WO2022131028A1 - Glass body for joining and joined body - Google Patents

Glass body for joining and joined body Download PDF

Info

Publication number
WO2022131028A1
WO2022131028A1 PCT/JP2021/044500 JP2021044500W WO2022131028A1 WO 2022131028 A1 WO2022131028 A1 WO 2022131028A1 JP 2021044500 W JP2021044500 W JP 2021044500W WO 2022131028 A1 WO2022131028 A1 WO 2022131028A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass layer
molar concentration
layer
target object
Prior art date
Application number
PCT/JP2021/044500
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 山下
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2022131028A1 publication Critical patent/WO2022131028A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing

Definitions

  • This disclosure relates to a glass body for joining and a joining body.
  • Patent Document 1 discloses a joining method for joining two substrates by an atomic diffusion method.
  • the bonding method includes forming a bonding film and a protective film on the smooth surface of each of the two substrates in this order, and superimposing the two substrates so that the protective films are in contact with each other.
  • the protective film is made of Au or Au alloy.
  • the bonding film is made of a single metal other than Au or an alloy other than Au alloy. The atoms of the bonding membrane are rearranged by the atomic diffusion of Au in the protective film.
  • Patent Document 2 discloses a joining method for joining two substrates by a surface activation method.
  • the joining method includes hydrophilizing at least one of the joining surfaces of the two substrates to be joined to each other, and joining the two substrates after hydrophilization.
  • Hydrophilization includes reactive ion etching using oxygen gas, reactive ion etching using nitrogen gas, and irradiation with nitrogen radicals.
  • Patent Document 3 discloses a joining method for joining two substrates by a surface activation method.
  • the joining method is to form a thin film of metal oxide on the joining surface of both or one of the pair of substrates, and to bring the joining surfaces of the substrates into contact with each other through the thin film and bond them together.
  • the substrate is glass containing SiO 2 , tempered glass, or the like.
  • One aspect of the present disclosure provides a technique for improving the bonding strength of a glass containing SiO 2 and a component other than SiO 2 .
  • the joining glass body according to one aspect of the present disclosure is to be joined to the target object.
  • the glass body for joining includes a first glass layer and a second glass layer.
  • the first glass layer has a Si molar concentration higher than the molar concentration of an element other than oxygen and is constant.
  • the second glass layer is formed on a surface of the first glass layer facing the target object, and the Si molar concentration changes in a direction orthogonal to the facing surface.
  • the thickness of the first glass layer is 1 ⁇ m or more.
  • the thickness of the second glass layer is 5 nm to 300 nm.
  • the Si molar concentration on the surface of the second glass layer facing the target object is higher than the Si molar concentration of the first glass layer.
  • the bonding strength of the glass can be improved by locally bringing the Si molar concentration of the glass containing SiO 2 and a component other than SiO 2 closer to the Si molar concentration of the quartz glass.
  • FIG. 1 (A) is a diagram showing a glass body for joining according to an embodiment
  • FIG. 1 (B) is a diagram showing an example of a Si molar concentration distribution
  • FIG. 1 (C) is a diagram showing a C molar concentration. It is a figure which shows an example of a distribution.
  • FIG. 2A is a diagram showing a bonding glass body according to the first modification
  • FIG. 2B is a diagram showing a bonding glass body according to the second modification
  • FIG. 2C is a diagram showing the bonding glass body. It is a figure which shows the glass body for joining which concerns on the 3rd modification.
  • FIG. 3A is a diagram showing a bonded body according to an embodiment
  • FIG. 3B is a diagram showing a bonded body according to a first modification
  • FIG. 3C is a diagram showing a second modification. It is a figure which shows the said joint body
  • FIG. 3 (D) is a figure which shows the joint body which concerns on the 3rd modification.
  • FIG. 4 (A) is a diagram showing a bonded body according to a fourth modified example
  • FIG. 4 (B) is a diagram showing a bonded body according to a fifth modified example
  • FIG. 4 (C) is a diagram showing a sixth modified example
  • 4 (D) is a diagram showing a bonded body according to the seventh modification.
  • FIG. 5 is a cross-sectional view showing an example of a method for measuring the joint strength.
  • the bonding glass body 10 is bonded to the target object 20.
  • the bonding glass body 10 is also simply referred to as a glass body 10.
  • the glass body 10 includes the first glass layer 11.
  • the first glass layer 11 is a so-called multi-component glass, which is a silicate glass containing SiO 2 as a main component.
  • the silicate glass is soda lime glass, non-alkali glass, borosilicate glass and the like.
  • the glass composition is general.
  • SiO 2 is 58.4% to 66.0%
  • Al 2 O 3 is 15.3% to 22.0%
  • B 2 O 3 is 5.0. % To 12.0%, MgO 0.0% to 6.5%, CaO 0.0% to 7.0%, SrO 4.0% to 12.5%, BaO 0.0% to It contains 2.0% and contains 9.0% to 18.0% of alkaline earth metal oxides (MgO + CaO + SrO + BaO).
  • SiO 2 is 50% to 70%
  • Al 2 O 3 is 2% to 8%
  • B 2 O 3 is 0% to 5%
  • MgO is 0% to 0%. It may contain 5%, CaO 0% to 6%, SrO 4% to 20%, BaO 14% to 35%, and alkaline earth metal oxide (MgO + CaO + SrO + BaO) 25% to 40%.
  • the glass composition of the first glass layer 11 is selected according to the use of the glass body 10. This is because the required physical properties differ depending on the application of the glass body 10, such as mechanical properties such as Young's modulus, thermal properties such as thermal expansion coefficient, and optical properties such as light transmittance.
  • the first glass layer 11 may have a Si molar concentration higher than the molar concentration of an element other than oxygen and may be constant.
  • the Si molar concentration of the first glass layer 11 is, for example, 16% or more.
  • the SiO 2 molar concentration corresponding to the Si molar concentration of 16% is 48%.
  • the Si molar concentration of the first glass layer 11 is preferably 20% or more. Further, the Si molar concentration of the first glass layer 11 is less than 33%.
  • the variation in the Si molar concentration of the first glass layer 11 is within ⁇ 1%.
  • the first glass layer 11 has, as constituent elements, for example, B, C, Si, P, V, Ge, As, Se, Zr, Sb, Al, Ti, Sn, Te, Tl, Pb, Bi, Li, Be. , Na, Mg, K, Ca, Sc, Cu, Zn, Ga, Rb, Sr, Y, Ag, Cd, In, Cs, Ba, La, Au, Hg.
  • Oxides of B, C, Si, P, V, Ge, As, Se, Zr, and Sb are called network formers and form a three-dimensional network structure without periodicity.
  • the network structure becomes the skeleton of glass.
  • the oxides of Li, Be, Na, Mg, K, Ca, Sc, Cu, Zn, Ga, Rb, Sr, Y, Ag, Cd, In, Cs, Ba, La, Au, and Hg are networks. It is called a modifier and exists in the network structure.
  • Oxides of Al, Ti, Sn, Te, Tl, Pb, and Bi are called intermediate oxides and have intermediate properties between network formers and network modifiers.
  • the thickness of the first glass layer 11 is 1 ⁇ m or more. When the thickness of the first glass layer 11 is 1 ⁇ m or more, physical properties suitable for the use of the glass body 10 can be obtained.
  • the thickness of the first glass layer 11 is preferably 30 ⁇ m or more.
  • the thickness of the first glass layer 11 is preferably 30 mm or less.
  • the glass body 10 includes a second glass layer 12 in order to improve the bonding strength with the target object 20.
  • the second glass layer 12 is formed on the facing surface 11a of the first glass layer 11 with the target object 20, and the Si molar concentration changes in the direction orthogonal to the facing surface 11a. For example, as the distance from the first glass layer 11 increases, the Si molar concentration of the second glass layer 12 increases (see FIG. 1 (B)).
  • the change in the Si molar concentration in the middle of the second glass layer 12 is not particularly limited, and M2, which will be described later, may be higher than M1.
  • the second glass layer 12 is formed by, for example, leaching to supply an acid to the surface 11a facing the target object 20 in the first glass layer 11 and elute a desired element other than Si from the glass to the acid. Therefore, the Si molar concentration of the second glass layer 12 changes in the direction orthogonal to the surface 11a facing the target object 20 in the first glass layer 11.
  • the acid in the case of leaching treatment by supplying an acid, the acid may be supplied as an acidic aqueous solution, may be supplied as an acidic vapor, or may be a plasma, radical or ion of a gas to which the acidic vapor is added. ..
  • the acidic aqueous solution contains, for example, sulfuric acid, hydrochloric acid, oxalic acid, maleic acid, phosphoric acid, citric acid, or mixed acid.
  • the mixed acid may be sulfuric acid, hydrochloric acid, a mixed acid of oxalic acid and hydrofluoric acid, or a mixed acid of hydrochloric acid and nitric acid.
  • the acidic vapor contains hydrogen sulfide or sulfurous acid.
  • the acid elutes, for example, the network modifier of glass.
  • the glass network former remains.
  • the leaching solution used in the leaching process is a neutral or alkaline solution that can be selected according to the composition of the glass to be leached, and can selectively leave the network former of the glass in addition to the acidic solution. May be good.
  • the leaching process using an acid is also referred to as an acid leaching process.
  • the Si molar concentration M2 on the surface of the second glass layer 12 facing the target object 20 is higher than the Si molar concentration M1 of the first glass layer 11, for example, 17% to 33%, preferably 25% to 33. %.
  • the second glass layer 12 may be formed by a method other than the leaching process, and is formed by, for example, a CVD (Chemical Vapor Deposition) method, an ALD (Atomic Layer Deposition) method, or a PVD (Physical Vapor Deposition) method. You may.
  • the second glass layer 12 formed by these methods may be heat-treated in order to promote mutual diffusion at the interface with the first glass layer 11.
  • the Si molar concentration can be continuously changed by solid diffusion of atoms near the bonding interface.
  • the heat treatment is carried out at a temperature higher than 25 ° C, preferably 100 ° C or higher and 500 ° C or lower.
  • the heat treatment time is adjusted as appropriate. According to the leaching process, the Si molar concentration of the second glass layer 12 can be continuously changed.
  • a hydroxide of an alkaline earth metal may be formed on the second glass layer 12.
  • the hydroxide reacts with carbon dioxide in the atmosphere to produce carbonate.
  • C may be incorporated into the second glass layer 12.
  • the C molar concentration of the second glass layer 12 can be adjusted by a washing, rinsing and drying treatment performed after the leaching treatment. Washing treats the surface of the second glass layer 12 with a chemical solution, rinsing flushes the reaction product between the chemical solution and the second glass layer 12, and drying dries the surface.
  • the second glass layer 12 contains C
  • the bond between Si and O is reduced and the mechanical strength is lowered as compared with the case where C is not contained.
  • the carbonate CaCO 3 has a lower density and lower mechanical strength than the network modifier CaO. Therefore, after the glass body 10 and the target object 20 are joined, the second glass layer 12 can be selectively destroyed when the first glass layer 11 and the target object 20 are separated from each other, and the first glass layer 11 and the target object 20 can be selectively destroyed. 20 can be prevented from being destroyed.
  • the maximum value Cmax of the C molar concentration of the second glass layer 12 is, for example, 0.1% to 20%.
  • Cmax is 0.1% or more, the second glass layer 12 can be selectively destroyed when the first glass layer 11 and the target object 20 are separated from each other. Further, when Cmax is 20% or less, unintended peeling can be prevented.
  • Cmax is preferably 3% to 20%.
  • the second glass layer 12 may not substantially contain C.
  • the fact that the second glass layer 12 does not substantially contain C means that the maximum value Cmax of the C molar concentration of the second glass layer 12 is less than 0.1%. When Cmax is less than 0.1%, high bonding strength can be obtained.
  • the thickness of the second glass layer 12 is, for example, 5 nm to 300 nm, preferably 25 nm to 150 nm.
  • the glass body 10 may further include a crystalline or non-crystalline (amorphous) metal oxide layer 13 formed on the surface 12a of the second glass layer 12 facing the target object 20.
  • the metal oxide layer 13 is, for example, SiO 2 .
  • the metal oxide layer 13 may be SiO 2 doped with an element other than Si.
  • the metal oxide layer 13 is formed by a CVD method, an ALD method, a PVD method, or the like. Further, the metal oxide layer 13 may be formed by a leaching treatment of the glass body 10. In the leaching process, it is possible to increase the Si molar concentration by utilizing the fact that the elution rate differs for each element.
  • the facing surface 13a of the metal oxide layer 13 with the target object 20 is the joining surface of the glass body 10.
  • the surface roughness Ra of the joint surface is, for example, greater than 0.1 nm and less than 10 nm. Ra is preferably 0.2 nm to 1.0 nm. Ra is the "arithmetic mean roughness" described in Japanese Industrial Standards JIS B0601: 1994.
  • the Si molar concentration M3 of the metal oxide layer 13 is equal to or higher than the Si molar concentration M2 on the surface 12a facing the target object 20 of the second glass layer 12, and is constant.
  • the metal oxide layer 13 improves the bonding strength between the glass body 10 and the target object 20, and also suppresses the diffusion of metals other than Si from the first glass layer 11 to the target object 20.
  • M3 is, for example, 17% to 33%, preferably 30% to 33%, and more preferably 33%.
  • M3 is 33%, and high bonding strength can be obtained.
  • the variation in the Si molar concentration of the metal oxide layer 13 is within ⁇ 1%.
  • the thickness of the metal oxide layer 13 is, for example, 0.1 nm to 500 ⁇ m, preferably 10 nm to 1 ⁇ m.
  • the distribution of the Si molar concentration in the glass body 10 is measured by an X-ray photoelectric spectroscopic analyzer (XPS: X-ray Photoelectron Spectroscopic) / ESCA (Electron Spectroscopic for Chemical Analysis).
  • XPS X-ray Photoelectron Spectroscopic
  • ESCA Electron Spectroscopic for Chemical Analysis.
  • the interval between measurement points is, for example, 10 nm or less, preferably 5 nm or less.
  • the distribution of Si molar concentration may be measured by using a transmission electron microscope (TEM: Transmission Electron Microscope) in addition to the X-ray photoelectric spectroscopic analyzer.
  • TEM Transmission Electron Microscope
  • the boundary between the first glass layer 11 and the second glass layer 12 is determined using the result of the analysis of the Si molar concentration.
  • the regression line is obtained by the method of least squares. a1 is set within the range of ⁇ 0.0350 (% / nm).
  • the Si molar concentration in the second glass layer 12 is represented by an approximate curve.
  • the approximate curve is obtained by the least squares method and approximated by a polynomial.
  • the approximate curve may be a straight line connecting two adjacent measurement points.
  • the data at each measurement point may be moving average data rather than raw data.
  • ⁇ 1 is the standard deviation of the Si molar concentration in the first glass layer 11.
  • the boundary between the second glass layer 12 and the metal oxide layer 13 is determined using the result of the analysis of the Si molar concentration.
  • the regression line is obtained by the method of least squares. a2 is set within the range of ⁇ 0.0350 (% / nm).
  • the Si molar concentration in the second glass layer 12 is represented by an approximate curve.
  • the approximate curve is obtained by the least squares method and approximated by a polynomial.
  • the approximate curve may be a straight line connecting two adjacent measurement points. The data at each measurement point may be moving average data rather than raw data.
  • ⁇ 2 is the standard deviation of the Si molar concentration in the metal oxide layer 13.
  • the bonding glass body 10 includes the first glass layer 11 and the second glass layer 12, and may not include the metal oxide layer 13.
  • the surface 12a facing the target object 20 in the second glass layer 12 is the joint surface of the glass body 10.
  • the bonding glass body 10 may include the second glass layer 12 on both sides of the first glass layer 11.
  • the target object 20 can be joined to both sides of the first glass layer 11.
  • the bonding glass body 10 may include the metal oxide layers 13 on both sides of the first glass layer 11.
  • the bonded body 30 includes a glass body 10 and a target object 20 bonded to the glass body 10.
  • the target object 20 may include a first glass layer 21, a second glass layer 22, and a metal oxide layer 23, similarly to the glass body 10.
  • the first glass layer 21 is formed in the same manner as the first glass layer 11
  • the second glass layer 22 is formed in the same manner as the second glass layer 12
  • the metal oxide layer 23 is formed in the same manner as the metal oxide layer 13.
  • the glass The bonding strength between multi-component glasses can be improved.
  • the target object 20 is in direct contact with the glass body 10.
  • the joint surface 13a of the glass body 10 and the joint surface 23a of the target object 20 are activated in advance by the surface activation method.
  • the surface activation method includes, for example, the technique described in Patent Document 1, the so-called sequential plasma method.
  • the sequential plasma method includes, for example, reactive ion etching using oxygen gas, reactive ion etching using nitrogen gas, and irradiation with nitrogen radicals.
  • the sequential plasma method activates the joint surface of glass or the like.
  • OH groups which are hydrophilic groups, are generated on the joint surface.
  • hydrogen bonds between OH groups are generated at the time of bonding, and high bonding strength is obtained.
  • annealing may be performed. By the annealing treatment, the hydrogen bond is changed to a covalent bond, and higher bond strength is obtained.
  • the surface activation method is not limited to the sequential plasma method.
  • the surface activation method may include, for example, only reactive ion etching using oxygen gas.
  • an OH group which is a hydrophilic group, is generated on the joint surface. After that, hydrogen bonds between OH groups are generated at the time of bonding, and covalent bonds are generated by the dehydration condensation reaction of the hydrogen bonds, so that high bonding strength can be obtained.
  • the glass body 10 and the target object 20 may be joined via an intermediate layer 40 of an inorganic substance.
  • the intermediate layer 40 includes a joint layer 41 previously formed on the joint surface of the glass body 10 and a joint layer 42 previously formed on the joint surface of the target object 20.
  • the bonding layers 41 and 42 are formed of a metal containing, for example, one or more elements of Al, Si, Ti, V, Cr, Mn, Fe, Y, Zr, Hf, and Ta. Metals include alloys.
  • the glass body 10 and the target object 20 can be joined by utilizing the atomic diffusion of the metal.
  • the bonding layers 41 and 42 may each include a plurality of metal layers.
  • the bonding layers 41 and 42 may be formed of a metal oxide containing one or more elements of Al, Si, Ti, V, Cr, Mn, Fe, Y, Zr, Hf, and Ta. ..
  • the metal oxide is formed by a film forming method such as a sputtering method, a reactive sputtering method, or an ALD method.
  • the sputtering method uses a metal oxide target and an inert gas.
  • the reactive sputtering method uses a metal target and a mixed gas of an inert gas such as a rare gas and a reactive gas (for example, oxygen gas).
  • the bonding layers 41 and 42 are metal oxides
  • the surface activity of the metal oxide developed in the process of forming the metal oxide is utilized, and the bonding is performed in an atmosphere such as vacuum, atmosphere, or an inert gas.
  • the surface of the bonding layers 41 and 42 may be activated by the above-mentioned surface activation method, and then the bonding may be performed.
  • the bonding surface activated by the above surface activation method comes into contact with water vapor, water, or the like, OH groups, which are hydrophilic groups, are generated on the bonding surface. After that, hydrogen bonds between OH groups are generated at the time of bonding, and further, a covalent bond is generated by the dehydration condensation reaction of the hydrogen bonds, so that high bonding strength can be obtained.
  • the bonding layers 41 and 42 When the bonding layers 41 and 42 are made of metal, the bonding layers 41 and 42 may be bonded by an atomic diffusion method, and then the bonding layers 41 and 42 may be oxidized with oxygen contained in the glass body 10. The bonded body 30 may be heat-treated to promote oxidation. By oxidizing the bonding layers 41 and 42, physical properties such as light transmittance, electric conductivity, thermal conductivity, and coefficient of thermal expansion can be changed.
  • the target object 20 does not have to be a glass plate, and is, for example, a semiconductor substrate such as Si, GaN, SiC, or Ga 2 O 3 , LiTaO 3 . It may be a piezoelectric substrate such as LiNbO 3 or AlN, an oxide substrate such as Al 2 O 3 , or a nitride substrate such as SiN.
  • the glass body 10 and the target object 20 may be in direct contact with each other as shown in FIG. 3C, or may be joined via an intermediate layer 40 as shown in FIG. 3D.
  • the target object 20 includes the first glass layer 21 and the second glass layer 22 and the metal oxide layer 23, similarly to the glass body 10. And may not be included.
  • the glass body 10 and the target object 20 may be in direct contact with each other as shown in FIG. 4 (A), or may be joined via an intermediate layer 40 as shown in FIG. 4 (B).
  • the target object 20 does not have to be a glass plate, and is, for example, a semiconductor substrate such as Si, GaN, SiC, or Ga 2 O 3 , LiTaO 3 . It may be a piezoelectric substrate such as LiNbO 3 or AlN, an oxide substrate such as Al 2 O 3 , or a nitride substrate such as SiN.
  • the glass body 10 and the target object 20 may be in direct contact with each other as shown in FIG. 4 (C), or may be joined via an intermediate layer 40 as shown in FIG. 4 (D).
  • the glass body 10 or the target object 20 may have a recess or a through hole in the joint surface thereof.
  • the joint strength of the joint 30 is measured by the crack opening method shown in FIG.
  • a blade BL like a razor blade is inserted from the outside at the bonding interface between the glass body 10 and the target object 20 bonded to each other, and the peeling length L is measured. The shorter the peeling length L, the higher the bonding strength. If the bonding strength is sufficiently high, the glass body 10 or the target object 20 may be destroyed by the insertion of the blade BL.
  • E1 is the Young's modulus of the glass body 10
  • E2 is the Young's modulus of the target object 20
  • t1 is the thickness of the glass body 10
  • t2 is the thickness of the target object 20
  • t0 is the thickness of the blade BL.
  • the bonding strength ⁇ is obtained as the surface energy of the bonding interface, and the unit of the bonding strength ⁇ is J / m 2 .
  • Table 1 shows the compositions of the two types of glasses A to B used in the experiment.
  • the glass A is a non-alkali glass, and more specifically, an aluminum noborosilicate glass.
  • Glass B is also non-alkali glass, more specifically aluminosilicate glass.
  • Each of the glasses A to B has a SiO 2 content of 70 mol% or less.
  • quartz glass having a SiO 2 content of 100 mol% was also prepared.
  • Examples 1 to 9 below the glasses shown in Table 1 were joined together.
  • the joining conditions and evaluation results are shown in Tables 2 to 3.
  • Examples 2 to 5 and 7 to 9 below are examples, and examples 1 and 6 below are reference examples.
  • the adhesion When the adhesion is "A”, it means that the bonding strength is 2.0J / m 2 or more or exceeds the measurement limit, and when the adhesion is "B", the bonding strength is 0.8J. It means that it is more than / m 2 and less than 2.0 J / m 2 , and that the adhesion is "C” means that the bonding strength is less than 0.8 J / m 2 .
  • the joint strength is 0.8 J / m 2 or more, good results can be obtained in the die shear strength test of the cut joint according to the industrial standard such as MIL-STD-883 standard.
  • the peelability is "A”
  • the bonding strength is less than 0.3 J / m 2
  • the peeling property is "B”
  • the bonding strength is 0.3 J / m 2 or more 1 It means that it is less than 0.0 J / m 2
  • the peelability is "C” means that the bonding strength is 1.0 J / m 2 or more. If the bonding strength is less than 1.0 J / m 2 , the glasses can be separated from each other by inserting a blade into the bonding interface.
  • the blade BL used in the experiment had a thickness t0 of 0.1 mm.
  • Example 1 two quartz glasses were joined. Quartz glass had a glass body thickness of 0.5 mm and did not have a second glass layer and a metal oxide. Prior to joining, the opposing surfaces of the two quartz glasses were activated only by reactive ion etching using oxygen gas and exposed to water vapor. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, two quartz glasses were joined in the atmosphere. The bonding strength was 1.5 J / m 2 or more, the evaluation of adhesion was "B", and the evaluation of peelability was "C”.
  • Example 2 two glasses A were joined.
  • the thickness of the glass body was 0.5 mm, and the thickness of the second glass layer was 45 nm.
  • the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Each joint surface was washed so that no carbon remained after the acid leaching treatment. Then, each joint surface was activated only by reactive ion etching using oxygen gas, and then each joint surface was subsequently exposed to water vapor. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, the two glasses A were joined in the atmosphere.
  • the bonding strength was 0.9 J / m 2 , the evaluation of adhesion was "B", and the evaluation of peelability was "B".
  • Example 3 two glasses B were joined.
  • the thickness of the glass body was 0.5 mm, and the thickness of the second glass layer was 60 nm.
  • the joining surfaces of the two glasses B facing each other were subjected to acid leaching treatment. Each joint surface was washed so that no carbon remained after the acid leaching treatment. Then, each joint surface was activated only by reactive ion etching using oxygen gas, and then each joint surface was subsequently exposed to water vapor. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, the two glasses B were joined in the atmosphere.
  • the bonding strength was 0.2 J / m 2 , the evaluation of adhesion was "C”, and the evaluation of peelability was "A".
  • Example 4 two glasses A were joined.
  • the thickness of the glass body was 0.5 mm
  • the thickness of the second glass layer was 45 nm
  • the thickness of the metal oxide layer was 15 nm.
  • the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Carbon remained after the acid leaching treatment.
  • a metal oxide layer which is a non-crystalline SiO 2 film, is formed on each joint surface by a sputtering method using a SiO 2 target, and the surface of each SiO 2 film is obtained only by reactive ion etching using oxygen gas. Was activated, and subsequently the surface of each SiO 2 film was exposed to steam.
  • the processing time for reactive ion etching using oxygen gas was 120 seconds. Then, in the atmosphere, two glasses A were joined via two SiO 2 films. The bonding strength was 0.9 J / m 2 , the evaluation of adhesion was "B”, and the evaluation of peelability was "B".
  • Example 5 the acid leaching treatment is not performed on the two glasses A, the two glasses A are etched with an alkaline solution having a pH of 11, and then the glass surface is leached with a neutral solution to obtain a Cmax of 20 mol.
  • a metal oxide layer which is a non-crystalline SiO 2 film was formed by a sputtering method using a SiO 2 target. The surface of each SiO 2 film was activated only by reactive ion etching using oxygen gas, and then the surface of each SiO 2 film was exposed to steam. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, in the atmosphere, two glasses A were joined via two SiO 2 films.
  • the thickness of the glass body was 0.5 mm
  • the thickness of the second glass layer was 25 nm
  • the thickness of the metal oxide layer was 15 nm.
  • the peeling was caused by the fracture of the second glass layer, the bonding strength thereof was 0.1 J / m 2 , the evaluation of the adhesion was “C”, and the evaluation of the peelability was “A”.
  • Example 6 two quartz glasses were joined. Quartz glass had a glass body thickness of 0.5 mm and did not have a second glass layer and a metal oxide. Before joining, a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm were formed on the bonding surfaces of the two quartz glasses facing each other by a sputtering method in this order. Then, two quartz glasses were joined in the atmosphere. The joint strength exceeded the measurement limit, and when the blade was inserted into the joint interface, the joint body broke and could not be measured. The evaluation of adhesion was "A”, and the evaluation of peelability was "C".
  • Example 7 two glasses A were joined.
  • the thickness of the glass body was 0.5 mm, and the thickness of the second glass layer was 45 nm.
  • the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Each joint surface was washed so that no carbon remained after the acid leaching treatment. Then, a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm were formed on each joint surface in this order by a sputtering method. Then, the two glasses A were joined in the atmosphere.
  • the bonding strength was 2.0 J / m 2 , the evaluation of adhesion was "A”, and the evaluation of peelability was "C”.
  • Example 8 two glasses A were joined.
  • the thickness of the glass body was 0.5 mm
  • the thickness of the second glass layer was 45 nm
  • the thickness of the metal oxide layer was 15 nm.
  • the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Carbon remained after the acid leaching treatment.
  • a metal oxide layer which is a non-crystalline SiO 2 film is formed on each joint surface by a sputtering method using a SiO 2 target, and then a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm are formed. In this order, a film was formed by a sputtering method.
  • the two glasses A were joined in the atmosphere.
  • the bonding strength was 0.9 J / m 2
  • the evaluation of adhesion was "B”
  • the evaluation of peelability was "B".
  • Example 9 the two glasses A are not subjected to the acid leaching treatment, the two glasses A are etched with an alkaline solution having a pH of 11, and then the glass surface is leached with a neutral solution to obtain a Cmax of 20 mol.
  • a metal oxide layer which is a non-crystalline SiO 2 film is formed by a sputtering method using a SiO 2 target, and then a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm are formed in this order. Then, a film was formed by the sputtering method. Then, the two glasses A were joined in the atmosphere.
  • the thickness of the glass body was 0.5 mm
  • the thickness of the second glass layer was 25 nm
  • the thickness of the metal oxide layer was 15 nm. Peeling occurs at the interface between the second glass layer of glass A and the Ti film formed on the second glass layer, the bonding strength thereof is 0.1 J / m 2 , and the evaluation of adhesion is "C”. The evaluation of peelability was "A”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

This glass body for joining is joined with a target object. The glass body for joining includes a first glass layer and a second glass layer. The Si molar concentration of the first glass layer is higher than the molar concentration of elements other than oxygen, and is constant. The second glass layer is formed on the surface facing the target object of the first glass layer, and Si molar concentration thereof varies in a direction orthogonal to said surface facing the target object. The thickness of the first glass layer is 1 μm or greater. The thickness of the second glass layer is 5-300 nm. The Si molar concentration in the surface facing the target object of the second glass layer is higher than the Si molar concentration of the first glass layer.

Description

接合用ガラス体、及び接合体Glass body for joining and joining body
 本開示は、接合用ガラス体、及び接合体に関する。 This disclosure relates to a glass body for joining and a joining body.
 特許文献1には、2つの基体を原子拡散法で接合する接合方法が開示されている。その接合方法は、2つの基体のそれぞれの平滑面に接合膜と保護膜とをこの順番で形成することと、保護膜同士が接触するように2つの基体を重ね合わせることとを含む。保護膜は、Au又はAu合金からなる。接合膜は、Au以外の単金属又はAu合金以外の合金からなる。保護膜のAuの原子拡散により、接合膜の原子を再配列する。 Patent Document 1 discloses a joining method for joining two substrates by an atomic diffusion method. The bonding method includes forming a bonding film and a protective film on the smooth surface of each of the two substrates in this order, and superimposing the two substrates so that the protective films are in contact with each other. The protective film is made of Au or Au alloy. The bonding film is made of a single metal other than Au or an alloy other than Au alloy. The atoms of the bonding membrane are rearranged by the atomic diffusion of Au in the protective film.
 特許文献2には、2つの基板を表面活性化法で接合する接合方法が開示されている。その接合方法は、2つの基板のそれぞれの互いに接合される接合面の少なくとも一方を親水化することと、親水化の後で2つの基板を接合することと、を含む。親水化することは、酸素ガスを用いた反応性イオンエッチングと、窒素ガスを用いた反応性イオンエッチングと、窒素ラジカルの照射と、を含む。 Patent Document 2 discloses a joining method for joining two substrates by a surface activation method. The joining method includes hydrophilizing at least one of the joining surfaces of the two substrates to be joined to each other, and joining the two substrates after hydrophilization. Hydrophilization includes reactive ion etching using oxygen gas, reactive ion etching using nitrogen gas, and irradiation with nitrogen radicals.
 特許文献3には、2つの基板を表面活性化法で接合する接合方法が開示されている。その接合方法は、一対の基板の両方又はいずれか一方の接合面に金属酸化物の薄膜を形成することと、その薄膜を介して基板の接合面を互いに接触させて、貼り合わせることと、を含む。基板は、SiOを含むガラス、強化ガラス等である。 Patent Document 3 discloses a joining method for joining two substrates by a surface activation method. The joining method is to form a thin film of metal oxide on the joining surface of both or one of the pair of substrates, and to bring the joining surfaces of the substrates into contact with each other through the thin film and bond them together. include. The substrate is glass containing SiO 2 , tempered glass, or the like.
日本国特開2016-087664号公報Japanese Patent Application Laid-Open No. 2016-087664 国際公開第2018/084285号International Publication No. 2018/084285 日本国特開2019-119086号公報Japanese Patent Application Laid-Open No. 2019-119086
 本開示の一態様は、SiOとSiO以外の成分とを含むガラスの接合強度を改善する、技術を提供する。 One aspect of the present disclosure provides a technique for improving the bonding strength of a glass containing SiO 2 and a component other than SiO 2 .
 本開示の一態様に係る接合用ガラス体は、対象物体と接合されるものである。接合用ガラス体は、第1ガラス層と、第2ガラス層とを含む。前記第1ガラス層は、Siモル濃度が酸素以外の元素のモル濃度よりも高く、且つ一定である。前記第2ガラス層は、前記第1ガラス層における前記対象物体との対向面に形成され、その対向面に直交する方向にSiモル濃度が変化するものである。前記第1ガラス層の厚みが、1μm以上である。前記第2ガラス層の厚みが、5nm~300nmである。前記第2ガラス層の前記対象物体との対向面におけるSiモル濃度が、前記第1ガラス層のSiモル濃度よりも高い。 The joining glass body according to one aspect of the present disclosure is to be joined to the target object. The glass body for joining includes a first glass layer and a second glass layer. The first glass layer has a Si molar concentration higher than the molar concentration of an element other than oxygen and is constant. The second glass layer is formed on a surface of the first glass layer facing the target object, and the Si molar concentration changes in a direction orthogonal to the facing surface. The thickness of the first glass layer is 1 μm or more. The thickness of the second glass layer is 5 nm to 300 nm. The Si molar concentration on the surface of the second glass layer facing the target object is higher than the Si molar concentration of the first glass layer.
 本開示の一態様によれば、SiOとSiO以外の成分とを含むガラスのSiモル濃度を局所的に石英ガラスのSiモル濃度に近づけることで、ガラスの接合強度を改善できる。 According to one aspect of the present disclosure, the bonding strength of the glass can be improved by locally bringing the Si molar concentration of the glass containing SiO 2 and a component other than SiO 2 closer to the Si molar concentration of the quartz glass.
図1(A)は一実施形態に係る接合用ガラス体を示す図であり、図1(B)はSiモル濃度の分布の一例を示す図であり、図1(C)はCモル濃度の分布の一例を示す図である。FIG. 1 (A) is a diagram showing a glass body for joining according to an embodiment, FIG. 1 (B) is a diagram showing an example of a Si molar concentration distribution, and FIG. 1 (C) is a diagram showing a C molar concentration. It is a figure which shows an example of a distribution. 図2(A)は第1変形例に係る接合用ガラス体を示す図であり、図2(B)は第2変形例に係る接合用ガラス体を示す図であり、図2(C)は第3変形例に係る接合用ガラス体を示す図である。FIG. 2A is a diagram showing a bonding glass body according to the first modification, FIG. 2B is a diagram showing a bonding glass body according to the second modification, and FIG. 2C is a diagram showing the bonding glass body. It is a figure which shows the glass body for joining which concerns on the 3rd modification. 図3(A)は一実施形態に係る接合体を示す図であり、図3(B)は第1変形例に係る接合体を示す図であり、図3(C)は第2変形例に係る接合体を示す図であり、図3(D)は第3変形例に係る接合体を示す図である。FIG. 3A is a diagram showing a bonded body according to an embodiment, FIG. 3B is a diagram showing a bonded body according to a first modification, and FIG. 3C is a diagram showing a second modification. It is a figure which shows the said joint body, and FIG. 3 (D) is a figure which shows the joint body which concerns on the 3rd modification. 図4(A)は第4変形例に係る接合体を示す図であり、図4(B)は第5変形例に係る接合体を示す図であり、図4(C)は第6変形例に係る接合体を示す図であり、図4(D)は第7変形例に係る接合体を示す図である。FIG. 4 (A) is a diagram showing a bonded body according to a fourth modified example, FIG. 4 (B) is a diagram showing a bonded body according to a fifth modified example, and FIG. 4 (C) is a diagram showing a sixth modified example. 4 (D) is a diagram showing a bonded body according to the seventh modification. 図5は、接合強度の測定方法の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a method for measuring the joint strength.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted. In the specification, "-" indicating a numerical range means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
 先ず、図1を参照して、本実施形態に係る接合用ガラス体10について説明する。接合用ガラス体10は、対象物体20に接合されるものである。接合用ガラス体10を、以下、単にガラス体10とも呼ぶ。ガラス体10は、第1ガラス層11を含む。第1ガラス層11は、いわゆる多成分ガラスであり、SiOを主成分とするシリケートガラスである。シリケートガラスは、ソーダライムガラス、無アルカリガラス、又はホウケイ酸ガラスなどである。ガラス組成は、一般的なものである。 First, the bonding glass body 10 according to the present embodiment will be described with reference to FIG. 1. The bonding glass body 10 is bonded to the target object 20. Hereinafter, the bonding glass body 10 is also simply referred to as a glass body 10. The glass body 10 includes the first glass layer 11. The first glass layer 11 is a so-called multi-component glass, which is a silicate glass containing SiO 2 as a main component. The silicate glass is soda lime glass, non-alkali glass, borosilicate glass and the like. The glass composition is general.
 例えば、第1ガラス層11は、モル%表示で、SiOを58.4%~66.0%、Alを15.3%~22.0%、Bを5.0%~12.0%、MgOを0.0%~6.5%、CaOを0.0%~7.0%、SrOを4.0%~12.5%、BaOを0.0%~2.0%含み、アルカリ土類金属酸化物(MgO+CaO+SrO+BaO)を9.0%~18.0%含む。 For example, in the first glass layer 11, in mol% representation, SiO 2 is 58.4% to 66.0%, Al 2 O 3 is 15.3% to 22.0%, and B 2 O 3 is 5.0. % To 12.0%, MgO 0.0% to 6.5%, CaO 0.0% to 7.0%, SrO 4.0% to 12.5%, BaO 0.0% to It contains 2.0% and contains 9.0% to 18.0% of alkaline earth metal oxides (MgO + CaO + SrO + BaO).
 また、第1ガラス層11は、モル%表示で、SiOを50%~70%、Alを2%~8%、Bを0%~5%、MgOを0%~5%、CaOを0%~6%、SrOを4%~20%、BaOを14%~35%含み、アルカリ土類金属酸化物(MgO+CaO+SrO+BaO)を25%~40%含んでもよい。 Further, in the first glass layer 11, in mol% representation, SiO 2 is 50% to 70%, Al 2 O 3 is 2% to 8%, B 2 O 3 is 0% to 5%, and MgO is 0% to 0%. It may contain 5%, CaO 0% to 6%, SrO 4% to 20%, BaO 14% to 35%, and alkaline earth metal oxide (MgO + CaO + SrO + BaO) 25% to 40%.
 第1ガラス層11のガラス組成は、ガラス体10の用途に応じて選択される。ヤング率などの機械的特性、熱膨張率などの熱的特性、光透過率などの光学的特性など、ガラス体10の用途に応じて、求められる物性が異なるからである。 The glass composition of the first glass layer 11 is selected according to the use of the glass body 10. This is because the required physical properties differ depending on the application of the glass body 10, such as mechanical properties such as Young's modulus, thermal properties such as thermal expansion coefficient, and optical properties such as light transmittance.
 第1ガラス層11は、Siモル濃度が、酸素以外の元素のモル濃度よりも高く、且つ一定であればよい。第1ガラス層11のSiモル濃度は、例えば16%以上である。Siモル濃度16%に相当するSiOモル濃度は48%である。第1ガラス層11のSiモル濃度は、好ましくは20%以上である。また、第1ガラス層11のSiモル濃度は、33%未満である。第1ガラス層11のSiモル濃度のバラツキは、±1%以内である。 The first glass layer 11 may have a Si molar concentration higher than the molar concentration of an element other than oxygen and may be constant. The Si molar concentration of the first glass layer 11 is, for example, 16% or more. The SiO 2 molar concentration corresponding to the Si molar concentration of 16% is 48%. The Si molar concentration of the first glass layer 11 is preferably 20% or more. Further, the Si molar concentration of the first glass layer 11 is less than 33%. The variation in the Si molar concentration of the first glass layer 11 is within ± 1%.
 第1ガラス層11は、構成元素として、例えば、B、C、Si、P、V、Ge、As、Se、Zr、Sb、Al、Ti、Sn、Te、Tl、Pb、Bi、Li、Be、Na、Mg、K、Ca、Sc、Cu、Zn、Ga、Rb、Sr、Y、Ag、Cd、In、Cs、Ba、La、Au、Hgから選ばれる1つ以上を含む。 The first glass layer 11 has, as constituent elements, for example, B, C, Si, P, V, Ge, As, Se, Zr, Sb, Al, Ti, Sn, Te, Tl, Pb, Bi, Li, Be. , Na, Mg, K, Ca, Sc, Cu, Zn, Ga, Rb, Sr, Y, Ag, Cd, In, Cs, Ba, La, Au, Hg.
 B、C、Si、P、V、Ge、As、Se、Zr、及びSbの酸化物は、ネットワークフォーマーと呼ばれ、周期性のない三次元の網目構造を形成する。その網目構造が、ガラスの骨格となる。 Oxides of B, C, Si, P, V, Ge, As, Se, Zr, and Sb are called network formers and form a three-dimensional network structure without periodicity. The network structure becomes the skeleton of glass.
 一方、Li、Be、Na、Mg、K、Ca、Sc、Cu、Zn、Ga、Rb、Sr、Y、Ag、Cd、In、Cs、Ba、La、Au、及びHgの酸化物は、ネットワークモディファイアーと呼ばれ、網目構造の中に存在している。 On the other hand, the oxides of Li, Be, Na, Mg, K, Ca, Sc, Cu, Zn, Ga, Rb, Sr, Y, Ag, Cd, In, Cs, Ba, La, Au, and Hg are networks. It is called a modifier and exists in the network structure.
 Al、Ti、Sn、Te、Tl、Pb、及びBiの酸化物は、中間酸化物と呼ばれ、ネットワークフォーマーとネットワークモディファイアーの中間的な性質を有する。 Oxides of Al, Ti, Sn, Te, Tl, Pb, and Bi are called intermediate oxides and have intermediate properties between network formers and network modifiers.
 第1ガラス層11の厚みは、1μm以上である。第1ガラス層11の厚みが1μm以上であれば、ガラス体10の用途に適した物性が得られる。第1ガラス層11の厚みは、好ましくは30μm以上である。また、第1ガラス層11の厚みは、好ましくは30mm以下である。 The thickness of the first glass layer 11 is 1 μm or more. When the thickness of the first glass layer 11 is 1 μm or more, physical properties suitable for the use of the glass body 10 can be obtained. The thickness of the first glass layer 11 is preferably 30 μm or more. The thickness of the first glass layer 11 is preferably 30 mm or less.
 ガラス体10は、対象物体20との接合強度を向上すべく、第2ガラス層12を含む。第2ガラス層12は、第1ガラス層11における対象物体20との対向面11aに形成され、その対向面11aに直交する方向に、Siモル濃度が変化する。例えば、第1ガラス層11からの距離が遠いほど、第2ガラス層12のSiモル濃度が増加する(図1(B)参照)。なお、第2ガラス層12の途中でのSiモル濃度の変化は特に限定されず、後述するM2がM1よりも高ければよい。 The glass body 10 includes a second glass layer 12 in order to improve the bonding strength with the target object 20. The second glass layer 12 is formed on the facing surface 11a of the first glass layer 11 with the target object 20, and the Si molar concentration changes in the direction orthogonal to the facing surface 11a. For example, as the distance from the first glass layer 11 increases, the Si molar concentration of the second glass layer 12 increases (see FIG. 1 (B)). The change in the Si molar concentration in the middle of the second glass layer 12 is not particularly limited, and M2, which will be described later, may be higher than M1.
 第2ガラス層12は、例えば、第1ガラス層11における対象物体20との対向面11aに対して酸を供給し、Si以外の所望の元素をガラスから酸に溶出するリーチングによって形成される。それゆえ、第2ガラス層12は、第1ガラス層11における対象物体20との対向面11aに直交する方向に、Siモル濃度が変化する。 The second glass layer 12 is formed by, for example, leaching to supply an acid to the surface 11a facing the target object 20 in the first glass layer 11 and elute a desired element other than Si from the glass to the acid. Therefore, the Si molar concentration of the second glass layer 12 changes in the direction orthogonal to the surface 11a facing the target object 20 in the first glass layer 11.
 例えば、酸の供給によりリーチング処理する場合、酸は、酸性水溶液として供給されてもよいし、酸性蒸気として供給されてもよく、酸性蒸気を添加したガスのプラズマ、ラジカルあるいはイオンであってもよい。酸性水溶液は、例えば、硫酸、塩酸、蓚酸、マレイン酸、リン酸、クエン酸、又は混酸を含む。混酸は、硫酸、塩酸若しくは蓚酸とフッ酸との混酸でもよいし、塩酸と硝酸との混酸でもよい。酸性蒸気は、硫化水素、又は亜硫酸を含む。酸は、例えばガラスのネットワークモディファイアーを溶出させる。ガラスのネットワークフォーマーは残る。リーチング処理で使用するリーチング溶液は、リーチング処理されるガラスの組成に応じて選定し、酸性溶液の他、ガラスのネットワークフォーマーを選択的に残存させることができる中性あるいはアルカリ性の溶液であってもよい。以下、酸を用いたリーチング処理を、酸リーチング処理とも呼ぶ。 For example, in the case of leaching treatment by supplying an acid, the acid may be supplied as an acidic aqueous solution, may be supplied as an acidic vapor, or may be a plasma, radical or ion of a gas to which the acidic vapor is added. .. The acidic aqueous solution contains, for example, sulfuric acid, hydrochloric acid, oxalic acid, maleic acid, phosphoric acid, citric acid, or mixed acid. The mixed acid may be sulfuric acid, hydrochloric acid, a mixed acid of oxalic acid and hydrofluoric acid, or a mixed acid of hydrochloric acid and nitric acid. The acidic vapor contains hydrogen sulfide or sulfurous acid. The acid elutes, for example, the network modifier of glass. The glass network former remains. The leaching solution used in the leaching process is a neutral or alkaline solution that can be selected according to the composition of the glass to be leached, and can selectively leave the network former of the glass in addition to the acidic solution. May be good. Hereinafter, the leaching process using an acid is also referred to as an acid leaching process.
 第2ガラス層12の対象物体20との対向面12aにおけるSiモル濃度M2は、第1ガラス層11のSiモル濃度M1よりも高く、例えば17%~33%であり、好ましくは25%~33%である。ガラス体10のSiモル濃度を局所的に石英ガラスのSiモル濃度に近づけることで、ガラス体10と対象物体20の接合強度を改善できる。 The Si molar concentration M2 on the surface of the second glass layer 12 facing the target object 20 is higher than the Si molar concentration M1 of the first glass layer 11, for example, 17% to 33%, preferably 25% to 33. %. By locally bringing the Si molar concentration of the glass body 10 close to the Si molar concentration of quartz glass, the bonding strength between the glass body 10 and the target object 20 can be improved.
 なお、第2ガラス層12は、リーチング処理以外の方法で形成されてもよく、例えばCVD(Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法、又はPVD(Physical Vapor Depositon)法などで形成されてもよい。これらの方法で形成された第2ガラス層12は、第1ガラス層11との界面での相互拡散を促進するために加熱処理されてもよい。加熱処理すると、接合界面付近の原子の固体拡散によりSiモル濃度を連続的に変化させることができる。加熱処理は25℃より高い温度で実施し、100℃以上500℃以下が好ましい。加熱処理時間は適宜調整される。なお、リーチング処理によれば、第2ガラス層12のSiモル濃度を連続的に変化させることができる。 The second glass layer 12 may be formed by a method other than the leaching process, and is formed by, for example, a CVD (Chemical Vapor Deposition) method, an ALD (Atomic Layer Deposition) method, or a PVD (Physical Vapor Deposition) method. You may. The second glass layer 12 formed by these methods may be heat-treated in order to promote mutual diffusion at the interface with the first glass layer 11. When heat-treated, the Si molar concentration can be continuously changed by solid diffusion of atoms near the bonding interface. The heat treatment is carried out at a temperature higher than 25 ° C, preferably 100 ° C or higher and 500 ° C or lower. The heat treatment time is adjusted as appropriate. According to the leaching process, the Si molar concentration of the second glass layer 12 can be continuously changed.
 ところで、第2ガラス層12を形成する際に、第2ガラス層12にアルカリ土類金属の水酸化物が生成することがある。その水酸化物は、大気中の二酸化炭素と反応し、炭酸塩を生成する。その結果、第2ガラス層12に、Cが取り込まれることがある。第2ガラス層12のCモル濃度は、リーチング処理の後に行われる洗浄、リンス、乾燥の処理によって調整できる。洗浄は第2ガラス層12の表面を薬液で処理し、リンスは薬液と第2ガラス層12との反応生成物を洗い流し、乾燥は表面を乾燥させる。 By the way, when the second glass layer 12 is formed, a hydroxide of an alkaline earth metal may be formed on the second glass layer 12. The hydroxide reacts with carbon dioxide in the atmosphere to produce carbonate. As a result, C may be incorporated into the second glass layer 12. The C molar concentration of the second glass layer 12 can be adjusted by a washing, rinsing and drying treatment performed after the leaching treatment. Washing treats the surface of the second glass layer 12 with a chemical solution, rinsing flushes the reaction product between the chemical solution and the second glass layer 12, and drying dries the surface.
 第2ガラス層12がCを含む場合、含まない場合に比べて、SiとOの結合が減少し、機械的な強度が低下する。例えば、ネットワークモディファイアーであるCaOに比べて、炭酸塩であるCaCOは、密度が低く、機械的な強度が低下する。従って、ガラス体10と対象物体20との接合後に、第1ガラス層11と対象物体20とを剥離する際に、第2ガラス層12を選択的に破壊でき、第1ガラス層11と対象物体20の破壊を防止できる。 When the second glass layer 12 contains C, the bond between Si and O is reduced and the mechanical strength is lowered as compared with the case where C is not contained. For example, the carbonate CaCO 3 has a lower density and lower mechanical strength than the network modifier CaO. Therefore, after the glass body 10 and the target object 20 are joined, the second glass layer 12 can be selectively destroyed when the first glass layer 11 and the target object 20 are separated from each other, and the first glass layer 11 and the target object 20 can be selectively destroyed. 20 can be prevented from being destroyed.
 第2ガラス層12がCを含む場合、第2ガラス層12のCモル濃度の最大値Cmaxは例えば0.1%~20%である。Cmaxが0.1%以上であれば、第1ガラス層11と対象物体20とを剥離する際に、第2ガラス層12を選択的に破壊できる。また、Cmaxが20%以下であれば、意図しない剥離を防止できる。Cmaxは、好ましくは3%~20%である。 When the second glass layer 12 contains C, the maximum value Cmax of the C molar concentration of the second glass layer 12 is, for example, 0.1% to 20%. When Cmax is 0.1% or more, the second glass layer 12 can be selectively destroyed when the first glass layer 11 and the target object 20 are separated from each other. Further, when Cmax is 20% or less, unintended peeling can be prevented. Cmax is preferably 3% to 20%.
 なお、ガラス体10と対象物体20との接合後に、第1ガラス層11と対象物体20とを剥離する予定がない場合、第2ガラス層12はCを実質的に含まなくてもよい。ここで、第2ガラス層12がCを実質的に含まないとは、第2ガラス層12のCモル濃度の最大値Cmaxが0.1%未満であることを意味する。Cmaxが0.1%未満であれば、高い接合強度が得られる。 If there is no plan to separate the first glass layer 11 and the target object 20 after joining the glass body 10 and the target object 20, the second glass layer 12 may not substantially contain C. Here, the fact that the second glass layer 12 does not substantially contain C means that the maximum value Cmax of the C molar concentration of the second glass layer 12 is less than 0.1%. When Cmax is less than 0.1%, high bonding strength can be obtained.
 第2ガラス層12の厚みは、例えば5nm~300nmであり、好ましくは25nm~150nmである。 The thickness of the second glass layer 12 is, for example, 5 nm to 300 nm, preferably 25 nm to 150 nm.
 ガラス体10は、第2ガラス層12における対象物体20との対向面12aに形成される結晶性又は非結晶性(アモルファス性)の金属酸化物層13を更に含んでもよい。金属酸化物層13は、例えばSiOである。金属酸化物層13は、Si以外の元素がドーピングされたSiOであってもよい。金属酸化物層13は、CVD法、ALD法、又はPVD法などで形成される。また、金属酸化物層13は、ガラス体10のリーチング処理によって形成してもよい。リーチング処理では、元素ごとに溶出速度が異なることを利用して、Siモル濃度を高めることが可能である。 The glass body 10 may further include a crystalline or non-crystalline (amorphous) metal oxide layer 13 formed on the surface 12a of the second glass layer 12 facing the target object 20. The metal oxide layer 13 is, for example, SiO 2 . The metal oxide layer 13 may be SiO 2 doped with an element other than Si. The metal oxide layer 13 is formed by a CVD method, an ALD method, a PVD method, or the like. Further, the metal oxide layer 13 may be formed by a leaching treatment of the glass body 10. In the leaching process, it is possible to increase the Si molar concentration by utilizing the fact that the elution rate differs for each element.
 金属酸化物層13における対象物体20との対向面13aが、ガラス体10の接合面である。接合面の表面粗さRaは、例えば、0.1nmよりも大きく10nmよりも小さい。Raは、好ましくは0.2nm~1.0nmである。Raは、日本工業規格JIS B0601:1994に記載の「算術平均粗さ」である。 The facing surface 13a of the metal oxide layer 13 with the target object 20 is the joining surface of the glass body 10. The surface roughness Ra of the joint surface is, for example, greater than 0.1 nm and less than 10 nm. Ra is preferably 0.2 nm to 1.0 nm. Ra is the "arithmetic mean roughness" described in Japanese Industrial Standards JIS B0601: 1994.
 金属酸化物層13のSiモル濃度M3は、第2ガラス層12の対象物体20との対向面12aにおけるSiモル濃度M2と同等以上であり、且つ一定である。金属酸化物層13は、ガラス体10と対象物体20との接合強度を向上し、また、Si以外の金属などが第1ガラス層11から対象物体20に拡散するのを抑制する。 The Si molar concentration M3 of the metal oxide layer 13 is equal to or higher than the Si molar concentration M2 on the surface 12a facing the target object 20 of the second glass layer 12, and is constant. The metal oxide layer 13 improves the bonding strength between the glass body 10 and the target object 20, and also suppresses the diffusion of metals other than Si from the first glass layer 11 to the target object 20.
 M3は、例えば17%~33%であり、好ましくは30%~33%であり、より好ましくは33%である。金属酸化物層13がSiOである場合、M3は33%であり、高い接合強度が得られる。金属酸化物層13のSiモル濃度のバラツキは、±1%以内である。 M3 is, for example, 17% to 33%, preferably 30% to 33%, and more preferably 33%. When the metal oxide layer 13 is SiO 2 , M3 is 33%, and high bonding strength can be obtained. The variation in the Si molar concentration of the metal oxide layer 13 is within ± 1%.
 金属酸化物層13の厚みは、例えば0.1nm~500μmであり、好ましくは10nm~1μmである。 The thickness of the metal oxide layer 13 is, for example, 0.1 nm to 500 μm, preferably 10 nm to 1 μm.
 ガラス体10におけるSiモル濃度の分布は、X線光電分光分析装置(XPS:X-ray Photoelectron Spectroscopy)/ESCA(Electron Spectroscopy for Chemical Analysis))で測定する。測定点の間隔は、例えば10nm以下であり、好ましくは5nm以下である。 The distribution of the Si molar concentration in the glass body 10 is measured by an X-ray photoelectric spectroscopic analyzer (XPS: X-ray Photoelectron Spectroscopic) / ESCA (Electron Spectroscopic for Chemical Analysis). The interval between measurement points is, for example, 10 nm or less, preferably 5 nm or less.
 なお、Siモル濃度の分布は、X線光電分光分析装置に加えて、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を併用して、測定してもよい。 The distribution of Si molar concentration may be measured by using a transmission electron microscope (TEM: Transmission Electron Microscope) in addition to the X-ray photoelectric spectroscopic analyzer.
 第1ガラス層11と第2ガラス層12の境界は、Siモル濃度の分析の結果を用いて決める。第1ガラス層11におけるSiモル濃度は、回帰直線(y=a1x+b1)で表す。その回帰直線は、最小二乗法で求める。a1は、±0.0350(%/nm)以内の範囲で設定する。一方、第2ガラス層12におけるSiモル濃度は、近似曲線で表す。近似曲線は、最小二乗法で求められ、多項式で近似する。なお、近似曲線は、隣り合う2つの測定点を直線で結んだものであってもよい。各測定点のデータは、生データではなく、移動平均データであってもよい。直線(y=a1x+b1+σ1)と、近似曲線との交点が、第1ガラス層11と第2ガラス層12の境界である。σ1は、第1ガラス層11におけるSiモル濃度の標準偏差である。 The boundary between the first glass layer 11 and the second glass layer 12 is determined using the result of the analysis of the Si molar concentration. The Si molar concentration in the first glass layer 11 is represented by a regression line (y = a1x + b1). The regression line is obtained by the method of least squares. a1 is set within the range of ± 0.0350 (% / nm). On the other hand, the Si molar concentration in the second glass layer 12 is represented by an approximate curve. The approximate curve is obtained by the least squares method and approximated by a polynomial. The approximate curve may be a straight line connecting two adjacent measurement points. The data at each measurement point may be moving average data rather than raw data. The intersection of the straight line (y = a1x + b1 + σ1) and the approximate curve is the boundary between the first glass layer 11 and the second glass layer 12. σ1 is the standard deviation of the Si molar concentration in the first glass layer 11.
 同様に、第2ガラス層12と金属酸化物層13の境界は、Siモル濃度の分析の結果を用いて決める。金属酸化物層13におけるSiモル濃度は、回帰直線(y=a2x+b2)で表す。その回帰直線は、最小二乗法で求める。a2は、±0.0350(%/nm)以内の範囲で設定する。一方、第2ガラス層12におけるSiモル濃度は、近似曲線で表す。近似曲線は、最小二乗法で求められ、多項式で近似する。なお、近似曲線は、隣り合う2つの測定点を直線で結んだものであってもよい。各測定点のデータは、生データではなく、移動平均データであってもよい。直線(y=a2x+b2-σ2)と、近似曲線との交点が、金属酸化物層13と第2ガラス層12の境界である。σ2は、金属酸化物層13におけるSiモル濃度の標準偏差である。 Similarly, the boundary between the second glass layer 12 and the metal oxide layer 13 is determined using the result of the analysis of the Si molar concentration. The Si molar concentration in the metal oxide layer 13 is represented by a regression line (y = a2x + b2). The regression line is obtained by the method of least squares. a2 is set within the range of ± 0.0350 (% / nm). On the other hand, the Si molar concentration in the second glass layer 12 is represented by an approximate curve. The approximate curve is obtained by the least squares method and approximated by a polynomial. The approximate curve may be a straight line connecting two adjacent measurement points. The data at each measurement point may be moving average data rather than raw data. The intersection of the straight line (y = a2x + b2-σ2) and the approximate curve is the boundary between the metal oxide layer 13 and the second glass layer 12. σ2 is the standard deviation of the Si molar concentration in the metal oxide layer 13.
 次に、図2を参照して、変形例に係る接合用ガラス体10について説明する。図2(A)に示すように、接合用ガラス体10は、第1ガラス層11と第2ガラス層12とを含み、金属酸化物層13を含まなくてもよい。この場合、第2ガラス層12における対象物体20との対向面12aが、ガラス体10の接合面である。 Next, with reference to FIG. 2, the joining glass body 10 according to the modified example will be described. As shown in FIG. 2A, the bonding glass body 10 includes the first glass layer 11 and the second glass layer 12, and may not include the metal oxide layer 13. In this case, the surface 12a facing the target object 20 in the second glass layer 12 is the joint surface of the glass body 10.
 また、図2(B)に示すように、接合用ガラス体10は、第1ガラス層11を挟んで両側に第2ガラス層12を含んでもよい。第1ガラス層11の両側に対象物体20を接合することができる。更に、図2(C)に示すように、接合用ガラス体10は、第1ガラス層11を挟んで両側に金属酸化物層13を含んでもよい。 Further, as shown in FIG. 2B, the bonding glass body 10 may include the second glass layer 12 on both sides of the first glass layer 11. The target object 20 can be joined to both sides of the first glass layer 11. Further, as shown in FIG. 2C, the bonding glass body 10 may include the metal oxide layers 13 on both sides of the first glass layer 11.
 次に、図3及び図4を参照して、一実施形態とその変形例に係る接合体30について説明する。図3などに示すように、接合体30は、ガラス体10と、ガラス体10に接合された対象物体20と、を含む。 Next, with reference to FIGS. 3 and 4, the bonded body 30 according to the embodiment and its modified example will be described. As shown in FIG. 3 and the like, the bonded body 30 includes a glass body 10 and a target object 20 bonded to the glass body 10.
 対象物体20は、例えば、図3(A)に示すように、ガラス体10と同様に、第1ガラス層21と、第2ガラス層22と、金属酸化物層23と、を含んでもよい。第1ガラス層21は第1ガラス層11と同様に形成され、第2ガラス層22は第2ガラス層12と同様に形成され、金属酸化物層23は金属酸化物層13と同様に形成される。多成分ガラス同士の接合強度を改善できる。 For example, as shown in FIG. 3A, the target object 20 may include a first glass layer 21, a second glass layer 22, and a metal oxide layer 23, similarly to the glass body 10. The first glass layer 21 is formed in the same manner as the first glass layer 11, the second glass layer 22 is formed in the same manner as the second glass layer 12, and the metal oxide layer 23 is formed in the same manner as the metal oxide layer 13. The glass. The bonding strength between multi-component glasses can be improved.
 対象物体20は、図3(A)に示すように、ガラス体10に直接に接している。この場合、ガラス体10の接合面13aと、対象物体20の接合面23aとは、予め、表面活性化法によって活性化される。表面活性化法は、例えば、特許文献1に記載の技術、いわゆるシーケンシャルプラズマ法を含む。シーケンシャルプラズマ法は、例えば、酸素ガスを用いた反応性イオンエッチングと、窒素ガスを用いた反応性イオンエッチングと、窒素ラジカルの照射と、を含む。 As shown in FIG. 3A, the target object 20 is in direct contact with the glass body 10. In this case, the joint surface 13a of the glass body 10 and the joint surface 23a of the target object 20 are activated in advance by the surface activation method. The surface activation method includes, for example, the technique described in Patent Document 1, the so-called sequential plasma method. The sequential plasma method includes, for example, reactive ion etching using oxygen gas, reactive ion etching using nitrogen gas, and irradiation with nitrogen radicals.
 シーケンシャルプラズマ法は、ガラス等の接合面を活性化する。活性化した接合面が水蒸気又は水などに接触すると、親水基であるOH基が接合面に生成される。その後、接合時にOH基同士の水素結合が生じ、高い接合強度が得られる。接合の後、アニール処理が実施されてもよい。アニール処理によって、水素結合が共有結合に変わり、より高い接合強度が得られる。 The sequential plasma method activates the joint surface of glass or the like. When the activated joint surface comes into contact with water vapor, water, or the like, OH groups, which are hydrophilic groups, are generated on the joint surface. After that, hydrogen bonds between OH groups are generated at the time of bonding, and high bonding strength is obtained. After joining, annealing may be performed. By the annealing treatment, the hydrogen bond is changed to a covalent bond, and higher bond strength is obtained.
 なお、表面活性化法は、シーケンシャルプラズマ法には限定されない。表面活性化法は、例えば、酸素ガスを用いた反応性イオンエッチングのみを含んでもよい。この場合も、活性化した接合面が水蒸気又は水などに接触すると、親水基であるOH基が接合面に生成される。その後、接合時にOH基同士の水素結合が生じ、水素結合の脱水縮合反応で共有結合が生じることで、高い接合強度が得られる。 The surface activation method is not limited to the sequential plasma method. The surface activation method may include, for example, only reactive ion etching using oxygen gas. Also in this case, when the activated joint surface comes into contact with water vapor or water, an OH group, which is a hydrophilic group, is generated on the joint surface. After that, hydrogen bonds between OH groups are generated at the time of bonding, and covalent bonds are generated by the dehydration condensation reaction of the hydrogen bonds, so that high bonding strength can be obtained.
 図3(B)に示すように、ガラス体10と、対象物体20とは、無機物の中間層40を介して接合されもよい。中間層40は、ガラス体10の接合面に予め形成される接合層41と、対象物体20の接合面に予め形成される接合層42と、を含む。 As shown in FIG. 3B, the glass body 10 and the target object 20 may be joined via an intermediate layer 40 of an inorganic substance. The intermediate layer 40 includes a joint layer 41 previously formed on the joint surface of the glass body 10 and a joint layer 42 previously formed on the joint surface of the target object 20.
 接合層41、42は、例えば、Al、Si、Ti、V、Cr、Mn、Fe、Y、Zr、Hf、及びTaのうち1つ以上の元素を含む、金属で形成される。金属は、合金を含む。金属の原子拡散を利用して、ガラス体10と対象物体20とを接合できる。接合層41、42は、それぞれ、複数の金属層を含んでもよい。 The bonding layers 41 and 42 are formed of a metal containing, for example, one or more elements of Al, Si, Ti, V, Cr, Mn, Fe, Y, Zr, Hf, and Ta. Metals include alloys. The glass body 10 and the target object 20 can be joined by utilizing the atomic diffusion of the metal. The bonding layers 41 and 42 may each include a plurality of metal layers.
 また、接合層41、42は、Al、Si、Ti、V、Cr、Mn、Fe、Y、Zr、Hf、及びTaのうち1つ以上の元素を含む、金属酸化物で形成されてもよい。金属酸化物は、スパッタ法、反応性スパッタ法、又はALD法などの成膜方法で形成される。スパッタ法は、金属酸化物のターゲットと、不活性ガスとを用いる。反応性スパッタ法は、金属のターゲットと、希ガス等の不活性ガスと反応性ガス(例えば酸素ガス)との混合ガスとを用いる。 Further, the bonding layers 41 and 42 may be formed of a metal oxide containing one or more elements of Al, Si, Ti, V, Cr, Mn, Fe, Y, Zr, Hf, and Ta. .. The metal oxide is formed by a film forming method such as a sputtering method, a reactive sputtering method, or an ALD method. The sputtering method uses a metal oxide target and an inert gas. The reactive sputtering method uses a metal target and a mixed gas of an inert gas such as a rare gas and a reactive gas (for example, oxygen gas).
 接合層41、42が金属酸化物である場合、金属酸化物を成膜する過程で発現する金属酸化物の表面活性を利用し、真空、大気、不活性ガスなどの雰囲気下で接合を実施してもよいし、上記の表面活性化法により接合層41、42の表面を活性化したうえで、接合を実施してもよい。上記の表面活性化法によって活性化された接合面が水蒸気又は水などに接触すると、親水基であるOH基が接合面に生成される。その後、接合時にOH基同士の水素結合が生じ、更に水素結合の脱水縮合反応で共有結合が生じることで高い接合強度が得られる。 When the bonding layers 41 and 42 are metal oxides, the surface activity of the metal oxide developed in the process of forming the metal oxide is utilized, and the bonding is performed in an atmosphere such as vacuum, atmosphere, or an inert gas. Alternatively, the surface of the bonding layers 41 and 42 may be activated by the above-mentioned surface activation method, and then the bonding may be performed. When the bonding surface activated by the above surface activation method comes into contact with water vapor, water, or the like, OH groups, which are hydrophilic groups, are generated on the bonding surface. After that, hydrogen bonds between OH groups are generated at the time of bonding, and further, a covalent bond is generated by the dehydration condensation reaction of the hydrogen bonds, so that high bonding strength can be obtained.
 接合層41、42が金属である場合、接合層41、42を原子拡散法により接合した後に、接合層41、42をガラス体10に含まれる酸素で酸化してもよい。酸化を促進するために接合体30が加熱処理されてもよい。接合層41、42を酸化することで、光透過率、電気伝導率、熱伝導率、熱膨張係数などの物理的特性を変化させることができる。 When the bonding layers 41 and 42 are made of metal, the bonding layers 41 and 42 may be bonded by an atomic diffusion method, and then the bonding layers 41 and 42 may be oxidized with oxygen contained in the glass body 10. The bonded body 30 may be heat-treated to promote oxidation. By oxidizing the bonding layers 41 and 42, physical properties such as light transmittance, electric conductivity, thermal conductivity, and coefficient of thermal expansion can be changed.
 図3(C)及び図3(D)に示すように、対象物体20は、ガラス板ではなくてもよく、例えば、Si、GaN、SiC、若しくはGaなどの半導体基板、LiTaO、LiNbO、若しくはAlNなどの圧電基板、Alなどの酸化物基板、又はSiNなどの窒化物基板であってもよい。ガラス体10と対象物体20とは、図3(C)に示すように直接に接してもよいし、図3(D)に示すように中間層40を介して接合されてもよい。 As shown in FIGS. 3C and 3D, the target object 20 does not have to be a glass plate, and is, for example, a semiconductor substrate such as Si, GaN, SiC, or Ga 2 O 3 , LiTaO 3 . It may be a piezoelectric substrate such as LiNbO 3 or AlN, an oxide substrate such as Al 2 O 3 , or a nitride substrate such as SiN. The glass body 10 and the target object 20 may be in direct contact with each other as shown in FIG. 3C, or may be joined via an intermediate layer 40 as shown in FIG. 3D.
 また、図4(A)~図4(B)に示すように、対象物体20は、ガラス体10と同様に、第1ガラス層21と第2ガラス層22とを含み、金属酸化物層23とを含まなくてもよい。ガラス体10と対象物体20とは、図4(A)に示すように直接に接してもよいし、図4(B)に示すように中間層40を介して接合されてもよい。 Further, as shown in FIGS. 4A to 4B, the target object 20 includes the first glass layer 21 and the second glass layer 22 and the metal oxide layer 23, similarly to the glass body 10. And may not be included. The glass body 10 and the target object 20 may be in direct contact with each other as shown in FIG. 4 (A), or may be joined via an intermediate layer 40 as shown in FIG. 4 (B).
 図4(C)~図4(D)に示すように、対象物体20は、ガラス板ではなくてもよく、例えば、Si、GaN、SiC、若しくはGaなどの半導体基板、LiTaO、LiNbO、若しくはAlNなどの圧電基板、Alなどの酸化物基板、又はSiNなどの窒化物基板であってもよい。ガラス体10と対象物体20とは、図4(C)に示すように直接に接してもよいし、図4(D)に示すように中間層40を介して接合されてもよい。 As shown in FIGS. 4 (C) to 4 (D), the target object 20 does not have to be a glass plate, and is, for example, a semiconductor substrate such as Si, GaN, SiC, or Ga 2 O 3 , LiTaO 3 . It may be a piezoelectric substrate such as LiNbO 3 or AlN, an oxide substrate such as Al 2 O 3 , or a nitride substrate such as SiN. The glass body 10 and the target object 20 may be in direct contact with each other as shown in FIG. 4 (C), or may be joined via an intermediate layer 40 as shown in FIG. 4 (D).
 図示しないが、ガラス体10又は対象物体20は、その接合面に、凹部又は貫通穴を有してもよい。 Although not shown, the glass body 10 or the target object 20 may have a recess or a through hole in the joint surface thereof.
 接合体30の接合強度は、図5に示すクラックオープニング法により測定する。クラックオープニング法では、互いに接合されたガラス体10と対象物体20の接合界面に、外側からカミソリの刃のようなブレードBLを挿入し、剥離長さLを測定する。剥離長さLが短いほど、接合強度が高い。接合強度が十分に高い場合、ブレードBLの挿入によってガラス体10又は対象物体20が破壊されることもある。 The joint strength of the joint 30 is measured by the crack opening method shown in FIG. In the crack opening method, a blade BL like a razor blade is inserted from the outside at the bonding interface between the glass body 10 and the target object 20 bonded to each other, and the peeling length L is measured. The shorter the peeling length L, the higher the bonding strength. If the bonding strength is sufficiently high, the glass body 10 or the target object 20 may be destroyed by the insertion of the blade BL.
 剥離長さLから接合強度γを算出する際には、下記式(1)の関係式を使用する。 When calculating the bonding strength γ from the peeling length L, the relational expression of the following equation (1) is used.
Figure JPOXMLDOC01-appb-M000001
上記式(1)において、E1はガラス体10のヤング率であり、E2は対象物体20のヤング率であり、t1はガラス体10の厚みであり、t2は対象物体20の厚みであり、t0はブレードBLの厚みである。接合強度γは接合界面の表面エネルギーとして求められ、接合強度γの単位はJ/mである。
Figure JPOXMLDOC01-appb-M000001
In the above formula (1), E1 is the Young's modulus of the glass body 10, E2 is the Young's modulus of the target object 20, t1 is the thickness of the glass body 10, t2 is the thickness of the target object 20, and t0. Is the thickness of the blade BL. The bonding strength γ is obtained as the surface energy of the bonding interface, and the unit of the bonding strength γ is J / m 2 .
 以下、実験データについて説明する。まず、実験で用いた2種類のガラスA~Bの組成を表1に示す。 The experimental data will be explained below. First, Table 1 shows the compositions of the two types of glasses A to B used in the experiment.
Figure JPOXMLDOC01-appb-T000002
 ガラスAは、無アルカリガラスであり、より詳細にはアルミノボロシリケートガラスである。ガラスBも、無アルカリガラスであり、より詳細にはアルミノシリケートガラスである。ガラスA~Bは、いずれも、SiO含有量が70mol%以下である。実験では、ガラスA、B以外に、SiO含有量が100mol%の石英ガラスも用意した。
Figure JPOXMLDOC01-appb-T000002
The glass A is a non-alkali glass, and more specifically, an aluminum noborosilicate glass. Glass B is also non-alkali glass, more specifically aluminosilicate glass. Each of the glasses A to B has a SiO 2 content of 70 mol% or less. In the experiment, in addition to the glasses A and B, quartz glass having a SiO 2 content of 100 mol% was also prepared.
 下記の例1~例9では、表1に記載のガラス同士の接合を実施した。接合条件及び評価結果を、表2~表3に示す。下記の例2~例5及び例7~例9が実施例であり、下記の例1、及び例6が参考例である。 In Examples 1 to 9 below, the glasses shown in Table 1 were joined together. The joining conditions and evaluation results are shown in Tables 2 to 3. Examples 2 to 5 and 7 to 9 below are examples, and examples 1 and 6 below are reference examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2及び表3において、密着性と剥離性は、接合強度で評価した。
Figure JPOXMLDOC01-appb-T000004
In Tables 2 and 3, the adhesion and the peelability were evaluated by the bonding strength.
 密着性が「A」であることは接合強度が2.0J/m以上あるいは測定限界を上回る接合強度であることを意味し、密着性が「B」であることは接合強度が0.8J/m以上2.0J/m未満であることを意味し、密着性が「C」であることは接合強度が0.8J/m未満であることを意味する。接合強度が0.8J/m以上であれば、MIL-STD-883規格等の工業規格に従った、切断した接合体のダイシェア強度試験で良好な結果を得られる。 When the adhesion is "A", it means that the bonding strength is 2.0J / m 2 or more or exceeds the measurement limit, and when the adhesion is "B", the bonding strength is 0.8J. It means that it is more than / m 2 and less than 2.0 J / m 2 , and that the adhesion is "C" means that the bonding strength is less than 0.8 J / m 2 . When the joint strength is 0.8 J / m 2 or more, good results can be obtained in the die shear strength test of the cut joint according to the industrial standard such as MIL-STD-883 standard.
 また、剥離性が「A」であることは接合強度が0.3J/m未満であることを意味し、剥離性が「B」であることは接合強度が0.3J/m以上1.0J/m未満であることを意味し、剥離性が「C」であることは接合強度が1.0J/m以上であることを意味する。接合強度が1.0J/m未満であれば、接合界面にブレードを挿入することによりガラス同士を剥離することが可能である。なお、実験で使用したブレードBLは厚みt0が0.1mmであった。 Further, when the peelability is "A", it means that the bonding strength is less than 0.3 J / m 2 , and when the peeling property is "B", the bonding strength is 0.3 J / m 2 or more 1 It means that it is less than 0.0 J / m 2 , and that the peelability is "C" means that the bonding strength is 1.0 J / m 2 or more. If the bonding strength is less than 1.0 J / m 2 , the glasses can be separated from each other by inserting a blade into the bonding interface. The blade BL used in the experiment had a thickness t0 of 0.1 mm.
 以下、例1~例9の接合条件及び評価結果について詳細に説明する。なお、例1~例5では、表面活性化法で接合を実施した。一方、例6~例9では、原子拡散法で接合を実施した。 Hereinafter, the joining conditions and evaluation results of Examples 1 to 9 will be described in detail. In Examples 1 to 5, joining was carried out by the surface activation method. On the other hand, in Examples 6 to 9, the bonding was carried out by the atomic diffusion method.
 例1では、2つの石英ガラスを接合した。石英ガラスは、ガラス体の厚みが0.5mmであり、第2ガラス層と金属酸化物を有さなかった。接合前に、2つの石英ガラスの互いに対向する接合面を、酸素ガスを用いた反応性イオンエッチングのみで活性化し、水蒸気に曝した。酸素ガスを用いた反応性イオンエッチングの処理時間は、120秒であった。その後、大気中で、2つの石英ガラスを接合した。接合強度は1.5J/m以上であり、密着性の評価は「B」であり、剥離性の評価は「C」であった。 In Example 1, two quartz glasses were joined. Quartz glass had a glass body thickness of 0.5 mm and did not have a second glass layer and a metal oxide. Prior to joining, the opposing surfaces of the two quartz glasses were activated only by reactive ion etching using oxygen gas and exposed to water vapor. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, two quartz glasses were joined in the atmosphere. The bonding strength was 1.5 J / m 2 or more, the evaluation of adhesion was "B", and the evaluation of peelability was "C".
 例2では、2つのガラスAを接合した。ガラスAは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが45nmであった。接合前に、2つのガラスAの互いに対向する接合面を酸リーチング処理した。酸リーチング処理の後にカーボンが残存しないように、各接合面を洗浄した。その後、酸素ガスを用いた反応性イオンエッチングのみで各接合面を活性化し、続いて各接合面を水蒸気に曝した。酸素ガスを用いた反応性イオンエッチングの処理時間は、120秒であった。その後、大気中で、2つのガラスAを接合した。接合強度は0.9J/mであり、密着性の評価は「B」であり、剥離性の評価は「B」であった。 In Example 2, two glasses A were joined. In the glass A, the thickness of the glass body was 0.5 mm, and the thickness of the second glass layer was 45 nm. Prior to joining, the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Each joint surface was washed so that no carbon remained after the acid leaching treatment. Then, each joint surface was activated only by reactive ion etching using oxygen gas, and then each joint surface was subsequently exposed to water vapor. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, the two glasses A were joined in the atmosphere. The bonding strength was 0.9 J / m 2 , the evaluation of adhesion was "B", and the evaluation of peelability was "B".
 例3では、2つのガラスBを接合した。ガラスBは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが60nmであった。接合前に、2つのガラスBの互いに対向する接合面を酸リーチング処理した。酸リーチング処理の後にカーボンが残存しないように、各接合面を洗浄した。その後、酸素ガスを用いた反応性イオンエッチングのみで各接合面を活性化し、続いて各接合面を水蒸気に曝した。酸素ガスを用いた反応性イオンエッチングの処理時間は、120秒であった。その後、大気中で、2つのガラスBを接合した。接合強度は0.2J/mであり、密着性の評価は「C」であり、剥離性の評価は「A」であった。 In Example 3, two glasses B were joined. In the glass B, the thickness of the glass body was 0.5 mm, and the thickness of the second glass layer was 60 nm. Prior to joining, the joining surfaces of the two glasses B facing each other were subjected to acid leaching treatment. Each joint surface was washed so that no carbon remained after the acid leaching treatment. Then, each joint surface was activated only by reactive ion etching using oxygen gas, and then each joint surface was subsequently exposed to water vapor. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, the two glasses B were joined in the atmosphere. The bonding strength was 0.2 J / m 2 , the evaluation of adhesion was "C", and the evaluation of peelability was "A".
 例4では、2つのガラスAを接合した。ガラスAは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが45nmであり、金属酸化物層が15nmであった。接合前に、2つのガラスAの互いに対向する接合面を酸リーチング処理した。酸リーチング処理の後にカーボンが残存していた。その後、各接合面に、SiOターゲットを用いたスパッタ法で非結晶性のSiO膜である金属酸化物層を形成し、酸素ガスを用いた反応性イオンエッチングのみで各SiO膜の表面を活性化し、続いて各SiO膜の表面を水蒸気に曝した。酸素ガスを用いた反応性イオンエッチングの処理時間は、120秒であった。その後、大気中で、2つのSiO膜を介して2つのガラスAを接合した。接合強度は0.9J/mであり、密着性の評価は「B」であり、剥離性の評価は「B」であった。 In Example 4, two glasses A were joined. In the glass A, the thickness of the glass body was 0.5 mm, the thickness of the second glass layer was 45 nm, and the thickness of the metal oxide layer was 15 nm. Prior to joining, the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Carbon remained after the acid leaching treatment. After that, a metal oxide layer, which is a non-crystalline SiO 2 film, is formed on each joint surface by a sputtering method using a SiO 2 target, and the surface of each SiO 2 film is obtained only by reactive ion etching using oxygen gas. Was activated, and subsequently the surface of each SiO 2 film was exposed to steam. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, in the atmosphere, two glasses A were joined via two SiO 2 films. The bonding strength was 0.9 J / m 2 , the evaluation of adhesion was "B", and the evaluation of peelability was "B".
 例5では、2つのガラスAに対して酸リーチング処理を実施せず、pH=11のアルカリ溶液で2つのガラスAをエッチング処理した後に中性溶液でガラス表面をリーチング処理し、Cmaxを20モル%に調整した後にSiOターゲットを用いたスパッタ法で非結晶性のSiO膜である金属酸化物層を形成した。酸素ガスを用いた反応性イオンエッチングのみで各SiO膜の表面を活性化し、続いて各SiO膜の表面を水蒸気に曝した。酸素ガスを用いた反応性イオンエッチングの処理時間は、120秒であった。その後、大気中で、2つのSiO膜を介して2つのガラスAを接合した。ガラスAは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが25nmであり、金属酸化物層の厚みが15nmであった。剥離は第2ガラス層の破壊により生じ、その接合強度は0.1J/mであり、密着性の評価は「C」であり、剥離性の評価は「A」であった。 In Example 5, the acid leaching treatment is not performed on the two glasses A, the two glasses A are etched with an alkaline solution having a pH of 11, and then the glass surface is leached with a neutral solution to obtain a Cmax of 20 mol. After adjusting to%, a metal oxide layer which is a non-crystalline SiO 2 film was formed by a sputtering method using a SiO 2 target. The surface of each SiO 2 film was activated only by reactive ion etching using oxygen gas, and then the surface of each SiO 2 film was exposed to steam. The processing time for reactive ion etching using oxygen gas was 120 seconds. Then, in the atmosphere, two glasses A were joined via two SiO 2 films. In the glass A, the thickness of the glass body was 0.5 mm, the thickness of the second glass layer was 25 nm, and the thickness of the metal oxide layer was 15 nm. The peeling was caused by the fracture of the second glass layer, the bonding strength thereof was 0.1 J / m 2 , the evaluation of the adhesion was “C”, and the evaluation of the peelability was “A”.
 例6では、2つの石英ガラスを接合した。石英ガラスは、ガラス体の厚みが0.5mmであり、第2ガラス層と金属酸化物を有さなかった。接合前に、2つの石英ガラスの互いに対向する接合面に、厚み2nmのTi膜と、厚み50nmのAu膜とをこの順番で、スパッタ法で成膜した。その後、大気中で、2つの石英ガラスを接合した。接合強度は、測定限界を上回っており、ブレードを接合界面に挿入すると接合体が破壊し測定できなかった。密着性の評価は「A」であり、剥離性の評価は「C」であった。 In Example 6, two quartz glasses were joined. Quartz glass had a glass body thickness of 0.5 mm and did not have a second glass layer and a metal oxide. Before joining, a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm were formed on the bonding surfaces of the two quartz glasses facing each other by a sputtering method in this order. Then, two quartz glasses were joined in the atmosphere. The joint strength exceeded the measurement limit, and when the blade was inserted into the joint interface, the joint body broke and could not be measured. The evaluation of adhesion was "A", and the evaluation of peelability was "C".
 例7では、2つのガラスAを接合した。ガラスAは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが45nmであった。接合前に、2つのガラスAの互いに対向する接合面を酸リーチング処理した。酸リーチング処理の後にカーボンが残存しないように、各接合面を洗浄した。その後、各接合面に、厚み2nmのTi膜と、厚み50nmのAu膜とをこの順番で、スパッタ法で成膜した。その後、大気中で、2つのガラスAを接合した。接合強度は2.0J/mであり、密着性の評価は「A」であり、剥離性の評価は「C」であった。 In Example 7, two glasses A were joined. In the glass A, the thickness of the glass body was 0.5 mm, and the thickness of the second glass layer was 45 nm. Prior to joining, the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Each joint surface was washed so that no carbon remained after the acid leaching treatment. Then, a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm were formed on each joint surface in this order by a sputtering method. Then, the two glasses A were joined in the atmosphere. The bonding strength was 2.0 J / m 2 , the evaluation of adhesion was "A", and the evaluation of peelability was "C".
 例8では、2つのガラスAを接合した。ガラスAは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが45nmであり、金属酸化物層が15nmであった。接合前に、2つのガラスAの互いに対向する接合面を酸リーチング処理した。酸リーチング処理の後にカーボンが残存していた。その後、各接合面に、SiOターゲットを用いたスパッタ法で非結晶性のSiO膜である金属酸化物層を形成し、続いて、厚み2nmのTi膜と、厚み50nmのAu膜とをこの順番で、スパッタ法で成膜した。その後、大気中で、2つのガラスAを接合した。接合強度は0.9J/mであり、密着性の評価は「B」であり、剥離性の評価は「B」であった。 In Example 8, two glasses A were joined. In the glass A, the thickness of the glass body was 0.5 mm, the thickness of the second glass layer was 45 nm, and the thickness of the metal oxide layer was 15 nm. Prior to joining, the joining surfaces of the two glasses A facing each other were subjected to acid leaching treatment. Carbon remained after the acid leaching treatment. After that, a metal oxide layer which is a non-crystalline SiO 2 film is formed on each joint surface by a sputtering method using a SiO 2 target, and then a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm are formed. In this order, a film was formed by a sputtering method. Then, the two glasses A were joined in the atmosphere. The bonding strength was 0.9 J / m 2 , the evaluation of adhesion was "B", and the evaluation of peelability was "B".
 例9では、2つのガラスAに対して酸リーチング処理を実施せず、pH=11のアルカリ溶液で2つのガラスAをエッチング処理した後に中性溶液でガラス表面をリーチング処理し、Cmaxを20モル%に調整した後にSiOターゲットを用いたスパッタ法で非結晶性のSiO膜である金属酸化物層を形成し、続いて、厚み2nmのTi膜と、厚み50nmのAu膜とをこの順番で、スパッタ法で成膜した。その後、大気中で、2つのガラスAを接合した。ガラスAは、ガラス体の厚みが0.5mmであり、第2ガラス層の厚みが25nmであり、金属酸化物層の厚みが15nmであった。剥離はガラスAの第2ガラス層と第2ガラス層上に製膜したTi膜の界面で生じ、その接合強度は0.1J/mであり、密着性の評価は「C」であり、剥離性の評価は「A」であった。 In Example 9, the two glasses A are not subjected to the acid leaching treatment, the two glasses A are etched with an alkaline solution having a pH of 11, and then the glass surface is leached with a neutral solution to obtain a Cmax of 20 mol. After adjusting to%, a metal oxide layer which is a non-crystalline SiO 2 film is formed by a sputtering method using a SiO 2 target, and then a Ti film having a thickness of 2 nm and an Au film having a thickness of 50 nm are formed in this order. Then, a film was formed by the sputtering method. Then, the two glasses A were joined in the atmosphere. In the glass A, the thickness of the glass body was 0.5 mm, the thickness of the second glass layer was 25 nm, and the thickness of the metal oxide layer was 15 nm. Peeling occurs at the interface between the second glass layer of glass A and the Ti film formed on the second glass layer, the bonding strength thereof is 0.1 J / m 2 , and the evaluation of adhesion is "C". The evaluation of peelability was "A".
 なお、リーチング処理しなかった2つのガラス体を表面活性化法ならびに原子拡散法で接合したところ、ガラス体に含まれるSi以外の成分がガラス体の接合面に表出してSiO結合の阻害要因となり、十分な接合強度を得られなかった。 When the two glass bodies not subjected to the reaching treatment were joined by the surface activation method and the atomic diffusion method, components other than Si contained in the glass body appeared on the joint surface of the glass body, which was a factor of inhibiting the SiO 2 bond. Therefore, sufficient bonding strength could not be obtained.
 以上、本開示に係る接合用ガラス体、及び接合体について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the joining glass body and the joining body according to the present disclosure have been described above, the present disclosure is not limited to the above-described embodiment and the like. Various changes, modifications, replacements, additions, deletions, and combinations are possible within the scope of the claims. Of course, they also belong to the technical scope of the present disclosure.
 本出願は、2020年12月18日に日本国特許庁に出願した特願2020-209961号に基づく優先権を主張するものであり、特願2020-209961号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2020-20961, which was filed with the Japan Patent Office on December 18, 2020, and the entire contents of Japanese Patent Application No. 2020-20961 are incorporated into this application. ..
10  接合用ガラス体
11  第1ガラス層
11a 対向面
12  第2ガラス層
10 Glass body for joining 11 First glass layer 11a Facing surface 12 Second glass layer

Claims (9)

  1.  対象物体と接合される接合用ガラス体であって、
     Siモル濃度が酸素以外の元素のモル濃度よりも高く、且つ一定である第1ガラス層と、
     前記第1ガラス層における前記対象物体との対向面に形成され、その対向面に直交する方向にSiモル濃度が変化する第2ガラス層と、を含み、
     前記第1ガラス層の厚みが、1μm以上であり、
     前記第2ガラス層の厚みが、5nm~300nmであり、
     前記第2ガラス層の前記対象物体との対向面におけるSiモル濃度が、前記第1ガラス層のSiモル濃度よりも高い、接合用ガラス体。
    A glass body for joining that is joined to the target object.
    The first glass layer whose Si molar concentration is higher and constant than the molar concentration of elements other than oxygen,
    The first glass layer includes a second glass layer formed on a surface facing the target object and having a Si molar concentration changing in a direction orthogonal to the facing surface.
    The thickness of the first glass layer is 1 μm or more, and the thickness is 1 μm or more.
    The thickness of the second glass layer is 5 nm to 300 nm, and the thickness is 5 nm to 300 nm.
    A glass body for bonding in which the Si molar concentration on the surface of the second glass layer facing the target object is higher than the Si molar concentration of the first glass layer.
  2.  前記第1ガラス層のSiモル濃度が、16%以上であり、
     前記第2ガラス層の前記対象物体との対向面におけるSiモル濃度が、17%~33%である、請求項1に記載の接合用ガラス体。
    The Si molar concentration of the first glass layer is 16% or more.
    The bonding glass body according to claim 1, wherein the Si molar concentration on the surface of the second glass layer facing the target object is 17% to 33%.
  3.  前記第2ガラス層の前記対象物体との対向面に形成される結晶性又は非結晶性の金属酸化物層を更に含み、
     前記金属酸化物層の厚みが、0.1nm~500μmであり、
     前記金属酸化物層のSiモル濃度が、前記第2ガラス層の前記対象物体との対向面におけるSiモル濃度と同等以上であり、且つ一定である、請求項1又は2に記載の接合用ガラス体。
    Further comprising a crystalline or amorphous metal oxide layer formed on the surface of the second glass layer facing the target object.
    The thickness of the metal oxide layer is 0.1 nm to 500 μm.
    The bonding glass according to claim 1 or 2, wherein the Si molar concentration of the metal oxide layer is equal to or higher than the Si molar concentration on the surface of the second glass layer facing the target object and is constant. body.
  4.  前記第2ガラス層のCモル濃度の最大値が、0.1%~20%である、請求項1~3のいずれか1項に記載の接合用ガラス体。 The bonding glass body according to any one of claims 1 to 3, wherein the maximum value of the C molar concentration of the second glass layer is 0.1% to 20%.
  5.  前記第2ガラス層は、前記第1ガラス層を挟んで両側に形成される、請求項1~4のいずれか1項に記載の接合用ガラス体。 The bonding glass body according to any one of claims 1 to 4, wherein the second glass layer is formed on both sides of the first glass layer.
  6.  前記対象物体との接合面の表面粗さが、0.1nmよりも大きく10nmよりも小さい、請求項1~5のいずれか1項に記載の接合用ガラス体。 The bonding glass body according to any one of claims 1 to 5, wherein the surface roughness of the bonding surface with the target object is larger than 0.1 nm and smaller than 10 nm.
  7.  請求項1~6のいずれか1項に記載の接合用ガラス体と、前記接合用ガラス体に接合された前記対象物体と、を含む接合体であって、
     前記接合用ガラス体と、前記対象物体とは、直接に接しているか、又は無機物の中間層を介して接合されている、接合体。
    A bonded body including the bonding glass body according to any one of claims 1 to 6 and the target object bonded to the bonding glass body.
    A bonded body in which the bonding glass body and the target object are in direct contact with each other or are bonded via an intermediate layer of an inorganic substance.
  8.  前記中間層は、Al、Si、Ti、V、Cr、Mn、Fe、Y、Zr、Hf、及びTaのうち1つ以上の元素を含む、金属又は金属酸化物で形成される、請求項7に記載の接合体。 7. The intermediate layer is formed of a metal or a metal oxide containing one or more elements of Al, Si, Ti, V, Cr, Mn, Fe, Y, Zr, Hf, and Ta. The joined body described in.
  9.  前記接合用ガラス体又は前記対象物体は、その接合面に、凹部又は貫通穴を有する、請求項7又は8に記載の接合体。 The joint body according to claim 7 or 8, wherein the joint glass body or the target object has a recess or a through hole in the joint surface thereof.
PCT/JP2021/044500 2020-12-18 2021-12-03 Glass body for joining and joined body WO2022131028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209961A JP2024016305A (en) 2020-12-18 2020-12-18 Joining glass body and joined body
JP2020-209961 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131028A1 true WO2022131028A1 (en) 2022-06-23

Family

ID=82057654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044500 WO2022131028A1 (en) 2020-12-18 2021-12-03 Glass body for joining and joined body

Country Status (2)

Country Link
JP (1) JP2024016305A (en)
WO (1) WO2022131028A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036141A (en) * 1996-07-25 1998-02-10 Fujitsu Ltd Production of transparent conductive layer and liquid crystal display device
JP2008277789A (en) * 2007-04-03 2008-11-13 Semiconductor Energy Lab Co Ltd Soi substrate and manufacturing method, and semiconductor device
JP2009088497A (en) * 2007-09-14 2009-04-23 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic appliance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036141A (en) * 1996-07-25 1998-02-10 Fujitsu Ltd Production of transparent conductive layer and liquid crystal display device
JP2008277789A (en) * 2007-04-03 2008-11-13 Semiconductor Energy Lab Co Ltd Soi substrate and manufacturing method, and semiconductor device
JP2009088497A (en) * 2007-09-14 2009-04-23 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic appliance

Also Published As

Publication number Publication date
JP2024016305A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JPH03237036A (en) Thin plate type borosilicate glass for alumina package
US20140034374A1 (en) Glass interposer panels and methods for making the same
TW201722606A (en) Glass-based substrate with vias and process of forming the same
US20120045657A1 (en) Metal-Ceramic Substrate
CN108483943A (en) Chemically reinforced glass and its manufacturing method
US10882778B2 (en) Glass substrate, laminated substrate, laminate, and method for producing semiconductor package
JP2009511752A (en) Multi-layer insulation layer system and method for producing the same
US5047371A (en) Glass/ceramic sealing system
US5043222A (en) Metal sealing glass composite with matched coefficients of thermal expansion
TW201710064A (en) Laminate
WO2022131028A1 (en) Glass body for joining and joined body
US20170271716A1 (en) Miniaturized electronic component with reduced risk of breakage and method for producing same
JP7489318B2 (en) Alkali-free borosilicate glass with low roughness after HF etching
WO2005077852A1 (en) Method for producing glass substrate having concave and convex portions in surface thereof
TWI302525B (en) Direct bonding methods using lithium
US3421915A (en) Method for forming strong metallic bonds to lead-containing glass
JPH0158135B2 (en)
KR20190035806A (en) Canoite Glass - Ceramic
TW202208298A (en) Anti-reflection and anti-glare glass laminates
GB2310314A (en) Glass or glass ceramic substrates
JPS58130547A (en) Silicon carbide substrate and manufacture thereof
JP7082097B2 (en) Glass-on-silicon substrate and its manufacturing method
KR100321402B1 (en) Molybdenum silicide based heater which has the glassy surface layer with low oxygen diffusivity
CN117466547A (en) Method for reducing tin penetration of float cover plate glass for electronic information display
CN112811830A (en) Supporting glass substrate and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP