WO2022138484A1 - 樹脂シート成型用離型フィルム - Google Patents

樹脂シート成型用離型フィルム Download PDF

Info

Publication number
WO2022138484A1
WO2022138484A1 PCT/JP2021/046720 JP2021046720W WO2022138484A1 WO 2022138484 A1 WO2022138484 A1 WO 2022138484A1 JP 2021046720 W JP2021046720 W JP 2021046720W WO 2022138484 A1 WO2022138484 A1 WO 2022138484A1
Authority
WO
WIPO (PCT)
Prior art keywords
release layer
release
film
less
resin sheet
Prior art date
Application number
PCT/JP2021/046720
Other languages
English (en)
French (fr)
Inventor
健斗 重野
悠介 柴田
浩晃 楠葉
充晴 中谷
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020237019187A priority Critical patent/KR20230098660A/ko
Priority to CN202311001090.1A priority patent/CN117087289A/zh
Priority to KR1020237022275A priority patent/KR20230104774A/ko
Priority to CN202311001091.6A priority patent/CN117087290A/zh
Priority to CN202180086551.2A priority patent/CN116635234A/zh
Priority to KR1020237022273A priority patent/KR20230107392A/ko
Priority to CN202311001088.4A priority patent/CN117087288A/zh
Priority to JP2022571400A priority patent/JPWO2022138484A1/ja
Priority to KR1020237022274A priority patent/KR20230106723A/ko
Publication of WO2022138484A1 publication Critical patent/WO2022138484A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2386/00Specific polymers obtained by polycondensation or polyaddition not provided for in a single one of index codes B32B2363/00 - B32B2383/00

Definitions

  • the present invention relates to a release film for molding a resin sheet, and more particularly to a release film used when molding an ultrathin layer resin sheet.
  • a release film having a polyester film as a base material and a release layer laminated on the polyester film has been used as a process film for molding a resin sheet such as an adhesive sheet, a cover film, a polymer film, and an optical lens.
  • a resin sheet such as an adhesive sheet, a cover film, a polymer film, and an optical lens.
  • the release film is also used as a process film for molding a ceramic green sheet, which is required to have high smoothness, such as a laminated ceramic capacitor and a ceramic substrate.
  • a ceramic green sheet is molded by applying a slurry containing a ceramic component such as barium titanate and a binder resin onto a release film and drying it.
  • a laminated ceramic capacitor is manufactured by laminating, pressing, firing, and applying an external electrode to a ceramic green sheet obtained by printing an electrode on a molded ceramic green sheet and peeling it from a release film.
  • the peelability when peeling the ceramic green sheet from the release film becomes more important. If the peeling force is large and non-uniform, the ceramic green sheet is damaged in the peeling process, sheet defects, uneven thickness, etc. occur, and there is a problem that problems such as pinholes and sheet cracks occur. Therefore, it is also required to peel off the ceramic green sheet with a lower and uniform force. That is, in order to produce an ultrathin layer resin sheet, particularly a ceramic green sheet, without defects, a release film having extremely high smoothness and excellent peelability is required.
  • Patent Document 1 proposes a release film having a release layer using a radical curable resin as a main component.
  • Patent Document 2 proposes a release film having a structure in which a smoothing layer and a release layer are laminated.
  • Patent Document 3 proposes a release film having a release layer using a cationically curable epoxy resin as a main component.
  • Patent Document 4 proposes a release film having a release layer using a cationically cured polydimethylsiloxane as a main component.
  • Patent No. 5492352 JP-A-2015-164762 International Publication No. 2018/07937 JP-A-2016-079349A
  • the release film of Patent Document 1 has a problem that the smoothness of the release layer is insufficient because the release layer is provided on the base film having insufficient smoothness. Furthermore, as a result of diligent studies, the present inventors have found that the radically curable resin has poor curing due to oxygen inhibition, resulting in poor solvent resistance on the surface of the release layer, and when molding a ceramic green sheet or printing an internal electrode. It has been found that there is a problem that the release layer is eroded by the organic solvent sometimes used and the peelability is deteriorated. In the invention of Patent Document 2, a thermosetting melamine resin is used for the smoothing coating layer and the release coating layer, and high heat is required to accelerate the curing reaction.
  • the flatness of the release film may be impaired by the heat during processing.
  • multiple processes of the smoothing coating layer and the release coating layer are required, not only foreign matter may be mixed into the release film, but also the release layer may be scratched, so that the mold is molded on the release layer. Foreign matter and scratches may be transferred to the ceramic green sheet, causing problems.
  • Patent Documents 3 and 4 propose release layers using a cationically curable resin in order to improve curing defects caused by oxygen inhibition and flat surface defects caused by processing heat.
  • the release film of Patent Document 3 has a problem that the smoothness of the surface of the release layer is poor because the smoothness of the base film is poor.
  • the release agent component disclosed in Patent Document 3 has poor reactivity, poor solvent resistance, and has a problem in peelability.
  • the release film of Patent Document 4 has a release layer using a liquid cation-curable polydimethylsiloxane resin as a main component, unevenness of the base film, oligomers existing on the surface of the base film, and the like are present. There was a risk that the resin would aggregate on the protrusions, causing problems with flatness. In addition, the crosslink density of the release layer was low, and there was a problem in peelability.
  • the present invention has been made against the background of the problems of the prior art. That is, it is possible to provide a mold release film having a mold release layer having particularly excellent smoothness and peelability, and further, a mold release film capable of molding an ultra-thin layer resin sheet, particularly an ultra-thin layer ceramic green sheet without defects.
  • the purpose is to provide a film.
  • the present invention has the following configuration.
  • the polyester film has a surface layer A that does not substantially contain inorganic particles.
  • the release layer is provided on the surface layer A, and the release layer is provided.
  • the release layer is a layer on which the release layer forming composition is cured.
  • the release layer forming composition contains a cationically cured polydimethylsiloxane (a) and contains.
  • the region surface roughness (Sa) of the release layer is 2 nm or less, and the area surface roughness (Sa) is 2 nm or less.
  • the number of protrusions having a height of 10 nm or more existing on the surface of the release layer is 200 pieces / mm 2 or less.
  • the maximum protrusion height (Sp) of the release layer is 20 nm or less, the number of protrusions having a height of 5 nm or more and less than 10 nm existing on the surface of the release layer, and the number of protrusions of 10 nm or more.
  • the cationically cured polydimethylsiloxane (a) has at least one functional group selected from a vinyl ether group, an oxetanyl group, an epoxy group, and an alicyclic epoxy group.
  • the content of the cationically cured polydimethylsiloxane (a) contained in the release layer is 90 mg / m 2 or less.
  • the release layer forming composition further contains a cationically curable compound (b-1) having no silicone skeleton.
  • the cationically cured compound (b-1) has two or more alicyclic epoxy groups in the molecule, and the total mass of the cationically cured polydimethylsiloxane (a) and the cationically cured compound (b-1) is 100.
  • the content of the cation-curable compound (b-1) is 80% by mass or more with respect to the part.
  • the release layer forming composition further contains a cyclic siloxane compound (b-2) having an alicyclic epoxy group.
  • the cyclic siloxane compound (b-2) has two or more alicyclic epoxy groups in the molecule, and has a total of 100 parts by mass of the cationically cured polydimethylsiloxane (a) and the cyclic siloxane compound (b-2).
  • the content of the cyclic siloxane compound (b-2) is 80% by mass or more.
  • the release layer forming composition contains an organic solvent having an SP value ( ⁇ ) of 14 or more and 17 or less, and the release layer forming composition has an SP value ( ⁇ ) of 14 or more and 17 or less.
  • the organic solvent of the above is contained in an amount of 10% by mass or more with respect to 100 parts by mass of the total weight of the release layer forming composition.
  • a release film for producing a resin sheet containing an inorganic compound is provided.
  • the resin sheet containing an inorganic compound is a ceramic green sheet.
  • a release film for molding a resin sheet having a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less is provided.
  • the release film for molding a resin sheet of the present invention can enhance the smoothness and peelability of the release layer, and can further suppress the occurrence of defects in the ultrathin layer resin sheet, particularly the ceramic green sheet. ..
  • the present invention comprises a polyester film as a base material and a release film for molding a resin sheet having a release layer.
  • the polyester film has a surface layer A that is substantially free of inorganic particles. It has a release layer on the surface layer A and has a mold release layer.
  • the release layer is a layer on which the release layer forming composition is cured.
  • the release layer forming composition contains a cationically cured polydimethylsiloxane (a) and contains.
  • the region surface roughness (Sa) of the release layer is 2 nm or less, This is a release film for molding a resin sheet, in which the number of protrusions having a height of 10 nm or more and 200 pieces / mm 2 or less existing on the surface of the release layer is 200 pieces / mm 2.
  • the present invention having such a structure is excellent in smoothness and peelability of the release layer, for example, it is possible to provide a uniform thickness without defects for a resin sheet having a thickness of 0.2 ⁇ m to 1.0 ⁇ m or less. , Pinholes and other defects can be suppressed.
  • the invention of the present application can exert the following effects.
  • the release layer is provided on the base film having sufficient smoothness, the smoothness of the release layer can be ensured.
  • the present invention can suppress curing defects due to oxygen inhibition in the release layer, and can achieve high cross-linking of the release layer. INDUSTRIAL APPLICABILITY
  • the present invention exhibiting such an effect can improve, for example, the solvent resistance of the surface of the release layer.
  • the release layer forming composition can be suppressed from agglomerating by going through the coating step and the drying step according to the present invention, and the mold release having extremely high smoothness can be suppressed. A release film with layers can be obtained.
  • a release layer forming composition containing a predetermined amount of cationically curable polydimethylsiloxane (a) is applied to the surface layer A which does not substantially contain the inorganic particles of the base film. Then, by curing, a release layer having extremely high smoothness can be obtained. Further, by controlling the content of the cationically cured polydimethylsiloxane (a) in the release layer to a predetermined amount or less, it is derived from a very small foreign substance or oligomer present in the base film during processing of the release layer. It is possible to suppress the aggregation of cationically cured polydimethylsiloxane (a) to the microprojections.
  • the component (a) aggregates with respect to the fine protrusions caused by the raw fabric. It can be prevented.
  • a mold release body such as a ceramic green sheet can be obtained.
  • a release layer having excellent smoothness, hardness, peelability, and stain resistance to the release layer can be obtained.
  • the cationically cured polydimethylsiloxane (a) is less likely to aggregate during the drying of the organic solvent contained in the release layer forming composition, and the release layer having excellent smoothness can be obtained. Details will be described later.
  • the present invention provides, in another embodiment, a method for producing a release film for molding a resin sheet, which comprises the following steps.
  • the surface layer A is a layer that does not substantially contain inorganic particles.
  • the release layer forming composition comprises a cationically cured polydimethylsiloxane (a).
  • Coating process A drying step of heating and drying a polyester film coated with a release layer forming composition. The heat drying has a first drying step and then a second drying step.
  • the drying step T1 in the first drying step is higher than the drying temperature T2 in the second drying step;
  • a photocuring step of irradiating with active energy rays to cure the release layer forming composition.
  • a release layer having high smoothness can be formed, for example, coating of a release layer forming composition. Controlling the amount, organic solvent composition, drying time, drying temperature and the like can be mentioned.
  • aggregation of the cationically curable polydimethylsiloxane (a) contained in the release layer forming composition can be suppressed, and a release layer having excellent smoothness can be obtained. Can be done. Details will be described later.
  • the polyester constituting the polyester film used as the base material of the present invention is not particularly limited, and a film-molded polyester usually generally used as a base material for a release film can be used.
  • a film-molded polyester usually generally used as a base material for a release film
  • it is a crystalline linear saturated polyester composed of an aromatic dibasic acid component and a diol component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate or these.
  • a copolymer containing the constituent components of the resin as a main component is more preferable, and a polyester film formed from polyethylene terephthalate is particularly suitable.
  • the repeating unit of ethylene terephthalate is preferably 90 mol% or more, more preferably 95 mol% or more, and other dicarboxylic acid components and diol components may be copolymerized in a small amount, but from the viewpoint of cost. , Preferably made only from terephthalic acid and ethylene glycol. Further, known additives such as antioxidants, light stabilizers, ultraviolet absorbers, crystallization agents and the like may be added as long as the effects of the film of the present invention are not impaired.
  • the polyester film is preferably a biaxially oriented polyester film because of its high bidirectional elastic modulus and the like.
  • the intrinsic viscosity of the polyester film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g.
  • the intrinsic viscosity is 0.50 dl / g or more, it is preferable because many breaks do not occur in the stretching step. On the contrary, when it is 0.70 dl / g or less, it is preferable because the cutability when cutting to a predetermined product width is good and dimensional defects do not occur. Further, it is preferable that the raw material pellets are sufficiently vacuum dried.
  • the term "polyester film” simply means a polyester film having a surface layer A (laminated).
  • the polyester film has a surface layer A that does not substantially contain inorganic particles, and has the release layer on the surface layer A.
  • a polyester film having a surface layer B (laminated) may be simply referred to as a "polyester film”.
  • the method for producing a polyester film in the present invention is not particularly limited, and a method generally used in the past can be used.
  • the polyester can be obtained by melting the polyester with an extruder, extruding it into a film, cooling it with a rotary cooling drum to obtain an unstretched film, and stretching the unstretched film.
  • the stretching is preferably biaxial stretching because of its mechanical properties and the like.
  • the biaxially stretched film can be obtained by a method of sequentially biaxially stretching a uniaxially stretched film in a vertical or horizontal direction in a horizontal or vertical direction, or a method of simultaneously biaxially stretching an unstretched film in the vertical and horizontal directions. I can.
  • the stretching temperature at the time of stretching the polyester film is preferably set to be equal to or higher than the secondary transition point (Tg) of the polyester. It is preferable to stretch 1 to 8 times, particularly 2 to 6 times in each of the vertical and horizontal directions.
  • the thickness of the polyester film is preferably 12 to 50 ⁇ m, more preferably 15 to 38 ⁇ m, and even more preferably 19 ⁇ m to 33 ⁇ m.
  • the thickness of the film is 12 ⁇ m or more, it is preferable because there is no possibility of deformation due to heat during film production, a process of processing a release layer, and molding of a ceramic green sheet or the like.
  • the thickness of the film is 50 ⁇ m or less, the amount of the film discarded after use does not become extremely large, which is preferable in reducing the environmental load.
  • the polyester film may be a single layer or a multilayer of two or more layers.
  • the polyester film has a surface layer A that is substantially free of inorganic particles.
  • it may be a single layer of the surface layer A or a multilayer structure having the surface layer A and another layer, for example, the surface layer B described later.
  • it is preferable to have a surface layer B capable of containing particles or the like on the opposite surface of the surface layer A which does not substantially contain inorganic particles.
  • the layer structure in the thickness direction is the release layer /
  • the layer structure in the thickness direction is the release layer /
  • the layer C may have a plurality of layer configurations.
  • the surface layer B may not contain particles. In that case, it is preferable to provide a coat layer containing particles and a binder on the surface layer B in order to impart slipperiness for winding the film into a roll.
  • the surface layer A located on the surface to which the release layer is applied does not substantially contain inorganic particles.
  • the surface layer A since the surface layer A does not substantially contain inorganic particles, the following region surface average roughness can be exhibited.
  • the region surface average roughness (Sa) of the surface layer A is the region surface average roughness (Sa) on the surface on which the release layer is arranged, and the region surface average on the surface on which the release layer is arranged.
  • the roughness (Sa) is 7 nm or less.
  • the release layer laminated on the surface layer A can also exhibit high smoothness, and pinholes and the like can be formed during molding of the ultrathin ceramic green sheet laminated on the release layer. Is unlikely to occur. Furthermore, when the release layer is formed, it is possible to suppress the aggregation of the release layer component on the protrusions on the surface layer A, and it is possible to prevent deterioration of the smoothness of the release layer surface.
  • the region surface average roughness (Sa) of the surface layer A is 0.1 nm or more and 7 nm or less, for example, 0.5 nm or more and 5 nm or less, and 0.5 nm or more and 4 nm or less.
  • the smoothness of the release layer can be improved, and the generation of pinholes and the like can be suppressed during the molding of the ultrathin layer ceramic green sheet to be laminated.
  • the release layer when the release layer is formed, it is possible to suppress the aggregation of the release layer component on the protrusions on the surface layer A, and it is possible to prevent deterioration of the smoothness of the release layer surface.
  • substantially free of inorganic particles means a content of 50 ppm or less, preferably 10 ppm or less, and most preferably detection limit or less when the inorganic element is quantified by fluorescent X-ray analysis. .. This is because even if inorganic particles are not actively added to the film, contamination components derived from foreign substances and stains attached to the raw material resin or the line or device in the film manufacturing process may be mixed in the film. Is.
  • the surface layer B may be provided on the opposite surface to the surface on which the release layer is arranged.
  • the surface layer B preferably contains particles.
  • the film is excellent in slipperiness and air release, and can have excellent transportability and winding property.
  • the total amount of particles contained in the surface layer B is 1000 to 15000 ppm.
  • the region surface average roughness (Sa) of the film of the surface layer B is, for example, 1 nm or more and 40 nm or less. More preferably, it is 5 nm or more and 35 nm or less.
  • the total amount of silica particles and / or calcium carbonate particles is 1000 ppm or more and Sa is 1 nm or more, air can be uniformly released when the film is rolled up into a roll shape, and the rolled shape is good and the flatness is good. Can be done.
  • these characteristics for example, when manufacturing an ultrathin layer resin sheet having a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less, for example, a ceramic green sheet, wrinkles and misalignment of the wound ceramic green sheet are prevented. It is possible to provide a release film having excellent transportability, winding property, and storage property.
  • the total amount of silica particles and / or calcium carbonate particles is 15,000 ppm or less and Sa is 40 nm or less, aggregation of particles that also function as a lubricant is unlikely to occur, and coarse protrusions (for example, protrusions having a height of 1 ⁇ m or more) are formed. Therefore, when manufacturing an ultra-thin layer resin sheet, for example, a ceramic green sheet, it is possible to suppress the generation of pinholes due to winding, for example, and it is possible to provide a resin sheet with stable quality.
  • inert inorganic particles and / or heat-resistant organic particles other than silica and / or calcium carbonate can be used. From the viewpoint of transparency and cost, it is more preferable to use silica particles and / or calcium carbonate particles.
  • examples of other inorganic particles that can be used include alumina-silica composite oxide particles and hydroxyapatite particles.
  • examples of the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles.
  • silica particles porous colloidal silica is preferable.
  • calcium carbonate particles When calcium carbonate particles are used, light calcium carbonate surface-treated with a polyacrylic acid-based high-molecular compound is preferable from the viewpoint of preventing the particles from falling off.
  • the average particle size of the particles added to the surface layer B is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 1.0 ⁇ m or less.
  • the average particle size of the particles is 0.1 ⁇ m or more, the slipperiness of the release film is good, which is preferable.
  • the average particle size is 2.0 ⁇ m or less, the deformation of the surface layer A can be suppressed, and the uneven thickness of the ceramic green sheet and the occurrence of pinholes can be suppressed.
  • the surface layer B may contain two or more types of particles made of different materials. Further, particles of the same type having different average particle sizes may be contained. Further, two or more kinds of different particles may have different average particle diameters within the above range. By including two different types of particles, the unevenness formed on the surface layer B can be highly controlled, and the smoothness of slipperiness can be achieved at the same time, which is preferable.
  • the surface layer A which is the layer on which the release layer is provided, in order to prevent the mixing of particles or impurities.
  • the thickness ratio of the surface layer A which is the layer on which the release layer is provided, is preferably 20% or more and 50% or less of the total thickness of the base film. When it is 20% or more, it is not easily affected by the particles contained in the surface layer B or the like from the inside of the film, and the region surface average roughness Sa can satisfy the above range, which is preferable. When it is 50% or less of the thickness of all the layers of the base film, the ratio of the recycled raw materials used in the surface layer B and the above-mentioned intermediate layer C by coextrusion can be increased, and the environmental load is reduced, which is preferable.
  • the layers other than the surface layer A surface layer B or the above-mentioned intermediate layer C. Even in this case, it is preferable that the type and amount of the lubricant contained in the surface layer B, the particle size, and the region surface average roughness (Sa) satisfy the above ranges.
  • the film is applied to the surface of the surface layer A and / or the surface layer B before or after stretching in the film forming process.
  • a coat layer may be provided, and corona treatment or the like may be applied.
  • the coat layer is provided on the surface layer A, it is preferable that the coat layer contains substantially no particles.
  • the release layer is laminated on the surface layer A.
  • the release layer is a layer obtained by curing the release layer forming composition, and the release layer and the release layer forming composition contain at least a cationically cured polydimethylsiloxane (a), and the release layer is released.
  • the region surface roughness (Sa) of the layer is 2 nm or less,
  • the number of protrusions with a height of 10 nm or more existing on the surface of the release layer is 200 / mm 2 or less.
  • the release layer has such characteristics, it is possible to suppress the generation of pinholes in an ultra-thin resin sheet that requires high smoothness, for example, a ceramic green sheet, and it is possible to form a resin sheet having a uniform film thickness. .. More specifically, the present invention can suppress poor curing due to oxygen inhibition in the release layer, and can achieve high cross-linking of the release layer. INDUSTRIAL APPLICABILITY The present invention exhibiting such an effect can improve, for example, the solvent resistance of the surface of the release layer. By improving the solvent resistance of the release layer surface, it is possible to prevent the release layer from being eroded by the organic solvent used when molding the ceramic green sheet and printing the internal electrodes, and it is possible to have high peelability. can.
  • high heat of 130 ° C. or higher is not required to accelerate the curing reaction. Therefore, it is possible to prevent the flatness of the release film from being impaired by the heat during processing. In addition, it is possible to suppress the mixing of foreign matter into the release film for molding the resin sheet and the occurrence of scratches on the release layer, and the generation of sheet damage due to the transfer of foreign matter and scratches to the mold release body such as the ceramic green sheet. Can be suppressed.
  • the region surface average roughness (Sa) of the release layer is 2 nm or less. Further, the number of protrusions having a height of 10 nm or more existing on the surface of the release layer is 200 pieces / mm 2 or less.
  • the surface of the release layer of the release film has predetermined conditions of the region surface average roughness (Sa) and the number of protrusions of 10 nm or more so as not to cause defects in the ceramic sheet coated and molded on the release layer surface.
  • the region surface roughness (Sa) is 2 nm or less and the number of protrusions having a height of 10 nm or more is 200 pieces / mm 2 or less, there is no defect such as pinholes in the ceramic sheet when molding the ceramic sheet, and the yield is achieved. Is good and preferable. More preferably, the region surface roughness (Sa) is 1.7 nm or less, for example, 1.6 nm or less, and may be 1.5 nm or less. In one embodiment, the region surface roughness (Sa) is 1.3 nm or less. Further, the region surface roughness (Sa) may be 0.1 nm or more, and may be 0.2 nm or more.
  • the number of protrusions having a height of 10 nm or more is 180 pieces / mm 2 or less, for example, 170 pieces / mm 2 or less, and 160 pieces / mm 2 or less. In one embodiment, the number of protrusions having a height of 10 nm or more may be 120 pieces / mm 2 or less, or 100 pieces / mm 2 or less. The number of protrusions having a height of 10 nm or more may be 1 piece / mm 2 or more, and may be, for example, 10 pieces / mm 2 or more.
  • the ceramic sheet does not have defects such as pinholes and can have excellent mold releasability in a well-balanced manner.
  • the region surface roughness (Sa) is 1.0 nm or less, and the number of protrusions having a height of 10 nm or more is 100 / mm 2 or less.
  • the release layer having the region surface average roughness (Sa) and the number of protrusions according to the present invention can exhibit extremely excellent smoothness.
  • the maximum protrusion height (Sp) of the release layer is 20 nm or less. When the maximum protrusion height is in such a range, defects in the ceramic sheet can be further suppressed. More preferably, the maximum protrusion height (Sp) is 15 nm or less, and even more preferably 10 nm or less. In one embodiment, the total number of protrusions having a height of 5 nm or more and less than 10 nm on the surface of the release layer and the number of protrusions having a height of 10 nm or more is 1500 pieces / mm 2 or less.
  • the total number of protrusions having a height of 5 nm or more and less than 10 nm and the number of protrusions having a height of 10 nm or more on the release layer is 1500 pieces / mm 2 or less, defects in the ceramic sheet can be further suppressed and high smoothness is achieved. It is possible to obtain a release layer having the above, which is preferable. More preferably, the total number of protrusions having a height of 5 nm or more and less than 10 nm and the number of protrusions having a height of 10 nm or more is 1000 pieces / mm 2 or less, and for example, 500 pieces / mm 2 or less.
  • the release layer according to the release film for molding a resin sheet of the present invention is a layer obtained by curing the release layer forming composition, and the release layer forming composition contains at least a cationically cured polydimethylsiloxane (a). include. Since the cationically cured polydimethylsiloxane (a) proceeds with the crosslinking reaction by the cationic curing reaction, it is a release layer having excellent solvent resistance without causing curing failure due to oxygen inhibition. Therefore, the release layer is not likely to be eroded by the organic solvent used during molding of the ceramic green sheet, printing of the internal electrode, and the like, and a release layer having excellent peelability can be obtained.
  • the cationically cured polydimethylsiloxane (a) is preferably contained in the release layer at 90 mg / m 2 or less, for example, 60 mg / m 2 or less, 50 mg / m 2 or less, and 40 mg / m 2 or less. It is more preferably present, and more preferably 30 mg / m 2 or less.
  • the amount of the cationically cured polydimethylsiloxane (a) may be 20 mg / m 2 or less.
  • the content of the cationically cured polydimethylsiloxane (a) in the release layer is 50 mg / m 2 or less, the polydimethylsiloxane (a) aggregates during the step of forming the release layer, for example, the drying step. This can be suppressed, and there is no possibility that a large number of protrusions outside the scope of the present invention will occur, and the effect of the present invention can be achieved.
  • the release layer and the release layer forming composition may contain components other than the cationically cured polydimethylsiloxane (a).
  • polydimethylsiloxane (a) can be segregated on the surface of the release layer during processing of the release layer, and it is contained.
  • the amount is 50 mg / m 2 or less, it is difficult to aggregate and a release layer having high smoothness can be formed.
  • the release layer forming composition contains a cationically cured polydimethylsiloxane (a). Further, in the release layer in which the release layer forming composition is cured, a compound (cured product) derived from the cationically cured polydimethylsiloxane (a) is present. In the present specification, the compound derived from (a) present in the release layer may also be simply referred to as cationically cured polydimethylsiloxane (a).
  • the cationically curable polydimethylsiloxane (a) refers to a polydimethylsiloxane having a cationically curable functional group.
  • the cationically curable functional group is a reactive functional group exhibiting cationic curability, and specific examples thereof include a vinyl ether group, an oxetanyl group, an epoxy group, and an alicyclic epoxy group. Among them, it is preferable to have at least one functional group selected from an oxetanyl group, an epoxy group and an alicyclic epoxy group from the viewpoint of reactivity, and an alicyclic epoxy group is most preferable. Having such a functional group is preferable because a crosslinked structure is formed by a cationic curing reaction, and the release layer has excellent solvent resistance and excellent peelability.
  • the number of cationically curable functional groups contained in the cationically curable polydimethylsiloxane (a) may be one or more. For example, having two or more cationically curable functional groups is preferable because the cationic curing reaction is more likely to proceed and the release layer has a high crosslink density.
  • the introduction position of the cationically curable functional group is not particularly limited, and it is generally possessed at the side chain or the end of polydimethylsiloxane.
  • the structure of the polydimethylsiloxane may be a linear structure or a branched structure, and can be used without any problem even if it has a functional group other than the cationically curable functional group.
  • cation-curable polydimethylsiloxane (a) a commercially available product can be preferably used.
  • Siricollies registered trademark
  • the weight average molecular weight of the cationically cured polydimethylsiloxane (a) is preferably 1000 to 500,000, more preferably 5000 to 100,000.
  • the weight average molecular weight is 1000 or more, the cationic curing reaction easily proceeds and the peelability is excellent, which is preferable.
  • it is 500,000 or less the viscosity does not become too high, the coatability is excellent, and the release layer has high flatness, which is preferable.
  • the release layer forming composition of the present invention may contain other resins in addition to the cationically cured polydimethylsiloxane (a). In this case, the film thickness of the release layer can be reduced.
  • the release layer since the release layer is provided on the surface layer A of the base film that does not substantially contain inorganic particles, the release layer has extremely high smoothness even if the thickness of the release layer is thin. be able to. Further, since the release layer has a thin film thickness, the curing reaction easily proceeds, processing can be performed at a higher speed, and the release layer can be economically obtained.
  • the film thickness is further thin, there is no possibility that the base film, extremely small foreign substances existing in the mold release processing process, etc. are taken into the mold release layer. Therefore, there is no possibility that protrusions due to foreign substances are generated on the surface of the release layer, and the release layer having a smooth surface as described above can be obtained.
  • the film thickness of the release layer is preferably 0.001 ⁇ m or more and less than 0.050 ⁇ m.
  • it is 0.001 ⁇ m or more, it is preferable because it is excellent in releasability.
  • it is less than 0.050 ⁇ m aggregation of the release layer forming composition can be prevented, and a smooth release layer is preferable.
  • the composition when the main component is the cationically cured polydimethylsiloxane (a), the composition is a cationically cured polydimethylsiloxane (a) with respect to 100 parts by mass of the resin solid content of the release layer. It contains 50 parts by mass or more, for example, more than 50 parts by mass, preferably 70 parts by mass or more, for example, 80 parts by mass or more, and in one embodiment, 90 parts by mass or more. Further, it may be an embodiment in which the cationically cured polydimethylsiloxane (a) is substantially contained in the entire resin solid content of the release layer.
  • the release layer forming composition of the present invention may contain a cationically curable resin (b) in addition to the cationically curable polydimethylsiloxane (a).
  • (b) is a resin different from (a), and the resin (b) does not have a polydimethylsiloxane structure. Specifically, it is roughly classified into two types: a cationically curable compound (b-1) having no silicone skeleton and a cyclic siloxane compound (b-2) having an alicyclic epoxy group.
  • the release layer forming composition further contains a cationically curable compound (b-1) having no silicone skeleton, in addition to the cationically curable polydimethylsiloxane (a).
  • a cationically curable compound (b-1) having no silicone skeleton include polymers and monomers having two or more cationically curable functional groups in the molecule and not having a silicone skeleton.
  • a resin having two or more epoxy groups or an alicyclic epoxy group is preferable, and it is more preferable to have two or more alicyclic epoxy groups.
  • the number of alicyclic epoxy groups may be 6 or less.
  • the crosslinking reaction proceeds by the cationic curing reaction, and the release layer has excellent solvent resistance. Further, since the cross-linking reaction proceeds with the polydimethylsiloxane (a) contained in the release layer at the same time, it is preferable because it is excellent in peelability and the transfer of the polydimethylsiloxane (a) to the ceramic green sheet is suppressed.
  • the release layer forming composition contains both a cationically curable resin (b-1) having no silicone skeleton and polydimethylsiloxane (a), so that a release layer having high smoothness can be obtained. realizable.
  • a release layer containing the compound (b-1) it is possible to fill fine irregularities, extremely minute foreign substances, protrusions derived from oligomers, etc. existing in the base film, and the release layer is ultra-smooth. Become.
  • the curing reaction proceeds by ultraviolet rays, the release layer has high smoothness.
  • (b-1) and (a) are uniformly leveled and the flatness is improved. It can be inferred that the curing proceeds after the height is increased, and a release layer having high smoothness can be obtained. Further, in the present invention, the polydimethylsiloxane (a) contained at the same time segregates on the surface of the release layer in the drying step, so that a release layer having excellent peelability can be obtained.
  • the cationically curable compound (b-1) having no silicone skeleton is preferably a low molecular weight monomer.
  • the number average molecular weight is preferably 200 or more and less than 5000, more preferably 200 or more and less than 2500, and further preferably 200 or more and less than 1000.
  • the number average molecular weight is 200 or more, the boiling point does not decrease, and the cationically curable compound (b-1) does not volatilize in the drying step of the release layer forming composition during the release layer processing, which is preferable.
  • it is less than 5000 the crosslink density of the release layer is increased and the solvent resistance is excellent, which is preferable.
  • it since it can exist in a fluid state during the drying step, it is preferable because it has excellent leveling property and becomes an ultra-smooth release layer.
  • cationically curable compound (b-1) having no silicone skeleton a commercially available compound can be preferably used.
  • examples of compounds having an alicyclic epoxy group include Daicel's Celoxide 2021P, Celoxide 2081, Epolide GT401, EHPE3150, Shikoku Chemicals' HiREM-1, ENEOS's THI-DE, DE-102, and DE. -103 etc. can be mentioned.
  • resins having epoxy groups are DIC's EPICLON® 830, 840, 850, 1051-75M, N-665, N-670, N-690, N-673-80M, N-690- Examples include 75M, Denacol (registered trademark) EX-611, EX-313, and EX-321 manufactured by Nagase Chemtech.
  • the content of the cationically cured compound (b-1) having no silicone skeleton is 100 parts by mass in total of the cationically cured polydimethylsiloxane (a) and the cationically cured compound (b-1) in the release layer. It is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more. It is preferable to set the content of the cationically curable compound (b-1) to 80% by mass or more and use it as the main component in the release layer because the release layer has a high crosslink density and excellent peelability.
  • the content of the cationically cured polydimethylsiloxane (a) contained in the release layer can be reduced, and the composition derived from polydimethylsiloxane (a) can be suppressed from aggregating on the surface of the release layer in the drying step. It is preferable because there is no risk of deterioration of flatness.
  • the cationically curable type The compound (b-1) is preferably 99.9% by mass or less.
  • a compound (cured product) derived from the cationically curable compound (b-1) having no silicone skeleton is present in the release layer on which the release layer forming composition is cured.
  • the compound derived from (b-1) present in the release layer may be simply described as a cationically curable compound (b-1) having no silicone skeleton.
  • the release layer forming composition contains a cationically cured polydimethylsiloxane (a) and a cationically cured compound (b-1), the release layer has a high crosslink density, excellent solvent resistance, and excellent peeling power. It is preferable because it is a release layer to have. Further, when the cationically curable compound (b-1) is contained, the film thickness of the release layer can be increased while keeping the content of the cationically curable polydimethylsiloxane (a) within a predetermined range. preferable. By increasing the film thickness of the release layer, scratches and extremely minute irregularities existing in the base film can be filled, and as described above, a smooth release layer can be obtained, which is preferable.
  • the thickness of the release layer may be 0.05 ⁇ m or more and 1.0 ⁇ m or less. It is more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less. When it is 0.05 ⁇ m or more, it is preferable because it becomes a smooth release layer. When it is 1.0 ⁇ m or less, a release film having excellent flatness can be obtained without curling, which is preferable.
  • the release layer forming composition may further contain a cyclic siloxane compound (b-2) having an alicyclic epoxy group.
  • a cyclic siloxane compound (b-2) having an alicyclic epoxy group include those represented by the following structural formula (Chemical formula 1) (in Chemical formula 1, R2 is an alkyl having 1 to 4 carbon atoms. Based on).
  • the cationically curable compound (b-2) having a cyclic siloxane skeleton has at least two or more alicyclic epoxy groups. When two or more alicyclic epoxy groups are present, the cationic curing reaction proceeds and a release layer having a high crosslink density is obtained, which is preferable.
  • the cyclic siloxane compound (b-2) having an alicyclic epoxy group because it becomes an ultra-smooth release layer for the same reason as when the cationically curable compound (b-1) is used. That is, it is possible to fill fine irregularities, extremely fine foreign substances, protrusions derived from oligomers, etc. existing in the base film.
  • the compound (b-2) and polydimethylsiloxane (a) are uniformly leveled in the drying step of the release layer forming composition during the release layer processing, and the flatness is improved. Since curing proceeds after that, an ultra-smooth release layer can be obtained. Further, in the present invention, since the polydimethylsiloxane (a) contained at the same time segregates on the surface of the release layer in the drying step, a release layer having excellent peelability can be obtained.
  • the cyclic siloxane compound (b-2) having an alicyclic epoxy group has good compatibility with the cationically cured polydimethylsiloxane (a), it is appropriately mixed in the release layer and the cross-linking reaction proceeds with each other. Therefore, it is preferable because it is a release layer having excellent solvent resistance and excellent peelability. Further, since the cyclic siloxane compound (b-2) has a cyclic siloxane structure, it has a rigid molecular skeleton, and the film hardness when cured is increased, which is preferable. By increasing the film hardness, the release layer is less likely to be deformed when the resin sheet, for example, the ceramic green sheet is peeled off, and good peelability can be exhibited. Further, it is preferable that the release layer is less likely to be scratched and that the scratches on the release layer are not transferred to the resin sheet, for example, the ceramic green sheet, causing a problem.
  • the release layer forming composition contains the cyclic siloxane compound (b-2) because the adhesion of the release layer to the base film is improved.
  • the adhesion of the release layer is improved, the generation of scratches in the transport process can be suppressed, and the release layer is not likely to be transferred when the resin sheet is peeled off, which is preferable.
  • the cyclic siloxane compound (b-2) has two or more alicyclic epoxy groups in the molecule.
  • the crosslinking reaction proceeds by the cationic curing reaction, and the release layer has excellent solvent resistance.
  • the cross-linking reaction proceeds with the polydimethylsiloxane (a) contained in the release layer at the same time, it is preferable because it is excellent in peelability and the transfer of the polydimethylsiloxane (a) to the ceramic green sheet is suppressed.
  • the cyclic siloxane compound (b-2) has 6 or less alicyclic epoxy groups in the molecule.
  • cyclic siloxane compound (b-2) having an alicyclic epoxy group a commercially available one can be used.
  • X-40-2670 and X-40-2678 manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned.
  • the content of the cyclic siloxane compound (b-2) is 80% by mass or more based on 100 parts by mass of the total of the cationically cured polydimethylsiloxane (a) and the cyclic siloxane compound (b-2) in the release layer. It is more preferably 85% by mass or more, and even more preferably 90% by mass or more. It is preferable to set the content of the cyclic siloxane compound (b-2) to 80% by mass or more and use it as the main component in the release layer because the release layer has a high crosslink density and excellent peelability.
  • the content of the cationically cured polydimethylsiloxane (a) contained in the release layer can be reduced, and in the present invention, the cationically cured polydimethylsiloxane (a) aggregates on the surface of the release layer in the drying step. It is preferable because it can suppress the problem and the flatness is not deteriorated.
  • the cyclic siloxane compound ( b-2) is preferably 99.9% by mass or less.
  • a compound (cured product) derived from the cyclic siloxane compound (b-2) is present in the release layer on which the release layer forming composition is cured.
  • the compound derived from the cyclic siloxane compound (b-2) present in the release layer may also be simply referred to as the cyclic siloxane compound (b-2).
  • the thickness of the release layer shall be 0.05 ⁇ m or more and 1.0 ⁇ m or less. Is preferable, and it is more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less. When it is 0.05 ⁇ m or more, it is preferable because it becomes a smooth release layer. When it is 1.0 ⁇ m or less, a release film having excellent flatness can be obtained without curling, which is preferable.
  • the release layer may contain both the cationically curable resin (b-1) and the cyclic siloxane compound (b-2), and these cationically curable resins (b-1) and the cyclic siloxane compound (b-).
  • the total amount of 2) is 80% by mass with respect to 100 parts by mass of the total of the cationically cured polydimethylsiloxane (a), the cationically cured compound (b-1) and the cyclic siloxane compound (b-2) in the release layer. It can be 99.9% by mass or less.
  • the release layer forming composition contains the acid generator (c).
  • a compound derived from the acid generator (c) may be present in the release layer.
  • the compound derived from the acid generator (c) present in the release layer may also be simply described as the acid generator (c).
  • the acid generator is not particularly limited and a general one is used, but by using a photoacid generator that generates an acid under ultraviolet irradiation, the amount of heat during processing can be suppressed and the flatness is excellent. It is preferable because it becomes a release layer.
  • a salt composed of onium ions and non-nucleophilic anions from the viewpoint of reactivity.
  • an organic metal complex typified by an iron allene complex or a carbocation salt typified by tropylium may be used, or phenols substituted with an anthracene derivative or an electron-withdrawing group, for example, pentafluorophenol may be used. ..
  • the salt composed of the onium ion and the non-nucleophilic anion is used as a photoacid generator
  • iodonium, sulfonium, and ammonium can be used as the onium ion.
  • organic group of the onium ion triaryl, diaryl (monoalkyl), monoaryl (dialkyl), or trialkyl may be used, and benzophenone, 9-fluorene may be introduced, or other organic groups may be used. good.
  • non-nucleophilic anion hexafluorophosphorate, hexafluoroantimonate, hexafluoroborate, and tetra (pentafluorophenyl) borate are preferably used. Further, a tetra (pentafluorophenyl) gallium ion or an anion in which some of the fluorine anions are replaced with a perfluoroalkyl group or an organic group may be used, or other anion components may be used.
  • the amount of the photoacid generator added is 100 parts by mass in total of the cationically cured polydimethylsiloxane (a), the cationically cured compound (b-1) and / or the cyclic siloxane compound (b-2) in the release layer. It is 0.1 to 10% by mass, more preferably 0.5 to 8% by mass. More preferably, it is 1 to 5% by mass. When it is 0.1% by mass or more, the amount of generated acid is insufficient and there is no possibility of insufficient curing, which is preferable. Further, when the content is 10% by mass or less, the amount of generated acid becomes appropriate, and the amount of acid transferred to the ceramic green sheet to be molded can be suppressed, which is preferable.
  • a total of 100 parts by mass of the cationically cured polydimethylsiloxane (a) and the cationically cured compound (b-1) and / or the cyclic siloxane compound (b-2) in the release layer is a cationically cured type. It means the total value of the solid content of the polydimethylsiloxane (a) and the solid content of the cationically curable resin (b).
  • the weight of the cationically cured polydimethylsiloxane (a) corresponds to 100 parts by mass of the resin solid content in the release layer.
  • the release layer forming composition contains an organic solvent having an SP value ( ⁇ ) of 14 or more and 17 or less, and the release layer forming composition has an SP value ( ⁇ ) of 14 or more and 17 or less. Is contained in an amount of 10% by mass or more with respect to 100 parts by mass of the total weight of the release layer forming composition.
  • An organic solvent having an SP value ( ⁇ ) of 14 to 17 exhibits excellent solubility in a cationically cured polydimethylsiloxane (a). Therefore, in the drying step after the coating step, even if the organic solvent is dried and the concentration of (a) in the release layer forming composition is increased, the state of being uniformly dissolved can be maintained, and the leveling can be performed cleanly without agglomeration.
  • the cationically cured polydimethylsiloxane (a) can be maintained in a dissolved state for a long time during drying, so that it may aggregate during drying and the smoothness may deteriorate. It is preferable because there is no such thing. Details of the organic solvent having an SP value ( ⁇ ) of 14 or more and 17 or less will be described later.
  • an adhesion improver an additive such as an antistatic agent, or the like may be added to the release layer as long as the effect of the present invention is not impaired. Further, in order to improve the adhesion to the substrate, it is also preferable to perform pretreatment such as anchor coating, corona treatment, plasma treatment, and atmospheric pressure plasma treatment on the surface of the polyester film before providing the release coating layer.
  • the release film obtained by the present invention preferably has a peeling force of 0.01 mN / mm or more and 2.0 mN / mm or less when peeling the ceramic green sheet. More preferably, it is 0.05 mN / mm or more and 1.0 mN / mm or less.
  • the peeling force is 0.01 mN / mm or more, there is no possibility that the ceramic green sheet will be lifted during transportation, which is preferable.
  • the peeling force is 2.0 mN / mm or less, the ceramic green sheet is not likely to be damaged at the time of peeling, which is preferable.
  • the thickness of the release layer is 1.0 ⁇ m or less, 0.5 ⁇ m or less, and further 0.3 ⁇ m or less. Even if there is, the surface of the release layer can be smoothed. Therefore, the amount of solvent and resin used can be reduced, which is environmentally friendly, and a release film for molding an ultra-thin ceramic green sheet can be produced at low cost.
  • the present invention provides, in another embodiment, a method for producing a release film for molding a resin sheet, which comprises the following steps.
  • the surface layer A is a layer that does not substantially contain inorganic particles.
  • the release layer forming composition comprises a cationically cured polydimethylsiloxane (a).
  • Coating process A drying step of heating and drying the polyester film coated with the release layer forming composition. The heat drying has a first drying step and then a second drying step.
  • the drying step T1 in the first drying step is higher than the drying temperature T2 in the second drying step;
  • a photocuring step of irradiating with active energy rays to cure the release layer forming composition.
  • the production method of the present invention by strengthening the first drying condition (by strengthening the drying), aggregation of the resin constituting the release layer can be prevented, and a release layer having high smoothness can be obtained.
  • the first drying step has predetermined conditions, and in one embodiment, a release layer having high smoothness can be obtained by using a specific solvent.
  • a release layer forming composition containing at least a cationically cured polydimethylsiloxane (a) is placed on a surface layer A which does not substantially contain inorganic particles of a polyester film. It has a coating step of coating, a drying step of heating and drying the film after coating, for example, using a drying furnace, and a photocuring step of curing the film using active energy rays after heating and drying. In particular, it is preferable to adopt a method in which the coating step, the drying step, and the photocuring step are performed in this order.
  • a release layer having high smoothness can be realized by devising the manufacturing conditions in the coating process. Specifically, by containing an organic solvent having an SP value ( ⁇ ) of 14 to 17 in the release layer forming composition, aggregation of the cationically cured polydimethylsiloxane (a) can be suppressed, which is excellent. A release layer can be obtained.
  • the SP value ( ⁇ ) can be used to predict the solubility of the substance, and the organic solvent having the SP value ( ⁇ ) of 14 to 17 shows excellent solubility in the cationically cured polydimethylsiloxane (a). ..
  • the content of the organic solvent having an SP value ( ⁇ ) of 14 to 17 contained in the release layer forming composition is preferably 10% by mass or more, preferably 10% by mass or more, based on 100 parts by mass of the release layer forming composition. It is preferably mass% or more.
  • the content is 10% by mass or more, the cationically cured polydimethylsiloxane (a) can be maintained in a dissolved state for a long time during drying, so that there is no risk of aggregation during drying and deterioration of smoothness, which is preferable.
  • the content of the organic solvent having an SP value ( ⁇ ) of 14 to 17 is 80% by mass or less, for example, 65% by mass or less, and less than 50% by mass, based on 100 parts by mass of the release layer forming composition. There may be.
  • the SP value ( ⁇ ) in the present specification adopts the Hildebrand solubility parameter.
  • the Hildebrand solubility parameter can be experimentally calculated from the Hansen Solubility Parameter (HSP value) as shown in Equation 1.
  • SP value ( ⁇ ) (( ⁇ d ) 2 + ( ⁇ p ) 2 + ( ⁇ h ) 2 ) 1/2 ...
  • ( ⁇ D ) is a dispersion force term
  • ( ⁇ P ) is a polarity term
  • ( ⁇ H ) is a hydrogen bond force term
  • the Hansen solubility parameter is the idea of decomposing the Hildebrand solubility parameter into three components.
  • HSPiP Hydrophilility Parameters in Practice
  • Examples of the organic solvent having an SP value ( ⁇ ) of 14 to 17 include normal hexane ( ⁇ : 14.9), normal heptane ( ⁇ : 15.3), normal octane ( ⁇ : 15.5), and isopropyl ether ( ⁇ : 15.5). ⁇ : 15.8), 1,1-diethoxyethane ( ⁇ : 15.9), methylcyclohexane ( ⁇ : 16.0), cyclopentane ( ⁇ : 16.5), cyclohexane ( ⁇ : 16.8) And so on as an example.
  • the coating amount of the release layer forming composition is preferably 10 g / m 2 or less, and more preferably 8 g / m 2 or less.
  • the coating amount is 10 g / m 2 or less, for example, when coated by the gravure coating method, liquid turbulence is less likely to occur at the kiss portion between the film and the gravure roll, and a release layer having excellent smoothness can be obtained. Therefore, it is preferable.
  • the solvent contained in the release layer forming composition is preferably two or more kinds, and at least one of them is a solvent having an SP value ( ⁇ ) of 14 to 17 as described above, and at least one.
  • the boiling point is preferably 100 ° C. or higher.
  • toluene xylene, normal octane, cyclohexanone, methyl isobutyl ketone, propylene glycol monomethyl ether, propylene glycol monopropyl ether, isobutyl acetate, normal butanol and the like.
  • the coating liquid of the release layer forming composition is filtered before coating.
  • the filtration method is not particularly limited, and a known method can be used, but it is preferable to use a surface type, depth type, or adsorption type cartridge filter. It is preferable to use a cartridge type filter because it can be used when the coating liquid is continuously sent from the tank to the coating portion, and thus it can be filtered efficiently with high productivity.
  • As the filtration accuracy of the filter it is preferable to use one that removes 99% or more of a filter having a size of 1 ⁇ m, and more preferably 99% or more of a filter having a size of 0.5 ⁇ m can be filtered.
  • any known coating method can be applied as the coating method, for example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a wire bar, a die coating method, a spray coating method, or an air knife. Conventionally known methods such as the coat method can be used.
  • Examples of the method of applying the release layer forming composition on the base film and drying it include known hot air drying and infrared heaters, but hot air drying having a high drying speed is preferable. It is preferable to dry in a drying oven, and a known drying oven can be used without particular limitation. Regarding the method of the drying furnace, either the roll support method or the floating method may be used, but since the roll support method has a wider range in which the air volume during drying can be adjusted, the air volume etc. is adjusted according to the type of release layer. It is preferable because it can be done.
  • the drying step can be divided into two drying steps, a constant rate drying step (hereinafter referred to as a first drying step) and a reduced rate drying step (hereinafter referred to as a second drying step) at the initial stage of drying.
  • the two steps are preferably continuous in the order of the first drying step and the second drying step, and can be distinguished by zoning in the drying furnace, and the first (initial) drying step is The first drying oven and the second (late) drying step can be dried using the second drying oven.
  • the present inventors have found that it is important that the drying temperature T1 in the first drying step is higher than the drying temperature T2 in the second drying step in order to improve the smoothness of the release layer. rice field. It is preferable that the temperature of the first drying oven and the temperature of the second drying oven are in the range described later. By manufacturing under such conditions, the constant rate drying time in the first drying step can be short, the reduced rate drying time in the second drying step can be lengthened, and a release layer having excellent flatness can be obtained. It is preferable because it is possible.
  • the drying temperature T1 is preferably 90 ° C. or higher and 180 ° C. or lower, and preferably 100 ° C. or higher and 150 ° C. or lower. It is preferable to raise the temperature in the first drying furnace and shorten the constant rate drying time because it is possible to prevent the agglomeration of the cationically cured polydimethylsiloxane (a) contained in the release layer forming composition.
  • the higher the temperature of the first drying furnace the shorter the constant rate drying time, which is preferable.
  • the temperature is preferably 180 ° C. or lower.
  • the temperature is 90 ° C. or higher, the drying capacity is sufficient, which is preferable.
  • the temperature inside the second drying oven is preferably 60 ° C. or higher and 140 ° C. or lower, and more preferably 80 ° C. or higher and 120 ° C. or lower.
  • it is preferable to slow down the drying time because the release layer surface before photo-curing can be dried without being roughened and the smoothness of the release layer is improved.
  • the constant rate drying time in the first drying step is preferably shorter than the reduced rate drying time in the second drying step.
  • the constant rate drying time in the first drying step is preferably shorter than the reduced rate drying time in the second drying step.
  • the time from application to entering the first drying furnace is preferably 0.1 seconds or more and 2.5 seconds or less, preferably 0.1 seconds or more and 2.0 seconds or less, which is short. The more preferable.
  • the drying time in the first drying step can be shortened, the aggregation of the cationically cured polydimethylsiloxane (a) is suppressed, and the smoothness is improved. It is preferable because an excellent release layer can be obtained.
  • the time to enter the drying oven can be calculated from the processing speed and the structure of the processing machine base.
  • the production method of the present invention includes a photocuring step of irradiating with active energy rays after the drying step to cure the release layer forming composition.
  • the cation curing reaction of the release layer forming composition after drying proceeds by irradiating with active energy rays.
  • active energy ray known techniques such as ultraviolet rays and electron beams can be used, and it is preferable to use ultraviolet rays.
  • the integrated amount of light when ultraviolet rays are used can be expressed by the product of illuminance and irradiation time. For example, it is preferably 10 to 500 mJ / cm 2 . It is preferable that the content is not less than the lower limit because the release layer can be sufficiently cured. When the value is not more than the upper limit, heat damage to the film due to heat during irradiation can be suppressed and the smoothness of the release layer surface can be maintained, which is preferable.
  • the film When irradiating with active energy rays, it is preferable to hold the back surface of the film with a backup roll.
  • a backup roll By providing a backup roll, the distance from the active energy radiation source can be kept constant, so that uniform irradiation is preferable. Further, it is preferable to irradiate the surface of the backup roll with active energy rays while cooling the film. By cooling, the film is less likely to be damaged by heat even when irradiated with active energy rays, and the smoothness of the release layer surface can be maintained, which is preferable.
  • the production method of the present invention provides a method for producing a release film for producing a resin sheet containing an inorganic compound.
  • the resin sheet in the present invention is not particularly limited as long as it is a sheet containing a resin.
  • the release film of the present invention is a release film for molding a resin sheet containing an inorganic compound.
  • the inorganic compound include metal particles, metal oxides, minerals and the like, and examples thereof include calcium carbonate, silica particles, aluminum particles, barium titanate particles and the like. Since the present invention has a release layer having high smoothness, even if the resin sheet contains these inorganic compounds, there are drawbacks that may be caused by the inorganic compounds, such as breakage of the resin sheet and the release layer to the resin sheet. It is possible to suppress the problem that the peeling becomes difficult.
  • the resin component forming the resin sheet can be appropriately selected depending on the intended use.
  • the resin sheet containing the inorganic compound is a ceramic green sheet.
  • the ceramic green sheet can contain barium titanate as an inorganic compound.
  • a polyvinyl butyral-based resin can be contained.
  • the resin sheet has a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • the present invention can provide a method for producing a release film for producing a resin sheet containing such an inorganic compound.
  • the method for producing a release film for molding a resin sheet in the present invention may include a step of molding a resin sheet having a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • a monolithic ceramic capacitor has a rectangular parallelepiped ceramic prime field. Inside the ceramic prime field, first internal electrodes and second internal electrodes are alternately provided along the thickness direction. The first internal electrode is exposed on the first end face of the ceramic prime field. A first external electrode is provided on the first end face. The first internal electrode is electrically connected to the first external electrode at the first end face. The second internal electrode is exposed on the second end face of the ceramic prime field. A second external electrode is provided on the second end face. The second internal electrode is electrically connected to the second external electrode at the second end face.
  • the release film of the present invention is a release film for manufacturing a ceramic green sheet, and is used for manufacturing such a laminated ceramic capacitor.
  • the method for manufacturing a ceramic green sheet using the release film for manufacturing a ceramic green sheet of the present invention can mold a ceramic green sheet having a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less in more detail.
  • the ceramic green sheet is manufactured as follows. First, the release film of the present invention is used as a carrier film, and a ceramic slurry for forming a ceramic prime field is applied and dried. An ultra-thin product having a thickness of 0.2 to 1.0 ⁇ m is required for the ceramic green sheet.
  • a conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet.
  • a ceramic green sheet, a ceramic green sheet on which a conductive layer for forming a first internal electrode is printed, and a ceramic green sheet on which a conductive layer for forming a second internal electrode is printed are appropriately laminated and pressed. Thereby, a mother laminated body is obtained.
  • the mother laminate is divided into a plurality of pieces to prepare a raw ceramic prime field.
  • a ceramic prime is obtained by firing a raw ceramic prime. After that, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.
  • the cut release film was embedded in a resin and ultrathin sectioned using an ultramicrotome. Then, a cross-sectional observation was performed using a JEM2100 transmission electron microscope manufactured by JEOL Ltd., and the film thickness of the release layer was measured from the observed TEM image. When the thickness was too thin to be evaluated accurately by cross-sectional observation, it was measured using a reflection spectroscopic film thickness meter (FE-3000, manufactured by Otsuka Electronics Co., Ltd.).
  • Weight of release layer In the present specification, the value of the weight calculated assuming that the weight per 1 ⁇ m of the release layer thickness is 1 g / m 2 is adopted. For example, when the release layer thickness measured by the above method is 0.2 ⁇ m, the total weight of the release layer is 0.2 g / m 2 . Further, the weight of the cationically cured polydimethylsiloxane (a), the weight of the cationically cured resin (b), and the weight of the acid generator (c) contained in the release layer are contained in the release layer forming composition. The value calculated from the compounding ratio of each component and the total weight of the release layer was adopted.
  • the release layer thickness is 0.2 ⁇ m and the release layer weight ratio of the cationically cured polydimethylsiloxane (a) is 5 parts by mass
  • the weight of (a) contained in the release layer is 0.01 g / g. It is m 2 .
  • the release layer weight ratio (% by mass) was calculated with the total of the component (a) and the component (b) as 100 parts by mass.
  • the slurry composition I made of the following materials was stirred and mixed for 10 minutes, and dispersed with zirconia beads having a diameter of 0.5 mm for 10 minutes using a bead mill to obtain a primary dispersion.
  • Secondary dispersion was performed with 5.5 mm zirconia beads for 10 minutes to obtain a ceramic slurry.
  • Eslek BM-S 16.3 parts by mass 1-Ethyl-3-methylimidazolium ethyl sulfate 0.5 parts by mass
  • an electric eliminator SJ-F020 manufactured by Keyence
  • a peeling tester (VPA-3 manufactured by Kyowa Interface Science Co., Ltd., load cell load 0.1N) was used.
  • the peeling was performed at a peeling angle of 90 degrees, a peeling temperature of 25 ° C., and a peeling speed of 10 m / min.
  • a double-sided adhesive tape (Nitto Denko Co., Ltd., No. 535A) is attached on the SUS plate attached to the peeling tester, and the ceramic green sheet side is bonded to the double-sided tape on the release film.
  • the ceramic green sheet side is bonded to the double-sided tape on the release film.
  • the average value of the peeling force having a peeling distance of 20 mm to 70 mm was calculated, and the value was used as the peeling force.
  • the measurement was carried out a total of 5 times, and the value of the average value of the peeling force was adopted and evaluated. Judgment was made according to the following criteria from the obtained numerical values of the peeling force. ⁇ : 0.1 mN / mm or more, less than 1.0 mN / mm ⁇ : 1.0 mN / mm or more
  • PET polyethylene terephthalate pellets
  • esterification reaction device a continuous esterification reaction device consisting of a stirrer, a splitter, a raw material charging port, and a three-stage complete mixing tank having a raw material charging port and a product outlet was used.
  • TPA terephthalic acid
  • EG ethylene glycol
  • antimony trioxide is made up to 160 ppm of Sb atoms with respect to the PET produced, and these slurrys are esterified.
  • the reaction product in the first esterification reaction can is continuously taken out of the system and supplied to the second esterification reaction can, and distilled off from the first esterification reaction can in the second esterification reaction can.
  • EG is supplied in an amount of 8% by mass with respect to the produced PET, and an EG solution containing an amount of magnesium acetate tetrahydrate having an amount of Mg atoms of 65 ppm with respect to the produced PET and 40 ppm of P atoms with respect to the produced PET.
  • PET (I) After filtering with a filter, it was subjected to ultrafiltration and extruded into water, and after cooling, it was cut into chips to obtain PET chips with an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (I)). ..
  • PET (I) an intrinsic viscosity of 0.60 dl / g
  • the lubricant content in the PET chip was 0.6% by mass.
  • PET (II) Preparation of polyethylene terephthalate pellets (PET (II))
  • PET (II) a PET chip having an intrinsic viscosity of 0.62 dl / g containing no particles such as calcium carbonate and silica was obtained (hereinafter abbreviated as PET (II)).
  • layer A separation surface side layer
  • extruded casting
  • An unstretched polyethylene terephthalate sheet having an intrinsic viscosity of 0.59 dl / g was obtained.
  • the unstretched sheet was heated with an infrared heater and then stretched 3.5 times in the vertical direction at a roll temperature of 80 ° C. due to the speed difference between the rolls.
  • E5101 Toyobo Ester (registered trademark) film, manufactured by Toyobo Co., Ltd.) having a thickness of 25 ⁇ m was used.
  • E5101 has a structure in which particles are contained in the surface layer A and the surface layer B.
  • the Sa of the surface layer A of the laminated film X2 was 24 nm, and the Sa of the surface layer B was 24 nm.
  • Example 1 After passing the release layer forming composition 1 having the following composition on the surface layer A of the laminated film X1 through a filter capable of removing 99% or more of foreign substances of 0.5 ⁇ m or more, the coating amount is 5.0 g using reverse gravure. It was painted to be / m 2 . Then, the processing speed was adjusted so as to enter the first drying oven after 0.5 seconds, and the heating and drying were continuously performed at a temperature of the first drying oven of 120 ° C. and a temperature of the second drying oven of 90 ° C.
  • a release film for resin sheet molding is formed by irradiating a cooling roll with ultraviolet rays having an integrated light intensity of 100 mJ / cm 2 using an ultraviolet irradiator (H-bulb manufactured by Heleus) to cure the release layer.
  • H-bulb ultraviolet irradiator
  • good results were obtained as shown in Table 1.
  • the obtained release film for molding a resin sheet was, for example, a release film capable of producing a resin sheet having a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • each component (a), (b), (c) shown in the table indicates the content ratio per solid content (weight of each component with respect to the total weight of the release layer).
  • (Release layer forming composition 1) Methyl ethyl ketone 24.000 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Toluene 24.000 parts by mass (SP value ( ⁇ ): 18.2, ( ⁇ D ): 18.0, ( ⁇ P ): 1.4, ( ⁇ H ): 2.0) Normal heptane 48.000 parts by mass (SP value ( ⁇ ): 15.3, ( ⁇ D ): 15.3, ( ⁇ P ): 0.0, ( ⁇ H ): 0.0) (A) -1 0.039 parts by mass (b) -1 3.883 parts by mass (c) -1 0.078 parts by mass
  • Example 2 A release film for molding a resin sheet was obtained by the same method as in Example 1 except that the composition of the release layer and the production method shown in Table 1 were changed.
  • Example 5 A release film for molding a resin sheet was obtained in the same manner as in Example 1 except that the release layer forming composition 2 having the following composition was used.
  • (Release layer forming composition 2) Methyl ethyl ketone 38.400 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Toluene 38.400 parts by mass (SP value ( ⁇ ): 18.2, ( ⁇ D ): 18.0, ( ⁇ P ): 1.4, ( ⁇ H ): 2.0) Normal heptane 19.200 parts by mass (SP value ( ⁇ ): 15.3, ( ⁇ D ): 15.3, ( ⁇ P ): 0.0, ( ⁇ H ): 0.0) (A) -1 0.196 parts by mass (b) -1 3.726 parts by mass (c) -1 0.078 parts by mass
  • Example 6 Normal heptane in the release layer forming composition is cyclohexane (SP value ( ⁇ ): 16.8, ( ⁇ D ): 16.8, ( ⁇ P ): 0.0, ( ⁇ H ): 0.2).
  • a release film for molding a resin sheet was obtained in the same manner as in Example 2 except that the film was changed to.
  • Example 7 A release film for molding a resin sheet was obtained by the same method as in Example 2 except that the coating amount and the solid content ratio were changed to those shown in Table 1. At this time, the organic solvent ratio was adjusted to be the same as that of the release layer forming composition 1.
  • Example 9 A release film for molding a resin sheet was obtained in the same manner as in Example 1 except that the composition was changed to the release layer forming composition 3 having the following composition.
  • Composition for forming a release layer 3 Methyl ethyl ketone 24.000 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Toluene 24.000 parts by mass (SP value ( ⁇ ): 18.2, ( ⁇ D ): 18.0, ( ⁇ P ): 1.4, ( ⁇ H ): 2.0) Normal heptane 48.000 parts by mass (SP value ( ⁇ ): 15.3, ( ⁇ D ): 15.3, ( ⁇ P ): 0.0, ( ⁇ H ): 0.0) (A) -1 0.039 parts by mass (b) -2 3.883 parts by mass (c) -1 0.078 parts by mass
  • Example 10 A release film for molding a resin sheet was obtained by the same method as in Example 1 except that the composition of the release layer and the production method shown in Table 1 were changed.
  • Example 13 A release film for molding a resin sheet was obtained in the same manner as in Example 1 except that the release layer forming composition 4 having the following composition was used.
  • (Release layer forming composition 4) Methyl ethyl ketone 38.400 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Toluene 38.400 parts by mass (SP value ( ⁇ ): 18.2, ( ⁇ D ): 18.0, ( ⁇ P ): 1.4, ( ⁇ H ): 2.0) Normal heptane 19.200 parts by mass (SP value ( ⁇ ): 15.3, ( ⁇ D ): 15.3, ( ⁇ P ): 0.0, ( ⁇ H ): 0.0) (A) -1 0.196 parts by mass (b) -2 3.726 parts by mass (c) -1 0.078 parts by mass
  • Example 14 Normal heptane in the release layer forming composition is cyclohexane (SP value ( ⁇ ): 16.8, ( ⁇ D ): 16.8, ( ⁇ P ): 0.0, ( ⁇ H ): 0.2).
  • a release film for molding a resin sheet was obtained in the same manner as in Example 2 except that the film was changed to.
  • Example 15 A release film for molding a resin sheet was obtained by the same method as in Example 2 except that the coating amount and the solid content ratio were changed to those shown in Table 1. At this time, the organic solvent ratio was adjusted to be the same as that of the release layer forming composition 3.
  • Example 17 A release film for molding an ultrathin layer resin sheet was obtained by the same method as in Example 1 except that the release layer forming composition 5 having the following composition was used.
  • Composition for forming a release layer 5 Methyl ethyl ketone 24.950 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Toluene 24.950 parts by mass (SP value ( ⁇ ): 18.2, ( ⁇ D ): 18.0, ( ⁇ P ): 1.4, ( ⁇ H ): 2.0) Normal heptane 49.900 parts by mass (SP value ( ⁇ ): 15.3, ( ⁇ D ): 15.3, ( ⁇ P ): 0.0, ( ⁇ H ): 0.0) (A) -1 0.196 parts by mass (c) -1 0.004 parts by mass
  • Example 18 Mold release for resin sheet molding by the same method as in Example 1 except that the solid content concentration is changed to that shown in Table 1 and the organic solvent ratio is adjusted to be the same as that of the release layer forming composition 5. I got a film.
  • Example 19 A release film for molding a resin sheet was obtained by the same method as in Example 17 except that the manufacturing method was changed to that shown in Table 1.
  • Example 20 A mold release film for molding an ultrathin layer resin sheet was obtained by the same method as in Example 1 except that the composition was changed to the release layer forming composition 6.
  • Composition for forming a release layer 6 Methyl ethyl ketone 39.920 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Toluene 39.920 parts by mass (SP value ( ⁇ ): 19.1, ( ⁇ D ): 16.0, ( ⁇ P ): 9.0, ( ⁇ H ): 5.1) Normal heptane 19.960 parts by mass (SP value ( ⁇ ): 15.3, ( ⁇ D ): 15.3, ( ⁇ P ): 0.0, ( ⁇ H ): 0.0) (A) -1 0.196 parts by mass (c) -1 0.004 parts by mass
  • Example 21 The normal heptane in the release layer forming composition 5 is cyclohexane (SP value ( ⁇ ): 16.8, ( ⁇ D ): 16.8, ( ⁇ P ): 0.0, ( ⁇ H ): 0.2. ) was obtained, and a release film for molding a resin sheet was obtained in the same manner as in Example 1.
  • Example 22 A release film for molding a resin sheet was obtained in the same manner as in Example 17 except that the coating amount and solid content concentration were changed to those shown in Table 1. At this time, the organic solvent ratio was adjusted to be the same as that of the release layer forming composition 5.
  • Comparative Example 1 since the cationically cured polydimethylsiloxane (a) was not contained, the peeling force of the ceramic sheet was large and it was impossible to peel the ceramic sheet.
  • Comparative Examples 2 to 4 the number of protrusions having a height of 10 nm or more exceeded 200 pieces / mm 2 , and pinholes were generated in the green sheet which is a release type. Further, in Comparative Example 4, inorganic particles were present in the entire base material, the smoothness of the release film was remarkably poor, and the green sheet was damaged, pinholes and the like occurred.
  • a release film capable of molding a resin sheet having few defects even in an ultrathin layer product having a thickness of 1 ⁇ m or less can be provided to obtain a resin sheet. It can be manufactured without the risk of defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

平滑性と剥離性に特に優れた離型層を有する離型フィルムとすることで、超薄層の樹脂シート、特に超薄層のセラミックグリーンシートを欠陥なく成型することのできる離型フィルムを提供することを目的とする。 基材としてのポリエステルフィルムと、離型層を有する樹脂シート成型用離型フィルムであって、ポリエステルフィルムは、無機粒子を実質的に含有していない表面層Aを有し、表面層A上に前記離型層を有し、離型層は、離型層形成組成物が硬化された層であり、離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を少なくとも含み、離型層の領域表面粗さ(Sa)が2nm以下であり、離型層表面に存在する高さ10nm以上の突起数が200個/mm2以下である、樹脂シート成型用離型フィルム。

Description

樹脂シート成型用離型フィルム
 本発明は、樹脂シート成型用離型フィルムに関するものであり、更に詳しくは超薄層の樹脂シートを成型する際に用いる離型フィルムに関するものである。
 従来、ポリエステルフィルムを基材とし、その上に離型層を積層した離型フィルムは、粘着シート、カバーフィルム、高分子膜、光学レンズなどの樹脂シートを成型するための工程フィルムとして使用されている。
前記離型フィルムは、積層セラミックコンデンサ、セラミック基板等の高い平滑性が求められるセラミックグリーンシート成型用の工程フィルムとしても使用されている。近年、積層セラミックコンデンサの小型化・大容量化に伴い、セラミックグリーンシートの厚みも薄膜化する傾向にある。セラミックグリーンシートは、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを離型フィルム上に塗工し乾燥することで成型される。成型したセラミックグリーンシートに電極を印刷し離型フィルムから剥離しすることで得られたセラミックグリーンシートを、積層、プレス、焼成、外部電極塗布することで積層セラミックコンデンサが製造される。
 ポリエステルフィルム基材の離型層表面にセラミックグリーンシートを成型する場合、離型層表面の微小な突起が成型したセラミックグリーンシートに影響を与え、ハジキやピンホール等の欠点を生じやすくなるといった問題点があった。近年は、さらなるセラミックグリーンシートの薄膜化が進み、1.0μm以下、より詳しくは0.2μm~1.0μmの厚みのセラミックグリーンシートが要求されるようになってきている。そのため離型層表面の平滑性に関する要求は更に高まっている。また、離型層上の極めて微小な突起、異物が、成型するセラミックグリーンシートの変形につながり、ピンホールの発生、剥離時のシート割れなどが生じやすくなるといった課題があった。
また、セラミックグリーンシートの薄膜化が進むと、離型フィルムからセラミックグリーンシートを剥離する時の剥離性がより重要になってくる。剥離力が大きく、不均一であると剥離工程においてセラミックグリーンシートにダメージが加わり、シート欠陥、厚みムラなどが発生し、ピンホールの発生、シート割れなどの不具合が発生する問題がある。そのため、セラミックグリーンシートをより低く均一な力で剥離することも求められている。すなわち、超薄層の樹脂シート、特にセラミックグリーンシートを欠陥なく製造するためには、極めて高い平滑性と、優れた剥離性を有する離型フィルムが必要とされている。
平滑性と剥離性に優れた離型フィルムとしては、以下に記載の特許文献のものが挙げられる。例えば特許文献1では、ラジカル硬化型の樹脂を主成分に用いた離型層を有する離型フィルムが提案されている。特許文献2では、平滑化層と離型層が積層された構成の離型フィルムが提案されている。特許文献3では、カチオン硬化型エポキシ樹脂を主成分に用いた離型層を有する離型フィルムが提案されている。特許文献4では、カチオン硬化型ポリジメチルシロキサンを主成分に用いた離型層を有する離型フィルムが提案されている。
特許第5492352号 特開2015-164762号公報 国際公開第2018/079337 特開2016-079349号公報
しかしながら特許文献1の離型フィルムでは、平滑性が不十分な基材フィルムに対して離型層を設けているため、離型層の平滑性が不十分であるという課題がある。更に、本発明者らは、鋭意検討した結果、ラジカル硬化型の樹脂は酸素阻害による硬化不良が生じるため、離型層表面の耐溶剤性が悪く、セラミックグリーンシートの成型時や内部電極の印刷時に使用する有機溶媒によって離型層が侵食され、剥離性が悪くなるという問題があることが見出された。
特許文献2の発明では、平滑化塗布層と離型塗布層に熱硬化性のメラミン樹脂が使用されており、硬化反応を促進させるために高い熱を必要とする。そのため、加工時の熱によって離型フィルムの平面性が損なわれるおそれがある。また、平滑化塗布層と離型塗布層の複数の加工が必要なため、離型フィルムへの異物の混入だけでなく、離型層にキズが発生する恐れがあり、離型層上に成型するセラミックグリーンシートに異物やキズが転写し、不具合が発生する恐れがある。
 特許文献3、4では酸素阻害起因の硬化不良、加工熱による平面不良を改善するために、カチオン硬化型の樹脂を用いた離型層がそれぞれ提案されている。しかしながら、特許文献3の離型フィルムでは、基材フィルムの平滑性が乏しいため、離型層表面の平滑性が悪いという問題がある。また、特許文献3において開示されている離型剤成分では、反応性に乏しく、耐溶剤性が悪く剥離性にも問題があった。
 特許文献4の離型フィルムでは、液状のカチオン硬化型ポリジメチルシロキサン樹脂を主成分に用いた離型層を有しているため、基材フィルムの凹凸、基材フィルム表面に存在するオリゴマーなどの突起に樹脂が凝集し、平面性に問題が生じる恐れがあった。また、離型層の架橋密度が低く、剥離性にも問題があった。
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、平滑性と剥離性に特に優れた離型層を有する離型フィルムを提供でき、更に、超薄層の樹脂シート、特に超薄層のセラミックグリーンシートを欠陥なく成型することのできる離型フィルムを提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討した結果、下記構成を有する離型フィルムにより前記目的を達成できることを見出し、本発明を完成させた。
 即ち、本発明は以下の構成よりなる。
[1]基材としてのポリエステルフィルムと、離型層を有する樹脂シート成型用離型フィルムであって、
前記ポリエステルフィルムは、無機粒子を実質的に含有していない表面層Aを有し、 
前記表面層A上に前記離型層を有し、
前記離型層は、離型層形成組成物が硬化された層であり、
前記離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を含み、
前記離型層の領域表面粗さ(Sa)が2nm以下であり、
前記離型層表面に存在する高さ10nm以上の突起数が200個/mm2以下である、
樹脂シート成型用離型フィルム。
[2]一実施態様において、前記離型層の最大突起高さ(Sp)が20nm以下であり、離型層表面に存在する高さ5nm以上10nm未満の突起数と、前記10nm以上の突起数の合計が1500個/mm2以下である。
[3]一実施態様において、カチオン硬化型ポリジメチルシロキサン(a)が、ビニルエーテル基、オキセタニル基、エポキシ基、脂環式エポキシ基から選択される官能基を少なくとも1つ有する。
[4]一実施態様において、離型層に含まれるカチオン硬化型ポリジメチルシロキサン(a)の含有量が90mg/m2以下である。
[5]一実施態様において、離型層形成組成物は、更に、シリコーン骨格を有さないカチオン硬化型化合物(b-1)を含有し、
カチオン硬化型化合物(b-1)は、分子内に2個以上の脂環式エポキシ基を有し、カチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)の合計100質量部に対して、カチオン硬化型化合物(b-1)の含有量が80質量%以上である。
[6]一実施態様において、離型層形成組成物は、更に脂環式エポキシ基を有する環状シロキサン化合物(b-2)を含有し、
環状シロキサン化合物(b-2)は、分子内に2個以上の脂環式エポキシ基を有し、カチオン硬化型ポリジメチルシロキサン(a)と環状シロキサン化合物(b-2)の合計100質量部に対して、環状シロキサン化合物(b-2)の含有量が、80質量%以上である。
[7]一実施態様において、離型層形成組成物は、SP値(δ)が14以上17以下の有機溶媒を含み、離型層形成組成物は、SP値(δ)が14以上17以下の前記有機溶媒を、離型層形成組成物の全重量100質量部に対し10質量%以上の量で含有する。
[8]一実施態様において、無機化合物を含む樹脂シートを製造するための離型フィルムが提供される。
[9]一実施態様において、無機化合物を含む樹脂シートが、セラミックグリーンシートである。
[10]一実施態様において、厚さが0.2μm以上1.0μm以下の樹脂シートを成型するための離型フィルムが提供される。
 本発明の樹脂シート成型用離型フィルムは、離型層の平滑性と剥離性を高めることができ、更に、超薄層の樹脂シート、特にセラミックグリーンシートの欠陥の発生を抑制することができる。
 以下、本発明について詳細に説明する。
本発明は、基材としてのポリエステルフィルムと、離型層を有する樹脂シート成型用離型フィルムであって、
ポリエステルフィルムは、無機粒子を実質的に含有していない表面層Aを有し、 
表面層A上に離型層を有し、
離型層は、離型層形成組成物が硬化された層であり、
離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を含み、
離型層の領域表面粗さ(Sa)が2nm以下であり、
離型層表面に存在する高さ10nm以上の突起数が200個/mm2以下である、樹脂シート成型用離型フィルムである。
 このような構成を有する本願発明は、離型層の平滑性と剥離性に優れるため、例えば、厚さが0.2μm~1.0μm以下の樹脂シートに対し、欠陥なく均一な厚みを提供でき、ピンホールなどの欠点を抑制できる。
 また、本願発明は、以下の効果を奏することができる。本発明では、平滑性が十分な基材フィルムに対して離型層を設けているため、離型層の平滑性も確保できる。更に、本発明は、離型層において、酸素阻害による硬化不良を抑制でき、離型層の高い架橋を奏することができる。このような効果を奏する本発明は、例えば、離型層表面の耐溶剤性を向上させることができる。離型層表面の耐溶剤性が向上することで、セラミックグリーンシートの成型時、内部電極の印刷時に使用する有機溶媒によって離型層が侵食されることを抑制でき、高い剥離性を有することができる。
 また、本発明であれば、例えば、熱硬化性のメラミン樹脂を有する離型層と比べ、硬化反応を促進させるために高い熱を必要としない。そのため、加工時の熱によって離型フィルムの平面性が損なわれることを抑制できる。また、本発明の製造方法であれば、本発明に係る塗布工程、乾燥工程を経ることで、離型層形成組成物が凝集することを抑制することができ、極めて高い平滑性を有する離型層を備える離型フィルムを得ることができる。
より詳細には、基材フィルムの無機粒子を実質的に含有していない表面層Aに対して、所定量のカチオン硬化型ポリジメチルシロキサン(a)を含有する離型層形成用組成物を塗布し、硬化させることで、極めて高い平滑性を有する離型層を得ることができる。
更に、離型層における、カチオン硬化型ポリジメチルシロキサン(a)の含有量を所定の量以下に制御することで、離型層の加工時に基材フィルムに存在する極微小な異物、オリゴマー由来の微小突起に対し、カチオン硬化型ポリジメチルシロキサン(a)が凝集することを抑制できる。特定の理論に限定して解釈すべきではないが、第1の乾燥温度を高めることで(乾燥を強くすることで)原反に起因する微細な突起に対して、成分(a)が凝集すること防ぐことができる。
また、酸素阻害による硬化不良、離型層表面の耐溶剤性の向上、離型層への異物の混入抑制、および離型層のキズを抑制することで、セラミックグリーンシート等の被離型体に対して、剥離時のダメージや、キズ、異物などの転写によるシート変形を防ぐことができる。その結果、平滑性と硬度と、剥離性と、被離型層に対する汚染防止性に優れる離型層を得ることができる。
また、離型層形成組成物中に含まれる有機溶媒の乾燥中にカチオン硬化型ポリジメチルシロキサン(a)が凝集しづらくなり、平滑性に優れる離型層とすることができる。詳細については後述する。
また、本発明は、別の態様において、以下の工程を有する、樹脂シート成型用離型フィルムの製造方法を提供する。
 表面層Aを有するポリエステルフィルムの前記表面層A上に、離型層形成組成物を塗布する塗布工程であって、
 表面層Aは、無機粒子を実質的に含有していない層であり、
 離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を含む、
塗布工程;
 離型層形成組成物を塗布したポリエステルフィルムを、加熱乾燥する乾燥工程であって、
 前記加熱乾燥は、第1の乾燥工程と、次いで、第2の乾燥工程を有し、
前記第1の乾燥工程における乾燥温度T1は、前記第2の乾燥工程における乾燥温度T2よりも高い、乾燥工程;
 前記乾燥工程後に、活性エネルギー線を照射し、離型層形成組成物を硬化させる光硬化工程。
本発明に係る製造方法において、特に、離型層を加工する時の製造条件を所定の方法とすることで、高い平滑を有する離型層を形成できる例えば、離型層形成用組成物の塗布量、有機溶媒組成、乾燥時間、乾燥温度などを制御することが挙げられる。本願発明の条件で離型フィルムを製造することで、離型層形成用組成物中に含まれるカチオン硬化型ポリジメチルシロキサン(a)の凝集を抑制でき、平滑性に優れる離型層を得ることができる。詳細については後述する。
(ポリエステルフィルム)
 本発明の基材として用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム用基材として通常一般に使用されているポリエステルをフィルム成形したものを使用することができる。好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであるのが良く、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適であり、とりわけポリエチレンテレフタレートから形成されたポリエステルフィルムが特に好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよいが、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明のフィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由から二軸配向ポリエステルフィルムであることが好ましい。
 上記ポリエステルフィルムの固有粘度は0.50~0.70dl/gが好ましく、0.52~0.62dl/gがより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が多く発生することがなく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料ペレットは十分に真空乾燥することが好ましい。
 なお、本明細書において、単に「ポリエステルフィルム」と記載する場合、表面層Aを有する(積層した)ポリエステルフィルムを意味する。また、本発明において、ポリエステルフィルムは、無機粒子を実質的に含有していない表面層Aを有し、表面層A上に前記離型層を有する。
 なお、明細書において言及がある場合、更に表面層Bを有する(積層した)ポリエステルフィルムを、単に「ポリエステルフィルム」と称することがある。
 本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを延伸することにより得ることが出来る。延伸は、二軸延伸であることが力学的特性などから好ましい。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。
 本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横おのおのの方向に1~8倍、特に2~6倍の延伸をすることが好ましい。
 上記ポリエステルフィルムは、厚みが12~50μmであることが好ましく、さらに好ましくは15~38μmであり、より好ましくは、19μm~33μmである。フィルムの厚みが12μm以上であれば、フィルム生産時や離型層の加工工程、セラミックグリーンシートなどの成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましい。
 上記ポリエステルフィルムは、単層であっても2層以上の多層であっても構わない。ポリエステルフィルムは、実質的に無機粒子を含まない表面層Aを有する。例えば、表面層Aの単層であっても、表面層Aと他の層、例えば後述する表面層Bとを有する多層構造であってもよい。
 2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に無機粒子を含有しない表面層Aの反対面には、粒子などを含有することができる表面層Bを有することが好ましい。積層構成としては、離型層を塗布する側の層を表面層A、その反対面の層を表面層B、これら以外の芯層を層Cとすると、厚み方向の層構成は離型層/A/B、あるいは離型層/A/C/B等の積層構造が挙げられる。当然ながら層Cは複数の層構成であっても構わない。また、表面層Bには粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性付与するため、表面層B上には粒子とバインダーを含んだコート層を設けることが好ましい。
 本発明におけるポリエステルフィルムにおいて、離型層を塗布する表面に位置している表面層Aは、実質的に無機粒子を含有しない。本発明においては、表面層Aは、実質的に無機粒子を含有しないので、以下のような領域表面平均粗さを示すことができる。
 本発明において、表面層Aの領域表面平均粗さ(Sa)は、離型層を配置する面における領域表面平均粗さ(Sa)のことであり、離型層を配置する面における領域表面平均粗さ(Sa)は、7nm以下である。Saが7nm以下であると、表面層A上に積層される離型層も高い平滑性を示すことができ、離型層の上に積層する超薄層セラミックグリーンシートの成型時に、ピンホールなどの発生が起こりにくい。さらには、離型層を形成する際に、表面層A上の突起に離型層成分が凝集することを抑制でき、離型層表面の平滑性の悪化を防ぐことができる。
 表面層Aの領域表面平均粗さ(Sa)は小さいほど好ましく、0.1nm以上であって構わない。一態様において、表面層Aの領域表面平均粗さ(Sa)は0.1nm以上7nm以下であり、例えば、0.5nm以上5nm以下であり、0.5nm以上4nm以下である。このような範囲内であることにより、離型層の平滑性を高めることができ、積層する超薄層セラミックグリーンシートの成型時にピンホールなどの発生を抑制できる。さらには、離型層を形成する際に、表面層A上の突起に離型層成分が凝集することを抑制でき、離型層表面の平滑性の悪化を防ぐことができる。
 本発明において、「無機粒子を実質的に含有しない」とは、蛍光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に無機粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れがフィルム中に混入する場合があるためである。
 本発明におけるポリエステルフィルム基材において、離型層を配置する面の反対面に表面層Bを有してもよい。表面層Bは、粒子を含有することが好ましい。粒子を含むことで、フィルムの滑り性及び空気の抜けやすさに優れ、優れた搬送性と巻取り性を有することができる。特に、シリカ粒子及び/又は炭酸カルシウム粒子を含むことが好ましい。
表面層B中に含まれる粒子の量は、合計で1000~15000ppmである。このとき、表面層Bのフィルムの領域表面平均粗さ(Sa)は、例えば、1nm以上40nm以下である。より好ましくは、5nm以上35nm以下である。シリカ粒子及び/又は炭酸カルシウム粒子の合計が1000ppm以上であり、Saが1nm以上の場合、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性を良好にできる。このような特徴により、例えば、厚さ0.2μm以上1.0μm以下の超薄層の樹脂シート、例えば、セラミックグリーンシートを製造する場合、巻き取られたセラミックグリーンシートのシワ、位置ずれを防止でき、搬送性、巻取り、保管性に優れた離型フィルムを提供できる。
 また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤としても機能する粒子の凝集が生じにくく、粗大突起(例えば、高さ 1μm以上の突起)ができないため、超薄層の樹脂シート、例えば、セラミックグリーンシート製造時に、例えば、巻取りによるピンホールの発生を抑制でき、品質の安定した樹脂シートを提供できる。
 表面層Bに含有する粒子としては、シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子などを用いることができる。透明性、コストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましい。他に使用できる無機粒子としては、アルミナ-シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましい。炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、粒子の脱落防止の観点から好ましい。
 上記表面層Bに添加する粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、表面層Aの変形が抑制され、セラミックグリーンシートの厚みムラ及びピンホールの発生を抑制できる。
 上記表面層Bには素材の異なる粒子を2種類以上含有させてもよい。また、同種の粒子で平均粒径の異なるものを含有させてもよい。また、2種類以上の異なる粒子は、上記範囲内で異なる平均粒子径を有してもよい。異なる2種類の粒子を含むことで、表面層Bに形成される凹凸を高度に制御することができ、滑り性の平滑性の両立ができるため好ましい。
 離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、粒子又は不純物の混入を防ぐため、再生原料などを使用しないことが好ましい。
 離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することができで好ましい。基材フィルムの全層の厚みの50%以下であると、共押出しによる表面層B、上述の中間層Cにおける再生原料の使用比率を増やすことができ、環境負荷が小さくなり好ましい。
 また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の中間層C)には、50~90質量%のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、表面層Bに含まれる滑剤の種類や量、粒径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。
 また、後に塗布する離型層などの密着性の向上や、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、コロナ処理などを施すこともできる。表面層A上にコート層を設ける場合、当該コート層は、実質的に粒子を含有しないことが好ましい。
(離型層)
 本発明において、離型層は表面層A上に積層される。本発明において、離型層は、離型層形成組成物が硬化された層であり、離型層及び離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を少なくとも含み、離型層の領域表面粗さ(Sa)が2nm以下であり、
離型層表面に存在する高さ10nm以上の突起数が200個/mm2以下である。
 離型層がこのような特徴を有することで、高い平滑性が要求される超薄膜の樹脂シート、例えば、セラミックグリーンシートに対するピンホールの発生を抑制でき、均一な膜厚の樹脂シートを形成できる。
 より詳細には、本発明は、離型層において、酸素阻害による硬化不良を抑制でき、離型層の高い架橋を奏することができる。このような効果を奏する本発明は、例えば、離型層表面の耐溶剤性を向上させることができる。離型層表面の耐溶剤性が向上することで、セラミックグリーンシートの成型時、内部電極の印刷時に使用する有機溶媒によって離型層が侵食されることを抑制でき、高い剥離性を有することができる。
 また、本発明であれば、硬化反応を促進させるために130℃以上の高い熱を必要としない。そのため、加工時の熱によって離型フィルムの平面性が損なわれることを抑制できる。また、樹脂シート成型用離型フィルムへの異物の混入や離型層のキズの発生を抑制でき、セラミックグリーンシート等の被離型体に対して、異物、キズの転写によるシートダメージの発生を抑制できる。
離型層の領域表面平均粗さ(Sa)は、2nm以下である。また、離型層表面に存在する高さ10nm以上の突起数は200個/mm2以下である。離型フィルムの離型層表面は、その上で塗布・成型するセラミックシートに欠陥を発生させないために、上記領域表面平均粗さ(Sa)と10nm以上の突起数が所定の条件を有する。
領域表面粗さ(Sa)が2nm以下、且つ、高さ10nm以上の突起数が200個/mm2以下であれば、セラミックシート成型時に、セラミックシートにピンホールなどの欠点の発生がなく、歩留まりが良好で好ましい。
より好ましくは、領域表面粗さ(Sa)は1.7nm以下であり、例えば、1.6nm以下であり、1.5nm以下であってもよい。一態様において、領域表面粗さ(Sa)は、1.3nm以下である。また、領域表面粗さ(Sa)は、0.1nm以上であってよく、0.2nm以上であってもよい。
一方、一態様において、高さ10nm以上の突起数は180個/mm2以下であり、例えば170個/mm2以下であり、160個/mm2以下であってもよい。一態様においては、高さ10nm以上の突起数は120個/mm2以下であってもよく、100個/mm2以下であってもよい。また、高さ10nm以上の突起数は、1個/mm2以上であってよく、例えば、10個/mm2以上であってよい。
 高さ10nm以上の突起数が上記範囲内であることにより、セラミックシートにピンホールなどの欠点の発生がなく、優れた離型性もバランスよく有することができる。
更に好ましくは領域表面粗さ(Sa)が1.0nm以下、かつ、高さ10nm以上の突起数が100個/mm2以下である。
本発明に係る領域表面平均粗さ(Sa)と、突起数を有する離型層は、極めて優れた平滑性を示すことができる。
一態様において、離型層の最大突起高さ(Sp)は、20nm以下である。最大突起高さがこのような範囲であることにより、セラミックシートの欠陥をさらに抑制できる。より好ましくは、最大突起高さ(Sp)は15nm以下であり、更に好ましくは10nm以下である。
 一態様において、離型層表面に存在する高さ5nm以上10nm未満の突起数と、前記10nm以上の突起数の合計が1500個/mm2以下である。離型層上に存在する高さ5nm以上10nm未満の突起数と、前記10nm以上の突起数の合計が1500個/mm2以下であることにより、セラミックシートの欠陥を更に抑制でき、高い平滑性を有する離型層を得ることができ、好ましい。
 より好ましくは、高さ5nm以上10nm未満の突起数と、前記10nm以上の突起数の合計1000個/mm2以下であり、例えば、500個/mm2以下であることがさらに好ましい。
 本発明の樹脂シート成型用離型フィルムに係る離型層は、離型層形成組成物が硬化された層であり、離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を少なくとも含む。カチオン硬化型ポリジメチルシロキサン(a)は、カチオン硬化反応により架橋反応が進行するため、酸素阻害による硬化不良が発生せずに、耐溶剤性に優れる離型層となる。そのため、セラミックグリーンシート成型時、内部電極印刷時等に使用される有機溶媒によって離型層が侵食される恐れがなく、剥離性に優れる離型層を得ることができる。
 更に、本発明者らは、カチオン硬化型ポリジメチルシロキサン(a)を含む離型層において、カチオン硬化型ポリジメチルシロキサン(a)の量が高い平滑性を有する離型層を実現するために、重要であることを見出した。
 カチオン硬化型ポリジメチルシロキサン(a)は、離型層中に、90mg/m2以下、例えば60mg/m2以下、50mg/m2以下で含まれていることが好ましく、40mg/m2以下であることがより好ましく、30mg/m2以下であるかことが更に好ましい。また、例えば、カチオン硬化型ポリジメチルシロキサン(a)は、20mg/m2以下であってもよい。
 離型層中のカチオン硬化型ポリジメチルシロキサン(a)の含有量が50mg/m2以下であると、離型層を形成する工程、例えば、乾燥工程中にポリジメチルシロキサン(a)が凝集することを抑制でき、本発明の範囲外となる突起が多数発生する恐れがなく、本願発明の効果を奏することができる。
 一態様において、離型層、離型層形成組成物中に、カチオン硬化型ポリジメチルシロキサン(a)以外の成分を含有することもできる。この場合においても、特定の理論に基づいて判断すべきではないが、本発明においては、離型層の加工時にポリジメチルシロキサン(a)が離型層表面に偏析することが可能であり、含有量が50mg/m2以下であると凝集しづらく、高い平滑性を有する離型層を形成できる。
 本発明に係るポリジメチルシロキサン(a)の含有量は、少ないほど凝集しづらいが、離型層において0.1mg/m2以上であれば、離型層のレベリング性が保たれ、コート外観が優れ、高い平滑性の離型層を得ることができる。また、0.1mg/m2以上あれば剥離性にも優れるため好ましい。例えば、ポリジメチルシロキサン(a)の含有量は、0.5mg/m2以上であってもよい。
 本発明においては、離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を含む。また、離型層形成組成物が硬化した離型層においては、カチオン硬化型ポリジメチルシロキサン(a)由来の化合物(硬化物)が存在している。本明細書では、離型層中に存在する(a)由来の化合物についても、単にカチオン硬化型ポリジメチルシロキサン(a)と記載する場合がある。
本願発明において、カチオン硬化型ポリジメチルシロキサン(a)とは、カチオン硬化性官能基を有するポリジメチルシロキサンを指す。カチオン硬化性官能基とは、カチオン硬化性を示す反応性官能基であり、具体的には、ビニルエーテル基、オキセタニル基、エポキシ基、脂環式エポキシ基が例として挙げられる。なかでも、オキセタニル基、エポキシ基、脂環式エポキシ基から選ばれる少なくとも1種の官能基を有していることが反応性の観点から好ましく、脂環式エポキシ基であることが最も好ましい。このような官能基を有することで、カチオン硬化反応によって架橋構造が形成され、耐溶剤性に優れ、優れた剥離性を有する離型層となるため好ましい。
カチオン硬化型ポリジメチルシロキサン(a)が有するカチオン硬化性官能基の数は、1つ以上であればよい。例えば、カチオン硬化性官能基を2つ以上で有することで、カチオン硬化反応がより進行しやすくなり、架橋密度の高い離型層となるため好ましい。カチオン硬化性官能基の導入位置は特に制限されず、ポリジメチルシロキサンの側鎖や末端に有しているものが一般的である。ポリジメチルシロキサンの構造は、直鎖構造でも分岐構造でも良く、カチオン硬化性官能基以外の官能基を有していても問題なく使用することができる。
 カチオン硬化型ポリジメチルシロキサン(a)は、市販のものを好適に使用することができる。例としては、荒川化学工業社製のシリコリース(登録商標)UV POLY200、UV POLY201、UV POLY215、UV RCA200、UV RCA251、信越化学工業社製のX-62-7622、X-62-7629、X-62-7660、KF-101、KF-105、X-22-343、X-22-169AS、X-22-169B、X-22-163、X-22-173BX、X-22-173DX、X-22-9002、モメンティブ・パーフォーマンス・マテリアルズ社製のUV9440E、UV9430などが挙げられる。
 カチオン硬化型ポリジメチルシロキサン(a)の重量平均分子量は1000~500000であることが好ましく、5000~100000であることがより好ましい。重量平均分子量が1000以上であると、カチオン硬化反応が進行しやすく剥離性に優れるため好ましい。500000以下であると、粘度が高くなりすぎず、塗工性に優れ、高い平面性を有する離型層となるため好ましい。
 本発明の離型層形成組成物には、カチオン硬化型ポリジメチルシロキサン(a)に加えて、他の樹脂を含有させることもできる。この場合、離型層の膜厚を薄くすることができる。本発明では無機粒子を実質的に含有していない基材フィルムの表面層A上に離型層を設けるため、離型層の膜厚が薄くても、極めて高い平滑を有する離型層とすることができる。また、離型層の膜厚が薄いため、硬化反応が進行しやすく、より高速で加工することができ、経済的に離型層を得ることができる。
 さらに膜厚が薄いと、基材フィルム、離型加工工程等に存在する極微小な異物などが離型層に取り込まれるおそれがない。そのため、離型層表面に異物起因の突起が生じるおそれがなく、前述のような平滑な表面を有する離型層を得ることができる。
 カチオン硬化型ポリジメチルシロキサン(a)を主成分とする組成物を硬化させた離型層の場合、離型層の膜厚は0.001μm以上、0.050μm未満であることが好ましい。0.001μm以上であると、離型性に優れるため好ましい。0.050μm未満であると、離型層形成組成物の凝集を防ぐことができ、平滑な離型層となり好ましい。
 なお、本発明において、カチオン硬化型ポリジメチルシロキサン(a)を主成分とする場合、離型層の樹脂固形分100質量部に対して、組成物は、カチオン硬化型ポリジメチルシロキサン(a)を50質量部以上、例えば50質量部超、好ましくは70質量部以上、例えば、80質量部以上含み、一態様においては、90質量部以上含む。また、実質的に、離型層の樹脂固形分の全体に、カチオン硬化型ポリジメチルシロキサン(a)が含まれる態様であってもよい。
 本発明の離型層形成組成物には、カチオン硬化型ポリジメチルシロキサン(a)に加えて、カチオン硬化型樹脂(b)を含有することもできる。この時(b)は(a)とは異なる樹脂であり、樹脂(b)は、ポリジメチルシロキサン構造を有さないものである。具体的には、シリコーン骨格を有さないカチオン硬化型化合物(b-1)と、脂環式エポキシ基を有する環状シロキサン化合物(b-2)の2種類に大別される。
 一態様において、離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)に加えて、更に、シリコーン骨格を有さないカチオン硬化型化合物(b-1)を含有する。シリコーン骨格を有さないカチオン硬化型化合物(b-1)の例としては、カチオン硬化性官能基を分子内に2個以上有し、シリコーン骨格を有さないポリマー、モノマーが挙げられる。なかでも2個以上のエポキシ基、または脂環式エポキシ基を有する樹脂が好ましく、2個以上の脂環式エポキシ基を有することがより好ましい。例えば、脂環式エポキシ基の数は、6個以下であってもよい。
 脂環式エポキシ基を2個以上有することで、カチオン硬化反応によって架橋反応が進行し、耐溶剤性に優れる離型層となる。また、同時に離型層に含まれるポリジメチルシロキサン(a)とも架橋反応が進行するため、剥離性に優れ、かつポリジメチルシロキサン(a)のセラミックグリーンシートへの移行も抑えられるため好ましい。
一態様において、離型層形成組成物は、シリコーン骨格を有さないカチオン硬化性樹脂(b-1)と、ポリジメチルシロキサン(a)とを共に含むので、高い平滑性を有する離型層を実現できる。化合物(b-1)を含有する離型層とすることで、基材フィルムに存在する微細な凹凸や極微小な異物、オリゴマー由来の突起などを埋めることができ、超平滑な離型層となる。また、紫外線によって硬化反応が進行するため、高い平滑性を有する離型層となる。特定の理論に限定して解釈すべきではないが、離型層加工時の離型層形成組成物中の乾燥工程において、均一に(b-1)および(a)がレベリングし、平面性が高まったあとに硬化が進行すると推測でき、高い平滑性を有する離型層を得ることができる。また、同時に含まれるポリジメチルシロキサン(a)は、本発明においては、乾燥工程において離型層表面に偏析するため、剥離性にも優れる離型層を得ることができる。
 シリコーン骨格を有さないカチオン硬化型化合物(b-1)は低分子量のモノマーであることが好ましい。具体的には、数平均分子量が200以上、5000未満であることが好ましく、200以上、2500未満であることがより好ましく、200以上、1000未満であることが更に好ましい。数平均分子量が200以上であると、沸点が低くならず、離型層加工時の離型層形成組成物の乾燥工程で、カチオン硬化型化合物(b-1)が揮発する恐れがなく好ましい。5000未満であると、離型層の架橋密度が高まり、耐溶剤性に優れるため好ましい。また、乾燥工程中に流動性のある液状の状態で存在できるため、レベリング性に優れ、超平滑な離型層となるため好ましい。
 シリコーン骨格を有さないカチオン硬化型化合物(b-1)は市販のものを好適に使用することができる。脂環式エポキシ基を有する化合物の例としては、ダイセル社製のセロキサイド2021P、セロキサイド2081、エポリードGT401、EHPE3150、四国化成社製のHiREM-1、ENEOS社製のTHI-DE、DE-102、DE-103などが挙げられる。エポキシ基を有する樹脂の例としては、DIC社のEPICLON(登録商標)830、 840、850、1051-75M、N-665、N-670、N-690、N-673-80M、N-690-75M、ナガセケムテック社製のデナコール(登録商標)EX-611、EX-313、EX-321などが挙げられる。
離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)の合計100質量部に対し、シリコーン骨格を有さないカチオン硬化型化合物(b-1)の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
カチオン硬化型化合物(b-1)の含有量を80質量%以上とし、離型層中の主成分とすることで、架橋密度が高く剥離性に優れる離型層となるため好ましい。また、離型層中に含まれるカチオン硬化型ポリジメチルシロキサン(a)の含有量を少なくでき、乾燥工程で離型層表面にポリジメチルシロキサン(a)由来の組成が凝集することを抑制でき、平面性が悪化する恐れがなく好ましい。カチオン硬化型化合物(b-1)の含有量が多いほど平滑性に優れる離型層となるが、カチオン硬化型ポリジメチルシロキサン(a)を含有し剥離性を確保するためには、カチオン硬化型化合物(b-1)は、99.9質量%以下であることが好ましい。
 本発明において、離型層形成組成物が硬化した離型層においては、シリコーン骨格を有さないカチオン硬化型化合物(b-1)由来の化合物(硬化物)が存在している。本明細書では、離型層中に存在する(b-1)由来の化合物についても、単に、シリコーン骨格を有さないカチオン硬化型化合物(b-1)と記載する場合がある。
離型層形成組成物がカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)を含む場合、離型層の架橋密度が高く、耐溶剤性に優れ、優れた剥離力を有する離型層となるため好ましい。また、カチオン硬化型化合物(b-1)を含有していると、カチオン硬化型ポリジメチルシロキサン(a)の含有量を所定の範囲としながら、離型層の膜厚を厚くすることができるため好ましい。離型層の膜厚を厚くすることで、基材フィルムに存在する傷、極微小な凹凸を埋めることができ、前述のとおり平滑な離型層が得られるため好ましい。
離型層形成組成物がカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)を含む場合、離型層の膜厚は0.05μm以上、1.0μm以下であることが好ましく、0.1μm以上、0.5μm以下であることがより好ましい。0.05μm以上であると、平滑な離型層となるため好ましい。1.0μm以下であると、カールが発生せずに平面性に優れた離型フィルムが得られるため好ましい。
 一態様において、離型層形成組成物は、更に脂環式エポキシ基を有する環状シロキサン化合物(b-2)を有してもよい。脂環式エポキシ基を有する環状シロキサン化合物(b-2)の例としては、下記構造式(化1)で示されるものなどが挙げられる(化1中、Rは炭素数1~4のアルキル基)。また、環状シロキサン骨格を有するカチオン硬化型化合物(b-2)は少なくとも脂環式エポキシ基が2個以上有していることが好ましい。脂環式エポキシ基が2個以上あると、カチオン硬化反応が進行し、架橋密度の高い離型層となるため好ましい。
Figure JPOXMLDOC01-appb-C000001
 脂環式エポキシ基を有する環状シロキサン化合物(b-2)を用いることで、前記カチオン硬化型化合物(b-1)を用いた時と同様の理由で超平滑な離型層となるため好ましい。すなわち、基材フィルムに存在する微細な凹凸や極微小な異物、オリゴマー由来の突起などを埋めることができる。また、紫外線によって硬化反応が進行するため、離型層加工時の離型層形成組成物の乾燥工程で均一に化合物(b-2)およびポリジメチルシロキサン(a)がレベリングし、平面性が高まったあとに硬化が進行するため、超平滑な離型層を得ることができる。さらに、本発明においては、同時に含まれるポリジメチルシロキサン(a)は乾燥工程において離型層表面に偏析するため、剥離性にも優れる離型層を得ることができる。
 脂環式エポキシ基を有する環状シロキサン化合物(b-2)は、カチオン硬化型ポリジメチルシロキサン(a)と相溶性が良いため、離型層中に適度に混ざり合い、互いに架橋反応が進行する。そのため、耐溶剤性に優れ、優れた剥離性を示す離型層となるため好ましい。また、環状シロキサン化合物(b-2)は環状シロキサン構造を有していることから剛直な分子骨格を有しており、硬化した時の膜硬度が高まるため好ましい。膜硬度が高まることで、樹脂シート、例えばセラミックグリーンシートを剥離する際に、離型層が変形しづらくなり、良好な剥離性を示すことができる。さらには、離型層にキズが発生しづらくなり、離型層のキズが樹脂シート、例えばセラミックグリーンシートに転写し不具合が生じるおそれがなく好ましい。
 離型層形成組成物に環状シロキサン化合物(b-2)が含まれていると、基材フィルムに対する離型層の密着性が向上するため好ましい。離型層の密着性が向上すると、搬送工程でのキズの発生が抑制でき、また樹脂シート剥離時に離型層が転写するおそれがなく好ましい。
 一態様において、環状シロキサン化合物(b-2)は、分子内に2個以上の脂環式エポキシ基を有する。分子内に2個以上の脂環式エポキシ基を有することで、カチオン硬化反応によって架橋反応が進行し、耐溶剤性に優れる離型層となる。また、同時に離型層に含まれるポリジメチルシロキサン(a)とも架橋反応が進行するため、剥離性に優れ、かつポリジメチルシロキサン(a)のセラミックグリーンシートへの移行も抑えられるため好ましい。
 例えば、環状シロキサン化合物(b-2)は、分子内に6個以下の脂環式エポキシ基を有する。
 脂環式エポキシ基を有する環状シロキサン化合物(b-2)は、市販のものを使用することができる。例えば、信越化学工業社製のX-40-2670、X-40-2678などが挙げられる。
 離型層におけるカチオン硬化型ポリジメチルシロキサン(a)と環状シロキサン化合物(b-2)の合計100質量部に対し、環状シロキサン化合物(b-2)の含有量は80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。環状シロキサン化合物(b-2)の含有量を80質量%以上とし、離型層中の主成分とすることで、架橋密度が高く剥離性に優れる離型層となるため好ましい。また、離型層中に含まれるカチオン硬化型ポリジメチルシロキサン(a)の含有量が少なくでき、本発明においては、乾燥工程で、カチオン硬化型ポリジメチルシロキサン(a)が離型層表面に凝集することを抑制でき、平面性が悪化する恐れがなく好ましい。環状シロキサン化合物(b-2)の含有量が多いほど平滑性に優れる離型層となり、例えば、カチオン硬化型ポリジメチルシロキサン(a)を含有し剥離性を確保するためには、環状シロキサン化合物(b-2)は、99.9質量%以下であることが好ましい。
 本発明において、離型層形成組成物が硬化した離型層においては、環状シロキサン化合物(b-2)由来の化合物(硬化物)が存在している。本明細書では、離型層中に存在する環状シロキサン化合物(b-2)由来の化合物についても、単に、環状シロキサン化合物(b-2)と記載する場合がある。
離型層形成組成物がカチオン硬化型ポリジメチルシロキサン(a)と環状シロキサン化型化合物(b-2)を含む場合、離型層の膜厚は0.05μm以上、1.0μm以下であることが好ましく、0.1μm以上、0.5μm以下であることがより好ましい。0.05μm以上であると、平滑な離型層となるため好ましい。1.0μm以下であると、カールが発生せずに平面性に優れた離型フィルムが得られるため好ましい。
 一態様において、離型層は、カチオン硬化型樹脂(b-1)と環状シロキサン化合物(b-2)を共に含んでもよく、これらカチオン硬化型樹脂(b-1)と環状シロキサン化合物(b-2)の合計量は、離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)および環状シロキサン化合物(b-2)の合計100質量部に対し、80質量%以上99.9質量%以下であることができる。
 本発明において、離型層を形成するためにカチオン硬化反応を進行させる必要がある。そのため、離型層形成組成物は、酸発生剤(c)を含むことが好ましい。また、離型層には、酸発生剤(c)由来の化合物が存在し得る。ここで、離型層中に存在する酸発生剤(c)由来の化合物についても、単に、酸発生剤(c)と記載する場合がある。
 酸発生剤としては、特に限定されず一般的なものが使われるが、紫外線照射下で酸が発生する光酸発生剤を用いることで、加工時の熱量を抑えることができ、平面性に優れた離型層となるため好ましい。
 光酸発生剤としては、オニウムイオンと非求核性アニオンから成る塩を使用することが反応性の観点から好適である。また、鉄アレーン錯体に代表される有機金属錯体や、トロピリウムに代表されるカルボカチオン塩を用いてもよく、アントラセン誘導体や電子吸引基で置換されたフェノール類、例えばペンタフルオロフェノールを用いてもよい。
 前記オニウムイオンと非求核性アニオンから成る塩を光酸発生剤として用いる場合には、オニウムイオンとしては、例えば、ヨードニウム、スルフォニウム、アンモニウムが使用できる。オニウムイオンの有機基としては、トリアリール、ジアリール(モノアルキル)、モノアリール(ジアルキル)、トリアルキルを用いてよく、ベンゾフェノンや9-フルオレンを導入しても、それ以外の有機基を用いてもよい。非求核性アニオンとしては、ヘキサフルオロホスフォレート、ヘキサフルオロアンチモネート、ヘキサフルオロボレート、テトラ(ペンタフルオロフェニル)ボレートを用いることが好適である。また、テトラ(ペンタフルオロフェニル)ガリウムイオンや、フッ素アニオンのいくつかをパーフルオロアルキル基や有機基に置き換えたアニオンを用いてもよく、それ以外のアニオン成分を用いてもよい。
 光酸発生剤の添加量は、離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)および/または環状シロキサン化合物(b-2)の合計100質量部に対して0.1~10質量%であり、より好ましくは、0.5~8質量%である。さらに好ましくは1~5質量%である。0.1質量%以上とすることで、発生する酸の量が不十分となり硬化不足となるおそれがなく好ましい。また、10質量%以下とすることで、発生する酸の量が適量となり、成型するセラミックグリーンシートへの酸の移行量を抑えることができるために好ましい。
 本明細書において、離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)および/または環状シロキサン化合物(b-2)の合計100質量部とは、カチオン硬化型ポリジメチルシロキサン(a)の固形分、カチオン硬化型樹脂(b)の固形分の合計値を意味する。なお、離型層がカチオン硬化型樹脂(b)を含まない態様においては、カチオン硬化型ポリジメチルシロキサン(a)の重量が離型層における樹脂固形分100質量部に相当する。
 一態様において、離型層形成組成物は、SP値(δ)が14以上17以下の有機溶媒を含み、離型層形成組成物は、SP値(δ)が14以上17以下の前記有機溶媒を、離型層形成組成物の全重量100質量部に対し10質量%以上の量で含有する。
 SP値(δ)が14~17の有機溶媒は、カチオン硬化型ポリジメチルシロキサン(a)に対して優れた溶解性を示す。そのため、塗布工程後の乾燥工程において、有機溶媒が乾燥されて離型層形成組成物中の(a)の濃度が高まっても均一に溶解した状態を保つことができ、凝集せずにきれいにレベリングし、平滑な離型層を得ることができる。
 また、含有量が10質量%以上であれば、乾燥中にカチオン硬化型ポリジメチルシロキサン(a)が長い時間溶解した状態を保つことができるため、乾燥中に凝集して平滑性が悪化する恐れがなく好ましい。
 SP値(δ)が14以上17以下の前記有機溶媒の詳細は、後述する。
 本発明において、離型層には、本発明の効果を阻害しない範囲であれば、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。
 本発明によって得られる離型フィルムは、セラミックグリーンシートを剥離するときの剥離力が0.01mN/mm以上、2.0mN/mm以下であることが好ましい。より好ましくは、0.05mN/mm以上、1.0mN/mm以下である。剥離力が0.01mN/mm以上であると、搬送時にセラミックグリーンシートが浮き上がるおそれがなく好ましい。剥離力が2.0mN/mm以下であると剥離時にセラミックグリーンシートがダメージを受けるおそれがなく好ましい
 本発明によって得られる離型フィルムは、高度に平坦化された基材フィルムを用いているため、離型層の厚みが1.0μm以下、さらには0.5μm以下、さらには0.3μm以下であっても離型層表面を平滑にすることができる。そのため、使用する溶剤量や樹脂量を少なくすることができ環境にやさしく、安価に超薄層セラミックグリーンシート成型用の離型フィルムを作成することができる。
(離型フィルムの製造方法)
 本発明は、別の実施態様において、以下の工程を有する、樹脂シート成型用離型フィルムの製造方法を提供する。
 表面層Aを有するポリエステルフィルムの前記表面層A上に、離型層形成組成物を塗布する塗布工程であって、
 前記表面層Aは、無機粒子を実質的に含有していない層であり、
 離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を含む、
塗布工程;
 離型層形成組成物を塗布した前記ポリエステルフィルムを、加熱乾燥する乾燥工程であって、
 前記加熱乾燥は、第1の乾燥工程と、次いで、第2の乾燥工程を有し、
前記第1の乾燥工程における乾燥温度T1は、前記第2の乾燥工程における乾燥温度T2よりも高い、乾燥工程;
 前記乾燥工程後に、活性エネルギー線を照射し、離型層形成組成物を硬化させる光硬化工程。
 本発明の製造方法であれば、第1の乾燥条件を強くすることで(乾燥を強めることで)離型層を構成する樹脂の凝集を防ぎ、高い平滑性を有する離型層を得ることができる。
更に、離型層形成組成物中の溶媒のSP値を所定の値とすることで、離型層を構成する樹脂の凝集を防ぎ、高い平滑性を有する離型層を得ることができる。
このように、本発明は、第1の乾燥工程が所定の条件を有し、一態様において、特定の溶剤を用いることで、高い平滑性を有する離型層を得ることができる。
 本発明の離型フィルムの製造方法は、少なくともカチオン硬化型ポリジメチルシロキサン(a)を含有した離型層形成組成物を、ポリエステルフィルムの無機粒子を実質的に含有していない表面層A上に塗布する塗布工程、塗布後にフィルムを、例えば、乾燥炉を用いて加熱乾燥する乾燥工程、及び加熱乾燥後に活性エネルギー線を用いて硬化する光硬化工程を順に有している。特に、塗布工程、乾燥工程、光硬化工程の順に行う方法を採用することが好ましい。
 本発明の製造方法によると、塗布工程における製造条件を工夫することで、高い平滑性を有する離型層が実現できることが見出された。具体的には、離型層形成組成物中にSP値(δ)が14~17の有機溶媒を含有することで、カチオン硬化型ポリジメチルシロキサン(a)の凝集を抑えることができ、優れた離型層を得ることができる。SP値(δ)は物質の溶解性の予測に用いることができ、SP値(δ)が14~17の有機溶媒は、カチオン硬化型ポリジメチルシロキサン(a)に対して優れた溶解性を示す。そのため、塗布工程後の乾燥工程において、有機溶媒が乾燥されて離型層形成組成物中の(a)の濃度が高まっても均一に溶解した状態を保つことができ、凝集せずにきれいにレベリングし、平滑な離型層を得ることができる。
 離型層形成組成物中に含まれるSP値(δ)14~17の有機溶媒の含有量は、離型層形成組成物の100質量部に対し、10質量%以上であることが好ましく、15質量%以上であることが好ましい。10質量%以上であれば、乾燥中にカチオン硬化型ポリジメチルシロキサン(a)が長い時間溶解した状態を保つことができるため、乾燥中に凝集して平滑性が悪化する恐れがなく好ましい。例えば、SP値(δ)14~17の有機溶媒の含有量は、離型層形成組成物の100質量部に対し、80質量%以下、例えば、65質量%以下であり、50質量%未満であってもよい。
本明細書中におけるSP値(δ)は、ヒルデブランド溶解度パラメータを採用している。ヒルデブランド溶解度パラメータは実験的にはハンセン溶解度パラメータ(Hansen Solubility Parameters、HSP値)から式1のようにして算出することができる。
SP値(δ)=((δd2+(δ2+(δ21/2・・・・・(式1)
ここで(δ)は分散力項、(δ)は極性項、(δ)は水素結合力項であり、ヒルデブランド溶解度パラメータを3成分に分解した考え方がハンセン溶解度パラメータである。
また、コンピュータソフトフェアであるHSPiP(Hansen Solubility Parameters in Practice)等を用いて算出することもでき、本明細書で述べる値は、HSPiP ver4.0内のデーターベースに記載のHSP値を用いて、式1の通り算出した値を採用している。
SP値(δ)が14~17の有機溶媒としては、例えば、ノルマルヘキサン(δ:14.9)、ノルマルヘプタン(δ:15.3)、ノルマルオクタン(δ:15.5)、イソプロピルエーテル(δ:15.8)、1,1-ジエトキシエタン(δ:15.9)、メチルシクロヘキサン(δ:16.0)、シクロペンタン(δ:16.5)、シクロヘキサン(δ:16.8)などが例として挙げられる。
 離型層形成組成物の塗布量は10g/m2以下であることが好ましく、8g/m2以下であることがより好ましい。塗布量が10g/m2以下であれば、例えばグラビア塗工方式で塗布した際に、フィルムとグラビアロール間のキス部で液乱れが生じづらくなり、平滑性に優れた離型層が得られるため好ましい。
 本発明において、離型層形成物組成物に含まれる溶媒は、2種類以上であることが好ましく、そのうち少なくとも1つは前述の通りSP値(δ)14~17の溶媒であり、また少なくとも1つは沸点が100℃以上であることが好ましい。沸点が100℃以上の溶剤を添加することで、乾燥時の突沸を防ぎ、塗膜をレベリングさせることができ、乾燥後の塗膜表面の平滑性を向上させることができる。
 その添加量としては、離型層形成組成物全体に対し、10~70質量%程度添加することが好ましい。沸点100℃以上の溶剤の例としては、トルエン、キシレン、ノルマルオクタン、シクロヘキサノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸イソブチル、ノルマルブタノールなどが挙げられる。
 本発明において、離型層形成組成物の塗液は塗布前に濾過することが好ましい。濾過方法については、特に限定されず既知の方法を使用することができるが、サーフェスタイプやデプスタイプ、吸着タイプのカートリッジフィルターを用いることが好ましい。カートリッジタイプのフィルターを使用することで塗液をタンクから塗工部に連続的に送液するときに使用することができるため、生産性がよく効率的に濾過できるため好ましい。フィルターの濾過精度としては、1μmの大きさのものを99%以上除去するものを用いることが好ましく、さらに好ましくは0.5μmの大きさのものを99%以上濾過できるものが好ましい。上記濾過精度のものを用いることで、離型層を形成する塗液中に混入する異物を除去することができ、本発明の離型フィルムに付着する異物を減少することができ、平滑性に優れた離型層が得られるため好ましい。
 上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。
 離型層形成組成物を基材フィルム上に塗布し、乾燥する方法としては、公知の熱風乾燥、赤外線ヒーター等が挙げられるが、乾燥速度が早い熱風乾燥が好ましい。乾燥炉内で乾燥することが好ましく、特に限定されず既知の乾燥炉を用いることができる。乾燥炉の方式については、ロールサポート方式でもフローティング方式でもどちらでも構わないが、ロールサポート方式の方が乾燥時の風量を調整できる範囲が広いため、離型層の種類に合わせて風量などを調整できるため好ましい。
乾燥工程は、乾燥初期の恒率乾燥工程(以下、第1の乾燥工程とよぶ)と、減率乾燥工程(以下、第2の乾燥工程とよぶ)の2つの乾燥工程に分けることができる。2つの工程は第1の乾燥工程、第2の乾燥工程の順で連続していることが好ましく、乾燥炉内でゾーン分けすることで区別することができ、第1の(初期)乾燥工程は第1の乾燥炉、第2の(後期)乾燥工程は第2の乾燥炉を用いて乾燥させることができる。
 本発明者らは、離型層の平滑性を高めるためには、第1の乾燥工程における乾燥温度T1は、前記第2の乾燥工程における乾燥温度T2よりも高いことが重要であることを見出した。第1の乾燥炉温度と第2の乾燥炉温度は後述の範囲にすることが好ましい。このような条件で製造することで、第1の乾燥工程における恒率乾燥時間は短く、第2の乾燥工程における減率乾燥時間は長くすることができ、平面性に優れた離型層が得られるため好ましい。
 さらに、本発明者らは、第1の乾燥炉内温度を高めて、恒率乾燥時間を短くすることが重要であることを見出した。
 より具体的には、乾燥温度T1は、90℃以上、180℃以下であることが好ましく、100℃以上、150℃以下であることが好ましい。第1の乾燥炉内の温度を高め、恒率乾燥時間を短くすることで、離型層形成組成物中に含まれるカチオン硬化型ポリジメチルシロキサン(a)の凝集を防ぐことができるため好ましい。第1の乾燥炉の温度が高いほど、恒率乾燥時間が短くなり好ましいが、高すぎると熱によるフィルムの平面性の悪化が生じるため、180℃以下であることが好ましい。90℃以上であると、乾燥能力が十分となり好ましい。
 第2の乾燥炉内温度は60℃以上140℃以下であることが好ましく、80℃以上、120℃以下であることがより好ましい。第2の乾燥工程においては、乾燥時間を遅くすることで光硬化する前の離型層表面を荒らすことなく乾燥することができ、離型層の平滑性が高まるため好ましい。
 例えば、第1の乾燥工程における恒率乾燥時間は、第2の乾燥工程における減率乾燥時間よりも短時間であることが好ましい。これにより、フィルムの平面性の悪化を防ぎ、その上、光硬化する前の離型層表面を荒らすことなく乾燥することができ、離型層の平滑性を高めることができる。
 塗布後、第1の乾燥炉内に入るまでの時間は0.1秒以上、2.5秒以内であることが好ましく、0.1秒以上、2.0秒以内であることが好ましく、短いほど好ましい。第1の乾燥炉内に入るまでの時間を早くすることで、第1の乾燥工程における乾燥時間を短くすることができ、カチオン硬化型ポリジメチルシロキサン(a)の凝集が抑制され、平滑性に優れた離型層が得られるため好ましい。乾燥炉内に入るまでの時間は、加工速度と加工機台の構造から算出することができる。
 本発明の製造方法は、乾燥工程後に、活性エネルギー線を照射し、離型層形成組成物を硬化させる光硬化工程を含む。
 光硬化工程において、活性エネルギー線を照射することで乾燥後の離型層形成組成物のカチオン硬化反応が進行する。使用する活性エネルギー線としては、紫外線、電子線など既知の技術を使用することができ、紫外線を用いることが好ましい。紫外線を用いた時の積算光量は、照度と照射時間の積で表すことができる。例えば、10~500mJ/cmであることが好ましい。前記下限以上にすることで、離型層を十分に硬化させることができるため好ましい。前記上限以下とすることで照射時の熱によるフィルムへの熱ダメージを抑制することができ離型層表面の平滑性を維持することができるため好ましい。
 活性エネルギー線を照射するときは、フィルムの裏面をバックアップロールで保持することが好ましい。バックアップロールを設けることで活性エネルギー線源との距離を一定に保つことができるため均一に照射でき好ましい。また、バックアップロール表面を冷却しフィルムを冷却しながら活性エネルギー線を照射することが好ましい。冷却することで活性エネルギー線を照射した場合でもフィルムが熱によるダメージを受けにくく離型層表面の平滑性を維持することができるため好ましい。
 一態様において、本発明の製造方法は、無機化合物を含む樹脂シートを製造するための、離型フィルムを製造する方法を提供する。
(樹脂シート)
 本発明における樹脂シートは、樹脂を含むシートであれば、特に限定されない。一態様において、本発明の離型フィルムは、無機化合物を含む樹脂シートを成型するための離型フィルムである。無機化合物としては、金属粒子、金属酸化物、鉱物などを例示でき、例えば、炭酸カルシウム、シリカ粒子、アルミ粒子、チタン酸バリウム粒子等を例示できる。本発明は、平滑性の高い離型層を有するため、これら無機化合物を樹脂シートに含む態様であっても、無機化合物に起因し得る欠点、例えば、樹脂シートの破損、離型層から樹脂シートの剥離が困難になる問題を抑制できる。
樹脂シートを形成する樹脂成分は、用途に応じて適宜選択できる。一態様において、無機化合物を含む樹脂シートは、セラミックグリーンシートである。例えば、セラミックグリーンシートは、無機化合物として、チタン酸バリウムを含むことができる。また、樹脂成分として、例えば、ポリビニルブチラール系樹脂を含むことができる。
一態様において、樹脂シートは厚さが、0.2μm以上1.0μm以下である。
 例えば、本発明は、このような無機化合物を含む樹脂シートを製造するための離型フィルムを製造する方法を、提供できる。また、本発明における、樹脂シート成型用離型フィルムの製造方法は、厚さが0.2μm以上1.0μm以下の樹脂シートを成型する工程を含んでもよい。
(セラミックグリーンシートとセラミックコンデンサ)
 一般に、積層セラミックコンデンサは、直方体状のセラミック素体を有する。セラミック素体の内部には、第1の内部電極と第2の内部電極とが厚み方向に沿って交互に設けられている。第1の内部電極は、セラミック素体の第1の端面に露出している。第1の端面の上には第1の外部電極が設けられている。第1の内部電極は、第1の端面において第1の外部電極と電気的に接続されている。第2の内部電極は、セラミック素体の第2の端面に露出している。第2の端面の上には第2の外部電極が設けられている。第2の内部電極は、第2の端面において第2の外部電極と電気的に接続されている。
 一態様において、本発明の離型フィルムは、セラミックグリーンシート製造用離型フィルムであり、このような積層セラミックコンデンサを製造するために用いられる。
 例えば、本発明のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法は、0.2μm以上1.0μm以下の厚みを有するセラミックグリーンシートを成型できる
 より詳細には、例えば、以下のようにしてセラミックグリーンシートは製造される。まず、本発明の離型フィルムをキャリアフィルムとして用い、セラミック素体を構成するためのセラミックスラリーを塗布、乾燥させる。セラミックグリーンシートの厚みは、0.2~1.0μmの極薄品が求められてきている。塗布、乾燥したセラミックグリーンシートの上に、第1又は第2の内部電極を構成するための導電層を印刷する。セラミックグリーンシート、第1の内部電極を構成するための導電層が印刷されたセラミックグリーンシート及び第2の内部電極を構成するための導電層が印刷されたセラミックグリーンシートを適宜積層し、プレスすることにより、マザー積層体を得る。マザー積層体を複数に分断し、生のセラミック素体を作製する。生のセラミック素体を焼成することによりセラミック素体を得る。その後、第1及び第2の外部電極を形成することにより積層セラミックコンデンサを完成させることができる。
 以下に、実施例を用いて本発明についてさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した
(離型層厚み)
切り出した離型フィルムを樹脂包埋し、ウルトラミクロトームを用いて超薄切片化した。その後、日本電子製JEM2100透過電子顕微鏡を用いて、断面観察を行い、観察したTEM画像から離型層の膜厚を測定した。厚みが薄すぎて断面観察で正確に評価できない場合は、反射分光膜厚計(大塚電子社製、FE-3000)を用いて測定した。
(離型層の重量)
 本明細書中において、離型層厚み1μm当たりの重量が1g/m2として算出した重量の値を採用した。例えば、前述の方法で測定した離型層厚みが0.2μmの場合、離型層の総重量は0.2g/m2である。また、離型層中に含まれるカチオン硬化型ポリジメチルシロキサン(a)の重量、カチオン硬化型樹脂(b)の重量、酸発生剤(c)の重量は、離型層形成組成物中に含まれる各成分の配合比率と離型層の総重量から計算した値を採用した。例えば、離型層厚みが0.2μm、カチオン硬化型ポリジメチルシロキサン(a)の離型層重量比率が5質量部の場合、離型層中に含まれる(a)の重量は0.01g/m2である。なお、離型層重量比率(質量%)は、成分(a)と成分(b)の合計を100質量部として計算した。
 (離型層形成組成物の塗布量)
 塗布工程で使用した離型層形成組成物の液消費重量と加工面積から算出した値を採用した。
(塗布後から第1の乾燥炉までの時間)
 塗布部から第1の乾燥炉までのフィルム走行距離と、加工速度から算出した値を採用した。
(領域表面粗さSa、最大突起高さSp)
 非接触表面形状計測システム(VertScan R550H-M100)を用いて、下記の条件で測定した。領域表面平均粗さ(Sa)は、5回測定の平均値を採用し、最大突起高さ(Sp)は7回測定し最大値と最小値を除いた5回の測定結果における、最大の値のものを採用した。
 (測定条件)
  ・測定モード:WAVEモード
  ・対物レンズ:50倍
  ・0.5×Tubeレンズ
  ・測定面積 187μm×139μm
 (解析条件)
  ・面補正:  4次補正
  ・補間処理: 完全補間
(高さ10nm以上の突起数、高さ5nm以上の突起数)
 上記最大突起高さを測定した全7回の測定値の中で、中心の値を示した測定データを用いて、粒子解析を行った。粒子解析は、Vertscan R550H-M100の解析ソフトを用いて下記条件で求めた。上記領域表面粗さ、最大突起高さ測定と同面積の測定面積にて粒子解析を行い、最高度が10nm以上の突起数、または5nm以上の突起数を算出した。突起数は1mm換算に変換した値を採用した。
  (粒子解析条件)
  ・面補正:4次補正
・保管処理:完全補間
・突解析
・基準高さ:ゼロ面
(セラミックシート剥離力)
下記、材料からなるスラリー組成物Iを10分間攪拌混合し、ビーズミルを用いて直径0.5mmのジルコニアビーズで10分間分散し1次分散体を得た。その後下記材料からなるスラリー組成物IIを(スラリー組成物I):(スラリー組成物II)=3.4:1.0の比率になるように1次分散体に加え、ビーズミルを用いて直径0.5mmのジルコニアビーズで10分間2次分散し、セラミックスラリーを得た。
(スラリー組成物I)
トルエン                            22.3質量部
エタノール                           18.3質量部
チタン酸バリウム(平均粒径100nm)              57.5質量部
ホモゲノールL-18(花王社製)                 1.9質量部
(スラリー組成物II)
トルエン                            39.6質量部
エタノール                           39.6質量部
フタル酸ジオクチル                        3.3質量部
ポリビニルブチラール(積水化学社製 エスレックBM-S)    16.3質量部
1-エチル-3-メチルイミダゾリウムエチルサルフェート        0.5質量部
 次いで得られた離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが1.0μmになるように塗工し60℃で1分乾燥して、セラミックグリーンシート付き離型フィルムを得た。得られたセラミックグリーンシート付き離型フィルムを除電機(キーエンス社製、SJ-F020)を用いて除電した後に剥離試験機(協和界面科学社製、VPA-3、ロードセル荷重0.1N)を用いて、剥離角度90度、剥離温度25℃、剥離速度10m/minで剥離した。剥離する向きとしては、剥離試験機付属のSUS板上に両面接着テープ(日東電工社製、No.535A)を貼りつけ、その上にセラミックグリーンシート側を両面テープと接着する形で離型フィルムを固定し、離型フィルム側を引っ張る形で剥離した。得られた測定値のうち、剥離距離20mm~70mmの剥離力の平均値を算出し、その値を剥離力とした。測定は計5回実施し、その剥離力の平均値の値を採用し、評価を行った。得られた剥離力の数値から下記の基準で判定した。
〇:0.1mN/mm以上、1.0mN/mm未満
×:1.0mN/mm以上
(セラミックグリーンシートのピンホール評価)
 前記セラミックスラリーの剥離性評価と同様にして離型フィルムの離型面に厚さ1μmのセラミックグリーンシートを成型した。次いで、成型したセラミックグリーンシート付き離型フィルムから離型フィルムを剥離し、セラミックグリーンシートを得た。得られたセラミックグリーンシートのフィルム幅方向の中央領域において25cmの範囲でセラミックスラリーの塗布面の反対面から光を当て、光が透過して見えるピンホールの発生状況を観察し、下記基準で目視判定した。
○:ピンホールの発生なし
×:ピンホールの発生が1個以上
(ポリエチレンテレフタレートペレット(PET (I))の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm)の圧力で平均処理回数5パスの分散処理をした平均粒径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(I)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(ポリエチレンテレフタレートペレット(PET(II))の調製)
 一方、上記PET(I)チップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(II)と略す。)。
(積層フィルムX1の製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流して、PET(I)を表面層B(反離型面側層)、PET(II)を表面層A(離型面側層)となるように積層し、シート状に45m/分のスピードで押出(キャスティング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(I)/(II)=60質量%/40質量%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX1を得た。得られたフィルムX1の表面層AのSaは1nm、表面層BのSaは28nmであった。
(積層フィルムX2の製造)
 積層フィルムX2としては、厚み25μmのE5101(東洋紡エステル(登録商標)フィルム、東洋紡社製)を使用した。E5101は、表面層A及び表面層Bに粒子を含有した構成になっている。積層フィルムX2の表面層AのSaは24nm、表面層BのSaは24nmであった。
(カチオン硬化型ポリジメチルシロキサン(a))
(a)-1:UV POLY215(荒川化学工業製、固形分100%)
(カチオン硬化型樹脂(b))
(b)-1:セロキサイド2021P(ダイセル社製、固形分100%)
(b)-2:X-40-2670(信越化学工業製、固形分100%)
(酸発生剤(c))
(c)-1:CPI-101A(サンアプロ社製、固形分50%)
(実施例1)
 積層フィルムX1の表面層A上に下記組成の離型層形成組成物1を、0.5μm以上の異物を99%以上除去できるフィルターを通した後、リバースグラビアを用いて塗布量が5.0g/mになるように塗工した。その後、0.5秒後に第1の乾燥炉に入るように加工速度を調整し、第1の乾燥炉温度120℃、第2の乾燥炉温度90℃で連続的に加熱乾燥した。乾燥工程後、冷却ロール上で紫外線照射機(へレウス社製、Hバルブ)を用いて積算光量100mJ/cmの紫外線を照射し、離型層を硬化させることで樹脂シート成型用離型フィルムを得た。また、得られた離型フィルムの平滑性、剥離性、およびピンホール評価を行った結果、表1に示すように良好な結果が得られた。
このように、得られた樹脂シート成型用離型フィルムは、例えば、厚さが0.2μm以上1.0μm以下の樹脂シートの製造が可能な離型フィルムであった。
なお、表に記載の各成分(a),(b),(c)の重量(mg/m)は、固形分当たりの含有比率(離型層総重量に対する各成分の重量)を示している。
(離型層形成組成物1)
 メチルエチルケトン                    24.000質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         24.000質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0) 
ノルマルヘプタン                     48.000質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          0.039質量部
(b)-1                          3.883質量部
(c)-1                          0.078質量部
 (実施例2~4)
表1に記載の離型層の組成、製造方法に変更した以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例5)
下記の組成の離型層形成組成物2を用いた以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(離型層形成組成物2)
メチルエチルケトン                     38.400質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         38.400質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0) 
ノルマルヘプタン                     19.200質量部
(SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          0.196質量部
(b)-1                          3.726質量部
(c)-1                          0.078質量部
(実施例6)
離型層形成組成物中のノルマルヘプタンをシクロヘキサン (SP値(δ):16.8、(δ):16.8、(δ):0.0、(δ):0.2)に変更した以外は、実施例2と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例7,8)
表1に記載の塗布量と固形分比率に変更した以外は、実施例2と同様の方法で樹脂シート成型用離型フィルムを得た。この時、有機溶媒比率は離型層形成組成物1と同様になるように調製した。
(実施例9)
以下の組成の離型層形成用組成物3に変更した以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(離型層形成用組成物3)
メチルエチルケトン                     24.000質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         24.000質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0)
ノルマルヘプタン                      48.000質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          0.039質量部
(b)-2                          3.883質量部
(c)-1                          0.078質量部
(実施例10~12)
表1に記載の離型層の組成、製造方法に変更した以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例13)
下記組成の離型層形成組成物4を用いた以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(離型層形成組成物4)
メチルエチルケトン                     38.400質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         38.400質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0) 
ノルマルヘプタン                     19.200質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          0.196質量部
(b)-2                          3.726質量部
(c)-1                          0.078質量部
(実施例14)
離型層形成組成物中のノルマルヘプタンをシクロヘキサン (SP値(δ):16.8、(δ):16.8、(δ):0.0、(δ):0.2)に変更した以外は、実施例2と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例15、16)
表1に記載の塗布量と固形分比率に変更した以外は、実施例2と同様の方法で樹脂シート成型用離型フィルムを得た。この時、有機溶媒比率は離型層形成組成物3と同様になるように調製した。
(実施例17)
下記組成の離型層形成用組成物5を用いた以外は、実施例1と同様の方法で超薄層樹脂シート成型用離型フィルムを得た。
(離型層形成用組成物5)
メチルエチルケトン                    24.950質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         24.950質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0) 
ノルマルヘプタン                     49.900質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          0.196質量部
(c)-1                          0.004質量部
 (実施例18)
表1に記載の固形分濃度に変更し、さらに、有機溶媒比率は離型層形成組成物5と同様になるように調製した以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例19)
表1に記載の製造方法に変更した以外は、実施例17と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例20)
離型層形成組成物6に変更した以外は、実施例1と同様の方法で超薄層樹脂シート成型用離型フィルムを得た。
(離型層形成用組成物6)
メチルエチルケトン                    39.920質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         39.920質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1) 
ノルマルヘプタン                     19.960質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          0.196質量部
(c)-1                          0.004質量部
(実施例21)
離型層形成組成物5中のノルマルヘプタンをシクロヘキサン (SP値(δ):16.8、(δ):16.8、(δ):0.0、(δ):0.2)に変更した以外は、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。
(実施例22、23)
表1に記載の塗布量、固形分濃度に変更した以外は、実施例17と同様の方法で樹脂シート成型用離型フィルムを得た。この時、有機溶媒比率は離型層形成組成物5と同様になるように調製した。
(比較例1)
下記組成の離型層形成組成物7に変更した以外は、実施例1と同様の方法で超薄層樹脂シート成型用離型フィルムを得た。
(離型層形成組成物7)
メチルエチルケトン                     24.000質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         24.000質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0)
ノルマルヘプタン                     48.000質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(b)-1                          3.922質量部
(c)-1                          0.078質量部
(比較例2)
下記組成の離型層形成組成物8に変更した以外は、実施例1と同様の方法で超薄層樹脂シート成型用離型フィルムを得た。
(離型層形成組成物8)
メチルエチルケトン                     24.000質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         24.000質量部
(SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0) 
ノルマルヘプタン                     48.000質量部
(SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          2.941質量部
(b)-2                          0.981質量部
(c)-1                          0.078質量部
(比較例3)
下記組成の離型層形成組成物9に変更した以外は、実施例1と同様の方法で超薄層樹脂シート成型用離型フィルムを得た。
(離型層形成組成物9)
メチルエチルケトン                     24.000質量部
 (SP値(δ):19.1、(δ):16.0、(δ):9.0、(δ):5.1)
トルエン                         24.000質量部
 (SP値(δ):18.2、(δ):18.0、(δ):1.4、(δ):2.0) 
ノルマルヘプタン                     48.000質量部
 (SP値(δ):15.3、(δ):15.3、(δ):0.0、(δ):0.0)
(a)-1                          3.922質量部
(c)-1                          0.078質量部
(比較例4)
積層フィルムX2に塗布した以外は、実施例10と同様の方法で超薄層樹脂シート成型用離型フィルムを得た。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 比較例1は、カチオン硬化型ポリジメチルシロキサン(a)を含有していないため、セラミックシートの剥離力が大きく、剥離することが不可能であった。比較例2~4は、高さ10nm以上の突起数が200個/mm2を超過しており、被離型物であるグリーンシートにピンホールが生じた。更に、比較例4は、基材全体に無機粒子が存在し、離型フィルムの平滑性が著しく悪く、グリーンシートの破損、ピンホール等が生じた。
 本発明によれば、離型層の平滑性と剥離性を高めることで、厚みが1μm以下の超薄層品でも欠陥が少ない樹脂シートを成型できる離型フィルムを提供することで、樹脂シートを不良が生じる恐れなく製造することができる。 
 

Claims (10)

  1.  基材としてのポリエステルフィルムと、離型層を有する樹脂シート成型用離型フィルムであって、
    前記ポリエステルフィルムは、無機粒子を実質的に含有していない表面層Aを有し、 
    前記表面層A上に前記離型層を有し、
    前記離型層は、離型層形成組成物が硬化された層であり、
    前記離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)を含み、
    前記離型層の領域表面粗さ(Sa)が2nm以下であり、
    前記離型層表面に存在する高さ10nm以上の突起数が200個/mm2以下である、
    樹脂シート成型用離型フィルム。
  2. 前記離型層の最大突起高さ(Sp)が20nm以下であり、離型層表面に存在する高さ5nm以上10nm未満の突起数と前記10nm以上の突起数の合計が1500個/mm2以下である、請求項1に記載の樹脂シート成型用離型フィルム。
  3.  前記カチオン硬化型ポリジメチルシロキサン(a)が、ビニルエーテル基、オキセタニル基、エポキシ基、脂環式エポキシ基から選択される官能基を少なくとも1つ有する、
    請求項1または2に記載の樹脂シート成型用離型フィルム。
  4.  離型層に含まれるカチオン硬化型ポリジメチルシロキサン(a)の含有量が90mg/m2以下である、請求項1~3のいずれかに記載の樹脂シート成型用離型フィルム。
  5.  前記離型層形成組成物は、更に、シリコーン骨格を有さないカチオン硬化型化合物(b-1)を含有し、
    前記カチオン硬化型化合物(b-1)は、分子内に2個以上の脂環式エポキシ基を有し、
    カチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型化合物(b-1)の合計100質量部に対して、前記カチオン硬化型化合物(b-1)の含有量が80質量%以上である、請求項1~4のいずれかに記載の樹脂シート成型用離型フィルム。
  6.  前記離型層形成組成物は、更に、脂環式エポキシ基を有する環状シロキサン化合物(b-2)を含有し、
    前記環状シロキサン化合物(b-2)は、分子内に2個以上の脂環式エポキシ基を有し、
    カチオン硬化型ポリジメチルシロキサン(a)と環状シロキサン化合物(b-2)の合計100質量部に対して、前記環状シロキサン化合物(b-2)の含有量が、80質量%以上である、請求項1~5のいずれかに記載の樹脂シート成型用離型フィルム。
  7.  前記離型層形成組成物は、SP値(δ)が14以上17以下の有機溶媒を含み、
    離型層形成組成物は、SP値(δ)が14以上17以下の前記有機溶媒を、離型層形成組成物の全重量100質量部に対し10質量%以上の量で含有する、
    請求項1~6のいずれかに記載の樹脂シート成型用離型フィルム。
  8.  無機化合物を含む樹脂シートを製造するための離型フィルムである、請求項1~7のいずれかに記載の樹脂シート成型用離型フィルム。
  9.  無機化合物を含む樹脂シートが、セラミックグリーンシートである請求項8に記載の樹脂シート成型用離型フィルム
  10.  厚さが0.2μm以上1.0μm以下の樹脂シートを成型するための離型フィルムである、請求項1~9のいずれかに記載の樹脂シート成型用離型フィルム。
     
PCT/JP2021/046720 2020-12-23 2021-12-17 樹脂シート成型用離型フィルム WO2022138484A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020237019187A KR20230098660A (ko) 2020-12-23 2021-12-17 수지 시트 성형용 이형 필름
CN202311001090.1A CN117087289A (zh) 2020-12-23 2021-12-17 树脂片成型用脱模薄膜
KR1020237022275A KR20230104774A (ko) 2020-12-23 2021-12-17 수지 시트 성형용 이형 필름
CN202311001091.6A CN117087290A (zh) 2020-12-23 2021-12-17 树脂片成型用脱模薄膜
CN202180086551.2A CN116635234A (zh) 2020-12-23 2021-12-17 树脂片成型用脱模薄膜
KR1020237022273A KR20230107392A (ko) 2020-12-23 2021-12-17 수지 시트 성형용 이형 필름
CN202311001088.4A CN117087288A (zh) 2020-12-23 2021-12-17 树脂片成型用脱模薄膜
JP2022571400A JPWO2022138484A1 (ja) 2020-12-23 2021-12-17
KR1020237022274A KR20230106723A (ko) 2020-12-23 2021-12-17 수지 시트 성형용 이형 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213850 2020-12-23
JP2020213850 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138484A1 true WO2022138484A1 (ja) 2022-06-30

Family

ID=82157738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046720 WO2022138484A1 (ja) 2020-12-23 2021-12-17 樹脂シート成型用離型フィルム

Country Status (5)

Country Link
JP (1) JPWO2022138484A1 (ja)
KR (4) KR20230098660A (ja)
CN (4) CN117087288A (ja)
TW (5) TW202325511A (ja)
WO (1) WO2022138484A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024941A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
WO2024024960A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
WO2024024952A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
WO2024024954A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP7514436B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP7514433B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305806A (ja) * 2002-04-17 2003-10-28 Toyobo Co Ltd セラミック離型用ポリエステルフィルム
JP2004351626A (ja) * 2003-05-27 2004-12-16 Teijin Dupont Films Japan Ltd 離形フィルム
JP2016030343A (ja) * 2014-07-26 2016-03-07 三菱樹脂株式会社 離型ポリエステルフィルム
JP2017200761A (ja) * 2016-04-28 2017-11-09 東レ株式会社 二軸配向積層ポリエステルフィルムおよび磁気記録媒体
WO2019073875A1 (ja) * 2017-10-12 2019-04-18 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201406065QA (en) 2012-03-28 2014-11-27 Lintec Corp Peeling film for step for producing ceramic green sheet
JP6208047B2 (ja) 2014-02-28 2017-10-04 リンテック株式会社 グリーンシート製造用剥離フィルム、グリーンシート製造用剥離フィルムの製造方法、グリーンシートの製造方法、およびグリーンシート
JP6400430B2 (ja) 2014-10-21 2018-10-03 リンテック株式会社 シリコーンコート層用硬化性組成物およびシリコーンコートシート
MY197800A (en) 2016-10-27 2023-07-14 Lintec Corp Release sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305806A (ja) * 2002-04-17 2003-10-28 Toyobo Co Ltd セラミック離型用ポリエステルフィルム
JP2004351626A (ja) * 2003-05-27 2004-12-16 Teijin Dupont Films Japan Ltd 離形フィルム
JP2016030343A (ja) * 2014-07-26 2016-03-07 三菱樹脂株式会社 離型ポリエステルフィルム
JP2017200761A (ja) * 2016-04-28 2017-11-09 東レ株式会社 二軸配向積層ポリエステルフィルムおよび磁気記録媒体
WO2019073875A1 (ja) * 2017-10-12 2019-04-18 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024941A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
WO2024024960A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
WO2024024952A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
WO2024024954A1 (ja) * 2022-07-29 2024-02-01 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP7514436B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP7514434B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
JP7514438B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
JP7514435B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP7514437B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP7514433B2 (ja) 2022-07-29 2024-07-11 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器

Also Published As

Publication number Publication date
KR20230107392A (ko) 2023-07-14
TWI811907B (zh) 2023-08-11
CN117087289A (zh) 2023-11-21
TW202231433A (zh) 2022-08-16
CN117087288A (zh) 2023-11-21
KR20230098660A (ko) 2023-07-04
KR20230106723A (ko) 2023-07-13
CN116635234A (zh) 2023-08-22
TW202325511A (zh) 2023-07-01
TW202325512A (zh) 2023-07-01
CN117087290A (zh) 2023-11-21
KR20230104774A (ko) 2023-07-10
JPWO2022138484A1 (ja) 2022-06-30
TW202327838A (zh) 2023-07-16
TW202330223A (zh) 2023-08-01
TW202327839A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2022138484A1 (ja) 樹脂シート成型用離型フィルム
JP2016060158A (ja) セラミックシート製造用離型フィルム
JP2020111052A (ja) セラミックグリーンシート製造用離型フィルム
JP2021079699A (ja) セラミックグリーンシート製造用離型フィルム
JP7006710B2 (ja) セラミックグリーンシート製造用離型フィルム
JP2018143901A (ja) セラミックグリーンシート製造用離型フィルムの製造方法
JP7306516B2 (ja) セラミックグリーンシート製造用離型フィルム
JP2019161156A (ja) セラミックグリーンシート製造用離型フィルムロール
WO2022138485A1 (ja) 樹脂シート成型用離型フィルムの製造方法
TWI845217B (zh) 樹脂片成型用離型膜
JP7106912B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7306514B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7306515B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7327554B2 (ja) セラミックグリーンシート製造用離型フィルム
TWI795046B (zh) 樹脂片成型用離型膜以及陶瓷生胚之製造方法
TWI827104B (zh) 樹脂片成型用離型膜以及陶瓷生胚之製造方法
JP4391859B2 (ja) 薄膜グリーンシート成形用離型フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571400

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237019187

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086551.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910629

Country of ref document: EP

Kind code of ref document: A1