WO2022137359A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2022137359A1
WO2022137359A1 PCT/JP2020/048034 JP2020048034W WO2022137359A1 WO 2022137359 A1 WO2022137359 A1 WO 2022137359A1 JP 2020048034 W JP2020048034 W JP 2020048034W WO 2022137359 A1 WO2022137359 A1 WO 2022137359A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
positive electrode
solid electrolyte
secondary battery
sintered plate
Prior art date
Application number
PCT/JP2020/048034
Other languages
English (en)
French (fr)
Inventor
一樹 前田
俊広 吉田
義政 小林
祐司 勝田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2020/048034 priority Critical patent/WO2022137359A1/ja
Priority to JP2022570832A priority patent/JPWO2022137359A1/ja
Publication of WO2022137359A1 publication Critical patent/WO2022137359A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • the present invention relates to an all-solid-state secondary battery, particularly an all-solid-state lithium-ion secondary battery.
  • a positive electrode active material layer for a lithium ion secondary battery it is obtained by kneading and molding a powder of a lithium composite oxide (typically, a lithium transition metal oxide) and an additive such as a binder or a conductive agent.
  • a powder of a lithium composite oxide typically, a lithium transition metal oxide
  • an additive such as a binder or a conductive agent.
  • Powder-dispersed positive electrodes are widely known. Since the powder-dispersed positive electrode contains a relatively large amount (for example, about 10% by weight) of a binder that does not contribute to the capacity, the packing density of the lithium composite oxide as the positive electrode active material is low. Therefore, there is a lot of room for improvement in the powder dispersion type positive electrode in terms of capacity and charge / discharge efficiency.
  • a liquid electrolyte (electrolyte solution) using a flammable organic solvent as a diluting solvent has been conventionally used as a medium for transferring ions.
  • problems such as leakage of the electrolytic solution, ignition, and explosion may occur.
  • solid-state batteries are being developed in which solid electrolytes are used instead of liquid electrolytes and all other elements are made of solids. ing. Since the electrolyte of such an all-solid-state battery is solid, there is no concern about ignition, liquid leakage does not occur, and problems such as deterioration of battery performance due to corrosion are unlikely to occur.
  • Patent Document 1 (WO2019 / 093222A1) contains an oriented positive electrode plate which is a lithium composite oxide sintered plate having a void ratio of 10 to 50%, Ti, and 0.4 V (against Li / Li +). )
  • an all-solid lithium battery including a negative electrode plate capable of inserting and removing lithium ions and a solid electrolyte having a melting point lower than the melting point or decomposition temperature of the oriented positive electrode board or the negative electrode plate is disclosed.
  • Various materials such as Li 2 SO 4 ) are disclosed.
  • Such a solid electrolyte can be permeated into the voids of the electrode plate as a melt, and strong interfacial contact can be realized. As a result, it is said that the battery resistance and the rate performance at the time of charging / discharging can be remarkably improved, and the yield of battery manufacturing can be significantly improved.
  • Patent Document 2 Li p (Ni x , Coy, Mn z ) O 2 (in the formula, 0.9 ⁇ p ⁇ 1.3, 0 ⁇ x ⁇ 0.8, 0 )
  • An oriented positive electrode plate having a layered rock salt structure having a basic composition represented by ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.7, x + y + z 1), a Li-La-Zr-O ceramic material and / or lithium phosphate.
  • an all-solid lithium battery comprising a solid electrolyte layer made of an oxynitride (LiPON) ceramic material and a negative electrode layer.
  • the positive electrode composition actually evaluated in Patent Document 2 has a molar ratio of Ni: Co: Mn of 5: 2: 3 or 1: 1: 1.
  • the present inventors have obtained the finding that among the above-mentioned low melting point solid electrolytes, the LiOH / Li 2 SO 4 system solid electrolytes such as 3 LiOH / Li 2 SO 4 exhibit high lithium ion conductivity.
  • a lithium composite oxide sintered plate having a Ni: Co: Mn molar ratio of 5: 2: 3 as conventionally used is used as a positive electrode, and a LiOH / Li 2 SO 4 system such as 3 LiOH / Li 2 SO 4 is used.
  • a cell was constructed with a solid electrolyte and the battery was operated, it was found that the discharge capacity was lower than the theoretical capacity assumed from the amount of active material.
  • the present inventors have recently constructed an all-solid-state secondary battery using a porous sintered plate of a lithium composite oxide containing Ni, Co and Mn in a molar ratio within a predetermined range as a positive electrode layer, thereby forming a discharge capacity. It was found that the charge / discharge characteristics such as the above can be significantly improved.
  • an object of the present invention is to provide an all-solid-state secondary battery having significantly improved charge / discharge characteristics such as discharge capacity.
  • Ni, Co and Mn 0.19 ⁇ Ni / (Ni + Co + Mn) ⁇ 0.41, 0.49 ⁇ Co / (Ni + Co + Mn) ⁇ 0.71 and 0.09 ⁇ Mn / (Ni + Co + Mn) ⁇ 0.11
  • An all-solid-state secondary battery is provided.
  • the all-solid-state secondary battery of the present invention includes a positive electrode layer, a negative electrode layer, and a solid electrolyte.
  • the positive electrode layer contains a porous sintered plate composed of a lithium composite oxide having a layered rock salt structure.
  • the negative electrode layer contains a porous sintered plate composed of a negative electrode active material.
  • the solid electrolyte is interposed between the positive electrode layer and the negative electrode layer as a separator layer, and is also filled in the pores of the porous sintered plate of the positive electrode layer and the negative electrode layer.
  • the lithium composite oxide contains Ni, Co and Mn in an amount of 0.19 ⁇ Ni / (Ni + Co + Mn) ⁇ 0.41, 0.49 ⁇ Co / (Ni + Co + Mn) ⁇ 0.71 and 0.09 ⁇ Mn. / (Ni + Co + Mn) ⁇ 0.11 is included in a molar ratio.
  • Ni, Co and Mn in an amount of 0.19 ⁇ Ni / (Ni + Co + Mn) ⁇ 0.41, 0.49 ⁇ Co / (Ni + Co + Mn) ⁇ 0.71 and 0.09 ⁇ Mn. / (Ni + Co + Mn) ⁇ 0.11 is included in a molar ratio.
  • an all-solid lithium battery impregnated with a low melting point solid electrolyte such as a LiOH / Li 2 SO 4 system solid electrolyte is known (see, for example, Patent Document 1), and the solid electrolyte is used as a melt in the electrode plate. Interfacial contact can be achieved by penetrating into the voids. As a result, it is possible to improve the battery resistance and the rate performance at the time of charging / discharging, and also improve the yield of battery manufacturing.
  • a lithium composite oxide sintered plate having a Ni: Co: Mn molar ratio of 5: 2: 3 as conventionally used is used as a positive electrode, and a LiOH / Li 2 SO 4 system such as 3 LiOH / Li 2 SO 4 is used.
  • a cell was constructed with a solid electrolyte and the battery was operated, it was found that the discharge capacity was lower than the theoretical capacity assumed from the amount of active material.
  • This problem can be conveniently solved by using a porous sintered plate of a lithium composite oxide containing Ni, Co and Mn in a molar ratio within the above range as a positive electrode layer.
  • the discharge capacity of the all-solid-state battery decreased due to the peeling and the suppression of the diffusion of Li ions.
  • the porous sintered plate composed of the lithium composite oxide in the above composition range of the present invention has a small expansion / contraction or volume change during charging / discharging, the above-mentioned problems are unlikely to occur, and as a result, the discharge capacity and the like are filled. It is considered to bring about a significant improvement in discharge characteristics.
  • the positive electrode layer contains a porous sintered plate composed of a lithium composite oxide having a layered rock salt structure as a positive electrode active material.
  • the porous sintered plate has a structure in which a plurality of primary particles composed of a lithium composite oxide having a layered rock salt structure are bonded.
  • This lithium composite oxide contains Ni, Co and Mn at 0.19 ⁇ Ni / (Ni + Co + Mn) ⁇ 0.41, 0.49 ⁇ Co / (Ni + Co + Mn) ⁇ 0.71 and 0.09 ⁇ Mn / ( A molar ratio that satisfies Ni + Co + Mn) ⁇ 0.11, more preferably 0.29 ⁇ Ni / (Ni + Co + Mn) ⁇ 0.31, 0.59 ⁇ Co / (Ni + Co + Mn) ⁇ 0.61, and 0.09 ⁇ Mn. / (Ni + Co + Mn) ⁇ 0.11 is included in a molar ratio. As described above, the composition (molar ratio) within the above range brings about a great improvement in charge / discharge characteristics such as discharge capacity.
  • Mn 3: 6: 1.
  • the NCM porous sintered plate has a ratio of the diffraction intensity I [003] due to the (003) plane to the diffraction intensity I [104] due to the (104) plane in the XRD profile measured by X-ray diffraction (XRD).
  • the degree of orientation I [003] / I [104] defined as is 1.2 to 3.6, preferably 1.2 to 3.5, and more preferably 1.2 to 3.0. , More preferably 1.2 to 2.6.
  • the volume change of the NCM porous sintered plate during charging and discharging is more likely to occur, the peeling between the sintered plate and the solid electrolyte is suppressed, and the discharge capacity and the like are more effectively filled.
  • the discharge characteristics can be improved.
  • a plane other than the crystal plane ((003) plane) where lithium ions are satisfactorily transferred in and out for example, a plane (101) or a plane (104). ) Side) and the other side (003) side.
  • each diffraction intensity of the (003) plane and the (104) plane by XRD is conveniently used as an index for calculating the degree of orientation.
  • the orientation degree I [003] / I [104] of the NCM powder which is a guideline for non-orientation, (
  • the anisotropy of expansion and contraction of the NCM primary particles constituting the NCM porous sintered plate is offset or alleviated by the randomness of the crystal orientation, so that the expansion and contraction of the entire NCM porous sintered plate is reduced.
  • the volume change of the NCM porous sintered plate during charging / discharging is less likely to occur, the peeling between the sintered plate and the solid electrolyte is suppressed, and the charging / discharging characteristics such as the discharge capacity are more effectively improved. it is conceivable that.
  • the porosity of the NCM porous sintered plate is 10 to 40%, preferably 15 to 38%, more preferably 18 to 36%, and even more preferably 20 to 33%. Within such a range, when the battery is manufactured, the pores can be sufficiently filled with the solid electrolyte, and the proportion of the positive electrode active material in the positive electrode increases, so that the high energy density of the battery can be achieved. It can be realized.
  • the "porosity” is the volume ratio of pores in a sintered plate. This porosity can be measured by image analysis of a cross-sectional SEM image of the sintered plate.
  • the polished cross section is observed with an SEM (scanning electron microscope) to obtain a cross section SEM image (for example, a magnification of 500 to 1000 times), and the obtained SEM is obtained.
  • SEM scanning electron microscope
  • the ratio (%) of the area filled with the resin to the total area of the part of the electrode active material and the part filled with the resin (the part that was originally a pore) is calculated and fired.
  • the pore ratio (%) of the knot may be calculated.
  • the porosity may be measured without embedding the sintered plate with resin.
  • the porosity of a sintered plate positive electrode plate taken out from an all-solid secondary battery in which the pores are filled with the solid electrolyte can be measured with the solid electrolyte still filled.
  • the average primary particle size of the NCM porous sintered plate is preferably 0.4 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m, still more preferably 0.6 to 3.0 ⁇ m, and particularly preferably 0. It is 0.8 to 2.5 ⁇ m, most preferably 1.0 to 2.2 ⁇ m. Within such a range, it is possible to more effectively improve the charge / discharge characteristics such as the discharge capacity. It is considered that this is because the primary particles are small as described above, so that the anisotropy of expansion and contraction of the lithium composite oxide primary particles due to charge and discharge is reduced.
  • the "average primary particle diameter" is an average value of the diameters of the primary particles contained in the sintered plate of the electrode.
  • the average primary particle diameters D 2 and D 3 are calculated, respectively.
  • the average values of the obtained average primary particle diameters D 1 , D 2 and D 3 are calculated and used as the average primary particle diameter D of the porous sintered plate.
  • the average primary particle size may be measured without embedding the sintered plate with resin.
  • the measurement of the average primary particle size of a sintered plate (positive electrode plate taken out from an all-solid secondary battery) in which the pores are filled with the solid electrolyte can be performed with the solid electrolyte still filled. ..
  • the average pore diameter of the NCM porous sintered plate is preferably 0.5 ⁇ m or more, more preferably 0.5 to 15.0 ⁇ m, still more preferably 0.7 to 15.0 ⁇ m, and particularly preferably 0.8 to 10.0 ⁇ m. Most preferably, it is 0.9 to 8.0 ⁇ m. Within such a range, the number of solid electrolyte portions (solid electrolyte portions located at a distance from the interface) that are less susceptible to deterioration due to side reactions between the solid electrolyte and the sintered plate increases.
  • the "average pore diameter” is an average value of the diameters of pores contained in the sintered plate of the electrode. Such “diameter” is typically the length of a line segment (Martin diameter) that divides the projected area of the pore into two equal parts.
  • the "mean value” is preferably calculated on the basis of the number of pieces. This average pore diameter can be measured by image analysis of a cross-sectional SEM image of the sintered plate.
  • the SEM image obtained by the above-mentioned porosity measurement is analyzed, and the portion of the sintered plate that is filled with the electrode active material and the portion filled with the resin (the portion that was originally the pores) is separated and then filled with the resin.
  • the maximum Martin diameter of each region may be obtained in the region of the portion, and the average value thereof may be used as the average pore diameter of the sintered plate. If the measurement can be performed with a desired accuracy, the average pore diameter may be measured without embedding the sintered plate with resin. For example, the average pore diameter of a sintered plate (positive electrode plate taken out from an all-solid-state secondary battery) in which the pores are filled with the solid electrolyte can be measured with the solid electrolyte still filled.
  • the thickness of the NCM porous sintered plate is preferably 30 to 200 ⁇ m, more preferably 50 to 200 ⁇ m, and even more preferably 80 to 200 ⁇ m from the viewpoint of improving the energy density of the battery.
  • Various characteristics such as porosity, average primary particle size, and average pore size of the NCM porous sintered plate control the particle size of the NCM raw material powder, or a mixed powder of two or more types of NCM raw material powder having different particle size distributions. It can be appropriately controlled by using it or adjusting the firing conditions.
  • the negative electrode layer includes a porous sintered plate made of a negative electrode active material.
  • a negative electrode active material generally used for a lithium secondary battery can be used.
  • Examples of such general negative electrode active materials include carbon-based materials, metals or metalloids such as Li, In, Al, Sn, Sb, Bi, Si, or alloys containing any of these. ..
  • an oxide-based negative electrode active material may be used.
  • a particularly preferable negative electrode active material contains a material capable of inserting and removing lithium ions at 0.4 V (vs. Li / Li + ) or higher, and preferably contains Ti.
  • the negative electrode active material satisfying such conditions is preferably an oxide containing at least Ti, that is, a titanium-containing oxide.
  • Preferred examples of such a negative electrode active material include lithium titanate Li 4 Ti 5 O 12 (hereinafter, may be referred to as LTO), niobium titanium composite oxide Nb 2 TIO 7 , and titanium oxide TIO 2 .
  • LTO and Nb 2 TiO 7 are preferable, and LTO is more preferable.
  • LTO is typically known to have a spinel-type structure, other structures may be adopted during charging / discharging. For example, LTO reacts in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and discharging. Therefore, LTO is not limited to the spinel structure.
  • the porous sintered plate made of the negative electrode active material does not need to contain an electron conduction aid or a binder, the energy density of the negative electrode can be increased.
  • the pores of the porous sintered plate are filled with a solid electrolyte.
  • the porosity of the negative electrode active material or its sintered plate is preferably 20 to 45%, more preferably 20 to 40%, and even more preferably 25 to 35%. If the porosity is within such a range, the pores in the negative electrode active material can be sufficiently filled with the solid electrolyte, and the proportion of the negative electrode active material in the negative electrode increases, so that the energy density of the battery is high. Can be realized.
  • the thickness of the negative electrode active material or its sintered plate is preferably 40 to 270 ⁇ m, more preferably 65 to 270 ⁇ m, still more preferably 100 to 270 ⁇ m, and particularly preferably 107 to 270 ⁇ m from the viewpoint of improving the energy density of the battery. be.
  • the solid electrolyte is not particularly limited as long as it can be applied to an all-solid-state secondary battery, particularly an all-solid-state lithium secondary battery.
  • examples thereof include garnet-based ceramic materials, nitride-based ceramic materials, perovskite-based ceramic materials, phosphoric acid-based ceramic materials, sulfide-based ceramic materials, borosilicate-based ceramic materials, lithium-halide-based materials, and polymer-based materials. Be done.
  • garnet-based ceramic materials include Li-La-Zr-O-based materials (specifically, Li 7 La 3 Zr 2 O 12 and the like) and Li-La-Ta-O-based materials (specifically, Li-La-Ta-O-based materials).
  • Li 7 La 3 Ta 2 O 12 etc. An example of a nitride - based ceramic material is Li 3N.
  • examples of perovskite-based ceramic materials include Li-La-Zr-O-based materials (specifically, LiLa 1-x Ti x O 3 (0.04 ⁇ x ⁇ 0.14) and the like).
  • Examples of phosphoric acid-based ceramic materials include lithium phosphate, nitrogen-substituted lithium phosphate (LiPON), Li-Al-Ti-PO, Li-Al-Ge-PO, and Li-Al-Ti-.
  • Examples thereof include Si—P—O (specifically, Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 (0 ⁇ x ⁇ 0.4, 0 ⁇ y ⁇ 0.6), etc.).
  • Examples of sulfide-based ceramic materials include LiOH-Li 2 SO 4 and Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3 .
  • Examples of the borosilicate ceramic material include Li 2O -B 2O 3 -SiO 2 .
  • Examples of lithium-halide materials include Li 3 OX (in the formula, X is Cl and / or Br), Li 2 (OH) 1-a Fa Cl (in the formula, 0 ⁇ a ⁇ 0. 3) and Li 2 OHX (where X is Cl and / or Br).
  • a preferred solid electrolyte is a LiOH / Li 2 SO 4 system solid electrolyte.
  • the LiOH / Li 2 SO 4 system solid electrolyte contains a solid electrolyte identified as 3 LiOH / Li 2 SO 4 by X-ray diffraction.
  • This preferred solid electrolyte contains 3LiOH ⁇ Li 2 SO 4 as the main phase. Whether or not 3LiOH / Li 2 SO 4 is contained in the solid electrolyte can be confirmed by identifying the X-ray diffraction pattern using 032-0598 of the ICDD database.
  • 3LiOH / Li 2 SO 4 refers to a crystal structure that can be regarded as the same as 3LiOH / Li 2 SO 4 , and the crystal composition does not necessarily have to be the same as 3LiOH / Li 2 SO 4 .
  • the solid electrolyte contains a dopant such as boron (for example, 3LiOH / Li 2 SO 4 in which boron is dissolved and the X-ray diffraction peak is shifted to the high angle side), the crystal structure is 3LiOH / Li 2 SO. As long as it can be regarded as the same as 4 , it is referred to herein as 3LiOH ⁇ Li 2 SO 4 .
  • the solid electrolyte used in the present invention also allows the inclusion of unavoidable impurities.
  • the LiOH / Li 2 SO 4 system solid electrolyte may contain a different phase in addition to the main phase of 3LiOH / Li 2 SO 4 .
  • the heterogeneous phase may contain a plurality of elements selected from Li, O, H, S and B, or may consist only of a plurality of elements selected from Li, O, H, S and B. May be.
  • Examples of the heterogeneous phase include LiOH, Li 2 SO 4 and / or Li 3 BO 3 derived from the raw material. Regarding these heterogeneous phases, it is considered that unreacted raw materials remained when forming 3LiOH / Li2SO4 , but since they do not contribute to lithium ion conduction , the amount is smaller except for Li3BO3 . desirable.
  • the heterogeneous phase containing boron such as Li 3 BO 3
  • the heterogeneous phase containing boron may be contained in a desired amount because it can contribute to the improvement of the lithium ion conductivity maintenance after holding at a high temperature for a long time.
  • the solid electrolyte may be composed of a single phase of 3LiOH / Li 2 SO 4 in which boron is dissolved.
  • the LiOH / Li 2 SO 4 system solid electrolyte (particularly 3 LiOH / Li 2 SO 4 ) preferably further contains boron.
  • boron By further containing boron in the solid electrolyte identified as 3LiOH / Li 2SO 4 , it is possible to significantly suppress the decrease in lithium ion conductivity even after holding at a high temperature for a long time. Boron is presumed to be incorporated into one of the sites of the crystal structure of 3LiOH / Li2SO4 and improve the stability of the crystal structure with respect to temperature.
  • the molar ratio (B / S) of boron B to sulfur S contained in the solid electrolyte is preferably more than 0.002 and less than 1.0, more preferably 0.003 or more and 0.9 or less, still more preferably. It is 0.005 or more and 0.8 or less.
  • B / S is within the above range, it is possible to improve the maintenance rate of lithium ion conductivity. Further, when the B / S is within the above range, the content of the unreacted heterogeneous phase containing boron is low, so that the absolute value of the lithium ion conductivity can be increased.
  • the LiOH / Li 2 SO 4 system solid electrolyte may be a green compact of a powder obtained by crushing a melt-solidified body, but a melt-solidified body (that is, one solidified after being heated and melted) is preferable.
  • the LiOH / Li 2 SO 4 system solid electrolyte is filled in the pores of the porous sintered plate of the positive electrode layer and the negative electrode layer by melting, but the remaining portion is a separator layer (separator layer) between the positive electrode layer and the negative electrode layer. Intervenes as a solid electrolyte layer).
  • the thickness of the separator layer (excluding the portion that has entered the pores of the positive electrode layer and the negative electrode layer) is preferably 1 to 500 ⁇ m, more preferably 3 to 50 ⁇ m, and more preferably 3 to 50 ⁇ m from the viewpoint of charge / discharge rate characteristics and the insulating property of the solid electrolyte. It is preferably 5 to 40 ⁇ m.
  • the intermediate layer is provided at the interface between at least one of the positive electrode active material and the negative electrode active material and the solid electrolyte.
  • the discharge capacity can be further improved (compared to the one without the intermediate layer).
  • the detailed mechanism for improving the discharge capacity is not clear, it is speculated that the presence of the intermediate layer may suppress the deterioration of the solid electrolyte due to the reaction between the solid electrolyte and the active material.
  • the intermediate layer is more preferable that the intermediate layer is present at the interface between the positive electrode active material and the solid electrolyte, but the intermediate layer may be present at the interface between the negative electrode active material and the solid electrolyte.
  • the intermediate layer may be present at both the interface between the positive electrode active material and the solid electrolyte and the interface between the negative electrode active material and the solid electrolyte.
  • the thickness of the intermediate layer is not particularly limited as long as the desired effect of improving the discharge capacity can be obtained, but is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.2 ⁇ m, and further preferably 0.01 to 0.1 ⁇ m. Is.
  • the intermediate layer is a lithium composite oxide containing Li and at least one selected from the group consisting of Ti, La, Zr, Al, W, Nb, Sn, Ce, Mn, Y, and Ta, and / or Y. It is preferably composed of an oxide of ( typically Y2O3 ).
  • Preferred examples of such lithium composite oxides are Li and Ti oxides (typically Li 2 TiO 3 ), Li, La and Zr or Li, La, Zr and Al oxides (typically). Is an oxide of Li 7-3 x Al x La 3 Zr 2 O 12 ( 0 ⁇ x ⁇ 0.4, more typically 0.02 ⁇ x ⁇ 0.4)), Li, La and Ti (typical).
  • Li 0.33 La 0.55 TiO 3 Li and W oxides (typically Li 2 WO 4 ), Li and Al oxides (typically LiAlO 2 ), Li and Nb.
  • Oxides typically LiNbO 3 or LiNb 3O 8
  • Li and Sn oxides typically LiSnO 3
  • Li and Ce oxides typically Li 8 CeO 6
  • Li, La and Nb oxides typically Li 5 La 3 Nb 2 O 12
  • Li and Mn oxides typically LiMnO 2
  • Li and Y oxides typically LiYO 2 ).
  • Li and Ta oxides typically LiTaO 3
  • Li and Ti oxides typically Li 2 TiO 3
  • Li, La, Oxides of Zr and Al typically Li 6.7 Al 0.1 La 3 Zr 2 O 12
  • oxides of Li, La and Ti typically Li 0.33 La 0.55 TIO). 3
  • a solution is prepared by mixing a metal alkoxide of one or more metal elements constituting the intermediate layer and a metal salt such as nitrate with alcohol such as ethanol or water at a predetermined molar ratio to prepare an electrode active material. This can be done by immersing (preferably a sintered plate or particles) in this solution, then taking it out and allowing it to stand in the air to hydrolyze the alkoxide or dry the solvent.
  • a sintered plate it is preferable to infiltrate the inside of the solution by dipping it in a solution under reduced pressure, and it is preferable to repeat the work from the dipping to standing in the air a plurality of times (for example, 1 to 20 times). preferable.
  • the electrode active material preferably sintered plate or particles
  • All-solid-state secondary battery is, for example, i) forming an intermediate layer and a current collector (with an intermediate layer and a current collector formed as needed) and a positive electrode (with an intermediate layer and a current collector formed as needed). This can be done by preparing the negative electrode and ii) sandwiching a solid electrolyte between the positive electrode and the negative electrode and applying pressure, heating, or the like to integrate the positive electrode, the solid electrolyte, and the negative electrode.
  • the positive electrode, the solid electrolyte, and the negative electrode may be bonded by other methods.
  • a method of placing a solid electrolyte molded body or powder on one of the electrodes a method of screen-printing a paste of the solid electrolyte powder on the electrode.
  • Examples thereof include a method of colliding and solidifying a solid electrolyte powder by an aerosol disposition method or the like using an electrode as a substrate, and a method of depositing a solid electrolyte powder on an electrode by an electrophoresis method to form a film.
  • a lithium composite oxide having a layered rock salt structure containing Li, Ni, Co and Mn such as (Ni 0.3 Co 0.6 Mn 0.1 ) O 2 is abbreviated as "NCM”.
  • Li 4 Ti 5 O 12 shall be abbreviated as "LTO”.
  • NCM raw material powders 1 to 6 for producing a positive electrode plate were prepared.
  • Table 1 shows a summary of the methods for producing these raw material powders.
  • NCM raw material powder 1 Preparation of NCM raw material powder 1
  • Commercially available (Ni 0.5 Co 0.2 Mn 0.3 ) (OH) 2 powder (average particle size 9 to 10 ⁇ m) and Li weighed so that the molar ratio of Li / (Ni + Co + Mn) is 1.15.
  • 2 CO 3 powder (average particle size 3 ⁇ m) was mixed. The obtained mixed powder was held at 750 ° C. for 10 hours, the volume standard D50 particle size was adjusted to about 5.5 ⁇ m by wet pulverization with a ball mill, and then dried to obtain NCM raw material powder 1.
  • NCM raw material powder 2 Preparation of NCM raw material powder 2
  • Commercially available (Ni 0.3 Co 0.6 Mn 0.1 ) (OH) 2 powder (average particle size 7 to 8 ⁇ m) and Li weighed so that the molar ratio of Li / (Ni + Co + Mn) is 1.15.
  • 2 CO 3 powder (average particle size 3 ⁇ m) was mixed. The obtained mixed powder was held at 850 ° C. for 10 hours to obtain NCM raw material powder 2. The volume-based D50 particle size of this powder was about 6.5 ⁇ m.
  • NCM raw material powder 3 The volume-based D50 particle size of the NCM raw material powder 2 was adjusted to about 4.3 ⁇ m by wet pulverization with a ball mill, and then dried to obtain the NCM raw material powder 3.
  • NCM raw material powder 4 Preparation of NCM raw material powder 4
  • Commercially available (Ni 0.2 Co 0.7 Mn 0.1 ) (OH) 2 powder (average particle size 7 to 8 ⁇ m) and Li weighed so that the molar ratio of Li / (Ni + Co + Mn) is 1.15.
  • 2 CO 3 powder (average particle size 3 ⁇ m) was mixed. The obtained mixed powder was held at 850 ° C. for 10 hours, the volume standard D50 particle size was adjusted to about 4.5 ⁇ m by wet pulverization with a ball mill, and then dried to obtain NCM raw material powder 4.
  • NCM raw material powder 5 Preparation of NCM raw material powder 5
  • 2 CO 3 powder average particle size 3 ⁇ m was mixed. The obtained mixed powder was held at 850 ° C. for 10 hours, the volume standard D50 particle size was adjusted to about 4.6 ⁇ m by wet pulverization with a ball mill, and then dried to obtain NCM raw material powder 5.
  • NCM raw material powder 6 Preparation of NCM raw material powder 6
  • 2 CO 3 powder average particle size 3 ⁇ m was mixed. The obtained mixed powder was held at 750 ° C. for 10 hours, the volume standard D50 particle size was adjusted to about 0.4 ⁇ m by wet pulverization with a ball mill, and then dried to obtain NCM raw material powder 6.
  • Example 1 (comparison) (1) Preparation of positive electrode plate (1a) Preparation of NCM green sheet First, the NCM raw material powder 1 shown in Table 1 was prepared. This NCM raw material powder 1 was mixed with a solvent for tape molding, a binder, a plasticizer, and a dispersant. After adjusting the viscosity of the obtained paste, an NCM green sheet was produced by molding it into a sheet on a PET (polyethylene terephthalate) film. The thickness of the NCM green sheet was adjusted so that the thickness after firing was 100 ⁇ m.
  • NCM Sintered Plate The NCM green sheet peeled off from the PET film was punched out into a circle with a diameter of 11 mm and placed in a firing sheath. Baking was performed by raising the temperature to 920 ° C. at a heating rate of 200 ° C./h and holding it for 10 hours. The thickness of the obtained sintered plate was about 100 ⁇ m as observed by SEM. An Au film (thickness 100 nm) was formed as a current collector layer on one side of this NCM sintered plate by sputtering. In this way, a positive electrode plate was obtained.
  • the thickness and porosity (% by volume) of each of the LTO sintered plates in the state were measured as follows. First, the positive electrode plate (or the negative electrode plate) was embedded with resin, and then the cross section was polished by ion milling, and then the polished cross section was observed by SEM to obtain a cross section SEM image. The thickness was calculated from this SEM image.
  • the SEM images for porosity measurement were images with a magnification of 1000 times and a magnification of 500 times.
  • the obtained image is binarized using image analysis software (Image-Pro Premier manufactured by Media Cybernetics), and the positive electrode active material (or negative electrode active material) in the positive electrode plate (or negative electrode plate) is subjected to binarization treatment.
  • Porosity of the positive electrode plate (or negative electrode plate) by calculating the ratio (%) of the area filled with resin to the total area of the part filled with resin and the part filled with resin (the part that was originally pores). It was set to (%).
  • the threshold value for binarization was set using Otsu's binarization as a discriminant analysis method.
  • the porosity of the positive electrode plate is as shown in Table 2, and the porosity of the negative electrode plate was 38%.
  • the average pore diameter was measured as follows. Image analysis software (Image-Pro Premier manufactured by Media Cybernetics) is used to perform a binarization process, and the positive electrode plate (or negative electrode plate) is filled with a portion of the positive electrode active material (or negative electrode active material) and a resin. The part (the part that was originally a pore) was cut out. Then, in the region of the portion filled with the resin, the maximum Martin diameter of each region was obtained, and the average value thereof was taken as the average pore diameter ( ⁇ m) of the positive electrode plate (or the negative electrode plate).
  • the average pore diameter of the positive electrode plate is as shown in Table 2, and the average pore diameter of the negative electrode plate was 2.1 ⁇ m.
  • the same operation as described above was performed twice by changing the position each time, and the average primary particle diameters D 2 and D 3 were calculated, respectively.
  • the average values of the obtained average primary particle diameters D 1 , D 2 and D 3 were calculated and used as the average primary particle diameter D of the positive electrode plate.
  • the average primary particle diameter D of the positive electrode plate was as shown in Table 2.
  • Example 2 In the production of the positive electrode plate of (1) above, the positive electrode plate and the battery were produced in the same manner as in Example 1 except that the NCM raw material powder 3 shown in Table 1 was used instead of the NCM raw material powder 1. Evaluation was performed.
  • Example 3 In the production of the positive electrode plate of (1) above, the positive electrode plate and the battery were produced in the same manner as in Example 1 except that the NCM raw material powder 4 shown in Table 1 was used instead of the NCM raw material powder 1. Evaluation was performed.
  • Example 4 In the production of the positive electrode plate of (1) above, the positive electrode plate and the battery were produced in the same manner as in Example 1 except that the NCM raw material powder 5 shown in Table 1 was used instead of the NCM raw material powder 1. Evaluation was performed.
  • Example 5 In the production of the positive electrode plate of (1) above, the positive electrode plate and the battery were produced in the same manner as in Example 1 except that the NCM raw material powder 6 shown in Table 1 was used instead of the NCM raw material powder 1. Evaluation was performed.
  • Example 6 In the production of the positive electrode plate of (1) above, instead of 1) NCM raw material powder 1, NCM mixed powder A containing NCM raw material powders 2 and 6 shown in Table 1 in a blending ratio (weight ratio) of 90:10 is used. A positive electrode plate and a battery were produced in the same manner as in Example 1 except that they were used and 2) the firing temperature was set to 950 ° C., and various evaluations were performed.
  • Example 7 In the production of the positive electrode plate of (1) above, instead of 1) NCM raw material powder 1, NCM mixed powder A containing NCM raw material powders 2 and 6 shown in Table 1 in a blending ratio (weight ratio) of 90:10 is used. A positive electrode plate and a battery were produced in the same manner as in Example 1 except that they were used and 2) the firing temperature was set to 900 ° C., and various evaluations were performed.
  • Example 8 In the preparation of the positive electrode plate of (1) above, instead of 1) NCM raw material powder 1, NCM mixed powder B containing NCM raw material powders 2 and 6 shown in Table 1 at a blending ratio (weight ratio) of 70:30 is used. A positive electrode plate and a battery were produced in the same manner as in Example 1 except that they were used and 2) the firing temperature was set to 950 ° C., and various evaluations were performed.
  • Example 9 In the production of the positive electrode plate of (1) above, instead of 1) NCM raw material powder 1, NCM mixed powder C containing NCM raw material powders 2 and 6 shown in Table 1 in a blending ratio (weight ratio) of 95: 5 is used. A positive electrode plate and a battery were prepared in the same manner as in Example 1 except that they were used and 2) the firing temperature was set to 970 ° C., and various evaluations were performed.
  • Results Table 2 shows the specifications of the positive electrode plates produced in each example and the evaluation results of the cells. As described above, the charge / discharge characteristics were compared under the same rate conditions, the discharge capacity measured in Example 1 (comparison) was regarded as 100, and the relative value with respect to this was calculated and shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

放電容量等の充放電特性が大幅に向上した全固体二次電池が提供される。この全固体二次電池は、層状岩塩構造のリチウム複合酸化物で構成される多孔焼結板を含む正極層と、負極活物質で構成される多孔焼結板を含む負極層と、正極層と負極層との間にセパレータ層として介在し、かつ、正極層及び負極層の多孔焼結板の孔内にも充填される、固体電解質とを備える。このリチウム複合酸化物は、Ni、Co及びMnを、 0.19≦Ni/(Ni+Co+Mn)≦0.41、 0.49≦Co/(Ni+Co+Mn)≦0.71、及び 0.09≦Mn/(Ni+Co+Mn)≦0.11 を満たすモル比で含む。

Description

全固体二次電池
 本発明は、全固体二次電池、特に全固体リチウムイオン二次電池に関するものである。
 リチウムイオン二次電池用の正極活物質層として、リチウム複合酸化物(典型的にはリチウム遷移金属酸化物)の粉末とバインダーや導電剤等の添加物とを混練及び成形して得られた、粉末分散型の正極が広く知られている。かかる粉末分散型の正極は、容量に寄与しないバインダーを比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。そこで、正極ないし正極活物質層をリチウム複合酸化物焼結板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーが含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。
 また、リチウムイオン二次電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体であることから、発火の心配がなく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。
 焼結体電極及び固体電解質を用いた様々な全固体電池が提案されている。例えば、特許文献1(WO2019/093222A1)には、空隙率が10~50%のリチウム複合酸化物焼結板である配向正極板と、Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、配向正極板又は負極板の融点若しくは分解温度よりも低い融点を有する固体電解質とを備えた、全固体リチウム電池が開示されている。この文献には、そのような低い融点を有する固体電解質として、LiOCl、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)(例えば3LiOH・LiSO)等の様々な材料が開示されている。このような固体電解質は融液として電極板の空隙に浸透させることができ、強固な界面接触を実現できる。その結果、電池抵抗及び充放電時のレート性能の顕著な改善、並びに電池製造の歩留まりも大幅な改善を実現できるとされている。また、特許文献2(WO2015/151566A1)には、Li(Ni,Co,Mn)O(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)で表される基本組成の層状岩塩構造を有する配向正極板と、Li-La-Zr-O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される固体電解質層と、負極層とを備えた、全固体リチウム電池が開示されている。この特許文献2で実際に評価されている正極組成はNi:Co:Mnのモル比は5:2:3や1:1:1である。
WO2019/093222A1 WO2015/151566A1
 本発明者らは、上述した低融点固体電解質の中でも、とりわけ3LiOH・LiSO等のLiOH・LiSO系固体電解質が高いリチウムイオン伝導度を呈するとの知見を得ている。しかしながら、従来使用されるようなNi:Co:Mnのモル比が5:2:3のリチウム複合酸化物焼結板を正極として用い、3LiOH・LiSO等のLiOH・LiSO系固体電解質とともにセルを構成し、電池動作したところ、活物質量より想定される理論容量よりも放電容量が低くなることが判明した。
 本発明者らは、今般、所定範囲内のモル比でNi、Co及びMnを含むリチウム複合酸化物の多孔焼結板を正極層として用いて全固体二次電池を構成することにより、放電容量等の充放電特性を大幅に向上することができるとの知見を得た。
 したがって、本発明の目的は、放電容量等の充放電特性が大幅に向上した全固体二次電池を提供することにある。
 本発明の一態様によれば、Ni、Co及びMnを、
 0.19≦Ni/(Ni+Co+Mn)≦0.41、
 0.49≦Co/(Ni+Co+Mn)≦0.71、及び
 0.09≦Mn/(Ni+Co+Mn)≦0.11
を満たすモル比で含む層状岩塩構造のリチウム複合酸化物で構成される多孔焼結板を含む正極層と、
 負極活物質で構成される多孔焼結板を含む負極層と、
 前記正極層と前記負極層との間にセパレータ層として介在し、かつ、前記正極層及び前記負極層の前記多孔焼結板の孔内にも充填される、固体電解質と、
を備えた、全固体二次電池が提供される。
 全固体二次電池
 本発明の全固体二次電池は、正極層と、負極層と、固体電解質とを含む。正極層は、層状岩塩構造のリチウム複合酸化物で構成される多孔焼結板を含む。負極層は負極活物質で構成される多孔焼結板を含む。固体電解質は、正極層と負極層との間にセパレータ層として介在し、かつ、正極層及び負極層の多孔焼結板の孔内にも充填される。そして、このリチウム複合酸化物は、Ni、Co及びMnを、0.19≦Ni/(Ni+Co+Mn)≦0.41、0.49≦Co/(Ni+Co+Mn)≦0.71、及び0.09≦Mn/(Ni+Co+Mn)≦0.11を満たすモル比で含む。このように、所定範囲内のモル比でNi、Co及びMnを含むリチウム複合酸化物の多孔焼結板を正極層として用いて全固体二次電池を構成することにより、放電容量等の充放電特性を大幅に向上することができる。
 前述のとおり、LiOH・LiSO系固体電解質等の低融点の固体電解質を含浸させた全固体リチウム電池が知られており(例えば特許文献1参照)、固体電解質が融液として電極板の空隙に浸透することで界面接触を実現できる。その結果、電池抵抗及び充放電時のレート性能の改善、並びに電池製造の歩留まりも改善を実現できる。しかしながら、従来使用されるようなNi:Co:Mnのモル比が5:2:3のリチウム複合酸化物焼結板を正極として用い、3LiOH・LiSO等のLiOH・LiSO系固体電解質とともにセルを構成し、電池動作したところ、活物質量より想定される理論容量よりも放電容量が低くなることが判明した。この問題が、上記範囲内のモル比でNi、Co及びMnを含むリチウム複合酸化物の多孔焼結板を正極層として用いることで好都合に解消される。これは、上記範囲内のモル比でNi、Co及びMnを含むリチウム複合酸化物の充放電に伴う膨張収縮ないし体積変化が小さいためと考えられる。実際、性能が低下した充放電後の全固体電池を解析したところ、Ni:Co:Mn=5:2:3の正極焼結板内に含浸された固体電解質と、正極焼結板を構成する正極活物質粒子との間に隙間が発生していた。すなわち、従来使用されてきたNi:Co:Mn=5:2:3のリチウム複合酸化物粒子は、充電時に収縮する性質があるため、粒子収縮に伴う応力によって正極板と固体電解質との間で剥離が生じてLiイオンの拡散が抑制されたことにより、全固体電池の放電容量が低下したと考えられる。この点、本発明の上記組成範囲のリチウム複合酸化物で構成される多孔焼結板は充放電時の膨張収縮ないし体積変化が小さいため、上記不具合が生じにくく、その結果、放電容量等の充放電特性の大幅な向上をもたらすものと考えられる。
(1)正極層
 正極層は、正極活物質として、層状岩塩構造のリチウム複合酸化物で構成される多孔焼結板を含む。換言すれば、多孔焼結板は、層状岩塩構造のリチウム複合酸化物で構成される複数の一次粒子が結合した構造を有している。このリチウム複合酸化物は、Ni、Co及びMnを、0.19≦Ni/(Ni+Co+Mn)≦0.41、0.49≦Co/(Ni+Co+Mn)≦0.71、及び0.09≦Mn/(Ni+Co+Mn)≦0.11を満たすモル比で、より好ましくは、0.29≦Ni/(Ni+Co+Mn)≦0.31、0.59≦Co/(Ni+Co+Mn)≦0.61、及び0.09≦Mn/(Ni+Co+Mn)≦0.11を満たすモル比で含む。前述のとおり、上記範囲内の組成(モル比)が放電容量等の充放電特性の大幅な向上をもたらす。この点、Ni、Co及びMnを含むリチウム複合酸化物(以下、NCMと略称される)は、組成、特にNi、Co及びMnのモル比によって充放電時の体積変化の挙動が異なるが、上記範囲内の組成(モル比)であると、充放電に伴うNCM多孔焼結板の膨張収縮ないし体積変化が小さく、組成によっては充放電途中でほとんど体積変化が起こらないものも存在する(例えばNi:Co:Mn=3:6:1)。このため、NCM多孔焼結板と固体電解質との剥離が抑制され、放電容量等の充放電特性の大幅な向上が実現されるものと考えられる。上記範囲内のNCM組成(モル比)の具体例としては、Ni:Co:Mn=2:7:1、3:6:1、及び4:5:1が挙げられ、特に好ましくはNi:Co:Mn=3:6:1である。このように、Coのモル比を大きくすると、充放電時にNCM多孔焼結板の体積変化が起こりにくくなる。一方、Coのモル比が小さいリチウム複合酸化物、例えばNi:Co:Mn=5:2:3や8:1:1のようなものは、充放電時にNCM多孔焼結板の体積が大きく変化する。
 NCM多孔焼結板は、X線回折(XRD)によって測定されるXRDプロファイルにおける、(104)面に起因する回折強度I[104]に対する(003)面に起因する回折強度I[003]の比として定義される、配向度I[003]/I[104]は1.2~3.6であり、1.2~3.5であるのが好ましく、より好ましくは1.2~3.0、さらに好ましくは1.2~2.6である。このような範囲内であると、充放電時のNCM多孔焼結板の体積変化がより一層起こりにくくなり、焼結板と固体電解質との剥離が抑制され、より効果的に放電容量等の充放電特性を向上することができる。ここで、NCMのような層状岩塩型の結晶構造を有するリチウム複合酸化物には、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面、例えば(101)面や(104)面)と、そうではない(003)面とがある。本明細書ではこれらのうち(003)面と(104)面のXRDによる各回折強度を配向度算出のための指標として便宜的に用いている。
 上記範囲内の配向度I[003]/I[104]であると放電容量等の充放電特性が向上する理由は以下のように考えることができる。まず、前提として、配向/無配向について説明する。NCMが粉末の形態(すなわち、焼結体ではない形態)では粒子の配置がランダムになるため、結晶面の向きに偏りは発生しない。これを無配向という。一方、焼結板のような形態では粒子の配置が固定されるため、結晶面の向きに偏りが生じやすく、このような状態を配向しているという。この点、NCM多孔焼結板が上述した範囲内の配向度I[003]/I[104]であると、無配向の目安となるNCM粉末の配向度I[003]/I[104](例えば1.4(Ni:Co:Mn=5:2:3の組成)や2.3(Ni:Co:Mn=3:6:1の組成))と同等ないし近い値となるため、無配向(ランダム)に近い、つまり本質的に配向していない(もしくはあまり配向していない)といえる。NCM一次粒子は充放電時の膨張収縮挙動には異方性がある(この傾向はNi:Co:Mn=3:6:1のNCMで特に顕著である)が、無配向(ランダム)に近いNCM多孔焼結板であればそれを構成するNCM一次粒子の膨張収縮の異方性が結晶方位のランダム性によって相殺ないし緩和されるため、NCM多孔焼結板全体としての膨張収縮が小さくなる。その結果、充放電時のNCM多孔焼結板の体積変化がより一層起こりにくくなり、焼結板と固体電解質との剥離が抑制され、より効果的に放電容量等の充放電特性が向上するものと考えられる。
 NCM多孔焼結板の気孔率は10~40%であり、15~38%が好ましく、より好ましくは18~36%、さらに好ましくは20~33%である。このような範囲内であると、電池を作製した場合に、気孔に固体電解質を十分に充填させることができ、かつ、正極内の正極活物質の割合が増えるため、電池としての高エネルギー密度を実現することができる。本明細書において「気孔率」とは、焼結板における、気孔の体積比率である。この気孔率は、焼結板の断面SEM像を画像解析することにより測定することができる。例えば、焼結板を樹脂埋めし、イオンミリングにより断面研磨した後、研磨断面をSEM(走査電子顕微鏡)で観察して断面SEM像(例えば倍率500~1000倍)を取得し、得られたSEM画像を解析して、電極活物質の部分と樹脂で充填された部分(もともと気孔であった部分)の合計面積に占める、樹脂で充填された部分の面積の割合(%)を算出して焼結板の気孔率(%)を算出すればよい。所望の精度で測定が行えるのであれば、焼結板を樹脂埋めすることなく気孔率を測定してもよい。例えば、気孔に固体電解質が充填された焼結板(全固体二次電池から取り出した正極板)に対する気孔率の測定は、固体電解質が充填されたままの状態で行うことが可能である。
 NCM多孔焼結板の平均一次粒子径は0.4~5.0μmであるのが好ましく、より好ましくは0.5~4.0μm、さらに好ましくは0.6~3.0μm、特に好ましくは0.8~2.5μm、最も好ましくは1.0~2.2μmである。このような範囲内であると、放電容量等の充放電特性の向上をより効果的に実現することができる。これは、一次粒子が上記のように小さいことで、充放電に伴うリチウム複合酸化物一次粒子の膨張収縮の異方性が低減されるためではないかと考えられる。本明細書において「平均一次粒子径」とは、電極の焼結板内に含まれる一次粒子の直径の平均値である。この平均一次粒子径は、焼結板の断面SEM像を画像解析することにより測定することができる。具体的には、上述した気孔率測定と同様にして取得した断面SEM像(例えば倍率5000倍)を解析して、以下のようにして切片法により平均一次粒子径を算出することができる。まず、倍率5000倍のSEM画像中に無作為に全長Lの直線(線分)を引き、当該線分と一次粒子の粒界との交点の数nを求め、D=1.5×L/nの式により平均一次粒子径Dを求める。上記同様の操作をその都度位置を変えて2回行い、平均一次粒子径D及びDをそれぞれ算出する。得られた平均一次粒子径D、D及びDの平均値を算出して、多孔焼結板の平均一次粒子径Dとする。所望の精度で測定が行えるのであれば、焼結板を樹脂埋めすることなく平均一次粒子径を測定してもよい。例えば、気孔に固体電解質が充填された焼結板(全固体二次電池から取り出した正極板)に対する平均一次粒子径の測定は、固体電解質が充填されたままの状態で行うことが可能である。
 NCM多孔焼結板の平均気孔径は0.5μm以上が好ましく、より好ましくは0.5~15.0μm、さらに好ましくは0.7~15.0μm、特に好ましくは0.8~10.0μm、最も好ましくは0.9~8.0μmである。このような範囲内であると、固体電解質と焼結板間での副反応による劣化を受けにくい固体電解質部(界面から離れた距離にある固体電解質部)が増える。そのため、固体電解質と焼結板間での元素拡散が抑制され、固体電解質の劣化に伴う焼結板と固体電解質との剥離が抑制されるためではないかと考えられる。本明細書において「平均気孔径」とは、電極の焼結板内に含まれる気孔の直径の平均値である。かかる「直径」は、典型的には、当該気孔の投影面積を2等分する線分の長さ(マーチン径)である。本発明においては、「平均値」は、個数基準で算出されたものが適している。この平均気孔径は、焼結板の断面SEM像を画像解析することにより測定することができる。例えば、上述した気孔率測定で取得したSEM画像を解析して、焼結板における、電極活物質の部分と樹脂で充填された部分(もともと気孔であった部分)を切り分けた後、樹脂で充填された部分の領域において、各領域の最大マーチン径を求め、それらの平均値を焼結板の平均気孔径とすればよい。所望の精度で測定が行えるのであれば、焼結板を樹脂埋めすることなく平均気孔径を測定してもよい。例えば、気孔に固体電解質が充填された焼結板(全固体二次電池から取り出した正極板)に対する平均気孔径の測定は、固体電解質が充填されたままの状態で行うことが可能である。
 NCM多孔焼結板の厚さは、電池のエネルギー密度向上等の観点から、30~200μmが好ましく、より好ましくは50~200μm、さらに好ましくは80~200μmである。
 NCM多孔焼結板はいかなる方法で製造されたものであってもよく、公知のリチウム複合酸化物多孔焼結体の製造方法を参考にして適宜作製すればよい。例えば、Ni、Co及びMnを、0.19≦Ni/(Ni+Co+Mn)≦0.41、0.49≦Co/(Ni+Co+Mn)≦0.71、及び0.09≦Mn/(Ni+Co+Mn)≦0.11を満たすモル比で含むNCM原料粉末を用いてNCMグリーンシートを作製し、このNCMグリーンシートを焼成することにより製造すればよい。NCM多孔焼結板の気孔率、平均一次粒子径、平均気孔径等の諸特性は、NCM原料粉末の粒径を制御したり、異なる粒度分布を有する2種以上のNCM原料粉末の混合粉末を用いたり、あるいは焼成条件を調整することにより、適宜制御することができる。
(2)負極層
 負極層は負極活物質で構成される多孔焼結板を含む。負極活物質としては、リチウム二次電池に一般的に用いられる負極活物質を用いることができる。そのような一般的な負極活物質の例としては、炭素系材料や、Li、In、Al、Sn、Sb、Bi、Si等の金属若しくは半金属、又はこれらのいずれかを含む合金が挙げられる。その他、酸化物系負極活物質を用いてもよい。
 特に好ましい負極活物質は0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な材料を含み、好ましくはTiを含んでいる。かかる条件を満たす負極活物質は、少なくともTiを含有する酸化物、すなわちチタン含有酸化物であるのが好ましい。そのような負極活物質の好ましい例としては、チタン酸リチウムLiTi12(以下、LTOと称することがある)、ニオブチタン複合酸化物NbTiO、酸化チタンTiOが挙げられ、より好ましくはLTO及びNbTiO、さらに好ましくはLTOである。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
 負極活物質で構成される多孔焼結板は電子伝導助剤やバインダーを含まなくて済むため、負極のエネルギー密度を増大することができる。多孔焼結板の孔内には固体電解質が充填される。
 負極活物質ないしその焼結板の気孔率は20~45%が好ましく、より好ましくは20~40%、さらに好ましくは25~35%である。このような範囲内の気孔率であると、負極活物質内の気孔に固体電解質を十分に充填させることができ、かつ、負極内の負極活物質の割合が増えるため、電池としての高エネルギー密度を実現することができる。
 負極活物質ないしその焼結板の厚さは、電池のエネルギー密度向上等の観点から、40~270μmが好ましく、より好ましくは65~270μm、さらに好ましくは100~270μm、特に好ましくは107~270μmである。
(3)固体電解質
 固体電解質は、全固体二次電池、特に全固体リチウム二次電池に適用できるものであればよく特に限定されない。例えば、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、ホウケイ酸系セラミックス材料、リチウム-ハロゲン化物系材料、及び高分子系材料が挙げられる。ガーネット系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLaZr12等)、Li-La-Ta-O系材料(具体的には、LiLaTa12等)が挙げられる。窒化物系セラミックス材料の例としては、LiNが挙げられる。ペロブスカイト系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLa1-xTi(0.04≦x≦0.14)等)が挙げられる。リン酸系セラミックス材料の例としては、リン酸リチウム、窒素置換リン酸リチウム(LiPON)、Li-Al-Ti-P-O、Li-Al-Ge-P-O、及びLi-Al-Ti-Si-P-O(具体的には、Li1+x+yAlTi2-xSi3-y12(0≦x≦0.4、0<y≦0.6)等)が挙げられる。硫化物系セラミックス材料の例としては、LiOH-LiSO、及びLiBO-LiSO-LiCOが挙げられる。ホウケイ酸系セラミックス材料の例としては、LiO-B-SiOが挙げられる。リチウム-ハロゲン化物系材料の例としては、LiOX(式中、XはCl及び/又はBrである)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)が挙げられる。
 好ましい固体電解質は、LiOH・LiSO系固体電解質である。LiOH・LiSO系固体電解質は、LiOH及びLiSOの複合化合物であり、典型的な組成は一般式:xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)であり、代表例として、3LiOH・LiSO(上記一般式中x=0.75、y=0.25の組成)が挙げられる。好ましくは、LiOH・LiSO系固体電解質は、X線回折により3LiOH・LiSOと同定される固体電解質を含む。この好ましい固体電解質は3LiOH・LiSOを主相として含むものである。固体電解質に3LiOH・LiSOが含まれているか否かは、X線回折パターンにおいて、ICDDデータベースの032-0598を用いて同定することで確認可能である。ここで「3LiOH・LiSO」とは、結晶構造が3LiOH・LiSOと同一とみなせるものを指し、結晶組成が3LiOH・LiSOと必ずしも同一である必要はない。すなわち、3LiOH・LiSOと同等の結晶構造を有するかぎり、組成がLiOH:LiSO=3:1から外れるものも「3LiOH・LiSO」に包含されるものとする。したがって、ホウ素等のドーパントを含有する固体電解質(例えばホウ素が固溶し、X線回折ピークが高角度側にシフトした3LiOH・LiSO)であっても、結晶構造が3LiOH・LiSOと同一とみなせるかぎり、3LiOH・LiSOとして本明細書では言及するものとする。同様に、本発明に用いる固体電解質は不可避不純物の含有も許容するものである。
 したがって、LiOH・LiSO系固体電解質には、主相である3LiOH・LiSO以外に、異相が含まれていてもよい。異相は、Li、O、H、S及びBから選択される複数の元素を含むものであってもよいし、あるいはLi、O、H、S及びBから選択される複数の元素のみからなるものであってもよい。異相の例としては、原料に由来するLiOH、LiSO及び/又はLiBO等が挙げられる。これらの異相については3LiOH・LiSOを形成する際に、未反応の原料が残存したものと考えられるが、リチウムイオン伝導に寄与しないため、LiBO以外はその量は少ない方が望ましい。もっとも、LiBOのようにホウ素を含む異相については、高温長時間保持後のリチウムイオン伝導度維持度の向上に寄与しうることから、所望の量で含有されてもよい。もっとも、固体電解質はホウ素が固溶された3LiOH・LiSOの単相で構成されるものであってもよい。
 LiOH・LiSO系固体電解質(特に3LiOH・LiSO)はホウ素をさらに含むのが好ましい。3LiOH・LiSOと同定される固体電解質にホウ素をさらに含有させることで、高温で長時間保持した後においてもリチウムイオン伝導度の低下を有意に抑制することができる。ホウ素は3LiOH・LiSOの結晶構造のサイトのいずれかに取り込まれ、結晶構造の温度に対する安定性を向上させるものと推察される。固体電解質中に含まれる硫黄Sに対するホウ素Bのモル比(B/S)は、0.002超1.0未満であるのが好ましく、より好ましくは0.003以上0.9以下、さらに好ましくは0.005以上0.8以下である。上記範囲内のB/Sであるとリチウムイオン伝導度の維持率を向上することが可能である。また、上記範囲内のB/Sであるとホウ素を含む未反応の異相の含有量が低くなるため、リチウムイオン伝導度の絶対値を高くすることができる。
 LiOH・LiSO系固体電解質は、溶融凝固体を粉砕した粉末の圧粉体であってもよいが、溶融凝固体(すなわち加熱溶融後に凝固させたもの)が好ましい。
 LiOH・LiSO系固体電解質は、溶融により正極層及び負極層の多孔焼結板の孔内に充填されるが、それ以外の残りの部分は正極層及び負極層の間にセパレータ層(固体電解質層)として介在する。セパレータ層の厚さ(正極層及び負極層の孔内に入り込んだ部分を除く)は充放電レート特性と固体電解質の絶縁性の観点から、1~500μmが好ましく、より好ましくは3~50μm、さらに好ましくは5~40μmである。
(4)中間層
 中間層が、正極活物質及び負極活物質の少なくとも一方と固体電解質との界面に設けられるのが好ましい。中間層を設けることにより(中間層の無いものと比較して)放電容量をより一層改善することができる。放電容量が改善する詳細なメカニズムが定かではないが、中間層の存在により、固体電解質と活物質の反応による固体電解質の劣化が抑制できるのではないかと推測される。中間層が正極活物質と固体電解質との界面に存在するのがより好ましいが、中間層が負極活物質と固体電解質との界面に存在するものであってもよい。中間層は正極活物質と固体電解質との界面、及び負極活物質と固体電解質との界面の両方に存在するものであってもよい。中間層の厚さは所望の放電容量向上効果が得られるかぎり特に限定されないが、0.001~1μmが好ましく、より好ましくは0.005~0.2μm、さらに好ましくは0.01~0.1μmである。
 中間層は、Ti、La、Zr、Al、W、Nb、Sn、Ce、Mn、Y、及びTaからなる群から選択される少なくとも1種とLiとを含むリチウム複合酸化物、及び/又はYの酸化物(典型的にはY)で構成されるのが好ましい。そのようなリチウム複合酸化物の好ましい例としては、Li及びTiの酸化物(典型的にはLiTiO)、Li、La及びZr又はLi、La、Zr及びAlの酸化物(典型的にはLi7-3xAlLaZr12(0≦x<0.4、より典型的には0.02<x<0.4))、Li、La及びTiの酸化物(典型的にはLi0.33La0.55TiO)、Li及びWの酸化物(典型的にはLiWO)、Li及びAlの酸化物(典型的にはLiAlO)、Li及びNbの酸化物(典型的にはLiNbO又はLiNb)、Li及びSnの酸化物(典型的にはLiSnO)、Li及びCeの酸化物(典型的にはLiCeO)、Li、La及びNbの酸化物(典型的にはLiLaNb12)、Li及びMnの酸化物(典型的にはLiMnO)、Li及びYの酸化物(典型的にはLiYO)、Li及びTaの酸化物(典型的にはLiTaO)、並びにそれらの任意の組合せが挙げられ、より好ましくはLi及びTiの酸化物(典型的にはLiTiO)、Li、La、Zr及びAlの酸化物(典型的にはLi6.7Al0.1LaZr12)、並びにLi、La及びTiの酸化物(典型的にはLi0.33La0.55TiO)が挙げられる。
 中間層の形成は、中間層を構成する1種以上の金属元素の金属アルコキシドや硝酸塩等の金属塩を所定のモル比でエタノール等のアルコールや水と混合して溶液を作製し、電極活物質(好ましくは焼結板や粒子)をこの溶液に浸漬させた後、それを取り出し、大気中で静置してアルコキシドを加水分解させたり、溶媒を乾燥させることにより行うことができる。焼結板の場合、溶液への浸漬を減圧下で行うことで内部に浸透させるのが好ましく、また、上記浸漬から大気中静置までの作業を複数回(例えば1~20回)繰り返すのが好ましい。こうして中間層が形成された電極活物質(好ましくは焼結板又は粒子)を400~700℃で5~60分間熱処理するのが好ましい。なお、金属アルコキシドを用いる場合は溶液の作製から浸漬作業は、溶液が加水分解等で劣化しないように、露点-30℃以下の雰囲気中で行うのが好ましい。
 全固体二次電池の製造
 全固体二次電池の製造は、例えば、i)(必要に応じて中間層や集電体を形成した)正極と(必要に応じて中間層や集電体を形成した)負極とを準備し、ii)正極と負極との間に固体電解質を挟んで加圧や加熱等を施して正極、固体電解質及び負極を一体化させることにより行うことができる。正極、固体電解質、及び負極は他の手法により結合されてもよい。この場合、正極と負極の間に固体電解質を形成させる手法の例としては、一方の電極上に固体電解質の成形体や粉末を載置する手法、電極上に固体電解質粉末のペーストをスクリーン印刷で施す手法、電極を基板としてエアロゾルディポジション法等により固体電解質の粉末を衝突固化させる手法、電極上に電気泳動法により固体電解質粉末を堆積させて成膜する手法等が挙げられる。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の説明において、(Ni0.3Co0.6Mn0.1)O等のLi、Ni、Co及びMnを含む層状岩塩構造を有するリチウム複合酸化物を「NCM」と略称し、LiTi12を「LTO」と略称するものとする。
 まず、以下に示すように正極板を作製するためのNCM原料粉末1~6を作製した。また、これら原料粉末の作製方法を要約したものを表1に示す。
[NCM原料粉末1の作製]
 Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.5Co0.2Mn0.3)(OH)粉末(平均粒径9~10μm)とLiCO粉末(平均粒径3μm)を混合した。得られた混合粉末を、750℃で10時間保持し、ボールミルの湿式粉砕にて体積基準D50粒径を約5.5μmに調整した後、乾燥してNCM原料粉末1を得た。
[NCM原料粉末2の作製]
 Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.3Co0.6Mn0.1)(OH)粉末(平均粒径7~8μm)とLiCO粉末(平均粒径3μm)を混合した。得られた混合粉末を、850℃で10時間保持し、NCM原料粉末2を得た。この粉末の体積基準D50粒径は約6.5μmであった。
[NCM原料粉末3の作製]
 NCM原料粉末2をボールミルの湿式粉砕にて体積基準D50粒径を約4.3μmに調整した後、乾燥してNCM原料粉末3を得た。
[NCM原料粉末4の作製]
 Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.2Co0.7Mn0.1)(OH)粉末(平均粒径7~8μm)とLiCO粉末(平均粒径3μm)を混合した。得られた混合粉末を、850℃で10時間保持し、ボールミルの湿式粉砕にて体積基準D50粒径を約4.5μmに調整した後、乾燥してNCM原料粉末4を得た。
[NCM原料粉末5の作製]
 Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.4Co0.5Mn0.1)(OH)粉末(平均粒径8~9μm)とLiCO粉末(平均粒径3μm)を混合した。得られた混合粉末を、850℃で10時間保持し、ボールミルの湿式粉砕にて体積基準D50粒径を約4.6μmに調整した後、乾燥してNCM原料粉末5を得た。
[NCM原料粉末6の作製]
 Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.3Co0.6Mn0.1)(OH)粉末(平均粒径7~8μm)とLiCO粉末(平均粒径3μm)を混合した。得られた混合粉末を、750℃で10時間保持し、ボールミルの湿式粉砕にて体積基準D50粒径を約0.4μmに調整した後、乾燥してNCM原料粉末6を得た。
 上記原料粉末1~6を用いて、以下に示すように正極板及び電池を作製し、各種評価を行った。
 例1(比較)
(1)正極板の作製
(1a)NCMグリーンシートの作製
 まず、表1に示されるNCM原料粉末1を用意した。このNCM原料粉末1と、テープ成形用の溶媒、バインダー、可塑剤、及び分散剤とを混合した。得られたペーストを粘度調整した後、PET(ポリエチレンテレフタレート)フィルム上にシート状に成形することによってNCMグリーンシートを作製した。NCMグリーンシートの厚さは焼成後の厚さが100μmとなるように調整した。
(1b)NCM焼結板の作製
 PETフィルムから剥がしたNCMグリーンシートをパンチで直径11mmの円形に抜き出し、焼成用鞘内に載置した。昇温速度200℃/hで920℃まで昇温して10時間保持することで焼成を行った。得られた焼結板の厚みはSEM観察より、約100μm厚であった。このNCM焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。こうして、正極板を得た。
(1c)中間層の成膜
 テトラ―i―プロポキシチタン:リチウムエトキシド:エタノールをモル比で0.0225:0.045:1となるように混合して、中間層形成用の溶液を作製した。この溶液中に上記(1b)で作製したNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、NCM焼結板をグローブボックス内から取り出し、大気中で10分間静置して中間層を形成させた。その後、上記一連の作業を更に7回繰り返した(すなわち合計8回成膜した)。最後に、NCM焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(2)負極板の作製
(2a)LTOグリーンシートの作製
 Li/Tiのモル比が0.84となるように秤量された市販のTiO粉末(平均粒径1μm以下)とLiCO粉末(平均粒径3μm)を混合後、1000℃で2時間保持し、LTO粒子からなる粉末を得た。この粉末をボールミルの湿式粉砕にて平均粒径約2μmに調整した後、テープ成形用の溶媒、バインダー、可塑剤及び分散剤と混合した。得られたペーストの粘度を調整した後、このペーストをPETフィルム上にシート状に成形することによってLTOグリーンシートを作製した。LTOグリーンシートの厚さは焼成後の厚さが130μmとなるように調整した。
(2b)LTO焼結板の作製
 PETフィルムから剥がしたLTOグリーンシートをポンチで直径11mmの円形に抜き出し、焼成用鞘内に載置した。昇温速度200℃/hで850℃まで昇温して2時間保持することで焼成を行った。得られた焼結板の厚さはSEM観察より、約130μmであった。このLTO焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。こうして、負極板を得た。
(3)固体電解質の作製
(3a)原料混合粉末の準備
 LiSO粉末(市販品、純度99%以上)、LiOH粉末(市販品、純度98%以上)、及びLiBO(市販品、純度99%以上)をLiSO:LiOH:LiBO=1:2.6:0.05(モル比)となるように混合して原料混合粉末を得た。これらの粉末は、Ar雰囲気中のグローブボックス内で取り扱い、吸湿等の変質が起こらないように十分に注意した。
(3b)溶融合成
 Ar雰囲気中で原料混合粉末を高純度アルミナ製のるつぼに投入した。このるつぼを電気炉にセットし、430℃で2時間、Ar雰囲気で熱処理を行い溶融物を作製した。引き続き、電気炉内にて100℃/hで溶融物を冷却して凝固物を形成した。
(3c)乳鉢粉砕
 得られた凝固物をAr雰囲気中のグローブボックス内で乳鉢にて粉砕することによって、体積基準D50粒径が5~50μmの固体電解質粉末を得た。
(4)全固体電池の作製
 正極板上に固体電解質粉末を載置し、その上に負極板を載置した。更に負極板上に重しを載置し、電気炉内で400℃で45分間加熱した。このとき、固体電解質粉末は溶融し、その後の凝固を経て電極板間に固体電解質層が形成された。得られた正極板/固体電解質/負極板で構成されるセルを用いて電池を作製した。
(5)評価
(5a)配向度
 上記(1)で作製された正極板に対してXRD(X線回折)測定を行った。この測定は、XRD装置(株式会社リガク製、RINT-TTR III)を用い、正極板の板面に対してX線を照射したときのXRDプロファイルを測定することにより行った。このXRDプロファイルから、NCMの(104)面に起因する回折強度(ピーク高さ)I[104]に対する(003)面に起因する回折強度(ピーク高さ)I[003]の比率であるI[003]/I[104]を算出し、これを配向度とした。
(5b)厚さ及び気孔率の測定
 上記(1)で作製された正極板(固体電解質を含まない状態のNCM焼結板)と上記(2)で作製された負極板(固体電解質を含まない状態のLTO焼結板)のそれぞれの厚さ及び気孔率(体積%)を以下のようにして測定した。まず、正極板(又は負極板)を樹脂埋め後、イオンミリングにより断面研磨した後、研磨された断面をSEMで観察して断面SEM画像を取得した。このSEM画像より厚さを算出した。気孔率測定のSEM画像は、倍率1000倍及び500倍の画像とした。得られた画像に対し、画像解析ソフト(Media Cybernetics社製、Image-Pro Premier)を用いて、2値化処理を行い、正極板(又は負極板)における、正極活物質(又は負極活物質)の部分と樹脂で充填された部分(もともと気孔であった部分)の合計面積に占める、樹脂で充填された部分の面積の割合(%)を算出して正極板(又は負極板)の気孔率(%)とした。2値化する際のしきい値は、判別分析法として大津の2値化を用いて設定した。正極板の気孔率は表2に示されるとおりであり、負極板の気孔率は38%であった。
(5c)平均気孔径の測定
 上記の気孔率測定に使用したSEM画像を用い、以下のようにして平均気孔径を測定した。画像解析ソフト(Media Cybernetics社製、Image-Pro Premier)を用いて、2値化処理を行い、正極板(又は負極板)における、正極活物質(又は負極活物質)の部分と樹脂で充填された部分(もともと気孔であった部分)を切り分けた。その後、樹脂で充填された部分の領域において、各領域の最大マーチン径を求め、それらの平均値を正極板(又は負極板)の平均気孔径(μm)とした。正極板の平均気孔径は表2に示されるとおりであり、負極板の平均気孔径は2.1μmであった。
(5d)平均一次粒子径
 上記の気孔率測定と同様にして取得したSEM画像(倍率5000倍)を用い、以下のようにして切片法により平均一次粒子径を算出した。まず、倍率5000倍のSEM画像中に無作為に全長Lの直線(線分)を引き、当該線分と一次粒子の粒界との交点の数nを求めた。線分長Lと、線分と一次粒子の粒界との交点の数nとを用いて、以下の式: 
 D=1.5×L/n
により平均一次粒子径Dを求めた。上記同様の操作をその都度位置を変えて2回行い、平均一次粒子径D及びDをそれぞれ算出した。得られた平均一次粒子径D、D及びDの平均値を算出して正極板の平均一次粒子径Dとした。正極板の平均一次粒子径Dは表2に示されるとおりであった。
(5e)正極板における金属元素のモル比の測定
 上記(1)で作製された正極板におけるNi、Co及びMnの合計含有量に対する各元素のモル比率Ni/(Ni+Co+Mn)、Co/(Ni+Co+Mn)、及びMn/(Ni+Co+Mn)を、誘導結合プラズマ発光分光分析法(ICP-AES法)による金属元素分析の測定結果から算出した。その結果は表2に示されるモル比の±0.01の範囲内であった。
(5f)XRDによる固体電解質の同定
 上記(3c)で得られたLiOH・LiSO系固体電解質をX線回折(XRD)で解析したところ、3LiOH・LiSOと同定された。
(5g)充放電評価
 上記(4)で作製された電池について、150℃の作動温度における電池の放電容量を2.5V-1.5Vの電圧範囲において測定した。この測定は、電池電圧が前記電圧範囲の上限に達するまで定電流定電圧充電した後、前記電圧範囲の下限になるまで放電することにより行った。このとき、例1の放電容量を100とみなし、後述する例2~9の放電容量を相対値で示すための基準として用いた。
 例2
 上記(1)の正極板の作製において、NCM原料粉末1の代わりに、表1に示されるNCM原料粉末3を用いたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例3
 上記(1)の正極板の作製において、NCM原料粉末1の代わりに、表1に示されるNCM原料粉末4を用いたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例4
 上記(1)の正極板の作製において、NCM原料粉末1の代わりに、表1に示されるNCM原料粉末5を用いたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例5
 上記(1)の正極板の作製において、NCM原料粉末1の代わりに、表1に示されるNCM原料粉末6を用いたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例6
 上記(1)の正極板の作製において、1)NCM原料粉末1の代わりに、表1に示されるNCM原料粉末2及び6を90:10の配合割合(重量比)で含むNCM混合粉末Aを用いたこと、及び2)焼成温度を950℃としたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例7
 上記(1)の正極板の作製において、1)NCM原料粉末1の代わりに、表1に示されるNCM原料粉末2及び6を90:10の配合割合(重量比)で含むNCM混合粉末Aを用いたこと、及び2)焼成温度を900℃としたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例8
 上記(1)の正極板の作製において、1)NCM原料粉末1の代わりに、表1に示されるNCM原料粉末2及び6を70:30の配合割合(重量比)で含むNCM混合粉末Bを用いたこと、及び2)焼成温度を950℃としたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 例9
 上記(1)の正極板の作製において、1)NCM原料粉末1の代わりに、表1に示されるNCM原料粉末2及び6を95:5の配合割合(重量比)で含むNCM混合粉末Cを用いたこと、及び2)焼成温度を970℃としたこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
 結果
 表2に各例で作製した正極板の仕様及びセルの評価結果を示す。上述のとおり、充放電特性は同レート条件で比較し、例1(比較)で測定された放電容量を100とみなし、これに対する相対値を算出して表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 

Claims (11)

  1.  Ni、Co及びMnを、
     0.19≦Ni/(Ni+Co+Mn)≦0.41、
     0.49≦Co/(Ni+Co+Mn)≦0.71、及び
     0.09≦Mn/(Ni+Co+Mn)≦0.11
    を満たすモル比で含む層状岩塩構造のリチウム複合酸化物で構成される多孔焼結板を含む正極層と、
     負極活物質で構成される多孔焼結板を含む負極層と、
     前記正極層と前記負極層との間にセパレータ層として介在し、かつ、前記正極層及び前記負極層の前記多孔焼結板の孔内にも充填される、固体電解質と、
    を備えた、全固体二次電池。
  2.  前記リチウム複合酸化物が、Ni、Co及びMnを、
     0.29≦Ni/(Ni+Co+Mn)≦0.31、
     0.59≦Co/(Ni+Co+Mn)≦0.61、及び
     0.09≦Mn/(Ni+Co+Mn)≦0.11
    を満たすモル比で含む、請求項1に記載の全固体二次電池。
  3.  前記多孔焼結板は、X線回折(XRD)によって測定されるXRDプロファイルにおける、(104)面に起因する回折強度I[104]に対する(003)面に起因する回折強度I[003]の比として定義される、配向度I[003]/I[104]が1.2~3.6である、請求項1又は2に記載の全固体二次電池。
  4.  前記多孔焼結板の平均一次粒子径が0.4~5.0μmである、請求項1~3のいずれか一項に記載の全固体二次電池。
  5.  前記多孔焼結板の平均気孔径が0.5~15μmである、請求項1~4のいずれか一項に記載の全固体二次電池。
  6.  前記多孔焼結板の気孔率が10~40%である、請求項1~5のいずれか一項に記載の全固体二次電池。
  7.  前記固体電解質がLiOH・LiSO系固体電解質である、請求項1~6のいずれか一項に記載の全固体二次電池。
  8.  前記LiOH・LiSO系固体電解質がX線回折により3LiOH・LiSOと同定される固体電解質を含む、請求項7に記載の全固体二次電池。
  9.  前記LiOH・LiSO系固体電解質がホウ素をさらに含む、請求項7又は8に記載の全固体二次電池。
  10.  前記負極活物質がチタン含有酸化物である、請求項1~9のいずれか一項に記載の全固体二次電池。
  11.  前記チタン含有酸化物がチタン酸リチウムである、請求項10に記載の全固体二次電池。
PCT/JP2020/048034 2020-12-22 2020-12-22 全固体二次電池 WO2022137359A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/048034 WO2022137359A1 (ja) 2020-12-22 2020-12-22 全固体二次電池
JP2022570832A JPWO2022137359A1 (ja) 2020-12-22 2020-12-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048034 WO2022137359A1 (ja) 2020-12-22 2020-12-22 全固体二次電池

Publications (1)

Publication Number Publication Date
WO2022137359A1 true WO2022137359A1 (ja) 2022-06-30

Family

ID=82159216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048034 WO2022137359A1 (ja) 2020-12-22 2020-12-22 全固体二次電池

Country Status (2)

Country Link
JP (1) JPWO2022137359A1 (ja)
WO (1) WO2022137359A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076797A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 非水電解質二次電池
WO2019093222A1 (ja) * 2017-11-10 2019-05-16 日本碍子株式会社 全固体リチウム電池及びその製造方法
JP2020536367A (ja) * 2017-10-06 2020-12-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 電極活物質、その製造及び使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076797A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2020536367A (ja) * 2017-10-06 2020-12-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 電極活物質、その製造及び使用方法
WO2019093222A1 (ja) * 2017-11-10 2019-05-16 日本碍子株式会社 全固体リチウム電池及びその製造方法

Also Published As

Publication number Publication date
JPWO2022137359A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US11387454B2 (en) Secondary battery
US10218032B2 (en) Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
KR102410194B1 (ko) 나트륨 이온 전지용 전극합재, 그 제조 방법 및 나트륨 전고체 전지
JP6861942B2 (ja) 固体電解質シート及びその製造方法、並びにナトリウムイオン全固体二次電池
JP6565724B2 (ja) ガーネット型リチウムイオン伝導性酸化物及び全固体型リチウムイオン二次電池
JP2016171068A (ja) ガーネット型リチウムイオン伝導性酸化物
EP2086036A2 (en) Solid battery and a method for manufacturing an electrode thereof
CN108886145B (zh) 非晶相氧化物基正极活性材料及其制备方法和应用
JP6995135B2 (ja) 二次電池
US11329316B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
JP2019057495A (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
WO2022137359A1 (ja) 全固体二次電池
JP7070833B2 (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
WO2022137583A1 (ja) 正極活物質及びリチウムイオン二次電池
WO2021090782A1 (ja) 全固体二次電池
WO2021200766A1 (ja) リチウムイオン二次電池
WO2022091983A1 (ja) 全固体二次電池
JP7423760B2 (ja) リチウムイオン二次電池及びその製造方法
EP4122890A1 (en) Positive active material for an all-solid-state battery, method of preparing the same, and all-solid-state battery
JP2022100362A (ja) 電極付き固体電解質シート
WO2023223712A1 (ja) 固体電解質セラミックスおよび固体電池
WO2023223810A1 (ja) 固体電解質セラミックスおよび固体電池
WO2019059024A1 (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
JP2022079209A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966850

Country of ref document: EP

Kind code of ref document: A1