WO2022131258A1 - Communication cable and manufacturing method therefor - Google Patents

Communication cable and manufacturing method therefor Download PDF

Info

Publication number
WO2022131258A1
WO2022131258A1 PCT/JP2021/046075 JP2021046075W WO2022131258A1 WO 2022131258 A1 WO2022131258 A1 WO 2022131258A1 JP 2021046075 W JP2021046075 W JP 2021046075W WO 2022131258 A1 WO2022131258 A1 WO 2022131258A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
wire
communication cable
section
circular cross
Prior art date
Application number
PCT/JP2021/046075
Other languages
French (fr)
Japanese (ja)
Inventor
伸明 光地
公樹 小林
正義 河田
喬 坂本
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Priority to CN202180084214.XA priority Critical patent/CN116615790A/en
Priority to JP2022570011A priority patent/JPWO2022131258A1/ja
Publication of WO2022131258A1 publication Critical patent/WO2022131258A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion

Definitions

  • the present invention relates to a communication cable compatible with high frequency data transmission and a method for manufacturing the same.
  • high-frequency data transmission has some problems, such as suppressing inward skew (difference in propagation delay time in-inward) and suck-out phenomenon in the high-frequency band (rapid drop in frequency characteristics of signal attenuation). ) Can be suppressed.
  • Patent Document 1 discloses a multi-core cable that attempts to solve these problems of high-frequency data transmission.
  • eight pairs of coaxial electric wires (11 to 18) are housed in the multi-core cable (1).
  • the central conductor (21) of each coaxial electric wire 10 is covered with an insulator (22), and the outer periphery thereof is covered with an outer conductor (23) and an outer cover (24).
  • a thin metal wire (M) is horizontally wound (spiral wound) around the insulator as an inner layer portion (23A), and a metal resin tape (T) is horizontally wound around the inner layer portion as an outer layer portion (23B).
  • the suck-out phenomenon is suppressed by setting the winding direction of the thin metal wire and the metal resin tape in the opposite direction and setting the difference in the winding angle (angle ⁇ 3) within a certain range (paragraph 0017). -0027, FIG. 1-2, Examples, FIG. 4 and the like).
  • the electric wire pair of Patent Document 1 has an external conductor arranged in a coaxial electric wire, which is composed of a metal fine wire and a metal resin tape, and the winding direction and winding angle of the metal fine wire and the metal resin tape are set.
  • the technique of Patent Document 1 has a very complicated internal configuration of the cable, and there is room for improvement in the internal configuration of the cable. Therefore, the main object of the present invention is a communication cable compatible with high frequency data transmission (so that the standard is satisfied even in a high frequency band of at least 8 GHz in the Multi-Gig Automotive Ethernet standard), and the internal configuration of the cable is simplified. The purpose is to provide a communication cable that can realize the above.
  • the present inventor has found that the current density of a high-frequency signal increases on the surface layer of a conductor due to the skin action, and high-frequency transmission is performed with a stranded wire obtained by twisting a plurality of strands.
  • the present invention has been found that the closer the cross-sectional shape is to a circular shape, the smaller the resistance in high-frequency transmission, such as a single wire having a circular cross-sectional shape or a compression stranded wire having a constant radius of curvature. It came to be completed.
  • a communication cable in which a plurality of insulated wires whose conductors are coated with an insulator are twisted together, and the conductor is a single wire having a circular cross section or a circular cross section with a radius of curvature of 0.06 mm or less.
  • a communication cable is provided characterized by being composed of a compression stranded wire of.
  • a complicated configuration can be added to an outer conductor by a simple configuration in which the conductor is composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less.
  • the conductor is composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less.
  • FIG. 1 It is sectional drawing which shows the schematic structure of the communication cable. It is a figure which shows schematic the cross-sectional shape of a compression stranded wire. It is a figure which shows the conductor cross-sectional structure used for the simulation which concerns on Example 1.
  • FIG. It is a figure which corrected the conductor cross-sectional structure of FIG. 3 and divided into a mesh. It is a figure which visualized the current density of alternating current with respect to the conductor cross-section structure of FIG. It is a figure which shows the AC resistance ratio of a single wire and a compression stranded wire based on the AC resistance value of a simple stranded wire. It is a figure which shows the relationship between the frequency and the insertion loss of each sample which concerns on Example 2.
  • FIG. 1 It is sectional drawing which shows the schematic structure of the communication cable. It is a figure which shows schematic the cross-sectional shape of a compression stranded wire. It is a figure which shows the conductor cross-sectional structure used for the simulation
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the communication cable 1.
  • the communication cable 1 has an anti-twisting body 10, a push winding 20, a first shielding layer 40, a second shielding layer 50, and an outer cover 60, and covers the outer periphery of the anti-twisting body 10.
  • the push winding 20, the first shielding layer 40, the second shielding layer 50, and the outer cover 60 are wound and covered in this order.
  • the anti-twisted body 10 is composed of two (two) insulated wires 12, and the first type core 10A and the second type core 10B are used as a pair.
  • a type 3 core and a type 4 core are added as the second pair of twisted bodies, and these may be used in pairs (may be composed of four cores), or the cores after that may be used. Pairs may be added and used.
  • the insulated wire 12 is quad twisted.
  • the insulated wire 12 is composed of a conductor 14 and an insulator 16, and has a structure in which the outer periphery of the conductor 14 is covered with the insulator 16.
  • the conductor 14 is composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less.
  • Single wire with a circular cross section means a single conductor with a circular cross section that literally has a constant diameter. As shown in FIG.
  • compressed stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less is a compressed stranded wire having a radius of curvature r of 0.06 mm or less and twisting and compressing a plurality of strands 15. To say.
  • the radius of curvature r is preferably 0.04 mm or less.
  • the "radius of curvature r" is a value obtained by observing the curved portion of the cross section of the wire 15 using the digital microscope VHX-6000 manufactured by Keyence Co., Ltd., and the command of measurement / scale> plane measurement> arc is executed.
  • the compression stranded wire is formed by compressing a stranded wire obtained by simply twisting a plurality of strands 15 (hereinafter referred to as "mere stranded wire") through a die.
  • a curved portion 100 is formed on the strand 15A of the outer peripheral portion, and the curved portion 100 has an inflection point 102 affected by passing through a die and adjacent strands 15.
  • the radius of curvature r is the radius of an arc composed of the three points of the inflection point 102, the contact point 104, and the midpoint 106.
  • the radius of the smallest arc among the arcs for the plurality of curved portions 100 is defined as the “radius of curvature r”.
  • the conductor 14 (including the wire 15) is preferably an annealed copper wire, and the outer periphery may be covered with a plating layer (not shown) of any one of tin, nickel, and silver.
  • the outer diameter of the conductor 14 is preferably 0.4 to 0.6 mm.
  • the transmission characteristics at high frequencies are affected by the skin effect, and the current density increases on the surface layer of the conductor 14.
  • the "skin effect” is a phenomenon in which when an alternating current flows through a conductor 14, the current density is high on the surface layer of the conductor 14 and decreases when the alternating current is separated from the surface layer. The higher the frequency, the more the current is concentrated on the surface layer, and the higher the AC resistance of the conductor 14.
  • the depth of the surface layer affected by the skin effect that is, the depth ⁇ [ ⁇ m] of the surface layer having a high current density is derived from the following skin depth calculation formula, and decreases as the frequency f [kHz] increases.
  • is the volume resistivity [ ⁇ ⁇ m] of the conductor 14, which is 1.72 ⁇ 10-8 ⁇ ⁇ m.
  • “ ⁇ ” is the relative magnetic permeability of the conductor 14, which is 1.
  • the mere twisted wire is one of the strands 15 arranged on the outer peripheral portion of the conductor 14.
  • the current density is only high in the local area.
  • this is replaced with a compression stranded wire, the region is slightly increased in the circumferential direction of the conductor 14, and when this is replaced with a single wire, the region is further increased over the entire circumference of the conductor 14 (see FIG. 5).
  • the extent to which the high-frequency transmission characteristics affect the form of the conductor 14 is examined in the following examples, and the conductor 14 is examined. It has been found that the high frequency transmission characteristic is excellent when is a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less.
  • the insulator 16 is formed by extruding an insulating resin from a die of an extruder.
  • the insulating resin is preferably cross-linked polyethylene (XLPE) or polypropylene (PP).
  • the thickness of the insulator 16 is preferably 0.2 to 0.4 mm.
  • the push-wound 20 is configured by laminating and winding tape-shaped polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the push-wound 20 may be made of a tape-shaped non-woven fabric.
  • the push-wound 20 may be made of tape-shaped polypropylene.
  • the thickness of the push winding 20 is preferably 0.02 to 0.1 mm.
  • the push winding 20 is not an essential member and may be omitted.
  • the first shielding layer 40 is configured by laminating and winding a metal tape.
  • the metal tape is a tape formed by laminating a metal foil and a resin tape, and is preferably formed by laminating an aluminum foil and a polyethylene terephthalate tape (PET tape).
  • PET tape polyethylene terephthalate tape
  • the metal foil is overlaid so as to be exposed on the outer periphery.
  • the thickness of the metal tape is preferably 0.02 to 0.05 mm.
  • the second shielding layer 50 is configured by braiding a plurality of metal wires.
  • the second shielding layer 50 may be configured by horizontally winding a plurality of metal wires at a constant pitch or less.
  • Each metal wire is preferably a so-called tinned annealed copper wire (TA) in which the annealed copper wire is coated with a tin-plated layer.
  • the outer diameter of the metal wire is preferably 3.0 to 3.5 mm.
  • the outer cover 60 is a so-called sheath, and the outer cover resin is formed by being extruded from a die of an extruder.
  • the jacket resin is preferably composed of polyvinyl chloride (PVC) or thermoplastic elastomers (TPE).
  • the thickness of the outer cover 60 is preferably 0.2 to 0.6 mm.
  • the anti-twisted body 10 is composed of two cores (two) insulated wires 12, and has a structure in which the two insulated wires 12 are twisted at a constant pitch.
  • the upper and lower limits of the twisted pair pitch of the insulated wire 12 are set from the viewpoint of inward skew and insertion loss (IL).
  • the lower limit of the twisted pair pitch is assumed from the viewpoint of whether or not stable manufacturing can suppress the inward skew, and the lower limit value is actually 7.0 mm, preferably 7.9 mm.
  • the twisted pair pitch of the insulated wire 12 becomes shorter, the twisted pair becomes excessively dense, and the twisted balance between the insulated wires 12 becomes unstable. As a result, there is a difference in physical length between the insulated wires 12 (the length varies), and it becomes difficult to suppress inward skew.
  • the upper limit of the twisted pair pitch is derived from the viewpoint of suppressing the suckout phenomenon at high frequencies (for example, until it exceeds 10 GHz).
  • the present inventor repeats the trial production of the communication cable 1 and the measurement of the insertion loss, and the upper limit of the twisted pair pitch has a correlation with the material (dielectric constant) of the insulator 16 and is caused by the dielectric constant of the insulator 16.
  • An inner cover may be formed between the push winding 20 and the first shielding layer 40.
  • the inner cover is preferably formed by extruding the inner cover resin from the die of the extruder.
  • the inner resin is preferably composed of polyvinyl chloride (PVC) or thermoplastic elastomers (TPE).
  • the thickness of the inner cover is preferably 2.3 to 2.9 mm.
  • a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less is prepared as the conductor 14.
  • a compressed stranded wire is prepared as the conductor 14
  • a mere stranded wire may be passed through a die and compressed while being conveyed in the length direction thereof, and the radius of curvature r is controlled at the opening diameter of the die.
  • the conductor 14 is extruded and covered with an insulating resin, and the conductor 14 is irradiated with an electron beam to crosslink the conductor 14 to form an insulator 16 to manufacture an insulated electric wire 12.
  • the two insulated wires 12 are twisted (twisted pair) at a constant pitch.
  • PET tape polyethylene terephthalate tape
  • a metal tape is laminated and wound around the push winding 20 to form a first shielding layer 40, and a plurality of metal wires are braided to form a second shielding layer 50.
  • the outer cover resin can be extruded and coated on the second shielding layer 50 to form the outer cover 60, and the communication cable 1 can be manufactured.
  • high-frequency data transmission has a simple configuration in which the conductor 14 is simply composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less.
  • the conductor 14 is simply composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less.
  • the communication cable 1 can be used for any purpose as long as it is used for communication, preferably used for in-vehicle use, and more preferably used for transmitting an image or video signal of an in-vehicle camera. That is, the communication cable 1 is suitable as a cable conforming to the ISO-6722 standard or the ISO-19642 standard.
  • Example 1 the AC current density with respect to the conductor cross section was simulated for three types of conductors: single wire, compressed stranded wire, and simple stranded wire, and the correlation between the skin effect and high-frequency transmission characteristics was confirmed.
  • Evaluation target and evaluation method As shown in Fig. 3, there are roughly three types of evaluation targets: single wire, compression stranded wire, and mere stranded wire. Dynamic magnetic field analysis).
  • GAMBIT was used as modeling to create the shape of the conductor cross section
  • GAMBIT was used as the meshing to divide the mesh
  • Photonj ⁇ was used as the solver to perform electromagnetic field analysis.
  • mesh division the mesh size is miniaturized from the center of the conductor cross section toward the surface layer, and the mesh thickness of the surface layer of the conductor is 2.7 ⁇ 10-6 mm. Was 1 ⁇ 10 -9 or less.
  • the mesh is divided according to the structure shown in FIG.
  • the mesh quality differs due to the influence of the gap inside the conductor, and the difference causes the evaluation results to vary.
  • the region where alternating current flows in the high frequency band is limited to the surface layer of the conductor, the shape inside the conductor does not affect the evaluation result.
  • the evaluation is performed with the shape of FIG. 4 in which the inside of the conductor is filled.
  • the relationship between the transmission characteristics of the actual communication cable and the Multi-Gig Automotive Ethernet standard value was actually measured based on the simulation result of the first embodiment.
  • sample 1 First, seven annealed copper wires having a diameter of 0.16 mm were twisted together to form a conductor having an outer diameter of 0.48 mm. The conductor is just a stranded wire. After that, polyethylene is extruded and coated on the conductor and crosslinked by irradiating it with an electron beam to form a 0.2 mm thick insulator composed of cross-linked polyethylene (XLPE) to form an insulated wire having an outer diameter of 1 mm. did. Then, the two insulated wires were twisted (twisted) at a pitch of 8 mm to form a twisted pair.
  • XLPE cross-linked polyethylene
  • PET tape polyethylene terephthalate tape having a thickness of 0.025 mm was wound in 1/2 layers on the anti-twisted body (wrapped while overlapping 1/2 of the PET tape width).
  • a metal tape with a thickness of 0.04 mm in which an aluminum foil with a thickness of 0.01 mm and a polyethylene terephthalate tape (PET tape) with a thickness of 0.025 mm are bonded to each other, is prepared as a first shielding layer, and is used for push winding.
  • the metal tape was wound in 1/4 layers to form a first shielding layer having an outer diameter of 2.6 mm.
  • 86 tin-plated annealed copper wires (TA) having a diameter of 0.1 mm were prepared as the second shielding layer, and the tin-plated annealed copper wire was braided to the first shielding layer to form a second with an outer diameter of 3.1 mm.
  • a shielding layer was formed.
  • polyvinyl chloride (PVC) was extruded and coated on the second shielding layer to prepare a communication cable having an outer diameter of 4 mm.
  • sample 3 In sample 1, the conductor was mainly changed to a compression stranded wire having a radius of curvature r of 0.02 mm.
  • sample 4 In sample 1, the conductor was mainly changed to a compression stranded wire having a radius of curvature r of 0.04 mm.
  • sample 5 In sample 1, the conductor was mainly changed to a compression stranded wire having a radius of curvature r of 0.06 mm.
  • the conductor is simply a stranded wire, and the transmission characteristic is below the reference standard value in the band around 5 GHz.
  • the conductor is a single wire or a compression stranded wire having a radius of curvature r of 0.06 mm or less, and the transmission characteristics satisfy the reference standard values in the band exceeding 4 GHz.
  • the transmission characteristics of Sample 2-4 satisfy the reference standard values even in the band of 10 GHz.
  • the present invention relates to a communication cable and a method for manufacturing the same, and is useful for providing a communication cable compatible with high frequency data transmission.

Abstract

Provided is a communication cable adapted to high-frequency data transfer and allowing the internal structure of the cable to be simplified. Disclosed is a communication cable 1 in which multiple insulated electric wires 12 are twisted together, each wire obtained by covering a conductor 14 with an insulator 16. The communication cable 1, wherein the conductor 14 is a single wire having a circular cross-section, or a compressed/twisted wire having a circular cross-section and a radius of curvature of 0.06mm or less.

Description

通信ケーブルおよびその製造方法Communication cable and its manufacturing method
 本発明は高周波データ伝送に対応した通信ケーブルおよびその製造方法に関する。 The present invention relates to a communication cable compatible with high frequency data transmission and a method for manufacturing the same.
 近年、自動車においては、情報通信機器の高性能化、車載マルチメディアの多機能化が進んでおり、今後も先進運転支援システム(ADAS;Advanced Driver-Assistance Systems)、自動運転などをキーワードに、一層の高性能化や搭載機器の増加が進展していくと考えられる。こうした進歩は情報通信量の大容量化をもたらしており、高周波でのデータ伝送が求められる。
 直近では、車載Ethernet規格として、IEEE802.3ch Multi-Gig Automotive Ethernet PHY 10GBASE-T1(以下単に「Multi-Gig Automotive Ethernet規格」という。)が制定され、車載用の通信ケーブルには当該Multi-Gig Automotive Ethernet規格も満たすことが要求されると考えられる。
 ただ、高周波データ伝送にはいくつかの課題があり、たとえば対内スキュー(対内の伝搬遅延時間の差)を抑制することや、高周波帯域でのサックアウト現象(信号減衰量の周波数特性の急激な落ち込み)を抑制することがあげられる。
In recent years, in automobiles, the performance of information and communication equipment has become higher and the functions of in-vehicle multimedia have become more multifunctional. It is expected that the performance of the system and the number of on-board equipment will increase. These advances have led to an increase in the amount of information communication, and high-frequency data transmission is required.
Recently, the IEEE802.3ch Multi-Gig Automotive Ethernet PHY 10GBASE-T1 (hereinafter referred to simply as "Multi-Gig Automotive Ethernet standard") has been established as an in-vehicle Ethernet standard, and the multi-Gig Automotive is used for in-vehicle communication cables. It is considered that it is required to meet the Ethernet standard as well.
However, high-frequency data transmission has some problems, such as suppressing inward skew (difference in propagation delay time in-inward) and suck-out phenomenon in the high-frequency band (rapid drop in frequency characteristics of signal attenuation). ) Can be suppressed.
 特許文献1にはこれら高周波データ伝送の課題を解決しようとした多芯ケーブルが開示されている。
 特許文献1の技術では、8対の同軸電線対(11~18)が多芯ケーブル(1)内に収容されている。各同軸電線10は中心導体(21)が絶縁体(22)で被覆され、その外周が外部導体(23)および外被(24)で被覆されている。外部導体は内層部(23A)として金属細線(M)が絶縁体の周囲に横巻き(螺旋巻き)され、外層部(23B)として金属樹脂テープ(T)が内層部の周囲に横巻きされている。
 当該技術では特に、金属細線と金属樹脂テープとの巻き方向を逆向きとしかつその巻き角度の差(角度θ3)を一定の範囲に設定することで、サックアウト現象を抑制している(段落0017-0027、図1-2、実施例、図4など参照)。
Patent Document 1 discloses a multi-core cable that attempts to solve these problems of high-frequency data transmission.
In the technique of Patent Document 1, eight pairs of coaxial electric wires (11 to 18) are housed in the multi-core cable (1). The central conductor (21) of each coaxial electric wire 10 is covered with an insulator (22), and the outer periphery thereof is covered with an outer conductor (23) and an outer cover (24). In the outer conductor, a thin metal wire (M) is horizontally wound (spiral wound) around the insulator as an inner layer portion (23A), and a metal resin tape (T) is horizontally wound around the inner layer portion as an outer layer portion (23B). There is.
In this technique, the suck-out phenomenon is suppressed by setting the winding direction of the thin metal wire and the metal resin tape in the opposite direction and setting the difference in the winding angle (angle θ3) within a certain range (paragraph 0017). -0027, FIG. 1-2, Examples, FIG. 4 and the like).
特許第6269718号公報Japanese Patent No. 6269718
 しかしながら、特許文献1の電線対は上記のとおり、同軸電線内に外部導体を配しこれを金属細線および金属樹脂テープで構成し、金属細線と金属樹脂テープとの巻き方向や巻き角度まで設定しなければならない。特許文献1の技術はすなわち、ケーブルの内部構成が非常に複雑であり、ケーブルの内部構成には改善の余地がある。
 したがって本発明の主な目的は、高周波データ伝送に対応した(Multi-Gig Automotive Ethernet規格において少なくとも8GHz以上の高周波帯域でも当該規格を満たすような)通信ケーブルであって、ケーブルの内部構成の簡素化を実現しうる通信ケーブルを提供することにある。
However, as described above, the electric wire pair of Patent Document 1 has an external conductor arranged in a coaxial electric wire, which is composed of a metal fine wire and a metal resin tape, and the winding direction and winding angle of the metal fine wire and the metal resin tape are set. There must be. In other words, the technique of Patent Document 1 has a very complicated internal configuration of the cable, and there is room for improvement in the internal configuration of the cable.
Therefore, the main object of the present invention is a communication cable compatible with high frequency data transmission (so that the standard is satisfied even in a high frequency band of at least 8 GHz in the Multi-Gig Automotive Ethernet standard), and the internal configuration of the cable is simplified. The purpose is to provide a communication cable that can realize the above.
 本発明者は上記課題を解決するため技術的検討を重ねたところ、特に、高周波信号は表皮作用により導体の表層で電流密度が大きくなり、複数本の素線を撚り合わせた撚線では高周波伝送という面において不利に働くが、断面形状が円形の単線または一定の曲率半径を有する圧縮撚線のように、断面形状が円形に近いほど高周波伝送での抵抗が少なくなることを見出し、本発明を完成するに至った。
 すなわち本発明によれば、導体を絶縁体で被覆した絶縁電線を複数本撚り合わせた通信ケーブルであって、前記導体が断面円形状の単線か、または断面円形状で曲率半径が0.06mm以下の圧縮撚線で構成されていることを特徴とする通信ケーブルが提供される。
As a result of repeated technical studies to solve the above problems, the present inventor has found that the current density of a high-frequency signal increases on the surface layer of a conductor due to the skin action, and high-frequency transmission is performed with a stranded wire obtained by twisting a plurality of strands. However, the present invention has been found that the closer the cross-sectional shape is to a circular shape, the smaller the resistance in high-frequency transmission, such as a single wire having a circular cross-sectional shape or a compression stranded wire having a constant radius of curvature. It came to be completed.
That is, according to the present invention, it is a communication cable in which a plurality of insulated wires whose conductors are coated with an insulator are twisted together, and the conductor is a single wire having a circular cross section or a circular cross section with a radius of curvature of 0.06 mm or less. A communication cable is provided characterized by being composed of a compression stranded wire of.
 本発明によれば、導体を、断面円形状の単線か、または断面円形状で曲率半径が0.06mm以下の圧縮撚線で構成するというシンプルな構成で、外部導体に複雑な構成を追加せずに、高周波データ伝送に対応した(Multi-Gig Automotive Ethernet規格において少なくとも8GHz以上の高周波帯域でも当該規格を満たすような)通信ケーブルを提供することができる。 According to the present invention, a complicated configuration can be added to an outer conductor by a simple configuration in which the conductor is composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less. Instead, it is possible to provide a communication cable that supports high-frequency data transmission (in the Multi-Gig Automotive Ethernet standard, a communication cable that meets the standard even in a high-frequency band of at least 8 GHz or higher).
通信ケーブルの概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the communication cable. 圧縮撚線の断面形状を概略的に示す図である。It is a figure which shows schematic the cross-sectional shape of a compression stranded wire. 実施例1にかかるシミュレーションに供した導体断面構造を示す図である。It is a figure which shows the conductor cross-sectional structure used for the simulation which concerns on Example 1. FIG. 図3の導体断面構造を補正しメッシュ分割した図である。It is a figure which corrected the conductor cross-sectional structure of FIG. 3 and divided into a mesh. 図3の導体断面構造に対する交流の電流密度を視覚化した図である。It is a figure which visualized the current density of alternating current with respect to the conductor cross-section structure of FIG. 単なる撚線の交流抵抗値を基準とした単線および圧縮撚線の交流抵抗比を示す図である。It is a figure which shows the AC resistance ratio of a single wire and a compression stranded wire based on the AC resistance value of a simple stranded wire. 実施例2にかかる各サンプルの周波数と挿入損失との関係を示す図である。It is a figure which shows the relationship between the frequency and the insertion loss of each sample which concerns on Example 2. FIG.
 以下、本発明の好ましい実施形態にかかる通信ケーブルについて説明する。
 本明細書において数値範囲を示す「~」は下限値および上限値を当該数値範囲に含む意味を有している。
Hereinafter, the communication cable according to the preferred embodiment of the present invention will be described.
In the present specification, "to" indicating a numerical range has a meaning of including a lower limit value and an upper limit value in the numerical range.
 図1は通信ケーブル1の概略的な構成を示す断面図である。
 図1に示すとおり、通信ケーブル1は、対撚体10、押巻き20、第1の遮蔽層40、第2の遮蔽層50および外被60を有しており、対撚体10の外周を押巻き20、第1の遮蔽層40、第2の遮蔽層50および外被60がこの順に巻回し被覆している。
FIG. 1 is a cross-sectional view showing a schematic configuration of the communication cable 1.
As shown in FIG. 1, the communication cable 1 has an anti-twisting body 10, a push winding 20, a first shielding layer 40, a second shielding layer 50, and an outer cover 60, and covers the outer periphery of the anti-twisting body 10. The push winding 20, the first shielding layer 40, the second shielding layer 50, and the outer cover 60 are wound and covered in this order.
 対撚体10は2心の(2本の)絶縁電線12から構成され、第1種線心10Aと第2種線心10Bとがペアで使用されている。第2の対撚体として第3種線心と第4種線心とが追加されこれらがペアで使用されてもよいし(4心で構成されてもよいし)、これ以降の線心のペアが追加され使用されてもよい。線心のペアを追加する場合は絶縁電線12をカッド撚りする。 The anti-twisted body 10 is composed of two (two) insulated wires 12, and the first type core 10A and the second type core 10B are used as a pair. A type 3 core and a type 4 core are added as the second pair of twisted bodies, and these may be used in pairs (may be composed of four cores), or the cores after that may be used. Pairs may be added and used. When adding a pair of cores, the insulated wire 12 is quad twisted.
 絶縁電線12は導体14および絶縁体16から構成され、導体14の外周を絶縁体16で被覆した構成を有している。
 導体14は断面円形状の単線か、または断面円形状で曲率半径が0.06mm以下の圧縮撚線から構成されている。
 「断面円形状の単線」とは、文字どおり一定の直径を有する断面円形状の単一の導線をいう。
 「断面円形状で曲率半径が0.06mm以下の圧縮撚線」とは、図2に示すとおり、複数本の素線15を撚り合わせ圧縮しかつ曲率半径rが0.06mm以下の圧縮撚線をいう。曲率半径rは好ましくは0.04mm以下である。
 「曲率半径r」とは、キーエンス社製デジタルマイクロスコープVHX-6000を使用し素線15の断面の湾曲部を観測した値であって、計測・スケール>平面計測>円弧のコマンドを実行し、接触点と変曲点およびその中点の計3点を選択し、その3点から構成される円弧の半径をいう。
 すなわち、圧縮撚線は、複数本の素線15を単に撚り合わせた撚線(以下「単なる撚線」という。)を、ダイスを通過させ圧縮し形成される。かかる場合、図2の拡大部に示すとおり、外周部の素線15Aには湾曲部100が形成され、湾曲部100にはダイス通過の影響を受けた変曲点102、隣り合う素線15との接触点104、およびその中点106が存在する。曲率半径rとは、これら変曲点102、接触点104および中点106の3点から構成される円弧の半径である。
 湾曲部100は、外周部の素線15Aの数に応じて複数存在する。たとえば、7本の素線15を撚り合わせた図2の形態であれば、中心部の素線15Bを除外した外周部の6本の素線15A×各2か所で計12か所存在する。ここでは、複数の湾曲部100に対する円弧のうち、最も小さい円弧の半径を「曲率半径r」と定義する。
The insulated wire 12 is composed of a conductor 14 and an insulator 16, and has a structure in which the outer periphery of the conductor 14 is covered with the insulator 16.
The conductor 14 is composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less.
"Single wire with a circular cross section" means a single conductor with a circular cross section that literally has a constant diameter.
As shown in FIG. 2, "compressed stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less" is a compressed stranded wire having a radius of curvature r of 0.06 mm or less and twisting and compressing a plurality of strands 15. To say. The radius of curvature r is preferably 0.04 mm or less.
The "radius of curvature r" is a value obtained by observing the curved portion of the cross section of the wire 15 using the digital microscope VHX-6000 manufactured by Keyence Co., Ltd., and the command of measurement / scale> plane measurement> arc is executed. A total of three points, the contact point, the turning point, and the midpoint thereof, are selected, and the radius of the arc composed of these three points.
That is, the compression stranded wire is formed by compressing a stranded wire obtained by simply twisting a plurality of strands 15 (hereinafter referred to as "mere stranded wire") through a die. In such a case, as shown in the enlarged portion of FIG. 2, a curved portion 100 is formed on the strand 15A of the outer peripheral portion, and the curved portion 100 has an inflection point 102 affected by passing through a die and adjacent strands 15. There is a contact point 104 and a midpoint 106 thereof. The radius of curvature r is the radius of an arc composed of the three points of the inflection point 102, the contact point 104, and the midpoint 106.
There are a plurality of curved portions 100 depending on the number of strands 15A on the outer peripheral portion. For example, in the form of FIG. 2 in which seven strands 15 are twisted together, there are a total of 12 locations in 6 strands 15A on the outer peripheral portion excluding the strand 15B in the center x 2 locations each. .. Here, the radius of the smallest arc among the arcs for the plurality of curved portions 100 is defined as the “radius of curvature r”.
 導体14(素線15を含む。)は好ましくは軟銅線であり、スズ、ニッケル、銀のいずれかのメッキ層(図示略)によって外周が被覆されてもよい。
 導体14の外径は好ましくは0.4~0.6mmである。
The conductor 14 (including the wire 15) is preferably an annealed copper wire, and the outer periphery may be covered with a plating layer (not shown) of any one of tin, nickel, and silver.
The outer diameter of the conductor 14 is preferably 0.4 to 0.6 mm.
 高周波における伝送特性は表皮効果の影響を受け導体14の表層で電流密度が増大する。
 「表皮効果」とは、交流電流が導体14を流れるとき、電流密度が導体14の表層で高く、表層から離れると低くなる現象のことである。周波数が高くなるほど電流が表層に集中し、導体14の交流抵抗は高くなる。かかる表皮効果の影響を受ける表層の深さ、すなわち電流密度の高い表層の深さδ[μm]は下記のスキンデプス計算式から導かれ、周波数f[kHz]が高くなるほど減少する。
 下記式中、「ρ」は導体14の体積抵抗率[Ω・m]であり1.72×10-8Ω・mである。「μ」は導体14の比透磁率であり1である。
The transmission characteristics at high frequencies are affected by the skin effect, and the current density increases on the surface layer of the conductor 14.
The "skin effect" is a phenomenon in which when an alternating current flows through a conductor 14, the current density is high on the surface layer of the conductor 14 and decreases when the alternating current is separated from the surface layer. The higher the frequency, the more the current is concentrated on the surface layer, and the higher the AC resistance of the conductor 14. The depth of the surface layer affected by the skin effect, that is, the depth δ [μm] of the surface layer having a high current density is derived from the following skin depth calculation formula, and decreases as the frequency f [kHz] increases.
In the following formula, "ρ" is the volume resistivity [Ω · m] of the conductor 14, which is 1.72 × 10-8 Ω · m. “Μ” is the relative magnetic permeability of the conductor 14, which is 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式に基づき、高周波における導体14の表層を、単なる撚線、圧縮撚線および単線ごとに単純に視覚的に比較すると、単なる撚線では導体14の外周部に配置された素線15の一部領域でのみ電流密度が高いにすぎない。これを圧縮撚線に置き換えると当該領域が導体14の円周方向においてやや増大し、単線に置き換えると当該領域が導体14の円周全体にわたりさらに増大する(図5参照)。
 本実施形態ではかかる表皮効果に着目し、高周波の伝送特性が導体14の形態(単なる撚線、圧縮撚線および単線)にどの程度影響するかを下記実施例にて検討しており、導体14が断面円形状の単線か、または断面円形状で曲率半径rが0.06mm以下の圧縮撚線である場合に高周波の伝送特性が優れることを見出している。
Based on the above formula, when the surface layer of the conductor 14 at high frequency is simply visually compared for each mere twisted wire, compressed stranded wire, and single wire, the mere twisted wire is one of the strands 15 arranged on the outer peripheral portion of the conductor 14. The current density is only high in the local area. When this is replaced with a compression stranded wire, the region is slightly increased in the circumferential direction of the conductor 14, and when this is replaced with a single wire, the region is further increased over the entire circumference of the conductor 14 (see FIG. 5).
In this embodiment, focusing on the skin effect, the extent to which the high-frequency transmission characteristics affect the form of the conductor 14 (simple stranded wire, compressed stranded wire, and single wire) is examined in the following examples, and the conductor 14 is examined. It has been found that the high frequency transmission characteristic is excellent when is a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less.
 絶縁体16は絶縁性樹脂が押出機のダイスから押し出され形成されている。当該絶縁性樹脂は好ましくは架橋ポリエチレン(XLPE;Cross-linked polyethylene)またはポリプロピレン(PP:Polypropylene)である。
 絶縁体16の厚さは好ましくは0.2~0.4mmである。
The insulator 16 is formed by extruding an insulating resin from a die of an extruder. The insulating resin is preferably cross-linked polyethylene (XLPE) or polypropylene (PP).
The thickness of the insulator 16 is preferably 0.2 to 0.4 mm.
 押巻き20はテープ状のポリエチレンテレフタレート(PET;Polyethyleneterephthalate)が重ね巻きされ構成されている。押巻き20はテープ状の不織布から構成されてもよい。押巻き20はテープ状のポリプロピレンから構成されてもよい。
 押巻き20の厚さは好ましくは0.02~0.1mmである。
 なお、押巻き20は必須の部材ではなく省略されてもよい。
The push-wound 20 is configured by laminating and winding tape-shaped polyethylene terephthalate (PET). The push-wound 20 may be made of a tape-shaped non-woven fabric. The push-wound 20 may be made of tape-shaped polypropylene.
The thickness of the push winding 20 is preferably 0.02 to 0.1 mm.
The push winding 20 is not an essential member and may be omitted.
 第1の遮蔽層40は金属テープが重ね巻きされ構成されている。
 当該金属テープは金属箔と樹脂テープとが貼り合わされ構成されたテープであり、好ましくはアルミニウム箔とポリエチレンテレフタレートテープ(PETテープ)とが貼り合わされ形成されている。第1の遮蔽層40では金属箔が外周に露出するように重ね巻きされる。
 当該金属テープの厚さは好ましくは0.02~0.05mmである。
 他方、第2の遮蔽層50は複数本の金属線が編組され構成されている。第2の遮蔽層50は複数本の金属線が一定のピッチ以下で横巻きされ構成されてもよい。当該各金属線は好ましくはスズのメッキ層で軟銅線を被覆した、いわゆるスズメッキ軟銅線(TA;Tinned Annealed copper)である。
 当該金属線の外径は好ましくは3.0~3.5mmである。
The first shielding layer 40 is configured by laminating and winding a metal tape.
The metal tape is a tape formed by laminating a metal foil and a resin tape, and is preferably formed by laminating an aluminum foil and a polyethylene terephthalate tape (PET tape). In the first shielding layer 40, the metal foil is overlaid so as to be exposed on the outer periphery.
The thickness of the metal tape is preferably 0.02 to 0.05 mm.
On the other hand, the second shielding layer 50 is configured by braiding a plurality of metal wires. The second shielding layer 50 may be configured by horizontally winding a plurality of metal wires at a constant pitch or less. Each metal wire is preferably a so-called tinned annealed copper wire (TA) in which the annealed copper wire is coated with a tin-plated layer.
The outer diameter of the metal wire is preferably 3.0 to 3.5 mm.
 外被60はいわゆるシースであり、外被用樹脂が押出機のダイスから押し出され形成されている。当該外被用樹脂は好ましくはポリ塩化ビニル(PVC;PolyVinyl Chloride)または熱可塑性エラストマー(TPE;Thermoplastic Elastomers)から構成されている。
 外被60の厚さは好ましくは0.2~0.6mmである。
The outer cover 60 is a so-called sheath, and the outer cover resin is formed by being extruded from a die of an extruder. The jacket resin is preferably composed of polyvinyl chloride (PVC) or thermoplastic elastomers (TPE).
The thickness of the outer cover 60 is preferably 0.2 to 0.6 mm.
 なお、対撚体10は上記のとおり2心の(2本の)絶縁電線12から構成され、2本の絶縁電線12が一定のピッチで撚り合された構成を有している。 As described above, the anti-twisted body 10 is composed of two cores (two) insulated wires 12, and has a structure in which the two insulated wires 12 are twisted at a constant pitch.
 絶縁電線12の対撚りピッチの上限値および下限値は、対内スキューと挿入損失(IL)との観点から設定される。 The upper and lower limits of the twisted pair pitch of the insulated wire 12 are set from the viewpoint of inward skew and insertion loss (IL).
 対撚りピッチの下限値は対内スキューを抑制しうる、安定的な製造が可能かどうかという観点から想定され、当該下限値は現実的には7.0mmであり、好ましくは7.9mmである。絶縁電線12の対撚りピッチが短くなるほど対撚りが過剰に密となり、絶縁電線12同士の撚りのバランスが不安定になる。その結果、絶縁電線12同士で物理的な長さに差が生じ(長さがばらつき)、対内スキューを抑制するのが難しくなる。 The lower limit of the twisted pair pitch is assumed from the viewpoint of whether or not stable manufacturing can suppress the inward skew, and the lower limit value is actually 7.0 mm, preferably 7.9 mm. As the twisted pair pitch of the insulated wire 12 becomes shorter, the twisted pair becomes excessively dense, and the twisted balance between the insulated wires 12 becomes unstable. As a result, there is a difference in physical length between the insulated wires 12 (the length varies), and it becomes difficult to suppress inward skew.
 対撚りピッチの上限値はサックアウト現象を高周波で(たとえば10GHzを超えるまで)抑制するという観点から導出される。本発明者は通信ケーブル1の試作と挿入損失の測定とを繰り返すなかで、対撚りピッチの上限値は絶縁体16の材質(誘電率)と相関があり、絶縁体16の誘電率に起因する下記関係式から導出されることを見出した。詳しくは、一般に波長=波の速さ/周波数で表現されるところ、対撚りピッチの上限値が当該波長を絶縁体16の誘電率で除した値に近似することを見出したのである。
 これによれば、光の速度を100とするとケーブル対内を伝わる信号の速度は技術常識としておよそ70%である(NVP:Nominal Velocity of Propagation)。周波数を10GHzと設定すれば、対撚りピッチの当該上限値は理論的には下記式のとおりに導出されるのである。
   対撚りピッチの上限値[mm]
  =(波長)×(1/絶縁体16の誘電率)
  =(光速×NVP/周波数)×(1/絶縁体16の誘電率)
  =300,000,000[m/s]×0.7/10×10[Hz]×(1/絶縁体16の誘電率)×1,000[mm]
The upper limit of the twisted pair pitch is derived from the viewpoint of suppressing the suckout phenomenon at high frequencies (for example, until it exceeds 10 GHz). The present inventor repeats the trial production of the communication cable 1 and the measurement of the insertion loss, and the upper limit of the twisted pair pitch has a correlation with the material (dielectric constant) of the insulator 16 and is caused by the dielectric constant of the insulator 16. We found that it is derived from the following relational expression. More specifically, they have found that the upper limit of the twisting pitch is close to the value obtained by dividing the wavelength by the dielectric constant of the insulator 16, which is generally expressed by wavelength = wave speed / frequency.
According to this, assuming that the speed of light is 100, the speed of the signal transmitted through the cable pair is about 70% as a common technical wisdom (NVP: Nominal Velocity of Propagation). If the frequency is set to 10 GHz, the upper limit of the twisted pair pitch is theoretically derived as shown in the following equation.
Upper limit of twisted pair pitch [mm]
= (Wavelength) × (1 / Dielectric constant of insulator 16)
= (Speed of light x NVP / frequency) x (1 / dielectric constant of insulator 16)
= 300,000,000 [m / s] × 0.7 / 10 × 10 9 [Hz] × (1 / dielectric constant of insulator 16) × 1,000 [mm]
 ケーブル対内を伝わる信号の波長と絶縁電線12の対撚りピッチとが同期して共振するとサックアウト現象が生じるところ、表1に示すとおり、(i)絶縁体16が架橋ポリエチレンで構成される場合は、絶縁電線12の対撚りピッチの上限値が約9.55mmを超えると、10GHz以下の低周波で共振点が形成され、(ii)絶縁体16がポリプロピレンで構成される場合は、絶縁電線12の対撚りピッチの上限値が約10.00mmを超えると、10GHz以下の低周波で共振点が形成され、それぞれサックアウト現象が生じやすいのである。 When the wavelength of the signal transmitted through the cable pair and the pair twist pitch of the insulated wire 12 resonate in synchronization, a suck-out phenomenon occurs. As shown in Table 1, (i) When the insulator 16 is made of crosslinked polyethylene, it occurs. When the upper limit of the twisting pitch of the insulated wire 12 exceeds about 9.55 mm, a resonance point is formed at a low frequency of 10 GHz or less, and (ii) when the insulator 16 is made of polyethylene, the insulated wire 12 When the upper limit of the anti-twisting pitch of the above is more than about 10.00 mm, a resonance point is formed at a low frequency of 10 GHz or less, and a suck-out phenomenon is likely to occur in each case.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、押巻き20と第1の遮蔽層40との間には内被が形成されてもよい。かかる場合、内被は内被用樹脂が押出機のダイスから押し出され形成されるのがよい。当該内被用樹脂は好ましくはポリ塩化ビニル(PVC;PolyVinyl Chloride)または熱可塑性エラストマー(TPE;Thermoplastic Elastomers)から構成される。
 内被の厚さは好ましくは2.3~2.9mmである。
An inner cover may be formed between the push winding 20 and the first shielding layer 40. In such a case, the inner cover is preferably formed by extruding the inner cover resin from the die of the extruder. The inner resin is preferably composed of polyvinyl chloride (PVC) or thermoplastic elastomers (TPE).
The thickness of the inner cover is preferably 2.3 to 2.9 mm.
 次に、通信ケーブル1の製造方法について説明する。 Next, the manufacturing method of the communication cable 1 will be described.
 はじめに、導体14として断面円形状の単線か、または断面円形状で曲率半径rが0.06mm以下の圧縮撚線を準備する。導体14として圧縮撚線を準備する場合には、単なる撚線を、その長さ方向に搬送しながらダイスを通過させ圧縮すればよく、ダイスの開口径において曲率半径rを制御する。
 その後、導体14に対し絶縁性樹脂を押し出し被覆してこれに電子線を照射し架橋させ絶縁体16を形成し、絶縁電線12を製造する。
 その後、2本の絶縁電線12を一定のピッチで撚り合わせる(対撚りする)。
First, a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less is prepared as the conductor 14. When a compressed stranded wire is prepared as the conductor 14, a mere stranded wire may be passed through a die and compressed while being conveyed in the length direction thereof, and the radius of curvature r is controlled at the opening diameter of the die.
After that, the conductor 14 is extruded and covered with an insulating resin, and the conductor 14 is irradiated with an electron beam to crosslink the conductor 14 to form an insulator 16 to manufacture an insulated electric wire 12.
After that, the two insulated wires 12 are twisted (twisted pair) at a constant pitch.
 その後、対撚体10に対しポリエチレンテレフタレートテープ(PETテープ)を重ね巻きし押巻き20を形成する。
 その後、押巻き20に対し金属テープを重ね巻きし第1の遮蔽層40を形成し、複数本の金属線を編組し第2の遮蔽層50を形成する。
 最後に、第2の遮蔽層50に対し外被用樹脂を押し出し被覆し外被60を形成し、通信ケーブル1を製造することができる。
After that, a polyethylene terephthalate tape (PET tape) is laminated and wound around the anti-twisted body 10 to form a push winding 20.
After that, a metal tape is laminated and wound around the push winding 20 to form a first shielding layer 40, and a plurality of metal wires are braided to form a second shielding layer 50.
Finally, the outer cover resin can be extruded and coated on the second shielding layer 50 to form the outer cover 60, and the communication cable 1 can be manufactured.
 以上の通信ケーブル1によれば、単に導体14が断面円形状の単線か、または断面円形状で曲率半径rが0.06mm以下の圧縮撚線で構成されるというシンプルな構成で、高周波データ伝送に対応した(Multi-Gig Automotive Ethernet規格において少なくとも8GHz以上の高周波帯域でも当該規格を満たすような)通信ケーブルを提供することができる(下記実施例参照)。 According to the above communication cable 1, high-frequency data transmission has a simple configuration in which the conductor 14 is simply composed of a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature r of 0.06 mm or less. (See the examples below), it is possible to provide a communication cable that supports the above (in the Multi-Gig Automotive Ethernet standard, a communication cable that meets the standard even in a high frequency band of at least 8 GHz or higher).
 なお、通信ケーブル1は通信用途であればいかなる用途にも使用可能であり、好ましくは車載用途に使用され、より好ましくは車載カメラの画像または映像信号の伝送に使用される。すなわち、通信ケーブル1はISO-6722規格またはISO-19642規格に準拠するケーブルとして好適である。 The communication cable 1 can be used for any purpose as long as it is used for communication, preferably used for in-vehicle use, and more preferably used for transmitting an image or video signal of an in-vehicle camera. That is, the communication cable 1 is suitable as a cable conforming to the ISO-6722 standard or the ISO-19642 standard.
 本実施例1では、単線、圧縮撚線および単なる撚線の3種の導体において、導体断面に対する交流の電流密度をシミュレートし、表皮効果と高周波の伝送特性との相関を確認した。 In Example 1, the AC current density with respect to the conductor cross section was simulated for three types of conductors: single wire, compressed stranded wire, and simple stranded wire, and the correlation between the skin effect and high-frequency transmission characteristics was confirmed.
(1)評価対象および評価方法
 図3に示すとおり、評価対象は大きくは単線、圧縮撚線および単なる撚線の3種とし、各導体の断面形状を作成しこれをメッシュ分割し、電磁場解析(動磁場解析)した。解析ソフトにつき、導体断面の形状を作成するモデリングとしてGAMBITを、メッシュ分割するメッシングとしてGAMBITを、電磁場解析をおこなうソルバーとしてPhotonjωを、それぞれ使用した。メッシュ分割上の注意点として導体断面の中心から表層に向けてメッシュサイズを微細化するとともに導体の表層のメッシュ厚さを2.7×10-6mmとし、電磁場解析時の注意点として収束精度を1×10-9以下とした。
 ただし、図3の構造でメッシュ分割する場合、導体内部の隙間の影響でメッシュ品質に相違が生じ、当該相違が評価結果をばらつかせる要因になると考えられた。一方で、高周波帯域で交流が流れる領域は導体の表層に限られるため、導体内部の形状は評価結果に影響を及ぼさない。これらを考慮し、本実施例1では、導体内部を埋めた図4の形状で評価を行うこととした。
(1) Evaluation target and evaluation method As shown in Fig. 3, there are roughly three types of evaluation targets: single wire, compression stranded wire, and mere stranded wire. Dynamic magnetic field analysis). For the analysis software, GAMBIT was used as modeling to create the shape of the conductor cross section, GAMBIT was used as the meshing to divide the mesh, and Photonjω was used as the solver to perform electromagnetic field analysis. As a precaution in mesh division, the mesh size is miniaturized from the center of the conductor cross section toward the surface layer, and the mesh thickness of the surface layer of the conductor is 2.7 × 10-6 mm. Was 1 × 10 -9 or less.
However, when the mesh is divided according to the structure shown in FIG. 3, it is considered that the mesh quality differs due to the influence of the gap inside the conductor, and the difference causes the evaluation results to vary. On the other hand, since the region where alternating current flows in the high frequency band is limited to the surface layer of the conductor, the shape inside the conductor does not affect the evaluation result. In consideration of these factors, in the first embodiment, the evaluation is performed with the shape of FIG. 4 in which the inside of the conductor is filled.
(2)評価結果
 図5に示すとおり、単線、圧縮撚線および単なる撚線の各導体断面において表層で電流密度が高いのがわかる。
 図6に示すとおり、単なる撚線の交流抵抗値を基準としてこれに対する単線および圧縮撚線の交流抵抗比を算出すると、単線および圧縮撚線は単なる撚線よりも交流抵抗比が小さく高周波帯域での伝送特性に優れることが示唆された。
(2) Evaluation result As shown in FIG. 5, it can be seen that the current density is high in the surface layer in each conductor cross section of the single wire, the compressed stranded wire, and the simple stranded wire.
As shown in FIG. 6, when the AC resistance ratio of the single wire and the compressed stranded wire is calculated based on the AC resistance value of the mere stranded wire, the AC resistance ratio of the single wire and the compressed stranded wire is smaller than that of the mere stranded wire in the high frequency band. It was suggested that the transmission characteristics of the are excellent.
 本実施例2では、実施例1のシミュレート結果に基づき、現実の通信ケーブルの伝送特性とMulti-Gig Automotive Ethernet規格値との関係を実測した。 In the second embodiment, the relationship between the transmission characteristics of the actual communication cable and the Multi-Gig Automotive Ethernet standard value was actually measured based on the simulation result of the first embodiment.
(1)サンプルの作製
(1.1)サンプル1
 はじめに、直径0.16mmの軟銅線を7本撚り合わせ、外径0.48mmの導体を形成した。当該導体は単なる撚線である。
 その後、当該導体に対しポリエチレンを押し出し被覆しこれに電子線を照射し架橋させ、架橋ポリエチレン(XLPE)から構成される厚さ0.2mmの絶縁体を形成し、外径1mmの絶縁電線を形成した。
 その後、2本の絶縁電線をピッチ8mmで撚り合わせ(対撚りし)、対撚体を形成した。
(1) Preparation of sample (1.1) Sample 1
First, seven annealed copper wires having a diameter of 0.16 mm were twisted together to form a conductor having an outer diameter of 0.48 mm. The conductor is just a stranded wire.
After that, polyethylene is extruded and coated on the conductor and crosslinked by irradiating it with an electron beam to form a 0.2 mm thick insulator composed of cross-linked polyethylene (XLPE) to form an insulated wire having an outer diameter of 1 mm. did.
Then, the two insulated wires were twisted (twisted) at a pitch of 8 mm to form a twisted pair.
 その後、対撚体に対し押巻きとして厚さ0.025mmのポリエチレンテレフタレートテープ(PETテープ)を1/2重ね巻きした(PETテープ幅の1/2を重ねながら巻いた)。 After that, a polyethylene terephthalate tape (PET tape) having a thickness of 0.025 mm was wound in 1/2 layers on the anti-twisted body (wrapped while overlapping 1/2 of the PET tape width).
 その後、第1の遮蔽層として厚さ0.01mmのアルミニウム箔と厚さ0.025mmのポリエチレンテレフタレートテープ(PETテープ)とを貼り合わせた厚さ0.04mmの金属テープを準備し、押巻きに対し当該金属テープを1/4重ね巻きし、外径2.6mmの第1の遮蔽層を形成した。
 その後、第2の遮蔽層として86本の直径0.1mmのスズメッキ軟銅線(TA)を準備し、第1の遮蔽層に対し当該スズメッキ軟銅線を編組し、外径3.1mmの第2の遮蔽層を形成した。
 最後に、当該第2の遮蔽層に対しポリ塩化ビニル(PVC)を押し出し被覆し、外径4mmの通信ケーブルを作製した。
After that, a metal tape with a thickness of 0.04 mm, in which an aluminum foil with a thickness of 0.01 mm and a polyethylene terephthalate tape (PET tape) with a thickness of 0.025 mm are bonded to each other, is prepared as a first shielding layer, and is used for push winding. On the other hand, the metal tape was wound in 1/4 layers to form a first shielding layer having an outer diameter of 2.6 mm.
After that, 86 tin-plated annealed copper wires (TA) having a diameter of 0.1 mm were prepared as the second shielding layer, and the tin-plated annealed copper wire was braided to the first shielding layer to form a second with an outer diameter of 3.1 mm. A shielding layer was formed.
Finally, polyvinyl chloride (PVC) was extruded and coated on the second shielding layer to prepare a communication cable having an outer diameter of 4 mm.
(1.2)サンプル2
 サンプル1において主に、導体を、直径0.45mmの単線に変更した。
(1.2) Sample 2
In sample 1, the conductor was mainly changed to a single wire having a diameter of 0.45 mm.
(1.3)サンプル3
 サンプル1において主に、導体を、曲率半径rが0.02mmの圧縮撚線に変更した。
(1.3) Sample 3
In sample 1, the conductor was mainly changed to a compression stranded wire having a radius of curvature r of 0.02 mm.
(1.4)サンプル4
 サンプル1において主に、導体を、曲率半径rが0.04mmの圧縮撚線に変更した。
(1.4) Sample 4
In sample 1, the conductor was mainly changed to a compression stranded wire having a radius of curvature r of 0.04 mm.
(1.5)サンプル5
 サンプル1において主に、導体を、曲率半径rが0.06mmの圧縮撚線に変更した。
(1.5) Sample 5
In sample 1, the conductor was mainly changed to a compression stranded wire having a radius of curvature r of 0.06 mm.
(2)サンプルの評価
 各サンプルを5m切り出してこれに対し高周波帯域における挿入損失(IL;Insertion Loss)を測定した。測定結果を図7に示す。
 なお、Multi-Gig Automotive Ethernet規格では、規格値が最大4GHzの高周波帯域までしか制定されていない。図7では、Multi-Gig Automotive Ethernet規格に記載された挿入損失(IL)の規格値たる下記計算式をもとに、4GHz以降の閾値を算出しこれを参考規格値としている。
(2) Sample evaluation Each sample was cut out by 5 m, and the insertion loss (IL) in the high frequency band was measured. The measurement results are shown in FIG.
The Multi-Gig Automotive Ethernet standard only defines a high frequency band with a maximum standard value of 4 GHz. In FIG. 7, the threshold value after 4 GHz is calculated based on the following formula, which is the standard value of the insertion loss (IL) described in the Multi-Gig Automotive Ethernet standard, and this is used as the reference standard value.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
(3)まとめ
 図7に示すとおり、サンプル1は導体が単なる撚線であり、5GHz前後の帯域において伝送特性が参考規格値を下回っている。これに対しサンプル2-5は導体が単線または曲率半径rが0.06mm以下の圧縮撚線であり、4GHz超の帯域において伝送特性が参考規格値を満たしている。特にサンプル2-4は10GHzの帯域においても伝送特性が参考規格値を満たしている。
 以上から、高周波データ伝送に対応した通信ケーブルを提供するうえで、導体として断面円形状の単線か、または断面円形状で曲率半径rが0.06mm以下の圧縮撚線を適用することが有用であることがわかり、特に10GHzの帯域では曲率半径rが0.04mm以下の圧縮撚線を適用することが有用であることがわかった。
(3) Summary As shown in FIG. 7, in Sample 1, the conductor is simply a stranded wire, and the transmission characteristic is below the reference standard value in the band around 5 GHz. On the other hand, in Sample 2-5, the conductor is a single wire or a compression stranded wire having a radius of curvature r of 0.06 mm or less, and the transmission characteristics satisfy the reference standard values in the band exceeding 4 GHz. In particular, the transmission characteristics of Sample 2-4 satisfy the reference standard values even in the band of 10 GHz.
From the above, in order to provide a communication cable compatible with high-frequency data transmission, it is useful to apply a single wire with a circular cross section or a compressed stranded wire with a circular cross section and a radius of curvature r of 0.06 mm or less as a conductor. It was found that it is useful to apply a compression stranded wire having a radius of curvature r of 0.04 mm or less, especially in the band of 10 GHz.
 本出願は2020年12月15日に出願した特願2020-207472の優先権を主張する出願である。上記出願の明細書、特許請求の範囲および図面に記載された事項は、すべて本出願に援用される。 This application is an application claiming the priority of Japanese Patent Application No. 2020-207472 filed on December 15, 2020. All matters described in the specification, claims and drawings of the above application are incorporated in this application.
 本願発明は通信ケーブルおよびその製造方法にかかり、高周波データ伝送に対応した通信ケーブルを提供するのに有用である。 The present invention relates to a communication cable and a method for manufacturing the same, and is useful for providing a communication cable compatible with high frequency data transmission.
 1 通信ケーブル
 10 対撚体
 10A~10B 第1~第2種線心
 12 絶縁電線
 14 導体
 15 素線
 15A 外周部の素線
 15B 中心部の素線
 16 絶縁体
 20 押巻き
 40 第1の遮蔽層
 50 第2の遮蔽層
 60 外被
 100 湾曲部
 102 変曲点
 104 接触点
 106 中点
1 Communication cable 10 Pair twisted body 10A to 10B Type 1 to 2 core 12 Insulated wire 14 Conductor 15 Wire 15A Wire on the outer circumference 15B Wire in the center 16 Insulator 20 Push winding 40 First shielding layer 50 Second shielding layer 60 Outer cover 100 Curved part 102 Inflection point 104 Contact point 106 Midpoint

Claims (4)

  1.  導体を絶縁体で被覆した絶縁電線を複数本撚り合わせた通信ケーブルであって、
     前記導体が断面円形状の単線か、または断面円形状で曲率半径が0.06mm以下の圧縮撚線で構成されていることを特徴とする通信ケーブル。
    It is a communication cable made by twisting multiple insulated wires whose conductors are covered with an insulator.
    A communication cable characterized in that the conductor is a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less.
  2.  請求項1に記載の通信ケーブルであって、
     前記導体が断面円形状で曲率半径が0.04mm以下の圧縮撚線で構成されていることを特徴とする通信ケーブル。
    The communication cable according to claim 1.
    A communication cable characterized in that the conductor has a circular cross section and is composed of a compression stranded wire having a radius of curvature of 0.04 mm or less.
  3.  請求項1または2に記載の通信ケーブルにおいて、
     車載用途に使用されることを特徴とする通信ケーブル。
    In the communication cable according to claim 1 or 2.
    A communication cable characterized by being used for in-vehicle applications.
  4.  導体として断面円形状の単線か、または断面円形状で曲率半径が0.06mm以下の圧縮撚線を準備する工程と、
     前記導体を絶縁体で被覆し絶縁電線を形成する工程と、
     を備えることを特徴とする通信ケーブルの製造方法。
    A process of preparing a single wire having a circular cross section or a compression stranded wire having a circular cross section and a radius of curvature of 0.06 mm or less as a conductor.
    The process of covering the conductor with an insulator to form an insulated wire,
    A method of manufacturing a communication cable, which comprises.
PCT/JP2021/046075 2020-12-15 2021-12-14 Communication cable and manufacturing method therefor WO2022131258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180084214.XA CN116615790A (en) 2020-12-15 2021-12-14 Communication cable and method for manufacturing the same
JP2022570011A JPWO2022131258A1 (en) 2020-12-15 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-207472 2020-12-15
JP2020207472 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131258A1 true WO2022131258A1 (en) 2022-06-23

Family

ID=82059460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046075 WO2022131258A1 (en) 2020-12-15 2021-12-14 Communication cable and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JPWO2022131258A1 (en)
CN (1) CN116615790A (en)
WO (1) WO2022131258A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203347A (en) * 1995-01-25 1996-08-09 Tsushin Kogyo Kk Communication-cable core and communication cable
US20170243678A1 (en) * 2016-02-23 2017-08-24 Leoni Kabel Gmbh Data cable and stranded conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203347A (en) * 1995-01-25 1996-08-09 Tsushin Kogyo Kk Communication-cable core and communication cable
US20170243678A1 (en) * 2016-02-23 2017-08-24 Leoni Kabel Gmbh Data cable and stranded conductor

Also Published As

Publication number Publication date
JPWO2022131258A1 (en) 2022-06-23
CN116615790A (en) 2023-08-18

Similar Documents

Publication Publication Date Title
EP1607985B1 (en) Multi-pair data cable with configurable core filling and pair separation
JP6834732B2 (en) Two-core parallel cable
US20140299349A1 (en) High-speed signal transmission cable
CN106067347B (en) Multi-core cable
WO2004107361A1 (en) Multi-pair data cable with configurable core filing and pair separation
US20180268965A1 (en) Data cable for high speed data transmissions and method of manufacturing the data cable
CN112447325A (en) Coaxial cable
US11798710B2 (en) Cable having a pair of inner conductors and an inner insulating layer extrusion molded around the pair of inner conductors
WO2019194033A1 (en) Multicore cable
CN112768146A (en) Double-shaft cable
WO2022131258A1 (en) Communication cable and manufacturing method therefor
JP2015038857A (en) Communication cable containing discontinuous shield tape and discontinuous shield tape
WO2022138898A1 (en) Communication cable and method for manufacturing same
JP2001195924A (en) Two cores parallel shielded cable and flat shielded cable
WO2022138900A1 (en) Communication cable and manufacturing method therefor
WO2023090417A1 (en) Communication cable and method for manufacturing same
WO2020189310A1 (en) High-frequency coaxial cable
WO2021149787A1 (en) Communication cable and manufacturing method therefor
KR20210087882A (en) Communication cable
WO2022059406A1 (en) Coaxial cable
KR101120365B1 (en) Micro coaxial cable comprising coated metallic shield and method for manufacturing the same
RU2761986C2 (en) Heat-resistant two-pair symmetrical cable
US20240021341A1 (en) Cable
JP2017010707A (en) Signal cable for differential transmission
CN117043894A (en) Coaxial cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084214.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906620

Country of ref document: EP

Kind code of ref document: A1