-02-11 2016-02-22 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR20180073343A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 방향성 전기강판의 자구미세화 방법
KR20200103100A (ko) * 2018-02-08 2020-09-01 닛폰세이테츠 가부시키가이샤 방향성 전자 강판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320922A (ja) * 1994-03-31 1995-12-08 Kawasaki Steel Corp 鉄損の低い一方向性電磁鋼板
KR20080106305A (ko) * 2006-04-07 2008-12-04 신닛뽄세이테쯔 카부시키카이샤 방향성 전자 강판의 제조 방법
KR20160019919A (ko) * 2016-02-11 2016-02-22 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR20180073343A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 방향성 전기강판의 자구미세화 방법
KR20200103100A (ko) * 2018-02-08 2020-09-01 닛폰세이테츠 가부시키가이샤 방향성 전자 강판

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266331A4 *

Also Published As

Publication number Publication date
KR102415741B1 (ko) 2022-06-30
CN116710578A (zh) 2023-09-05
KR20220089310A (ko) 2022-06-28
EP4266331A1 (en) 2023-10-25
US20240024985A1 (en) 2024-01-25
JP2024500836A (ja) 2024-01-10
EP4266331A4 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
WO2015012562A1 (ko) 방향성 전기강판 및 그 제조방법
WO2011068311A2 (ko) 저철손 고자속밀도 방향성 전기강판
KR101884429B1 (ko) 방향성 전기강판 및 그 자구미세화 방법
US11459634B2 (en) Method for manufacturing stress-relief-annealing-resistant, low-iron-loss grain-oriented silicon steel
WO2021125680A1 (ko) 방향성 전기강판 및 그 자구미세화 방법
WO2020130641A1 (ko) 방향성 전기강판 및 그의 제조 방법
WO2021125902A2 (ko) 방향성 전기강판 및 그 자구미세화 방법
WO2022139334A1 (ko) 방향성 전기강판 및 그 자구미세화 방법
KR102044320B1 (ko) 방향성 전기강판 및 그 자구미세화 방법
WO2016089076A1 (ko) 자기적 성질이 우수한 고규소 강판 및 그 제조방법
WO2020111735A2 (ko) 방향성 전기강판 및 그의 제조 방법
WO2016105048A1 (ko) 강판 표면 홈 형성 방법 및 그 장치
WO2021125864A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125861A2 (ko) 이방향성 전기강판 및 그의 제조방법
JPH04362139A (ja) 平坦度に優れた低鉄損方向性電磁鋼板の製造方法
WO2021125738A1 (ko) 방향성 전기강판 및 그 제조방법
WO2020130646A1 (ko) 방향성 전기강판 및 그의 제조 방법
JP2003301272A (ja) 低鉄損方向性電磁鋼板の製造方法
WO2024136048A1 (ko) 방향성 전기강판 및 그의 제조 방법
WO2024012439A1 (zh) 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板
KR20200076503A (ko) 방향성 전기강판 및 그의 제조 방법
JPS6163003A (ja) 鉄損の優れた積層電磁鋼板
JPS61246376A (ja) 歪取り焼鈍による特性の劣化がない低鉄損方向性けい素鋼板の製造方法
KR20240098941A (ko) 방향성 전기강판 및 그 제조방법
CN117672655A (zh) 一种铁损性能均匀良好的取向硅钢板及其激光刻痕方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085715.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023537528

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021911401

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911401

Country of ref document: EP

Effective date: 20230721