WO2022135568A1 - 一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法 - Google Patents

一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法 Download PDF

Info

Publication number
WO2022135568A1
WO2022135568A1 PCT/CN2021/141214 CN2021141214W WO2022135568A1 WO 2022135568 A1 WO2022135568 A1 WO 2022135568A1 CN 2021141214 W CN2021141214 W CN 2021141214W WO 2022135568 A1 WO2022135568 A1 WO 2022135568A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
crystal form
compound represented
compound
ray powder
Prior art date
Application number
PCT/CN2021/141214
Other languages
English (en)
French (fr)
Inventor
张志鹏
李志亚
胡逸民
周先强
杜振兴
王捷
Original Assignee
江苏恒瑞医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒瑞医药股份有限公司 filed Critical 江苏恒瑞医药股份有限公司
Priority to CN202180086707.7A priority Critical patent/CN116669734A/zh
Publication of WO2022135568A1 publication Critical patent/WO2022135568A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00

Definitions

  • the present disclosure relates to a crystal form of a pyrimido five-membered nitrogen heterocyclic derivative, a preparation method and medical use thereof, and belongs to the field of pharmacy.
  • Src homology domain 2 containing tyrosine phosphatase-2 (SHP2) is an evolutionarily conserved non-receptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene. It consists of two SH2 domains (N-SH2, C-SH2) and a PTP catalytic domain. It is widely expressed in various human tissues and plays an important role in maintaining tissue development and cell homeostasis. SHP2 is involved in signaling through the Ras-mitogen-activated protein kinase, JAK-STAT or phosphoinositide 3-kinase AKT pathways.
  • PTP non-receptor protein tyrosine phosphatase
  • SHP2 represents a target that may be of high interest for the development of new therapeutics for the treatment of various diseases.
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 4.847, 9.801, 13.778, 14.770, 15.444 and 26.077.
  • the crystal form A of the compound represented by the formula (I) provided by the present disclosure is at 4.847, 9.801, 13.138, 13.778, 14.770, 15.444, There are characteristic peaks at 18.363, 19.856, 21.092, 23.371, 26.077, and 28.130.
  • the crystal form A of the compound represented by the formula (I) provided by the present disclosure is at 4.847, 9.801, 13.138, 13.778, 14.770, 15.444, There are characteristic peaks at 18.363, 19.856, 21.092, 22.034, 23.371, 24.460, 26.077, 28.130, 28.970, 31.894, 32.920, 33.916, and 38.924.
  • the X-ray powder diffraction spectrum of the crystal form A of the compound represented by formula (I) provided by the present disclosure is shown in FIG. 2 .
  • the present disclosure provides a preparation method of the A crystal form of the compound represented by formula (I), which is selected from:
  • the solvent II is selected from tetrahydrofuran, ethyl acetate, toluene, acetone, methanol, ethanol, acetonitrile, methyl tert-butyl ether, water, isotope At least one of propyl ether, butanone, n-hexane; or
  • the present disclosure provides a crystal form B of the compound represented by formula (I).
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 4.606, 9.110, 11.423, 13.745, 16.006 and 22.973.
  • the crystal form B of the compound represented by the formula (I) provided by the present disclosure is at 4.606, 9.110, 11.423, 13.745, 16.006, 18.349, There are characteristic peaks at 22.973, 25.285, 27.505, and 29.262.
  • the crystal form B of the compound represented by the formula (I) provided by the present disclosure is at 4.606, 9.110, 11.423, 13.745, 16.006, 18.349, There are characteristic peaks at 19.767, 22.973, 24.700, 25.285, 27.505, 29.262, 31.451, 32.407, 34.072, 35.983, 37.216, 38.388.
  • the present disclosure provides a crystal form C of a compound represented by formula (I).
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 8.905, 12.920, 13.428, 14.074, 18.458 and 22.519.
  • the crystal form C of the compound represented by the formula (I) provided by the present disclosure is at 8.905, 12.920, 13.428, 14.074, 16.104, 17.996, There are characteristic peaks at 18.458, 18.965, 20.580, 22.519, 23.949, 26.395, 28.795 and 31.748.
  • the crystal form C of the compound represented by the formula (I) provided by the present disclosure is at 8.905, 12.920, 13.428, 14.074, 16.104, 17.996, There are characteristic peaks at 18.458, 18.965, 20.580, 22.519, 23.949, 25.011, 26.395, 27.226, 28.379, 28.795, 30.041, 31.748, 32.487, 35.578, 37.978, 41.393.
  • a preparation method of the C crystal form of the compound shown in formula (I), the compound shown in formula (I) and at least one selected from dioxane, N-methylpyrrolidone, N,N-dimethylformamide are prepared.
  • a solvent is mixed to obtain a clear solution, and the clear solution is mixed with at least one solvent selected from methyl tertiary butyl ether and isopropanol to crystallize out.
  • the present disclosure provides a D crystal form of the compound represented by formula (I).
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 4.766, 9.594, 14.089, 14.471, 18.981, 19.609 and 25.987.
  • the D crystal form of the compound represented by the formula (I) provided by the present disclosure is at 4.766, 9.594, 13.461, 14.089, 14.471, 16.602, There are characteristic peaks at 18.981, 19.609, 20.238, 22.616, 24.187, 24.770, 25.264, 25.987, 29.123, 30.380, 32.714, 34.688, 39.042, 39.535, 44.382.
  • the present disclosure provides a crystal form E of the compound represented by formula (I).
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 4.603, 9.209, 13.920, 15.097, 19.700 and 25.454.
  • the crystal form E of the compound represented by the formula (I) provided by the present disclosure is at 4.603, 9.209, 12.888, 13.920, 15.097, 18.641, There are characteristic peaks at 19.194, 19.700, 20.529, 22.876, 25.454, 25.664, 27.775, and 29.504.
  • the crystal form E of the compound represented by the formula (I) provided by the present disclosure is at 4.603, 9.209, 12.888, 13.920, 15.097, 18.641, 19.194 ⁇ 19.700 ⁇ 20.529 ⁇ 21.863 ⁇ 22.876 ⁇ 23.659 ⁇ 24.349 ⁇ 25.054 ⁇ 25.454 ⁇ 25.664 ⁇ 27.203 ⁇ 27.698 ⁇ 27.775 ⁇ 28.906 ⁇ 29.504 ⁇ 29.965 ⁇ 30.747 ⁇ 31.944 ⁇ 34.430 ⁇ 38.756 ⁇ 39.263 ⁇ 42.577 ⁇
  • a kind of preparation method of the E crystal form of compound shown in formula (I), described method is selected from:
  • the compound represented by formula (I) is mixed with solvent V to obtain a clear solution, the clear solution is mixed with solvent VI, and crystallized out, and the solvent V is selected from N,N-dimethylformamide, N,N- At least one of dimethylformamide, methanol, dimethyl sulfoxide and dichloromethane solvent; the solvent VI is selected from isopropyl ether, methyl tert-butyl ether, isopropanol, dioxane, At least one of acetone, n-hexane, toluene and acetonitrile; or
  • the present disclosure provides an X-ray powder diffraction pattern of the compound represented by the formula (I), which has characteristic peaks at 4.656, 14.068, 15.183, 18.858, and 23.235 in the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ .
  • the F crystal form of the compound represented by the formula (I) provided by the present disclosure the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ angle is 4.656, 9.341, 12.670, 13.443, 14.068 at the 2 ⁇ angle , 14.850, 15.183, 18.858, 19.436, 20.518, 23.235, 25.591, 28.386, 29.543 have characteristic peaks.
  • the F crystal form of the compound represented by the formula (I) provided by the present disclosure is at 4.656, 9.341, 12.670, 13.443, 14.068, 14.850, 15.183 ⁇ 16.122 ⁇ 18.032 ⁇ 18.858 ⁇ 19.436 ⁇ 20.518 ⁇ 22.150 ⁇ 22.571 ⁇ 23.235 ⁇ 24.442 ⁇ 24.863 ⁇ 25.591 ⁇ 26.585 ⁇ 27.765 ⁇ 28.386 ⁇ 28.934 ⁇ 29.543 ⁇ 30.245 ⁇ 31.113 ⁇ 32.116 ⁇ 32.491 ⁇ 36.608 ⁇ 38.199 ⁇ 38.620 ⁇ 40.679 ⁇ There is a characteristic peak at 43.206.
  • the present disclosure provides a method for preparing the F crystal form of the compound represented by the formula (I), which comprises mixing the compound represented by the formula (I) with ethanol-water, and then crystallization.
  • the present disclosure provides a crystal form G of the compound represented by formula (I).
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 4.869, 9.735, 13.290, 14.713 and 20.020.
  • the crystal form G of the compound represented by the formula (I) provided by the present disclosure is at 4.869, 9.735, 10.863, 13.290, 14.713, 14.968, There are characteristic peaks at 17.852, 19.399, 20.020, 20.593, 21.796, 22.793, 24.251, 24.681, 25.510, 25.907, 26.327, 27.617, and 30.155.
  • the crystal form G of the compound represented by the formula (I) provided by the present disclosure is at 4.869, 9.735, 10.863, 13.290, 14.713, 14.968, 17.852 ⁇ 19.399 ⁇ 20.020 ⁇ 20.593 ⁇ 21.796 ⁇ 22.793 ⁇ 24.251 ⁇ 24.681 ⁇ 25.510 ⁇ 25.907 ⁇ 26.327 ⁇ 27.617 ⁇ 28.051 ⁇ 29.696 ⁇ 30.155 ⁇ 31.101 ⁇ 32.405 ⁇ 33.402 ⁇ 35.019 ⁇ 39.615 ⁇ 41.021 ⁇ 45.193 ⁇ 46.644 ⁇ 54.898 ⁇ peak.
  • the present disclosure provides an H crystal form of a compound represented by formula (I).
  • the X-ray powder diffraction pattern represented by the diffraction angle 2 ⁇ has characteristic peaks at 8.608, 12.983, 13.476, 17.716, 20.144, and 23.371.
  • the H crystal form of the compound represented by the formula (I) provided by the present disclosure is at 8.608, 11.238, 12.983, 13.476, 17.716, 18.227, There are characteristic peaks at 19.392, 20.144, 21.435, 21.914, 22.935, 23.371, 23.814, 25.416 and 30.620.
  • the H crystal form of the compound represented by the formula (I) provided by the present disclosure is at 8.608, 11.238, 11.718, 12.983, 13.476, 14.485, 17.716 ⁇ 18.227 ⁇ 19.392 ⁇ 20.144 ⁇ 21.435 ⁇ 21.914 ⁇ 22.935 ⁇ 23.371 ⁇ 23.814 ⁇ 25.416 ⁇ 26.499 ⁇ 28.195 ⁇ 28.887 ⁇ 30.620 ⁇ 31.767 ⁇ 32.874 ⁇ 33.970 ⁇ 34.839 ⁇ 35.854 ⁇ 37.045 ⁇ 38.478 ⁇ 39.958 ⁇ 41.311 ⁇ 43.925 ⁇ 44.582 ⁇ There are characteristic peaks.
  • the preparation method of the crystal form described in the present disclosure further comprises the steps of filtration, washing or drying.
  • the present disclosure provides A crystal form, B crystal form, C crystal form, D crystal form, E crystal form, F crystal form, G crystal form and H crystal form of the compound represented by the formula (I) prepared by the above preparation method. crystal form.
  • each deuterium atom (D) has an abundance of at least 20%.
  • each deuterium atom (D) has an abundance of at least 50%.
  • each deuterium atom (D) has an abundance of at least 90%.
  • each deuterium atom (D) has an abundance of at least 98%.
  • the present disclosure also provides a pharmaceutical composition, comprising the crystal form of the compound represented by the aforementioned formula (I), or the crystal form of the compound represented by the formula (I) prepared by the aforementioned method, or a mixture, and optionally from a pharmaceutical acceptable carrier, diluent or excipient.
  • the present disclosure also provides a pharmaceutical composition prepared from the crystal form of the compound represented by the aforementioned formula (I).
  • the present disclosure also provides a preparation method of a pharmaceutical composition, comprising combining the crystal form of the compound represented by the aforementioned formula (I), or the crystal form of the compound represented by the formula (I) prepared by the aforementioned method, or a mixture thereof with The step of admixing a pharmaceutically acceptable carrier, diluent or excipient.
  • the present disclosure also provides the crystal form of the compound represented by the aforementioned formula (I), or the crystal form of the compound represented by the formula (I) prepared by the aforementioned method, or a mixture thereof, or the aforementioned composition, or prepared by the aforementioned method.
  • the present disclosure also provides the crystal form of the compound represented by the aforementioned formula (I), or the crystal form of the compound represented by the formula (I) prepared by the aforementioned method, or a mixture thereof, or the aforementioned composition, or prepared by the aforementioned method.
  • the present disclosure also provides the crystal form of the compound represented by the aforementioned formula (I), or the crystal form of the compound represented by the formula (I) prepared by the aforementioned method, or the aforementioned composition, or the aforementioned composition prepared by the aforementioned method in Use in the preparation of a medicament for preventing or treating Noonan syndrome and Leopard skin syndrome.
  • the present disclosure also provides the crystal form of the compound represented by the aforementioned formula (I), or the crystal form of the compound represented by the formula (I) prepared by the aforementioned method, or the aforementioned composition, or the aforementioned composition prepared by the aforementioned method in Preparation for preventing or treating juvenile myelomonocytic leukemia, neuroblastoma, melanoma, acute myeloid leukemia, breast cancer, esophageal cancer, lung cancer, colon cancer, head cancer, pancreatic cancer, head and neck squamous cell carcinoma , gastric cancer, liver cancer, anaplastic large cell lymphoma and glioblastoma drug use.
  • the "2 ⁇ or 2 ⁇ angle" mentioned in this disclosure refers to the diffraction angle, and ⁇ is the Bragg angle, in degrees or degrees; the error range of each characteristic peak 2 ⁇ is ⁇ 0.20, which can be -0.20, -0.19, -0.18, -0.17, -0.16, -0.15, -0.14, -0.13, -0.12, -0.11, -0.10, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.01 , 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20.
  • crystallization precipitation in the present disclosure includes, but is not limited to, stirring crystallization, cooling crystallization, beating crystallization and volatile crystallization.
  • DSC Different Scanning Calorimetry or DSC refers to the measurement of the temperature difference, heat flow difference between a sample and a reference during the heating or constant temperature of the sample to characterize all physical changes related to thermal effects and Chemical changes to obtain phase transition information of the sample.
  • the drying temperature mentioned in the present disclosure is generally 25°C-100°C, preferably 40°C-70°C, and drying under normal pressure or under reduced pressure is possible.
  • deuterium when a position is specifically designated as deuterium (D), the position is understood to have an abundance of deuterium (ie, at least 1000 times greater than the natural abundance of deuterium (which is 0.015%)) % of deuterium incorporated).
  • Exemplary compounds having natural abundance greater than deuterium may be at least 1000 times more abundant deuterium, at least 2000 times more abundant deuterium, at least 3000 times more abundant deuterium, at least 4000 times more abundant deuterium, at least 4000 times more abundant 5000 times more abundant deuterium, at least 6000 times more abundant deuterium or more abundant deuterium.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • MS was measured with a Shimadzu 2010 Mass Spectrometer or an Agilent 6110A MSD mass spectrometer.
  • HPLC HPLC used Agilent 1260DAD high pressure liquid chromatograph (Sunfire C18 150 ⁇ 4.6mm chromatographic column) and Thermo U3000 high pressure liquid chromatograph (Gimini C18 150 ⁇ 4.6mm chromatographic column).
  • HPLC uses Shimadzu LC-20A systems, Shimadzu LC-2010HT series or Agilent Agilent 1200 LC high pressure liquid chromatograph (Ultimate XB-C18 3.0*150mm chromatographic column or Xtimate C18 2.1*30mm chromatographic column).
  • Chiral HPLC analysis was determined using Chiralpak IC-3 100 ⁇ 4.6mm I.D., 3 ⁇ m, Chiralpak AD-3 150 ⁇ 4.6mm I.D., 3 ⁇ m, Chiralpak AD-3 50 ⁇ 4.6mm I.D., 3 ⁇ m, Chiralpak AS-3 150 ⁇ 4.6mm I.D., 3 ⁇ m, Chiralpak AS-3 100 ⁇ 4.6mm I.D., 3 ⁇ m, ChiralCel OD-3 150 ⁇ 4.6mm I.D., 3 ⁇ m, Chiralcel OD-3 100 ⁇ 4.6mm I.D., 3 ⁇ m, ChiralCel OJ-H 150 ⁇ 4.6mm I.D., 5 ⁇ m, Chiralcel OJ-3 150 ⁇ 4.6mm I.D., 3 ⁇ m column;
  • the thin layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate, the size of the silica gel plate used for thin layer chromatography (TLC) is 0.15mm ⁇ 0.2mm, and the size of the TLC separation and purification products is 0.4mm ⁇ 0.5mm.
  • the chiral preparative column used DAICEL CHIRALPAK IC (250mm*30mm, 10 ⁇ m) or Phenomenex-Amylose-1 (250mm*30mm, 5 ⁇ m).
  • the CombiFlash rapid preparation instrument uses Combiflash Rf150 (TELEDYNE ISCO).
  • the average inhibition rate and IC 50 value of kinases were measured with NovoStar microplate reader (BMG, Germany).
  • the known starting materials of the present disclosure can be synthesized using or according to methods known in the art, or can be purchased from ABCR GmbH & Co. KG, Acros Organics, Aldrich Chemical Company, Accela ChemBio Inc, Darui chemical companies.
  • Argon or nitrogen atmosphere means that the reaction flask is connected to an argon or nitrogen balloon with a volume of about 1 L.
  • Hydrogen atmosphere means that the reaction flask is connected to a hydrogen balloon with a volume of about 1 L.
  • the pressure hydrogenation reaction uses Parr 3916EKX hydrogenation apparatus and Qinglan QL-500 hydrogen generator or HC2-SS hydrogenation apparatus.
  • the hydrogenation reaction is usually evacuated and filled with hydrogen, and the operation is repeated 3 times.
  • the microwave reaction used a CEM Discover-S 908860 microwave reactor.
  • the solution refers to an aqueous solution.
  • reaction temperature is room temperature, which is 20°C to 30°C.
  • the monitoring of the reaction progress in the embodiment adopts thin layer chromatography (TLC), the developing solvent used in the reaction, the eluent system of the column chromatography used for purifying the compound and the developing solvent system of the thin layer chromatography method include: A: Dichloromethane/methanol system, B: n-hexane/ethyl acetate system, C: petroleum ether/ethyl acetate system, D: petroleum ether/ethyl acetate/methanol, the volume ratio of the solvent depends on the polarity of the compound For adjustment, a small amount of basic or acidic reagents such as triethylamine and acetic acid can also be added for adjustment.
  • TLC thin layer chromatography
  • XRPD is X-ray powder diffraction detection: the measurement is carried out with a BRUKERD8 X-ray diffractometer, specific information collected: Cu anode (40kV, 40mA), Cu-K ⁇ 1 rays K ⁇ 2 rays K ⁇ rays Scanning mode: ⁇ /2 ⁇ , scanning range: 3-48°.
  • DSC is differential scanning calorimetry: METTLER TOLEDO DSC3+ was used for the measurement, the heating rate was 10°C/min, 25-350°C, and the nitrogen purging rate was 50mL/min.
  • TGA thermogravimetric analysis: METTLER TOLEDO TGA2 was used for detection, the heating rate was 10°C/min, the specific temperature range was referred to the corresponding map, and the nitrogen purging rate was 50mL/min.
  • DVS dynamic moisture adsorption: using Surface Measurement Systems advantage 2, the humidity starts from 50%, the inspection humidity range is 0%-95%, and the step is 10%.
  • the judgment standard is that the mass change within 360min is less than 0.002%, and the cycle is repeated twice. .
  • the structure of metabolite 14 is as follows:
  • compound 1c (9.97 g, 38.7 mmol) was dissolved in tetrahydrofuran (80 mL), and LDA (13.5 mL, 2M solution in tetrahydrofuran and n-hexane) was added dropwise at -78°C. After the dropwise addition, the mixture was stirred at -78°C for 1 hour. Compound 1d (8.8 g, 35.07 mmol) was added dropwise at -78°C, and stirring was continued at -78°C for 9 hours.
  • intermediate 4a The synthetic procedure of intermediate 4a is shown in intermediate 3e, wherein the compound dimethyl-d 6 -amine hydrochloride is replaced with methyl-d 3 -amine hydrochloride to prepare the aforementioned intermediate 4a.
  • 0.2nM recombinantly expressed full-length SHP2 (aa 1-593), 0.5nM activating polypeptide IRS1 with double phosphorylation site (sequence: H2N-LN(pY)IDLDLY(dPEG8)LST(pY)ASINFQK-amide ) and a series of concentrations of test compounds (final concentrations of 1 ⁇ M, 0.3 ⁇ M, 0.1 ⁇ M, 0.03 ⁇ M, 0.01 ⁇ M, 0.003 ⁇ M, 0.001 ⁇ M, 0.0003 ⁇ M, 0.0001 ⁇ M, 0.00003 ⁇ M M)
  • Add phosphatase reaction solution 60mM HEPES, pH 7.5 0.005% Brij-35, 75mM NaCl, 75mM KCl, 1mM EDTA, 5mM DTT
  • reaction substrate DiFMUP with a final concentration of 30 ⁇ M was added and reacted at room temperature for 30 minutes, and then the phosphatase reaction was terminated with 5 ⁇ L of reaction stop solution (60 mM HEPES, pH 7.5, 0.2% SDS). Read the fluorescence value of Ex358nm/Em455 on a fluorescence plate reader MD SpectraMax.
  • the IC50 value of the compound was calculated by the four-parameter logit method.
  • x represents the logarithmic form of the compound concentration
  • A, B, C and D are four parameters. Different concentrations correspond to different inhibition rates of phosphatase activity, and an inverse curve is made, and the IC 50 of the inhibitor is calculated from the curve.
  • the IC50 of the compound was calculated with Primer premier 6.0.
  • Example number IC50 (nM) Example number IC50 (nM) SHP099 79 1 1.7 2 2.1 3 4.5 5 4.8 6 4.7
  • Test Example 2 In vitro metabolic stability experiment of rat liver microsomes
  • the compound concentration in the reaction system was determined by LC/MS/MS to calculate the intrinsic clearance of the test compound and to evaluate the in vitro metabolic stability in rat liver microsomes.
  • Reactions were terminated at 0.5, 5, 10, 15, 20, and 30 minutes by transferring 20 ⁇ L of the incubation system to a stop plate containing 100 ⁇ L of cold stop solution, and vortexed for 2 minutes.
  • the stop plate was centrifuged at 4000 rpm for 20 minutes, then left to stand at 4°C for 30 minutes, and then centrifuged at 4000 rpm for 20 minutes.
  • the obtained sample was quantified by ion chromatogram, and the residual ratio was calculated based on the peak area of the test compound or positive control.
  • the slope k was determined by linear regression of the natural log value of the residual rate against incubation time using Microsoft Excel.
  • Rats were used as test animals, and the drug concentration in plasma at different time points was determined by LC/MS/MS method after the rats were given the compounds of the present invention by gavage.
  • the pharmacokinetic behavior of the compound of the present invention in rats was studied, and its pharmacokinetic characteristics were evaluated.
  • Rats were administered the compounds of the present invention by gavage, and 0.2 mL of blood was collected from the jugular vein at 0.25, 0.5, 1, 2, 4, 8, and 24 hours after administration, and placed in a test tube containing EDTA-K2 at 4°C, 4000 rpm Plasma was separated by centrifugation for 5 minutes and stored at -75°C.
  • Determination of the content of the test compound in rat plasma after oral administration of drugs of different concentrations take 50 ⁇ L of rat plasma at each time after administration, add 200 ⁇ L of acetonitrile solution of internal standard dexamethasone (50 ng/mL), vortex Mixed for 30 seconds, centrifuged at 4°C, 4700 rpm for 15 minutes, the supernatant of the plasma sample was diluted three times with water, and 2.0 ⁇ L was taken for LC/MS/MS analysis.
  • the rat pharmacokinetic parameters of the compounds of the present invention are shown in Table 3 below.
  • Test Example 4 Pharmacokinetic experiment in cynomolgus monkeys
  • the LC/MS/MS method was used to determine the drug concentration in the plasma of the cynomolgus monkeys at different times after intragastric administration of the compounds of the present invention.
  • the pharmacokinetic behavior of the compounds of the present invention in cynomolgus monkeys was studied, and their pharmacokinetic characteristics were evaluated.
  • Oral administration Weigh a certain amount of medicine, add 0.5% mass hypromellose, 0.1% volume Tween 80 and 99.4% volume water to prepare a 1 mg/mL white suspension.
  • the cynomolgus monkeys were fasted overnight and then intragastrically administered at a dose of 5 mg/kg.
  • Cynomolgus monkeys were administered the compound of the present invention by gavage, and 0.2 mL of blood was collected from peripheral veins at 0.25, 0.5, 1, 2, 4, 8, and 24 hours after administration, and placed in a test tube containing EDTA-K2 at 2-8 °C, Plasma was separated by centrifugation at 2000 rpm for 10 minutes and stored at -75°C.
  • Determination of the content of the test compound in the plasma of cynomolgus monkeys after oral administration of different concentrations of drugs take 55 ⁇ L of cynomolgus monkey plasma at each time after administration, add 200 ⁇ L of acetonitrile solution of internal standard verapamil or dexamethasone, Vortex for 30 seconds, centrifuge at 3900 rpm for 15 minutes at 4°C, and the supernatant of the plasma sample was diluted three times with water, and 15 ⁇ L was taken for LC/MS/MS analysis.
  • the cynomolgus monkey pharmacokinetic parameters of the compounds of the present invention are shown in Table 4 below.
  • the apparent permeability coefficient (P app ) of the analyzed drugs was determined by liquid chromatography tandem mass spectrometry (LC/MS/MS) by the Caco-2 cell model.
  • HBSS 25 mM HEPES, pH 7.4, containing 50 ⁇ M quinidine
  • HBSS 25 mM HEPES, pH 7.4, containing 50 ⁇ M quinidine
  • CR is the concentration of the compound to be tested at the basal end (the superscript "120” or “45” is the sampling time, unit: minutes)
  • CD is the concentration of the compound to be tested at the top end (the superscript "120” or “45” is the sampling time, Unit: minutes)
  • Area is the membrane surface area (0.33 em 2 )
  • time is the total transit time (75 x 60 seconds).
  • 150-donor pooled human liver microsomes purchased from Corning, Cat. No. 452117) were used to assess representative substrate metabolic responses of the five major human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5). Determination of different concentrations of test compounds for phenacetin (CYP1A2), diclofenac sodium (CYP2C9), S-mephentoin (CYP2C19), bufurolol hydrochloride by liquid chromatography tandem mass spectrometry (LC/MS/MS) Effects of salt (2D6) and midazolam (CYP3A4/5) on metabolic responses.
  • test compound concentration of 0.1, 0.3, 1, 3, 10, 30 ⁇ mol/L or positive compound or blank control and mixed human liver microsomes (0.2mg/mL) in a reaction system of 200 ⁇ L (100mmol/L phosphate buffer, pH 7.4, containing 0.3% by volume respectively) DMSO, 0.6% acetonitrile, 0.1% methanol) were incubated at 37°C for 5 minutes.
  • Peak area ratio metabolite peak area/internal standard peak area
  • Residual activity ratio (%) peak area ratio of the test compound group / peak area ratio of the blank group
  • CYP median inhibitory concentration (IC 50 ) was calculated by Excel XLfit 5.3.1.3.
  • the fifth step adopts methanol-dichloromethane solvent system column chromatography, and rotary evaporation obtains a solid, which is detected by X-ray powder diffraction. It is defined as Form A; TGA spectrum ( Figure 3) shows that Form A loses 1.33% in the range of 25-260 °C, and the DSC spectrum ( Figure 4) shows that Form A has an endothermic peak with a peak It is 241.49°C; the X-ray powder diffraction comparison chart before and after DVS shows that the crystal form before and after DVS does not change, as shown in Figure 5.
  • the preparation process of crystal form A includes the step of solid-liquid separation, and the crystal form is determined by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 12, and its characteristic peak positions are shown in Table 15, which is defined as the H crystal form; the TGA spectrum shows that the H crystal form has a weight loss of 3.64% between 25-60 °C; the DSC spectrum shows that the H crystal form There are three endothermic peaks, the peaks are 50.81 °C, 67.63 °C, 243.52 °C, and there is one exothermic peak, the peak is 190.16 °C.
  • crystal form A The stability of crystal form A, crystal form F, crystal form G and crystal form H were respectively placed at 25°C, 60% RH and 40°C, 75% RH, 5°C and -20°C under nitrogen-filled conditions.
  • Example 18 Study on the wettability of crystal form A, crystal form F, crystal form G and crystal form H

Abstract

本公开涉及一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法。具体而言,本公开涉及式(I)所示化合物的不同晶型及其制备方法,本公开提供的式(I)化合物的晶型具备良好的稳定性,可更好地用于临床治疗。

Description

一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法
本申请要求申请日为2020/12/25的中国专利申请202011563824.1的优先权。本申请引用上述中国专利申请的全文。
技术领域
本公开涉及一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法、医药用途,属于制药领域。
背景技术
含Src同源2蛋白质酪氨酸磷酸酶2(Src homology domain 2containing tyrosine phosphatase-2,SHP2)是由PTPN11基因编码的一种进化保守的非受体型蛋白酪氨酸磷酸酶(PTP),主要由两个SH2结构域(N-SH2、C-SH2)和一个PTP催化域组成,广泛表达于人类各个组织,在维持组织发育和细胞稳态等方面发挥了重要作用。SHP2与通过Ras-有丝***原-活化的蛋白激酶、JAK-STAT或磷酸肌醇3-激酶AKT通路的信号有关。PTPN11基因的突变以及随后SHP2的突变已经在多种人类疾病中获得识别,例如努南综合征(Noonan Syndrome)、豹皮综合征(Leopard Syndrome)、幼年性骨髓单核细胞白血病、成神经细胞瘤、黑素瘤、急性骨髓性白血病以及乳腺癌、肺癌和结肠癌(与Claim19相同)。因此,对于治疗各种疾病的新疗法的发展而言,SHP2代表可具有高吸引力的靶点。
已公开的SHP2靶点的相关研究的专利申请有WO2018136264A、WO2015003094A、WO2018160731A、WO2018130928A1、WO2018136265A、WO2018172984A、WO2018081091、WO2016203405、WO2017211303A、WO2018013597A等;目前诺华的SHP2抑制剂TNO155及JACOBIO的SHP2抑制剂JAB-3068均在处于I期临床阶段,尚无已上市的该靶点的产品,因此仍需要继续开发更高效的新的SHP2抑制剂,以期为患者提供新的有效的抗癌药物。
WO2020259679A的专利申请公开了一种式(I)所示化合物,为满足用药需求,对其晶型进行研究很有必要,
Figure PCTCN2021141214-appb-000001
发明内容
本公开提供一种式(I)所示化合物的A晶型,
Figure PCTCN2021141214-appb-000002
以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.847、9.801、13.778、14.770、15.444、26.077处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的A晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.847、9.801、13.138、13.778、14.770、15.444、18.363、19.856、21.092、23.371、26.077、28.130处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的A晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.847、9.801、13.138、13.778、14.770、15.444、18.363、19.856、21.092、22.034、23.371、24.460、26.077、28.130、28.970、31.894、32.920、33.916、38.924处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的A晶型,其X-射线粉末衍射谱图如附图2所示。
本公开提供一种式(I)所示化合物的A晶型的制备方法,其选自:
a)将式(I)所示化合物与溶剂I混合,溶清,结晶析出,所述溶剂I选自
二氯甲烷、三氯甲烷中的至少一种;或
b)将式(I)所示化合物与溶剂II混合,结晶析出,所述溶剂II选自四氢呋喃、乙酸乙酯、甲苯、丙酮、甲醇、乙醇、乙腈、甲基叔丁基醚、水、异丙醚、丁酮、正己烷中的至少一种;或
c)将式(I)所示化合物与溶剂III混合得溶清液,溶清液与溶剂IV混合,结晶析出,所述溶剂III选自甲醇、N,N-二甲基甲酰胺、N-甲基吡咯烷酮中至少一种;所述溶剂IV选自乙腈、乙酸乙酯、醋酸异丙酯、甲基叔丁基醚、异丙醚中的至少一种。
本公开提供一种式(I)所示化合物的B晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.606、9.110、11.423、13.745、16.006、22.973处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的B晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.606、9.110、11.423、13.745、16.006、18.349、22.973、25.285、27.505、29.262处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的B晶型,以衍射角2θ角度表示 的X-射线粉末衍射图谱,在4.606、9.110、11.423、13.745、16.006、18.349、19.767、22.973、24.700、25.285、27.505、29.262、31.451、32.407、34.072、35.983、37.216、38.388处有特征峰。
一种式(I)所示化合物的B晶型的制备方法,将式(I)所示化合物与甲醇溶清,过滤,与甲基叔丁基醚混合,结晶析出。
本公开提供一种式(I)所示化合物的C晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.905、12.920、13.428、14.074、18.458、22.519处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的C晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.905、12.920、13.428、14.074、16.104、17.996、18.458、18.965、20.580、22.519、23.949、26.395、28.795、31.748处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的C晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.905、12.920、13.428、14.074、16.104、17.996、18.458、18.965、20.580、22.519、23.949、25.011、26.395、27.226、28.379、28.795、30.041、31.748、32.487、35.578、37.978、41.393处有特征峰。
一种式(I)所示化合物的C晶型的制备方法,将式(I)所示化合物与选自二氧六环、N-甲基吡咯烷酮、N,N-二甲基甲酰胺的至少一种溶剂混合,得溶清液,溶清液与选自甲基叔丁基醚、异丙醇至少一种的溶剂混合,结晶析出。
本公开提供一种式(I)所示化合物的D晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.766、9.594、14.089、14.471、18.981、19.609、25.987处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的D晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.766、9.594、13.461、14.089、14.471、16.602、18.981、19.609、20.238、22.616、24.187、24.770、25.264、25.987、29.123、30.380、32.714、34.688、39.042、39.535、44.382处有特征峰。
一种式(I)所示化合物的D晶型的制备方法,选自以下方法:
a)将式(I)所示化合物与甲醇混合得溶清液,溶清液与异丙醚混合,结晶析出;
b)将式(I)所示化合物与乙醇-水混合,溶清,挥发析晶。
本公开提供一种式(I)所示化合物的E晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.603、9.209、13.920、15.097、19.700、25.454处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的E晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.603、9.209、12.888、13.920、15.097、18.641、19.194、19.700、20.529、22.876、25.454、25.664、27.775、29.504处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的E晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.603、9.209、12.888、13.920、15.097、18.641、19.194、19.700、20.529、21.863、22.876、23.659、24.349、25.054、25.454、25.664、27.203、27.698、27.775、28.906、29.504、29.965、30.747、31.944、34.430、38.756、39.263、42.577处有特征峰。
一种式(I)所示化合物的E晶型的制备方法,所述方法选自:
a)将式(I)所示化合物与溶剂V混合得溶清液,溶清液与溶剂VI混合,结晶析出,所述溶剂V选自N,N-二甲基甲酰胺、N,N-二甲基甲酰胺、甲醇、二甲基亚砜、二氯甲烷溶剂中的至少一种;所述溶剂VI选自异丙醚、甲基叔丁基醚、异丙醇、二氧六环、丙酮、正己烷、甲苯和乙腈中的至少一种;或
b)将式(I)所示化合物与二氯甲烷-乙腈溶剂混合,溶清,结晶析出。
本公开提供一种式(I)所示化合物的F型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.656、14.068、15.183、18.858、23.235处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的F晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在2θ角为4.656、9.341、12.670、13.443、14.068、14.850、15.183、18.858、19.436、20.518、23.235、25.591、28.386、29.543处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的F晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.656、9.341、12.670、13.443、14.068、14.850、15.183、16.122、18.032、18.858、19.436、20.518、22.150、22.571、23.235、24.442、24.863、25.591、26.585、27.765、28.386、28.934、29.543、30.245、31.113、32.116、32.491、36.608、38.199、38.620、40.679、43.206处有特征峰。
本公开提供一种式(I)所示化合物的F晶型的制备方法,将式(I)所示化合物与乙醇-水混合,结晶析出。
本公开提供一种式(I)所示化合物的G晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.869、9.735、13.290、14.713、20.020处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的G晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.869、9.735、10.863、13.290、14.713、14.968、17.852、19.399、20.020、20.593、21.796、22.793、24.251、24.681、25.510、25.907、26.327、27.617、30.155处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的G晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.869、9.735、10.863、13.290、14.713、14.968、17.852、 19.399、20.020、20.593、21.796、22.793、24.251、24.681、25.510、25.907、26.327、27.617、28.051、29.696、30.155、31.101、32.405、33.402、35.019、39.615、41.021、45.193、46.644、54.898处有特征峰。
一种式(I)所示化合物的G晶型的制备方法,将式(I)所示化合物与乙醇-水混合,溶清,与水混合,结晶析出,40℃干燥3天。
本公开提供一种式(I)所示化合物的H晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.608、12.983、13.476、17.716、20.144、23.371处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的H晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.608、11.238、12.983、13.476、17.716、18.227、19.392、20.144、21.435、21.914、22.935、23.371、23.814、25.416、30.620处有特征峰。
可选的实施方案中,本公开提供的式(I)所示化合物的H晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.608、11.238、11.718、12.983、13.476、14.485、17.716、18.227、19.392、20.144、21.435、21.914、22.935、23.371、23.814、25.416、26.499、28.195、28.887、30.620、31.767、32.874、33.970、34.839、35.854、37.045、38.478、39.958、41.311、43.925、44.582处有特征峰。
一种式(I)所示化合物的H晶型的制备方法,将式(I)所示化合物与乙醇-水混合,结晶析出。
在某些实施方式中,本公开所述的晶型的制备方法还包括过滤、洗涤或干燥步骤。
本公开提供一种经有上述制备方法制备得到的式(I)所示化合物的A晶型、B晶型、C晶型、D晶型、E晶型、F晶型、G晶型及H晶型。
可选的实施方案中,本公开中式(I)所示化合物及其对应晶型,每一个氘原子(D)具有至少20%的丰度。
可选的实施方案中,本公开中式(I)所示化合物及其对应晶型,每一个氘原子(D)具有至少50%的丰度。
可选的实施方案中,本公开中式(I)所示化合物及其对应晶型,每一个氘原子(D)具有至少90%的丰度。
可选的实施方案中,本公开中式(I)所示化合物及其对应晶型,每一个氘原子(D)具有至少98%的丰度。
本公开还提供了一种药物组合物,含前述式(I)所示化合物的晶型,或由前述方法制备得到的式(I)所示化合物的晶型,或混合物,和任选自药学上可接受的载体、稀释剂或赋形剂。
本公开还提供了由前述式(I)所示化合物的晶型制备得到的药物组合物。
本公开还提供了一种药物组合物的制备方法,包括将前述式(I)所示化合物的晶型,或由前述方法制备得到的式(I)所示化合物的晶型,或其混合物与药学上可接受的载体、稀释剂或赋形剂混合的步骤。
本公开还提供了前述式(I)所示化合物的晶型,或由前述方法制备得到的式(I)所示化合物的晶型,或其混合物,或前述组合物,或由前述方法制备得到的组合物在制备制备治疗与SHP2调节有关的疾病或病症的药物中的用途。
本公开还提供了前述式(I)所示化合物的晶型,或由前述方法制备得到的式(I)所示化合物的晶型,或其混合物,或前述组合物,或由前述方法制备得到的组合物在制备制备预防和/或***或癌症的药物中的用途。
本公开还提供了前述式(I)所示化合物的晶型,或由前述方法制备得到的式(I)所示化合物的晶型,或前述组合物,或由前述方法制备得到的组合物在制备预防或者治疗努南综合征、豹皮综合征的药物中的用途。
本公开还提供了前述式(I)所示化合物的晶型,或由前述方法制备得到的式(I)所示化合物的晶型,或前述组合物,或由前述方法制备得到的组合物在制备预防或者治疗幼年性骨髓单核细胞白血病、神经母细胞瘤、黑素瘤、急性骨髓性白血病、乳腺癌、食管癌、肺癌、结肠癌、头癌、胰腺癌、头和颈鳞状细胞癌、胃癌、肝癌、间变性大细胞淋巴瘤和成胶质细胞瘤药物中的用途。
本公开所述的“2θ或2θ角度”是指衍射角,θ为布拉格角,单位为°或度;每个特征峰2θ的误差范围为±0.20,可以为-0.20、-0.19、-0.18、-0.17、-0.16、-0.15、-0.14、-0.13、-0.12、-0.11、-0.10、-0.09、-0.08、-0.07、-0.06、-0.05、-0.04、-0.03、-0.02、-0.01、0.00、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20。
本公开所述的“结晶析出”包括但不限于搅拌结晶、降温结晶、打浆结晶和挥发结晶。
本公开中所述的“差示扫描量热分析或DSC”是指在样品升温或恒温过程中,测量样品与参考物之间的温度差、热流差,以表征所有与热效应有关的物理变化和化学变化,得到样品的相变信息。
本公开中所述干燥温度一般为25℃-100℃,优选40℃-70℃,可以常压干燥,也可以减压干燥。
除另有说明,当一个位置被特别地指定为氘(D)时,该位置应理解为具有大于氘的天然丰度(其为0.015%)至少1000倍的丰度的氘(即,至少10%的氘掺入)。示例中化 合物的具有大于氘的天然丰度可以是至少1000倍的丰度的氘、至少2000倍的丰度的氘、至少3000倍的丰度的氘、至少4000倍的丰度的氘、至少5000倍的丰度的氘、至少6000倍的丰度的氘或更高丰度的氘。
WO2020259679A的内容,一并引用到本公开中。
附图说明
图1.式(I)所示化合物无定型XRPD谱图。
图2.式(I)所示化合物A晶型XRPD谱图。
图3.式(I)所示化合物A晶型TGA谱图。
图4.式(I)所示化合物A晶型DSC谱图。
图5.式(I)所示化合物A晶型DVS前后XRPD对比谱图。
图6.式(I)所示化合物B晶型XRPD谱图。
图7.式(I)所示化合物C晶型XRPD谱图。
图8.式(I)所示化合物D晶型XRPD谱图。
图9.式(I)所示化合物E晶型XRPD谱图。
图10.式(I)所示化合物F晶型XRPD谱图。
图11.式(I)所示化合物G晶型XRPD谱图。
图12.式(I)所示化合物的H晶型XRPD谱图。
具体实施方式
通过以下实施例和实验例进一步详细说明本发明。这些实施例和实验例仅用于说明性目的,而并不用于限制本发明的范围。
实验所用仪器的测试条件:
化合物的结构是通过核磁共振(NMR)或/和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用Bruker AVANCE-400核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6)、氘代氯仿(CDCl3)、氘代甲醇(CD3OD),内标为四甲基硅烷(TMS)。
MS的测定用Shimadzu 2010 Mass Spectrometer或Agilent 6110A MSD质谱仪。
HPLC的测定使用安捷伦1260DAD高压液相色谱仪(Sunfire C18 150×4.6mm色谱柱)和Thermo U3000高压液相色谱仪(Gimini C18 150×4.6mm色谱柱)。
HPLC的测定使用Shimadzu LC-20A systems、Shimadzu LC-2010HT series或安捷伦Agilent 1200 LC高压液相色谱仪(Ultimate XB-C18 3.0*150mm色谱柱或Xtimate C18  2.1*30mm色谱柱)。
手性HPLC分析测定使用Chiralpak IC-3 100×4.6mm I.D.,3μm、Chiralpak AD-3 150×4.6mm I.D.,3μm、Chiralpak AD-3 50×4.6mm I.D.,3μm、Chiralpak AS-3 150×4.6mm I.D.,3μm、Chiralpak AS-3 100×4.6mm I.D.,3μm、ChiralCel OD-3 150×4.6mm I.D.,3μm、Chiralcel OD-3 100×4.6mm I.D.,3μm、ChiralCel OJ-H 150×4.6mm I.D.,5μm、Chiralcel OJ-3 150×4.6mm I.D.,3μm色谱柱;
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm~0.2mm,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。
柱层析一般使用烟台黄海硅胶100~200目、200~300目或300~400目硅胶为载体。
手性制备柱使用DAICEL CHIRALPAK IC(250mm*30mm,10μm)或Phenomenex-Amylose-1(250mm*30mm,5μm)。
CombiFlash快速制备仪使用Combiflash Rf150(TELEDYNE ISCO)。
激酶平均抑制率及IC 50值的测定用NovoStar酶标仪(德国BMG公司)。
本公开的已知的起始原料可以采用或按照本领域已知的方法来合成,或可购买自ABCR GmbH&Co.KG,Acros Organics,Aldrich Chemical Company,韶远化学科技(Accela ChemBio Inc)、达瑞化学品等公司。
实施例中无特殊说明,反应能够均在氩气氛或氮气氛下进行。
氩气氛或氮气氛是指反应瓶连接一个约1L容积的氩气或氮气气球。
氢气氛是指反应瓶连接一个约1L容积的氢气气球。
加压氢化反应使用Parr 3916EKX型氢化仪和清蓝QL-500型氢气发生器或HC2-SS型氢化仪。
氢化反应通常抽真空,充入氢气,反复操作3次。
微波反应使用CEM Discover-S 908860型微波反应器。
实施例中无特殊说明,溶液是指水溶液。
实施例中无特殊说明,反应的温度为室温,为20℃~30℃。
实施例中的反应进程的监测采用薄层色谱法(TLC),反应所使用的展开剂,纯化化合物采用的柱层析的洗脱剂的体系和薄层色谱法的展开剂体系包括:A:二氯甲烷/甲醇体系,B:正己烷/乙酸乙酯体系,C:石油醚/乙酸乙酯体系,D:石油醚/乙酸乙酯/甲醇,溶剂的体积比根据化合物的极性不同而进行调节,也可以加入少量的三乙胺和醋酸等碱性或酸性试剂进行调节。
XRPD为X射线粉末衍射检测:测定使用BRUKERD8型X射线衍射仪进行,具体采集信息:Cu阳极(40kV,40mA),Cu-Kα1射线
Figure PCTCN2021141214-appb-000003
Kα2射线
Figure PCTCN2021141214-appb-000004
Kβ射线
Figure PCTCN2021141214-appb-000005
扫描方式:θ/2θ,扫描范围:3-48°。DSC为差示扫描量热:测定采用METTLER TOLEDO DSC3+,升温速率10℃/min,25-350℃,氮气吹扫速度50mL/min。
TGA为热重分析:检测采用METTLER TOLEDO TGA2,升温速率10℃/min,温度具体范围参照相应图谱,氮气吹扫速度50mL/min。
DVS为动态水分吸附:采用Surface Measurement Systems advantage 2,湿度从50%起,考察湿度范围为0%-95%,步进为10%,判断标准为360min之内质量变化小于0.002%,循环两圈。
代谢产物14结构如下:
Figure PCTCN2021141214-appb-000006
实施例1
(S)-1′-(8-((2-氨基-3-氯吡啶-4-基)硫基)咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺
Figure PCTCN2021141214-appb-000007
Figure PCTCN2021141214-appb-000008
第一步
(3-溴吡啶-2-基)甲醇1b
将化合物1a(17.2g,79.6mmol)溶于甲醇(50mL),在0℃下加入硼氢化钠(15.1g,398mmol)。反应体系于室温条件下搅拌12小时。反应结束后加入饱和氯化铵水溶液(600mL),乙酸乙酯(200mL×3)萃取。合并有机相,饱和氯化钠(200mL×2)洗涤,无水硫酸钠干燥,减压浓缩得到白色固体化合物1b(9.7g,产率:64.8%)。
MS(ESI)m/z 187.8[M+H] +
1H NMR:(400MHz,MeOD-d 4)δ=8.52(d,J=4.8Hz,1H),8.01(dd,J=1.2,8.0Hz,1H),7.26(dd,J=4.4,6.4Hz,1H),4.77(s,2H).
第二步
3-溴-2-(氯甲基)吡啶1c
将化合物1b(9.70g,51.6mmol)溶于二氯甲烷(20mL),室温下加入二氯亚砜(7.48mL,103mmol)。室温条件下搅拌3小时。反应完成后在0℃下加入饱和碳酸氢钠水溶液(300mL),二氯甲烷萃取(80mL×3)。合并有机相,饱和氯化钠(100mL)洗涤,无水硫酸钠干燥。减压浓缩得到粉红油状物化合物1c(10.3g,产率:96.9%)。
MS(ESI)m/z 207.7[M+H] +
1H NMR(400MHz,Methanol-d4)□□=8.55-8.45(m,1H),8.12-7.99(m,1H),7.37-7.21(m,1H),4.84-4.80(m,2H).
第三步
1-(叔丁基)4-乙基4-((3-溴吡啶-2-基)甲基)哌啶-1,4-二羧酸酯1e
氮气氛下,将化合物1c(9.97g,38.7mmol)溶于四氢呋喃(80mL)中,-78℃条件下逐滴滴加LDA(13.5mL,2M四氢呋喃和正己烷溶液)。滴加完毕后在-78℃下搅拌1小时。再在-78℃下逐滴滴加化合物1d(8.8g,35.07mmol),并继续在-78℃条件下搅拌9小时。反应完成后加入饱和氯化铵水溶液(400mL),乙酸乙酯萃取(100mL×3),合并有机相,饱和氯化钠溶液洗涤(100mL×2),无水硫酸钠干燥。真空浓缩得到粗产品,用硅胶色谱法以石油醚、乙酸乙酯洗脱纯化,得到黄色油状物化合物1e(14.8g,产率:89.4%)。
MS(ESI)m/z 429.0[M+H] +
第四步
4-((3-溴吡啶-2-基)甲基)-1-(叔丁氧羰基)哌啶-4-羧酸1f
将化合物1e(14.8g,34.6mmol)溶于甲醇(3mL),0℃条件下加入氢氧化钠水溶液(13.8g,346mmol,溶于40mL水),80℃条件下搅拌12小时。反应完成后将反应液浓缩,再向其中加入乙酸乙酯(300mL)和水(300mL)。加入饱和氢氧化钠水溶液(10mL)调节pH至12,分离水相,并用乙酸乙酯洗涤(80mL×2)。向所得水相中加入2N盐酸(25mL)调节pH至3,乙酸乙酯萃取(100mL×3)。合并有机相,饱和氯化钠溶液洗涤(150mL),无水硫酸钠干燥,减压浓缩得到白色固体化合物1f(11.4g,产率:82.4%)
MS(ESI)m/z 344.0[M-56+H] +
第五步
叔丁基5-羰基-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-1′-羧酸酯1g
氮气氛下,在-15℃条件下将氢化钠(60%煤油混合物,1.32g,33.1mmol)加入到化合物1f(11.0g,27.6mmol)的四氢呋喃(100mL)中。在-15℃条件下搅拌1小时。再将反应液冷却到-78℃,逐滴滴加2.5M正丁基锂的正己烷溶液(16.5mL,41.3mmol),在-78℃条件下搅拌1小时。反应完成后在0℃下加入饱和氯化铵水溶液(400mL),乙酸乙酯萃取(100mL×3)。合并有机相,饱和氯化钠(100mL×2)洗涤,无水硫酸钠干燥。真空浓缩得到粗产品,用硅胶色谱法以二氯甲烷、甲醇洗脱纯化,得到白色固体化合物1g(4.60g,产率:55.2%)。
MS(ESI)m/z 246.9[M-56+H] +.
1H NMR(400MHz,Methanol-d4)□□=8.82(dd,J=1.6,4.8Hz,1H),8.12(dd,J=1.6,7.6Hz,1H),7.50(dd,J=4.8,7.6Hz,1H),4.08(td,J=3.6,13.6Hz,2H),3.25(s,2H),3.12(br s,2H),1.88-1.77(m,2H),1.51(br s,2H),1.49(s,9H).
第六步
叔丁基(S)-5-((S)-叔丁基亚磺酰氨基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-1′-羧酸酯1i
氮气氛下,将钛酸四乙酯(9.4mL,44.6mmol)加入到化合物1g(4.50g,14.9mmol)的无水甲苯(80mL)中,室温条件下搅拌10分钟。再将化合物1h(5.4g,44.6mmol)加入反应液中,120℃条件下反应5小时。冷却至0℃并加入硼氢化锂(1.58g,89.2mmol)继续反应30分钟后,升温至室温搅拌1小时。反应完成后在0℃下逐滴滴加甲醇(20mL)。再加入水(100mL)和乙酸乙酯(100mL)并搅拌5分钟。硅藻土滤去悬浮物并用乙酸乙酯(300mL)和水(300mL)洗涤。合并有机相,饱和氯化钠(500mL)洗涤,无水硫酸钠干燥。减压浓缩得到粗产品,用硅胶色谱法以石油醚、乙酸乙酯洗脱纯化,得到黄色固体化合物1i(4.40g,产率:72.6%)
MS(ESI)m/z 408.1[M+H] +
第七步
(S)-N-((S)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺1j
将化合物1i(4.40g,10.8mmol)溶于二氯甲烷(15mL),0℃条件下加入三氟乙酸(5mL),0℃条件下搅拌1小时。减压浓缩得到粗产品,加入4M氢氧化钠水溶液至pH=11。氯仿和异丙醇(体积比3∶1)萃取(30mL×3),合并有机相,无水硫酸钠干燥。减压浓缩得到黄色油状产物1j(3.32g,产率:100%)。
MS(ESI)m/z 307.9[M+H] +
第八步
(S)-N-((S)-1′-(8-溴咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺1l
氮气氛下,将化合物1j(3.30mg,10.7mmol)和化合物1k(2.50g,10.7mmol)溶于二甲基亚砜(40mL),加入二异丙基乙基胺(7.7g,59.8mmol),90℃条件下搅拌2小时。加入乙酸乙酯(50mL)和水(100mL),乙酸乙酯萃取(50mL×2),合并有机相,饱和氯化钠溶液洗涤(50mL×3),无水硫酸钠干燥。减压浓缩得到粗产物,用硅胶色谱法以二氯甲烷、甲醇洗脱纯化得到化合物1l(2.96g,产率:54.6%)
MS(ESI)m/z 503.1[M+H] +
1H NMR(400MHz,METHANOL-d4)□=8.41(d,J=4.8Hz,1H),7.97(s,1H),7.92(d,J=1.5Hz,1H),7.81(d,J=7.5Hz,1H),7.66(d,J=1.5Hz,1H),7.32(dd,J=5.0,7.5Hz,1H),4.61(br s,2H),3.95-3.83(m,2H),3.30-3.21(m,2H),2.99(d,J=16.6Hz,1H),2.40(dt,J=4.0,12.7Hz,1H),2.14(dt,J=3.6,12.4Hz,1H),1.82(br d,J=13.3Hz,1H),1.54(br d,J=12.3Hz, 1H),1.36(s,9H).
第九步
(S)-N-((S)-1′-(8-((2-氨基-3-氯吡啶-4-基)硫基)咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺1n
氮气氛下,将化合物1l(70mg,0.14mmol)和化合物1m(33mg,0.21mmol,采用专利申请“WO2015107495A1”公开的方法制备而得)溶于1,4-二氧六环(1mL),室温条件下加入二异丙基乙胺(54mg,0.42mmol)。加入三(二亚苄基丙酮)二钯(13mg,0.014mmol)和2-二环己基膦-2’,6’-二甲氧基联苯(14mg,0.028mmol),110℃条件下加热搅拌12小时。反应完成后将反应液过滤,所得滤液浓缩,残余物用C-18反相色谱法以水、甲醇洗脱纯化得到棕色油状化合物1n(45mg,产率:55.1%)。
MS(ESI)m/z 583.1[M+H] +
第十步
(S)-1′-(8-((2-氨基-3-氯吡啶-4-基)硫基)咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺1
将化合物1n(25mg,0.035mmol)溶于1,4-二氧六环中,0℃条件下加入氯化氢的1,4-二氧六环溶液(0.2mL,4N),2-7℃下反应1小时。反应完成后加入水(30mL),乙酸乙酯萃取(15mL×2)。合并有机相,饱和氯化钠溶液洗涤(20mL),无水硫酸钠干燥,减压浓缩后残余物用C-18反相色谱法纯化得到化合物1(3.9mg,产率:19.0%)。
MS(ESI)m/z 479.1[M+H] +
1H NMR:(400MHz,MeOD-d 4)δ=8.38(d,J=4.8Hz,1H),8.06(s,1H),7.90-7.84(m,2H),7.57(s,1H),7.50(d,J=5.2Hz,1H),7.30(dd,J=5.6,7.6Hz,1H),5.90(d,J=6.0Hz,1H),4.16(s,1H),4.06(br d,J=13.6Hz,2H),3.48-3.36(m,2H),3.30-3.24(m,1H),3.01(br d,J=16.4Hz,1H),2.20-2.01(m,2H),1.80-1.71(m,1H),1.61-1.53(m,1H).
实施例2
(S)-1′-(8-((3-氯-2-(甲基氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺
Figure PCTCN2021141214-appb-000009
Figure PCTCN2021141214-appb-000010
第一步
(S)-N-((S)-1′-(8-溴-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺2b
将化合物1j(260mg,0.85mmol)和化合物2a(271mg,1.10mmol)溶于二甲基亚砜(3mL),加入二异丙基乙基胺(547mg,4.23mmol),90℃条件下搅拌1小时。向反应液中加入水(30mL),乙酸乙酯萃取(30mL×3)。合并有机相,再用饱和氯化钠溶液洗涤(50mL×2),无水硫酸钠干燥,过滤。滤液通过减压浓缩得到粗产物,用硅胶色谱法以甲醇、二氯甲烷洗脱纯化得到化合物2b(370mg,产率:84.5%)
MS(ESI)m/z 518.8[M+H] +
1H NMR(400MHz,Methanol-d4)δ=8.39(d,J=4.8Hz,1H),7.82(d,J=1.2Hz,1H),7.79(d,J=8.0Hz,1H),7.55(d,J=1.6Hz,1H),7.30(dd,J=4.8Hz,7.6Hz,1H),3.90-3.81(m,2H),3.37-3.32(m,1H),3.29-3.17(m,3H),3.00-2.92(m,1H),2.57(s,3H),2.37(td,J=4.4Hz,12.8Hz,1H),2.13(td,J=4.4Hz,13.2Hz,1H),1.83-1.75(m,1H),1.56-1.49(m,1H),1.34(s,9H).
第二步
(S)-N-((S)-1′-(8-((3-氯-2-(甲基氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺2d
将化合物2b(50mg,0.10mmol),化合物2c(77mg,0.39mmol)和磷酸钾(41mg,0.19mmol)溶于1,4-二氧六环(1mL)中,在搅拌的情况下,氮气置换三次。氮气气氛下,快速的加入1,10-菲罗啉(3.5mg,0.02mmol)和碘化亚铜(1.8mg,0.01mmol),再氮气置换三次,并在130℃条件下加热搅拌10小时。向反应液加入水(50mL)并用乙酸乙酯萃取(40mL×3),合并有机相,饱和氯化钠溶液洗涤(70mL×2),无水硫酸钠干 燥,过滤。滤液通过减压浓缩得到粗产物,用硅胶板层析分离技术,用二氯甲烷、甲醇层析纯化得到化合物2d(36mg,产率:58.5%)。
MS(ESI)m/z 611.1[M+H] +
第三步
(S)-1′-(8-((3-氯-2-(甲基氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺2
将化合物2d(36mg,0.059mmol)溶于干燥的二氧六环(1mL),10℃条件下滴加氯化氢的1,4-二氧六环溶液(1mL,4N),10℃反应15分钟。向悬浊的反应液中加入水(30mL),并用乙酸乙酯萃取(30×3)。将水相用饱和碳酸氢钠水溶液调节pH=8,再用氯仿萃取(40mL×4)。将所有有机相合并,无水硫酸钠干燥,过滤,滤液进行减压浓缩得到粗产物。粗产物通过高效液相色谱法制备纯化并冻干得到化合物2(2.3mg,产率:7.7%)。
MS(ESI)m/z 507.3[M+H] +
1H NMR(400MHz,Methanol-d4)δ=8.35(d,J=4.4Hz,1H),7.85(d,J=7.6Hz,1H),7.76(d,J=1.6Hz,1H),7.58(d,J=5.6Hz,1H),7.48(d,J=1.6Hz,1H),7.29(dd,J=5.2Hz,7.6Hz,1H),5.75(d,J=6.0Hz,1H),4.12-4.00(m,3H),3.46-3.34(m,2H),3.29-3.23(m,1H),3.01-2.92(m,4H),2.55(s,3H),2.17-2.01(m,2H),1.74(d,J=13.6Hz,1H),1.53(d,J=13.6Hz,1H).
实施例3
(S)-1′-(8-((3-氯-2-((甲基-d3)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺
Figure PCTCN2021141214-appb-000011
中间体3e
2-((甲基-d 3)氨基)-3-氯吡啶-4-硫醇钠
Figure PCTCN2021141214-appb-000012
Figure PCTCN2021141214-appb-000013
第一步
3-氯-4-碘-N-(甲基-d 3)吡啶-2-胺3b
将化合物3a(3.0g,12mmol)和甲基-d 3-胺盐酸盐(1.2g,16mmol)溶于DMSO(50mL),加入DIEA(5.8mL,35mmol)。70℃下反应12小时。反应结束后加入冰水混合物(50mL),过滤,冰水洗涤(50mL×3)。所得固体减压干燥得到化合物3b(2.8g,产率:83%)。
MS(ESI)m/z 272.0[M+H] +
1H NMR:(400MHz,CDCl 3)δ=7.67(d,J=5.2Hz,1H),7.02(d,J=5.2Hz,1H),5.14(br s,1H)。
第二步
3-((3-氯-2-((甲基-d 3)氨基)吡啶-4-基)硫基)丙酸乙酯3d
将化合物3b(2.7g,10mmol)溶于二氯甲烷(30mL),加入3-硫基丙酸乙酯3c(2.0g,15mmol),三(二亚苄基丙酮)(0.46g,0.50mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(0.58g,0.99mmol)和N,N-二异丙基乙基胺(4.9mL,30mmol)。氮气氛下100℃条件下反应3小时。反应完成后过滤,滤液减压浓缩,所得残留物用硅胶色谱法以乙酸乙酯、石油醚洗脱纯化得到化合物3d(2.5g,产率:90%)。
MS(ESI)m/z 278.1[M+H] +
1H NMR(400MHz,CDCl 3)δ=7.96(d,J=5.6Hz,1H),6.45(d,J=5.6Hz,1H),5.00(brs,1H),4.19(q,J=7.2Hz,2H),3.23(t,J=7.6Hz,2H),2.72(t,J=7.6Hz,2H),1.28(t,J=7.2Hz,3H)。
第三步
2-((甲基-d 3)氨基)-3-氯吡啶-4-硫醇钠中间体3e
将化合物3d(2.4g,8.6mmol)溶于四氢呋喃(25mL)中,0℃条件下加入乙醇钠乙醇溶液(3.5g,10mmol,20%w/w,),0℃下反应1小时。反应完成后,将反应液浓缩,加入50∶1甲基叔丁基醚和二氯甲烷的混合溶液(20mL),过滤,50∶1甲基叔丁基醚和二氯甲烷洗涤(10mL×3)。所得固体真减压干燥得到中间体3e(2.0g,产率:99%)。
MS(ESI)m/z 178.0[M+H] +
1H NMR(400MHz,DMSO_d 6)δ=7.12(d,J=5.6Hz,1H),6.43(d,J=5.2Hz,1H),5.29(s,1H)。
第四步
(S)-N-((S)-1′-(8-((3-氯-2-((甲基-d 3)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺3f
氮气氛下,将化合物2b(200mg,0.39mmol)中间体3e(156mg,0.77mmol)溶于1,4-二氧六环(5mL),加入碘化亚铜(74mg,0.39mmol),N,N′-二甲基乙二胺(34mg,0.39mmol)和磷酸钾(246mg,1.2mmol),130℃氮气氛下加热反应15小时。反应完成后加入氨水(30mL)和乙酸乙酯(15mL),水相以乙酸乙酯萃取(25mL×3),合并所有有机相,饱和氯化钠水溶液洗涤,无水硫酸钠干燥,浓缩。所得残余物用硅胶色谱法以二氯甲烷、甲醇洗脱纯化得到化合物3f(130mg,产率:55%)。
MS(ESI)m/z 614.3[M+H] +
1H NMR(400MHz,CDCl 3)δ=8.47(d,J=4.4Hz,1H),7.68(d,J=5.6Hz,1H),7.64(d,J=7.2Hz,1H),7.48(dd,J=1.2,9.2Hz,2H),7.17(dd,J=4.8,7.6Hz,1H),5.73(d,J=5.6Hz,1H),5.28(s,1H),5.03(s,1H),4.64(d,J=10.0Hz,1H),4.05-3.93(m,2H),3.73(d,J=10.0Hz,1H),3.33-3.16(m,3H),2.94(d,J=16.4Hz,1H),2.54(s,3H),2.52-2.44(m,1H),2.13(dt,J=4.0,12.4Hz,1H),1.82-1.74(m,1H),1.52-1.44(m,1H),1.30(s,9H)。
第五步
(S)-1′-(8-((3-氯-2-((甲基-d 3)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺3
将化合物3f(130mg,0.21mmol)溶于干燥的二氯甲烷(4.5mL),0℃条件下滴加氯化氢的1,4-二氧六环溶液(1.5mL,4N),20℃下反应1小时。向反应液中加入0.1M氢氧化钠水溶液(30mL)调节pH=14,再用二氯甲烷萃取(30mL×2)。合并有机相,无水硫酸钠干燥,过滤,滤液进行减压浓缩得到粗产物。粗产物通过反相色谱法以0.1%氨水、乙腈洗脱纯化得到化合物3(65mg,产率:41%)。经X-射线粉末衍射检测,该固体为无定型,XRPD谱图如图1所示。
MS(ESI)m/z 510.2[M+H] +
1H NMR(400MHz,MeOD_d4)δ=8.36(d,J=4.4Hz,1H),7.86(d,J=7.6Hz,1H),7.76(d,J=1.6Hz,1H),7.57(d,J=5.6Hz,1H),7.47(d,J=1.6Hz,1H),7.29(dd,J=4.8,7.6Hz,1H),5.75(d,J=6.0Hz,1H),4.11(s,1H),4.05(br d,J=13.6Hz,2H),3.45-3.35(m,2H),3.27(d,J=16.8Hz,1H),2.97(d,J=16.4Hz,1H),2.55(s,3H),2.17-2.03(m,2H),1.74(br d,J=14.0Hz,1H), 1.53(br d,J=13.6Hz,1H)。
实施例4
(S)-1′-(8-((2-(二(甲基-d3)氨基)-3-氯吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺
Figure PCTCN2021141214-appb-000014
中间体4a
2-(二(甲基-d 3)氨基)-3-氯吡啶-4-硫醇钠
Figure PCTCN2021141214-appb-000015
中间体4a的合成步骤参见中间体3e,其中以化合物二甲基-d 6-胺盐酸盐替换甲基-d 3-胺盐酸盐制备获得前述中间体4a。
MS(ESI)m/z 195.1[M+H] +
1H NMR(400MHz,DMSO_d 6)δ=7.24(d,J=5.2Hz,1H),6.79(d,J=5.2Hz,1H)。
化合物4的合成步骤参见实施例3,其中以中间体4a替换中间体3e制备获得化合物4。
MS(ESI)m/z 527.2[M+H] +
1H NMR(400MHz,MeOD_d 4)δ=8.36(d,J=4.4Hz,1H),7.86(d,J=7.6Hz,1H),7.77(d,J=1.6Hz,1H),7.72(d,J=5.2Hz,1H),7.47(d,J=1.6Hz,1H),7.29(dd,J=5.2,7.6Hz,1H),6.06(d,J=5.6Hz,1H),4.11(s,1H),4.06(br d,J=13.6Hz,2H),3.44-3.37(m,2H),3.25(s,1H),2.97(d,J=16.8Hz,1H),2.56(s,3H),2.14-2.03(m,2H),1.75(br d,J=13.2Hz,1H),1.54(br d,J=13.6Hz,1H)。
实施例5
(S)-1′-(8-((3-氯-2-((甲基-d2)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺
Figure PCTCN2021141214-appb-000016
中间体5f
Figure PCTCN2021141214-appb-000017
第一步
N,N-双(4-甲氧基苄基)甲胺-d 25b
将化合物5a(4.0g,16mmol)溶于甲醇(50mL),室温下加入氘代甲醛的氘水溶液(3.7g,23mmol,20%w/w)和醋酸(0.93g,16mmol)。再加入氰基硼氢化钠(2.9g,47mmol),室温下反应15小时。反应完成后,将反应液浓缩,加入2M氢氧化钠溶液调节pH至9~10,乙酸乙酯萃取(30mL×3)。合并有机相,无水硫酸钠干燥,减压浓缩,所得残余物用硅胶色谱法以石油醚、乙酸乙酯洗脱纯化得到化合物5b(4.0g,产率:95%)。
MS(ESI)m/z 274.3[M+H] +
1H NMR:(400MHz,CDCl 3)δ=7.28-7.25(m,4H),6.89-6.84(m,4H),3.88-3.74(m,7H),3.45(s,4H)。
第二步
N-(4-甲氧基苄基)甲烷-d 2-胺盐酸盐5c
将化合物5b(1.0g,3.7mmol)溶于甲醇(20mL),加入10%钯碳(含水量1%,100mg),20%氢氧化钯(100mg)和浓盐酸(0.5mL)。50psi氢气氛下,80℃反应12小时。过滤,甲醇(30mL×3)洗涤,滤液减压浓缩干燥得到化合物5c(0.69g,产率:99%)。
MS(ESI)m/z 153.8[M+H] +
1H NMR(400MHz,DMSO-d 6)δ=9.18(br s,2H),7.45(d,J=8.4Hz,2H),6.97(d,J=8.4Hz,2H),4.01(t,J=5.6Hz,2H),3.76(s,3H),2.44(br s,1H)。
第三步
3-氯-4-碘-N-(4-甲氧基苄基)-N-(甲基-d 2)吡啶-2-胺5d
将化合物5c(638mg,3.4mmol)和化合物3a(787mg,3.1mmol)溶于DMSO(10mL),加入DIEA(2.0g,15mmol)。60℃下反应15小时。反应结束后加入冰水混合物(100mL),乙酸乙酯萃取(30mL×3)。合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。所得残余物用硅胶色谱法以石油醚、乙酸乙酯洗脱纯化得到化合物5d(590mg,产率:49%)。
MS(ESI)m/z 391.0[M+H] +
1H NMR:(400MHz,CDCl 3)δ=7.76(d,J=5.2Hz,1H),7.35(d,J=5.2Hz,1H),7.32-7.27(m,2H),6.95-6.81(m,2H),4.45(s,2H),3.82(s,3H),2.80(s,1H)。
第四步
3-((3-氯-2-((4-甲氧基苄基)(甲基-d 2)氨基)吡啶-4-基)硫基)丙酸乙酯5e
将化合物5d(590mg,1.5mmol)溶于1,4-二氧六环(8mL),加入3-硫基丙酸乙酯3c(304mg,2.3mmol),三(二亚苄基丙酮)二钯(69mg,0.076mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(87mg,0.15mmol)和N,N-二异丙基乙胺(586mg,4.5mmol)。氮气氛下100℃条件下反应5小时。反应完成后过滤,滤液减压浓缩,所得残留物用硅胶色谱法以乙酸乙酯、石油醚洗脱纯化得到化合物5e(614mg,产率:94%)。
MS(ESI)m/z 397.1[M+H] +
1H NMR(400MHz,CDCl 3)δ=8.07(d,J=5.6Hz,1H),7.34-7.29(m,2H),6.93-6.83(m,2H),6.71(d,J=5.2Hz,1H),4.43(s,2H),4.20(q,J=7.2Hz,2H),3.81(s,3H),3.24(t,J=7.6Hz,2H),2.80(s,1H),2.75(t,J=7.6Hz,2H),1.29(t,J=7.2Hz,3H)。
第五步
3-氯-2-((4-甲氧基苄基)(甲基-d 2)氨基)吡啶-4-硫醇钠中间体5f
将化合5e(614mg,1.4mmol)溶于四氢呋喃(8mL)中,0℃条件下加入乙醇钠乙醇溶液(582mg,1.7mmol,20%w/w,),0℃下反应1小时。反应完成后,将反应液浓缩,加入甲基叔丁基醚和二氯甲烷的混合溶液(6mL,v/v=50/2),过滤,甲基叔丁基醚洗涤(10mL×3)。所得固体真减压干燥得到中间体5f(445mg,产率:98%)。
MS(ESI)m/z 297.1[M+H] +
1H NMR(400MHz,Methanol_d 4)δ=7.46(d,J=5.4Hz,1H),7.32-7.22(m,2H),7.17(d,J=5.6Hz,1H),6.92-6.76(m,2H),4.25(s,2H),3.77(s,3H),2.61(s,1H)。
第六步
(S)-N-((S)-1′-(8-((3-氯-2-((4-甲氧苄基)(甲基-d 2)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-基)-2-甲基丙烷-2-亚磺酰胺5g
氮气氛下,将化合物2b(153mg,0.30mmol)中间体5f(188mg,0.59mmol)溶于1,4-二氧六环(5mL),加入碘化亚铜(56mg,0.30mmol),N,N′-二甲基乙二胺(52mg,0.59mmol)和磷酸钾(188mg,0.89mmol),130℃氮气氛下加热反应15小时。反应完成后加入氨水(20mL)和乙酸乙酯(10mL),水相以乙酸乙酯萃取(20mL×3),合并所有有机相,饱和氯化钠水溶液洗涤,无水硫酸钠干燥,浓缩。所得残余物用硅胶色谱法以二氯甲烷、甲醇洗脱纯化得到化合物5g(190mg,产率:45%)。
MS(ESI)m/z 733.3[M+H] +
第七步
(S)-1′-(8-((3-氯-2-((甲基-d 2)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺5
将化合物5g(160mg,0.22mmol)溶于TFA中(3mL),室温条件下反应4小时。再在0℃下滴加氯化氢的1,4-二氧六环溶液(1mL,4N),室温反应1小时。向反应液中加入0.1M氢氧化钠水溶液(30mL)调节pH=14,再用二氯甲烷萃取(30mL×2)。合并有机相,无水硫酸钠干燥,过滤,滤液进行减压浓缩得到粗产物。粗产物通过硅胶色谱法以二氯甲烷、甲醇洗脱纯化得到化合物5(51mg,产率:46%)。
MS(ESI)m/z 509.2[M+H] +
1H NMR(400MHz,CDCl 3)δ=8.45(d,J=4.4Hz,1H),7.71(d,J=5.2Hz,1H),7.67(d,J=7.2Hz,1H),7.56(d,J=1.2Hz,1H),7.44(d,J=1.6Hz,1H),7.18(dd,J=5.2,7.6Hz,1H),5.78(d,J=5.6Hz,1H),5.03(d,J=4.4Hz,1H),4.11(s,1H),4.04-3.93(m,2H),3.33(q,J=11.6Hz,2H),3.25(d,J=16.8Hz,1H),3.00(br s,1H),2.93(d,J=16.8Hz,1H),2.58(s,3H),2.11(dt, J=4.0,12.8Hz,1H),2.02(dt,J=4.4,12.4Hz,1H),1.81-1.73(m,1H),1.52-1.47(m,1H)。
实施例6
(S)-1′-(8-((3-氯-2-((甲基-d)氨基)吡啶-4-基)硫代)-7-甲基咪唑并[1,2-c]嘧啶-5-基)-5,7-二氢螺[环戊二烯并[b]吡啶-6,4′-哌啶]-5-胺
Figure PCTCN2021141214-appb-000018
中间体6f
Figure PCTCN2021141214-appb-000019
中间体6f
N,N-双(4-甲氧基苄基)甲胺-d 6a
将化合物5a(3.0g,12mmol)溶于无水甲醇(30mL),室温下加入甲醛水溶液(2.6mL,37%w/w)和醋酸(0.67mL,12mmol)。室温下反应2小时,再在0℃下加入硼氘化钠(0.97g,23mmol),室温下再反应1.5小时。反应完成后,将反应液浓缩,加入水(50mL),乙酸乙酯萃取(30mL×3)。合并有机相,无水硫酸钠干燥,减压浓缩得到化合物6a(3.3g,产率:94%)。
1H NMR:(400MHz,CDCl 3)δ=7.30-7.25(m,4H),6.91-6.84(m,4H),3.81(s,6H),3.45(s,4H),2.13(s,2H)。
第二步
(4-甲氧基苄基)(甲基-d)氨基甲酸苄酯6b
将化合物6a(3.3g,12mmol)溶于甲苯(30mL),加入氯甲酸苄酯(4.1mL,29mmol),氮气氛下120℃反应14小时。反应完成后将反应液减压浓缩,加入乙酸乙酯(50mL), 水(20mL)、饱和食盐水(20mL×2)洗涤,有机相无水硫酸钠干燥,减压浓缩。残余物用硅胶色谱法以石油醚、乙酸乙酯洗脱纯化得到化合物6b(3.8g粗品)。
1H NMR(400MHz,CDCl 3)δ=7.43-7.31(m,5H),7.21(d,J=7.6Hz,1H),7.13(d,J=7.6Hz,1H),6.91-6.82(m,2H),5.20(s,2H),4.45(s,2H),3.82(s,3H),2.86(d,J=10.8Hz,2H)。
第三步
N-(4-甲氧基苄基)甲烷-d-胺盐酸盐6c
将化合物6b(3.8g,12mmol)溶于甲醇(40mL),加入10%钯碳(1.0g)。氢气氛下40℃反应16小时。过滤,甲醇(80mL)洗涤,滤液减压浓缩干燥得到化合物6c(2g,产率:99%)。
MS(ESI)m/z 152.9[M+H] +
第四步
3-氯-4-碘-N-(4-甲氧基苄基)-N-(甲基-d)吡啶-2-胺6d
将化合物6c(2g,12mmol)和化合物3a(2.3g,8.8mmol)溶于DMSO(4mL),加入DIEA(4.3mL,26mmol)。60℃下反应5小时。反应结束后加入水(50mL),乙酸乙酯萃取(30mL×3)。合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。所得残余物用硅胶色谱法以石油醚、乙酸乙酯洗脱纯化得到化合物6d(2.6g,产率:76%)。
MS(ESI)m/z 390.0[M+H] +
1H NMR:(400MHz,CDCl 3)δ=7.76(d,J=4.8Hz,1H),7.35(d,J=5.2Hz,1H),7.32-7.27(m,2H),6.92-6.83(m,2H),4.45(s,2H),3.81(s,3H),2.82(s,2H)。
第五步
3-((3-氯-2-((4-甲氧基苄基)(甲基-d)氨基)吡啶-4-基)硫基)丙酸乙酯6e
将化合物6d(2.6g,6.7mmol)溶于1,4-二氧六环(30mL),加入3-硫基丙酸乙酯3c(1.3g,10mmol),三(二亚苄基丙酮)二钯(310mg,0.34mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(390mg,0.67mmol)和N,N-二异丙基乙胺(3.3mL,20mmol)。氮气氛下100℃条件下反应6小时。反应完成后过滤,滤液减压浓缩,所得残留物用硅胶色谱法以乙酸乙酯、石油醚洗脱纯化得到化合物6e(2.3g,产率:88%)。
MS(ESI)m/z 396.1[M+H] +
1H NMR(400MHz,CDCl 3)δ=8.07(d,J=5.2Hz,1H),7.34-7.28(m,2H),6.93-6.82(m,2H),6.72(d,J=5.2Hz,1H),4.43(s,2H),4.20(q,J=7.2Hz,2H),3.81(s,3H),3.24(t,J=7.6Hz,2H),2.81(s,2H),2.75(t,J=7.6Hz,2H),1.29(t,J=6.8Hz,3H)。
第六步
3-氯-2-((4-甲氧基苄基)(甲基-d)氨基)吡啶-4-硫醇钠中间体6f
将化合物6e(2.3g,5.9mmol)溶于四氢呋喃(25mL)中,0℃条件下加入乙醇钠乙醇溶液(2.4g,7.1mmol,20%w/w,),0℃下反应1小时。反应完成后,将反应液浓缩,加入甲基叔丁基醚和二氯甲烷的混合溶液(40mL,v/v=50/2),过滤,甲基叔丁基醚洗涤(15mL×3)。所得固体真减压干燥得到中间体6f(1.7g,产率:91%)。
1H NMR(400MHz,DMSO-d6)δ=7.29-7.23(m,3H),6.89-6.79(m,3H),4.12(s,2H),3.72(s,3H),3.34(s,2H)。
化合物6的合成步骤参见实施例5,其中以中间体6f替换中间体5f制备获得前述化合物6。
MS(ESI)m/z 508.2[M+H] +
1H NMR(400MHz,CDCl 3)δ=8.47(d,J=4.4Hz,1H),7.68(d,J=5.6Hz,1H),7.64(d,J=7.2Hz,1H),7.48(dd,J=1.2,9.2Hz,2H),7.17(dd,J=4.8,7.6Hz,1H),5.73(d,J=5.6Hz,1H),5.28(s,1H),5.03(s,1H),4.64(d,J=10.0Hz,1H),4.05-3.93(m,2H),3.73(d,J=10.0Hz,1H),3.33-3.16(m,3H),2.94(d,J=16.4Hz,1H),2.54(s,3H),2.52-2.44(m,1H),2.13(dt,J=4.0,12.4Hz,1H),1.82-1.74(m,1H),1.52-1.44(m,1H),1.30(s,9H)。
生物学评价
以下结合测试例进一步描述解释本公开,但这些实施例并非意味着限制本公开的范围。
测试例1、本公开化合物对SHP2磷酸酶活性检测
1、实验材料及仪器
仪器名称 设备厂家 型号
恒温恒温振荡器 IMB MB-1002A
微孔板读板仪 MDSpectraMax M5
Figure PCTCN2021141214-appb-000020
Figure PCTCN2021141214-appb-000021
2、实验步骤
将0.2nM重组表达的全长SHP2(aa 1-593),0.5nM带有双磷酸化位点的激活型多肽IRS1(sequence:H2N-LN(pY)IDLDLY(dPEG8)LST(pY)ASINFQK-amide)以及一系列浓度的测试化合物(终浓度为1□M,0.3□M,0.1□M,0.03□M,0.01□M,0.003□M,0.001□M,0.0003□M,0.0001□M,0.00003□M)加入磷酸酶反应液(60mM HEPES,PH 7.5 0.005%Brij-35,75mM NaCl,75mM KCl,1mM EDTA,5mM DTT)中,室温震荡(350rpm)30分钟。再加入终浓度为30□M反应底物DiFMUP室温反应30分钟后,用5□L反应终止液(60mM HEPES,pH 7.5,0.2%SDS)终止磷酸酶反应。在荧光读板仪MD SpectraMax上读取Ex358nm/Em455荧光值。
化合物的IC 50值用四参数logit方法计算.下列公式中x代表化合物浓度的对数形式;F(x)代表效应值(该浓度条件下细胞增殖的抑制率):F(x)=((A-D)/(1+((x/C)^B)))+D。A,B,C和D为四个参数。不同的浓度对应不同的磷酸酶活抑制率,做出一条反曲线,从曲线上算出抑制剂的IC 50。用Primer premier 6.0计算化合物的IC 50
本公开化合物对SHP2体外活性通过以上的试验进行测定,选取有口服活性的SHP2抑制剂SHP099做为阳性药,该化合物结构公开于文献J.Med.Chem.2016,59,7773-7782中,具体化合物购买自上海皓元生物医药科技有限公司(Medchemexpress.cn)。
测得的IC 50值见表1。
表1.化合物对SHP2磷酸酶IC 50
实施例编号 IC 50(nM) 实施例编号 IC 50(nM)
SHP099 79 1 1.7
2 2.1 3 4.5
5 4.8 6 4.7
测试例2、大鼠肝微粒体体外代谢稳定性实验
利用LC/MS/MS测定反应体系中的化合物浓度,以此来计算待测化合物的固有清除率,并评估在大鼠肝微粒体中的体外代谢稳定性。
将222.5μL,1.1236mg/mL的大鼠肝微粒体(雄性Wistar Han品系,购自Corning公司,货号452511)混合液和25μL,10mM的NADPH加入孵育板中。用涡旋混匀10秒。在37℃水浴中孵育8分钟。将2.5μL,100μM的待测化合物或阳性对照加入孵育板起始反应。在涡旋上混匀12秒后在37℃水浴中继续孵育。分别在0.5、5、10、15、20和30分钟时将20μL孵育体系转移到含有100μL冷终止液的终止板上来终止反应,用涡旋混匀2分钟。将终止板以4000rpm离心20分钟,然后4℃下静置30分钟,再以4000rpm离心20分钟。转移40μL每个化合物上清液至96孔进样板中,加入160μL纯水稀释样品。
所得样品由离子色谱图定量,根据待测化合物或阳性对照的峰面积来计算残余率。斜率k使用Microsoft Excel由剩余率的自然对数值对孵育时间的线性回归测定。
体外半衰期(in vitro t1/2)由斜率计算:in vitro t1/2=-(0.693/k)
用以下等式将体外半衰期转化为固有清除率(in vitro CLint,μL/min/mg蛋白):
in vitro CLint=(0.693/t1/2)×(孵育体积(μL)/蛋白量(mg))
测得的大鼠肝微粒体固有清除率值见表2。
表2.大鼠肝微粒体固有清除率
Figure PCTCN2021141214-appb-000022
测试例3、大鼠体内药代动力学实验
以大鼠为受试动物,应用LC/MS/MS法测定了大鼠灌胃给予本发明化合物后不同时刻血浆中的药物浓度。研究本发明化合物在大鼠体内的药代动力学行为,评价其药动学特征。
试验动物:每组健康6-8周雄性SD大鼠3只
药物配制
称取一定量药物,加0.5%质量的羟丙甲纤维素、0.1%体积的吐温80和99.4%体积的水配制成1mg/mL的白色悬浊液。
给药
SD大鼠禁食过夜后灌胃给药,参照物给药剂量为7.5mg/kg,实施例1给药剂量为5mg/kg。
操作
大鼠灌胃给药本发明化合物,给药后0.25、0.5、1、2、4、8、24小时由颈静脉采血0.2mL,置于含EDTA-K2的试管中,4℃、4000转/分钟离心5分钟分离血浆,于-75℃保存。
测定不同浓度的药物灌胃给药后大鼠血浆中的待测化合物含量:取给药后各时刻的大鼠血浆50μL,加入内标***(50ng/mL)的乙腈溶液200μL,涡旋混合30秒,4℃、4700转/分钟离心15分钟,血浆样品取上清液加水稀释三倍,取2.0μL进行LC/MS/MS分析。
药代动力学参数结果
本发明化合物的大鼠药代动力学参数如下表3。
表3.化合物的大鼠药代动力学参数
Figure PCTCN2021141214-appb-000023
测试例4、食蟹猴体内药代动力学实验
以食蟹猴为受试动物,应用LC/MS/MS法测定了食蟹猴灌胃给予本发明化合物后不同时刻血浆中的药物浓度。研究本发明化合物在食蟹猴体内的药代动力学行为,评价其药动学特征。
试验动物:每组健康2-5岁雄性食蟹猴3只;
药物配制
灌胃给药:称取一定量药物,加0.5%质量的羟丙甲纤维素、0.1%体积的吐温80和99.4%体积的水配制成1mg/mL的白色悬浊液。
给药
食蟹猴禁食过夜后灌胃给药,给药剂量为5mg/kg。
操作
食蟹猴灌胃给药本发明化合物,给药后0.25、0.5、1、2、4、8、24小时由外周静脉采血0.2mL,置于含EDTA-K2的试管中,2~8℃、2000转/分钟离心10分钟分离血浆,于-75℃保存。
测定不同浓度的药物灌胃给药后食蟹猴血浆中的待测化合物含量:取给药后各时刻的食蟹猴血浆55μL,加入内标维拉帕米或***的乙腈溶液200μL,涡旋混合30秒,4℃、3900转/分钟离心15分钟,血浆样品取上清液加水稀释三倍,取15μL进行LC/MS/MS分析。
药代动力学参数结果
本发明化合物的食蟹猴药代动力学参数如下表4。
表4.食蟹猴药代动力学参数
Figure PCTCN2021141214-appb-000024
测试例5、Caco-2渗透性实验
通过Caco-2细胞模型利用液相色谱串联质谱(LC/MS/MS)测定分析药物的表观渗透系数(P app)。
在Caco-2细胞(购自ATCC)密度为7.92×10 5cells/cm 2的Transwell(购自康宁公司)小室顶端加入210μL含10μM待测化合物的HBSS(25mM HEPES,pH 7.4,含50μM quinidine,30μM benzbromarone,20μM sulfasalazine),同时立即取出10μL样品到已加有90μL HBSS(25mM HEPES,pH 7.4,含50μM quinidine,30μM benzbromarone,20μM sulfasalazine)的96深孔板中作为初始加药端样品,基底端加入800μL HBSS(25mM HEPES,pH 7.4,含50μM quinidine,30μM benzbromarone,20μM sulfasalazine)。37℃孵育2小时。在45分钟和2小时时间点分别从顶端吸取10μL样品到含有90μL HBSS(25mM HEPES,pH 7.4,含50μM quinidine,30μM benzbromarone,20μM sulfasalazine)的96孔深孔板中。在45分钟和2小时时间点分别从基底端吸取100μL样品到96孔深孔板中。然后每孔加入3倍体积的预冷内标。1000rmp涡旋10分钟,4000rpm离心20分钟。每孔取出100μL样品,3个样品一起与100μL纯水混合进行LC/MS/MS分析。
使用Microsoft Excel计算数据,峰面积根据色谱图计算。表观渗透系数(Papp)的单位是cm/s,用如下公式进行计算:
Figure PCTCN2021141214-appb-000025
C R为基底端待测化合物浓度(上标“120”或“45”为取样时间,单位:分钟),C D为顶端待测化合物浓度(上标“120”或“45”为取样时间,单位:分钟),Area为膜表面积(0.33em 2),时间为总的转运时间(75×60秒)。
测得的Caco-2细胞表观渗透系数值见表5。
表5.化合物Caco-2细胞表观渗透系数
实施例编号 Papp (A-B)(10 -6,cm/s)
1 2.71
2 12.05
3 17.22
测试例6、CYP抑制实验
使用150个供体混合人肝微粒体(购自Corning,货号452117)评估人主要5个CYP亚型(CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4/5)的代表性底物代谢反应。通过液相色谱串联质谱(LC/MS/MS)测定不同浓度待测化合物对非那西丁(CYP1A2)、 双氯芬酸钠(CYP2C9)、S-美芬妥英(CYP2C19)、丁呋洛尔盐酸盐(2D6)、咪达***(CYP3A4/5)代谢反应的影响。
将30μM非那西丁、10μM双氯芬酸钠、35μM S-美芬妥英、5μM丁呋洛尔盐酸盐、3μM咪达***、1mM NADPH、待测化合物(浓度分别为0.1、0.3、1、3、10、30μmol/L)或阳性化合物或空白对照与混合人肝微粒体(0.2mg/mL)的反应体系200μL(100mmol/L磷酸盐缓冲液,pH 7.4,含体积比分别为0.3%的DMSO、0.6%的乙腈、0.1%的甲醇)在37℃孵育5分钟。然后加入200μL含3%甲酸及40nM内标维拉帕米的乙腈溶液,4000rpm离心50分钟。置于冰上冷却20分钟,再4000rpm离心20分钟析出蛋白。取200μL上清液进行LC/MS/MS分析。
峰面积根据色谱图计算。残余活性比例(%)用如下公式进行计算:
峰面积比例=代谢产物峰面积/内标峰面积
残余活性比例(%)=待测化合物组的峰面积比例/空白组的峰面积比例
CYP半数抑制浓度(IC 50)通过Excel XLfit 5.3.1.3计算得到。
测得的CYP半数抑制浓度(IC 50)数值见表6。
表6.化合物对CYP的半数抑制浓度(IC 50)
Figure PCTCN2021141214-appb-000026
实施例7、式(I)所示化合物的A晶型的制备
实施例1中第五步采用甲醇-二氯甲烷溶剂体系柱层析,旋蒸,得固体,经X-射线粉末衍射检测,XRPD谱图如图2所示,其特征峰位置如表7所示,将其定义为A晶型;TGA谱图(图3)显示A晶型在25-260℃区间内失重1.33%,DSC谱图(图4)显示A晶型具有一个吸热峰,峰值为241.49℃;DVS前后X-射线粉末衍射对比图显示DVS前后晶型未发生转变,见图5。
表7.A晶型特征峰
Figure PCTCN2021141214-appb-000027
Figure PCTCN2021141214-appb-000028
实施例8、式(I)所示化合物的A晶型的制备
A晶型制备过程包括固液分离的步骤,经X-射线粉末衍射检测确定晶型。
表8.式(I)所示化合物的A晶型的制备
Figure PCTCN2021141214-appb-000029
Figure PCTCN2021141214-appb-000030
实施例9、式(I)所示化合物的B晶型的制备
称量50mg式(I)所示化合物A晶型,加入1ml甲醇溶解,过滤,加入5ml甲基叔丁基醚,在常温条件下搅拌过夜,抽滤,用甲基叔丁基醚洗涤,干燥得固体,经X-射线粉末衍射检测,XRPD谱图如图6所示,其特征峰位置如表9所示,将其定义为B晶型。
表9.B晶型特征峰
Figure PCTCN2021141214-appb-000031
实施例10、式(I)所示化合物的C晶型的制备
称量10mg式(I)所示化合物的A晶型,加入0.1mlN-甲基吡咯烷酮,溶清,加入1.0ml异丙醇,放置室温条件下搅拌过夜,抽滤得固体,经X-射线粉末衍射检测,XRPD谱图如图7所示,其特征峰位置如表10所示,将其定义为C晶型;TGA谱图显示C晶型在25-220℃之间失重8.83%;DSC谱图显示C晶型具有两个吸热峰,峰值分别为197.87℃ 及241.33℃。
表10.C晶型特征峰
Figure PCTCN2021141214-appb-000032
实施例11、式(I)所示化合物的D晶型的制备
称量4mg式(I)所示化合物的A晶型,加入0.2ml甲醇,溶清,加入1.0ml异丙醚,放置室温条件下搅拌过夜,抽滤,干燥得固体,经X-射线粉末衍射检测,XRPD谱图如图8所示,其特征峰位置如表11所示,将其定义为D晶型;TGA谱图显示D晶型在25-215℃之间失重2.63%;DSC谱图显示D晶型有两个吸热峰,峰值分别为195.92℃及243.03℃。
表11.D晶型特征峰
Figure PCTCN2021141214-appb-000033
实施例12、式(I)所示化合物的E晶型的制备
称量10mg式(I)所示化合物的A晶型,加入0.3ml二氯甲烷,溶清,加入1.0ml乙腈,50℃条件下搅拌过夜,抽滤,40℃干燥得固体,经X-射线粉末衍射检测,XRPD谱图如图9所示,其特征峰位置如表12所示,将其定义为E晶型;TGA谱图显示E晶型25-65℃失重0.33%,65-220℃失重6.95%,DSC谱图显示E晶型具有两个吸热峰,峰值分别为193.32℃、243.68℃。
表12.E晶型特征峰
Figure PCTCN2021141214-appb-000034
实施例13、式(I)所示化合物的F晶型的制备
称量100mg式(I)所示化合物的E晶型,加入5ml的80%水-乙醇,在常温条件下搅拌过夜,抽滤,用水洗涤,40℃条件下干燥2h得固体,经X-射线粉末衍射检测,XRPD谱图如图10所示,其特征峰位置如表13所示,将其定义为F晶型;TGA谱图显示F晶型在25-70℃之间失重3.02%,70-260℃之间失重0.47%;DSC谱图显示F晶型具有两个吸热峰,峰值分别为80.36℃、243.71℃,具有一个放热峰,峰值为188.21℃。
表13.F晶型特征峰
Figure PCTCN2021141214-appb-000035
Figure PCTCN2021141214-appb-000036
实施例14、式(I)所示化合物的G晶型的制备
称量500mg式(I)所示化合物的E晶型,加入12.5ml的20%水-乙醇溶解,加入37.5ml水,在常温条件下搅拌过夜,抽滤,用水洗涤,40℃干燥3天得固体,经X-射线粉末衍射检测,XRPD谱图如图11所示,其特征峰位置如表14所示,将其定义为G晶型;TGA谱图显示G晶型在25-220℃之间失重0.62%;DSC谱图显示G晶型具有一个吸热峰,峰值为243.37℃;一个放热峰,峰值为187.40℃。
表14.G晶型特征峰
Figure PCTCN2021141214-appb-000037
Figure PCTCN2021141214-appb-000038
实施例15、式(I)所示化合物的H晶型的制备
称量100mg式(I)所示化合物的E晶型,5ml的80%水-乙醇,在常温条件下搅拌过夜,抽滤,水洗,30℃干燥2h得固体,经X-射线粉末衍射检测,XRPD谱图如图12所示,其特征峰位置如表15所示,将其定义为H晶型;TGA谱图显示H晶型25-60℃之间失重3.64%;DSC谱图显示H晶型有三个吸热峰,峰值分别为50.81℃、67.63℃、243.52℃,有一个放热峰,峰值为190.16℃。
表15.H晶型特征峰
Figure PCTCN2021141214-appb-000039
Figure PCTCN2021141214-appb-000040
实施例16、影响因素稳定性研究
A晶型、F晶型、G晶型、H晶型4种晶型敞口平摊放置,分别考察在光照(4500Lux)、高温(40℃、60℃)、高湿(RH 75%、RH 92.5%)条件下样品的稳定性,取样考察期为30天。
表16.A晶型影响因素稳定性数据
Figure PCTCN2021141214-appb-000041
表17.F晶型影响因素稳定性数据
Figure PCTCN2021141214-appb-000042
Figure PCTCN2021141214-appb-000043
表18.G晶型影响因素稳定性数据
Figure PCTCN2021141214-appb-000044
表19.H晶型影响因素稳定性数据
Figure PCTCN2021141214-appb-000045
Figure PCTCN2021141214-appb-000046
结论:影响因素实验表明A晶型在高温、高湿条件下具有较好的物理、化学稳定性;F、G、H晶型在高温高湿条件下化学与物理稳定性略差。
实施例17、长期/加速稳定性研究
将A晶型、F晶型、G晶型、H晶型分别放置25℃,60%RH和40℃,75%RH、5℃、-20℃充氮气条件考察其稳定性
表20.A晶型长期加速稳定性数据
Figure PCTCN2021141214-appb-000047
Figure PCTCN2021141214-appb-000048
表21.F晶型长期加速稳定性数据
Figure PCTCN2021141214-appb-000049
表22.G晶型长期加速稳定性数据
Figure PCTCN2021141214-appb-000050
Figure PCTCN2021141214-appb-000051
表23.H晶型长期加速稳定性数据
Figure PCTCN2021141214-appb-000052
Figure PCTCN2021141214-appb-000053
结论:长期加速实验表明:A晶型、F晶型在长期加速条件下物理和化学性质稳定性良好,G晶型、H晶型在加速条件下均发生转晶。
实施例18、A晶型、F晶型、G晶型和H晶型的引湿性研究
采用Surface Measurement Systems advantage 2,在25℃,湿度从50%起,考察湿度范围为0%-95%,步进为10%,判断标准为每个梯度质量变化dM/dT小于0.002%,TMAX小于360min,循环两圈。
表24.引湿性数据
Figure PCTCN2021141214-appb-000054

Claims (15)

  1. 一种式(I)所示化合物的A晶型,以衍射角2θ角度表示的X-射线粉末衍射图谱,
    Figure PCTCN2021141214-appb-100001
    在4.847、9.801、13.778、14.770、15.444、26.077处有特征峰,优选地,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.847、9.801、13.138、13.778、14.770、15.444、18.363、19.856、21.092、23.371、26.077、28.130处有特征峰,最优选地,以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.847、9.801、13.138、13.778、14.770、15.444、18.363、19.856、21.092、22.034、23.371、24.460、26.077、28.130、28.970、31.894、32.920、33.916、38.924处有特征峰,特别优选地,其X-射线粉末衍射谱图如附图2所示。
  2. 一种式(I)所示化合物的B晶型,
    Figure PCTCN2021141214-appb-100002
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.606、9.110、11.423、13.745、16.006、22.973处有特征峰。
  3. 一种式(I)所示化合物的C晶型,
    Figure PCTCN2021141214-appb-100003
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.905、12.920、13.428、14.074、18.458、22.519处有特征峰。
  4. 一种式(I)所示化合物的D晶型,
    Figure PCTCN2021141214-appb-100004
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.766、9.594、14.089、14.471、 18.981、19.609、25.987处有特征峰。
  5. 一种式(I)所示化合物的E晶型,
    Figure PCTCN2021141214-appb-100005
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.603、9.209、13.920、15.097、19.700、25.454处有特征峰。
  6. 一种式(I)所示化合物的F晶型,
    Figure PCTCN2021141214-appb-100006
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.656、14.068、15.183、18.858、23.235处有特征峰。
  7. 一种式(I)所示化合物的G晶型,
    Figure PCTCN2021141214-appb-100007
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在4.869、9.735、13.290、14.713、20.020处有特征峰。
  8. 一种式(I)所示化合物的H晶型,
    Figure PCTCN2021141214-appb-100008
    以衍射角2θ角度表示的X-射线粉末衍射图谱,在8.608、12.983、13.476、17.716、20.144、23.371处有特征峰。
  9. 根据权利要求1-8任一项所述的式(I)所示化合物的晶型,所述2θ角的误差范围为±0.20。
  10. 根据权利要求1-9任一项所述的式(I)所示化合物的晶型,其中式(I)所示化合物,每一个氘原子(D)具有至少20%的丰度,优选具有至少50%的丰度,最优选具有至 少90%的丰度,特别优选具有至少98%的丰度。
  11. 根据权利要求1、9-10任一项所述的式(I)所示化合物的A晶型的制备方法,其选自:
    a)将式(I)所示化合物与溶剂I混合,溶清,结晶析出,所述溶剂I选自二氯甲烷、三氯甲烷中的至少一种;或
    b)将式(I)所示化合物与溶剂II混合,结晶析出,所述溶剂II选自四氢呋喃、乙酸乙酯、甲苯、丙酮、甲醇、乙醇、乙腈、甲基叔丁基醚、水、异丙醚、丁酮、正己烷中的至少一种;或
    c)将式(I)所示化合物与溶剂III混合得溶清液,溶清液与溶剂IV混合,结晶析出,所述溶剂III选自甲醇、N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的至少一种;所述溶剂IV选自乙腈、乙酸乙酯、醋酸异丙酯、甲基叔丁基醚、异丙醚中的至少一种。
  12. 一种药物组合物,包含以下成分:
    1)根据权利要求1-10任一项所述的式(I)所示化合物的晶型,或其混合物和
    2)任选自药学上可接受的载体、稀释剂或赋形剂。
  13. 一种药物组合物的制备方法,包括将根据权利要求1-10任一项所述的式(I)所示化合物的晶型,或其混合物和
    2)任选自药学上可接受的载体、稀释剂或赋形剂混合的步骤。
  14. 根据权利要求1-10任一项所述的式(I)所示化合物的晶型,或其混合物或权利要求12所述的组合物在制备治疗与SHP2调节有关的疾病或病症的药物中的用途。
  15. 根据权利要求1-10任一项所述的式(I)所示化合物的晶型,或其混合物或权利要求12所述的组合物在制备***或癌症或努南综合征、豹皮综合征的药物中的用途,所述肿瘤或癌症优选幼年性骨髓单核细胞白血病、神经母细胞瘤、黑素瘤、急性骨髓性白血病、乳腺癌、食管癌、肺癌、结肠癌、头癌、胰腺癌、头和颈鳞状细胞癌、胃癌、肝癌、间变性大细胞淋巴瘤和成胶质细胞瘤。
PCT/CN2021/141214 2020-12-25 2021-12-24 一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法 WO2022135568A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180086707.7A CN116669734A (zh) 2020-12-25 2021-12-24 一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011563824.1 2020-12-25
CN202011563824 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135568A1 true WO2022135568A1 (zh) 2022-06-30

Family

ID=82158822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141214 WO2022135568A1 (zh) 2020-12-25 2021-12-24 一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法

Country Status (3)

Country Link
CN (1) CN116669734A (zh)
TW (1) TW202241902A (zh)
WO (1) WO2022135568A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156786A (zh) * 2018-02-13 2019-08-23 上海青煜医药科技有限公司 嘧啶并环化合物及其制备方法和应用
CN110446709A (zh) * 2017-01-23 2019-11-12 锐新医药公司 作为变构shp2抑制剂的二环化合物
CN111153901A (zh) * 2018-11-07 2020-05-15 如东凌达生物医药科技有限公司 一类含氮稠杂环类shp2抑制剂化合物、制备方法和用途
WO2020108590A1 (zh) * 2018-11-30 2020-06-04 上海拓界生物医药科技有限公司 嘧啶并五元氮杂环类衍生物、其制备方法及其在医药上的应用
CN111433205A (zh) * 2017-12-15 2020-07-17 锐新医药公司 作为变构shp2抑制剂的多环化合物
WO2020259679A1 (zh) * 2019-06-28 2020-12-30 上海拓界生物医药科技有限公司 嘧啶并五元氮杂环类衍生物、其制备方法及其在医药上的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446709A (zh) * 2017-01-23 2019-11-12 锐新医药公司 作为变构shp2抑制剂的二环化合物
CN111433205A (zh) * 2017-12-15 2020-07-17 锐新医药公司 作为变构shp2抑制剂的多环化合物
CN110156786A (zh) * 2018-02-13 2019-08-23 上海青煜医药科技有限公司 嘧啶并环化合物及其制备方法和应用
CN111153901A (zh) * 2018-11-07 2020-05-15 如东凌达生物医药科技有限公司 一类含氮稠杂环类shp2抑制剂化合物、制备方法和用途
WO2020108590A1 (zh) * 2018-11-30 2020-06-04 上海拓界生物医药科技有限公司 嘧啶并五元氮杂环类衍生物、其制备方法及其在医药上的应用
WO2020259679A1 (zh) * 2019-06-28 2020-12-30 上海拓界生物医药科技有限公司 嘧啶并五元氮杂环类衍生物、其制备方法及其在医药上的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors

Also Published As

Publication number Publication date
CN116669734A (zh) 2023-08-29
TW202241902A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2022135568A1 (zh) 一种嘧啶并五元氮杂环类衍生物的晶型及其制备方法
US11453655B2 (en) Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
CN112638917B (zh) 作为激酶抑制剂的杂环化合物、包括该杂环化合物的组合物、及其使用方法
AU2011217961B2 (en) Cyclobutane and methylcyclobutane derivatives as Janus kinase inhibitors
WO2020259679A1 (zh) 嘧啶并五元氮杂环类衍生物、其制备方法及其在医药上的应用
EP3740206B1 (en) Inhibitors of cyclin-dependent kinase 7 (cdk7)
TWI828712B (zh) 作為trk抑制劑的雜環化合物
JP2018162314A (ja) アザインドールを作製するための方法および中間体
WO2021143701A1 (zh) 嘧啶-4(3h)-酮类杂环化合物、其制备方法及其在医药学上的应用
KR20130086951A (ko) Trk 키나제 저해제로서의 매크로시클릭 화합물
WO2011075334A1 (en) Pyrrolo[2,3-d]pyrimidine compounds
WO2013026025A1 (en) Cyclohexyl azetidine derivatives as jak inhibitors
JP2010523522A (ja) Jak3阻害剤としてのピロロピリミジン誘導体
JP2009531274A (ja) キナーゼ阻害性ピロロピリジン化合物
EP3271362B1 (en) Heterocyclic compounds useful as inhibitors of tnf
TWI675836B (zh) 非典型蛋白質激酶c之氮雜喹唑啉抑制劑
TW202023550A (zh) 作為vanin抑制劑之雜芳族化合物
CN111936144A (zh) Jak抑制剂
CN109195968B (zh) 作为tnf活性调节剂的稠合五环咪唑衍生物
CN113429427A (zh) 杂环化合物及其制备方法和药物用途
US8044066B2 (en) Derivatives of pyrrolopyridine-2-carboxamides, preparation thereof and therapeutic application thereof
EP3511333B1 (en) Crystal form and salt form of 7h-pyrrolo[2,3-d]pyrimidine compound and preparation method therefor
WO2021244542A1 (zh) 3,4-二氢异喹啉类化合物及其应用
CN114075194A (zh) 取代的杂芳基化合物及其组合物和用途
CN114671894A (zh) 一种嘧啶并五元氮杂环类衍生物的盐、晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086707.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909563

Country of ref document: EP

Kind code of ref document: A1