WO2022130480A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022130480A1
WO2022130480A1 PCT/JP2020/046656 JP2020046656W WO2022130480A1 WO 2022130480 A1 WO2022130480 A1 WO 2022130480A1 JP 2020046656 W JP2020046656 W JP 2020046656W WO 2022130480 A1 WO2022130480 A1 WO 2022130480A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
modulation
control unit
value
Prior art date
Application number
PCT/JP2020/046656
Other languages
English (en)
French (fr)
Inventor
将彦 折井
辰也 森
建太 久保
憲人 荻原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/046656 priority Critical patent/WO2022130480A1/ja
Priority to US18/039,081 priority patent/US20240007021A1/en
Priority to JP2022569351A priority patent/JP7504230B2/ja
Priority to EP20965868.1A priority patent/EP4266567A4/en
Priority to CN202080107842.0A priority patent/CN116601860A/zh
Publication of WO2022130480A1 publication Critical patent/WO2022130480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present application relates to a power conversion device that converts a DC voltage into a three-phase voltage and outputs it based on a three-phase voltage command.
  • the modulation that makes the maximum phase constant is called the upper solid modulation
  • the modulation that makes the minimum phase constant is called the lower solid modulation.
  • the upper solid modulation is performed for the purpose of reducing the loss due to the voltage drop of the current detecting element attached to the lower arm
  • the lower solid modulation is performed for the purpose of maximizing the current detectable time.
  • the maximum phase is modulated to have a predetermined voltage value
  • the lower solid modulation is also modulated to have a predetermined voltage value.
  • the interval of two-phase modulation is reduced, and the modulation method is switched according to the voltage amplitude so that the output voltage does not exceed the inverter output possible range.
  • Patent Document 2 discloses an embodiment in which upper solid modulation is selected when the amplitude of the three-phase voltage command is small, and lower solid modulation is selected when the amplitude of the three-phase voltage command is large.
  • the amplitude of the three-phase voltage command is selected.
  • the duty is also large, which causes the above-mentioned problems as in Patent Document 1.
  • an example in which only the upper solid modulation is performed in another embodiment is also shown.
  • the upper solid modulation is modulated so that the maximum phase becomes constant at a predetermined voltage value. Therefore, when the voltage command exceeds a predetermined value, the voltage is changed. Since the command exceeds the lower limit of output, the line voltage is distorted, which leads to the generation of new vibration and noise.
  • This application has been made to solve the above-mentioned problems, and by calculating the voltage offset using the sum of squares of the fundamental voltage command, the current detection accuracy does not deteriorate, and the basics.
  • the sum of squares of the voltage command it is possible to keep the maximum phase constant at the voltage value according to the basic voltage command instead of the predetermined voltage value, so the power does not fall below the lower limit of the inverter output.
  • the purpose is to obtain a conversion device.
  • the power conversion device disclosed in the present application calculates a voltage offset based on a basic voltage command unit that outputs a basic voltage command and a basic voltage command, and superimposes the voltage offset on the basic voltage command to calculate a corrected voltage command.
  • the modulation control unit and the DC voltage are converted into a three-phase voltage based on the correction voltage command calculated by the modulation control unit, and the voltage is applied to the three-phase winding of the AC rotating machine and connected in series to the switching element. It is equipped with an inverter having a current detection unit that detects the current flowing through each phase of the 3-phase winding due to the voltage drop of the resistance element for current detection, and when the basic voltage command is converted to the 3-phase voltage command, the 3-phase voltage is provided.
  • the modulation control unit calculates the first voltage offset based on the DC voltage, the maximum phase, and the sum of squares of the fundamental voltage command.
  • the current detection accuracy does not deteriorate by calculating the voltage offset using the sum of squares of the basic voltage command.
  • FIG. It is an overall block diagram which shows the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the arithmetic processing of the modulation control part in the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the output waveform of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the output waveform of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the arithmetic processing of the modulation control part in the power conversion apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows the output waveform of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the arithmetic processing of the modulation control part in the power conversion apparatus which concerns on Embodiment 3.
  • FIG. It is a flowchart which shows the arithmetic processing of the modulation control part in the power conversion apparatus which concerns on Embodiment 4.
  • FIG. It is a figure which shows the output waveform of the power conversion apparatus which concerns on Embodiment 4.
  • FIG. It is a flowchart which shows the arithmetic processing of the modulation control part in the power conversion apparatus which concerns on Embodiment 5.
  • FIG. 1 is an overall configuration diagram showing a power conversion device according to the first embodiment.
  • the AC rotator 1 is an AC rotator having three-phase windings U, V, W, for example, a permanent magnet synchronous rotator, a winding field synchronous rotator, an induction rotator, and a synchronous reluctance motor. And so on.
  • the DC power supply 2 applies a DC voltage Vdc to the inverter 3.
  • the inverter 3 PWM-modulates with a carrier period Tc based on the three-phase correction voltage commands Vu, Vv, Vw, and the DC voltage Vdc, and applies a voltage to the three-phase windings U, V, and W of the AC rotating machine.
  • Switches For Sup, Sbp, Swp, Sun, Svn, and Swn, semiconductor switching elements such as IGBTs, bipolar transistors, and MOS power transistors and diodes connected in antiparallel are used.
  • Current detection resistance elements Ru, Rv, Rw are connected in series with the lower arm elements (switching elements) Sun, Svn, and Swn of the inverter 3, respectively.
  • the current detection resistance element Ru detects the current flowing through the U-phase winding of the AC rotating machine 1 by acquiring the voltage across the lower arm element Sun at the timing when the lower arm element Sun is turned on.
  • the current detection resistance element Rv detects the current flowing through the V-phase winding of the AC rotating machine 1 by acquiring the voltage across the lower arm element Svn at the timing when the lower arm element Svn is turned on.
  • the current detection resistance element Rw detects the current flowing through the W phase winding of the AC rotating machine 1 by acquiring the voltage across the lower arm element Swn at the timing when the lower arm element Swn is turned on.
  • the smoothing capacitor 4 is a capacitor that stabilizes the DC voltage Vdc of the DC power supply 2.
  • the basic voltage command unit 5 commands the three-phase basic voltage commands Vub, Vvb, and Vwb for driving the AC rotating machine 1.
  • the modulation control unit 6 calculates the first voltage offset Voffset1 based on the three-phase basic voltage commands Vub, Vvb, and Vwb, and superimposes them on the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • FIG. 2 is a flowchart showing the arithmetic processing of the modulation control unit 6.
  • step S101 the maximum phase Vmax is calculated when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • step S102 the peak voltage Vpeak is calculated by subtracting the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • step S103 the peak voltage Vpeak calculated in step S102 is subtracted from the maximum phase Vmax calculated in step S101, and the value obtained by multiplying the DC voltage Vdc by 0.5 is subtracted to calculate the first voltage offset Voffset1.
  • step S104 the first voltage offset Voffset1 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated.
  • the peak voltage Vpeak is expressed by the equation (1)
  • the first voltage offset Voffset1 is expressed by the equation (2).
  • FIG. 3 is an explanatory diagram showing each output waveform of the power conversion device when the modulation factor of the three-phase basic voltage commands Vub, Vvb, and Vwb according to the first embodiment exceeds the modulation factor of the current detection upper limit voltage value.
  • FIG. 4 is an explanatory diagram showing each output waveform of the power conversion device when the modulation factor does not exceed the modulation factor of the current detection upper limit voltage value of the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • the three-phase basic voltage commands Vub, Vvb, and Vwb are shown in the first stage from the top, and the values obtained by subtracting the multiplication value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak are shown in the second stage.
  • the first voltage offset Voffset1 is shown in the third stage, and the three-phase correction voltage commands Vu, Vv, and Vw are shown in the fourth stage.
  • the output upper limit value IOup of the inverter is Vdc / 2
  • the output lower limit value IOlo is ⁇ Vdc / 2
  • the current detection upper limit value is the lower required for current detection by the current detection resistance elements Ru, Rv, Rw. It is determined by the lower limit of the energization time of the side arm switching elements Sun, Svn, and Swn. For example, when the lower limit of the energization time of the lower arm switching elements Sun, Svn, and Swn required for current detection is 5 ⁇ s, and the carrier cycle Tc is 50 ⁇ s, the ratio of the lower limit value of 5 ⁇ s to the carrier cycle is 10%.
  • the lower on-duty needs to be at least 10% for current detection, in other words, the upper on-duty needs to be 90% or less.
  • Vdc is 12V
  • the output upper limit value is 6V
  • 10% of 12V is 1.2V. Therefore, the current detection is that the voltage is 1.2V or more lower than the upper limit value 6V, that is, 4.8V or less. It is a condition. Therefore, it means that the current detection upper limit voltage value UVi in this case is 4.8V. From FIGS. 3 and 4, it can be seen that the values of the maximum phases of the three-phase correction voltage commands Vu, Vv, and Vw are always constant as the values obtained by subtracting the product of the DC voltage Vdc and 0.5 from the peak voltage Vpeak. ..
  • the value of the maximum phase fluctuates at a frequency 6 times the electric angle 1 cycle, so that the detection accuracy deterioration timing of the current detection resistance elements Ru, Rv, Rw occurs at the frequency 6 times the electric angle 1 cycle.
  • This causes a problem of vibration / noise at that frequency, but since the maximum phase is always constant by the modulation method according to this embodiment, the effect of reducing vibration / noise at a frequency 6 times the electric angle can be obtained. ..
  • the peak voltage can be calculated by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method, or the ⁇ -phase basic voltage commands V ⁇ , V ⁇ , or a similarly known coordinate conversion method. It can also be calculated using the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system. Equation (3), equation for the peak voltage Vpeak when the three-phase fundamental voltage commands Vub, Vvb, and Vwb are converted to the ⁇ phase fundamental voltage commands V ⁇ , V ⁇ , or the dq phase fundamental voltage commands Vd, Vq by absolute conversion. Shown in (4).
  • Patent Document 1 when the difference between the maximum phase and the minimum phase is smaller than the current detection upper limit voltage value, the maximum phase becomes constant at a predetermined value (current detection upper limit voltage value), and the difference between the maximum phase and the minimum phase is the current.
  • a predetermined value current detection upper limit voltage value
  • modulation is performed so that the minimum phase becomes constant at a predetermined value (inverter output lower limit value) when it is larger than the detection upper limit voltage value.
  • the difference between the maximum phase and the minimum phase is larger than the current detection upper limit voltage value UVi
  • the minimum phase is modulated to a predetermined constant value
  • the maximum phase has 6 peaks in one electrical angle cycle. become.
  • the on-time of the lower arm switching element becomes the minimum at the moment when the maximum phase peaks, and the current detection accuracy becomes the worst at that moment.
  • the moment when the detection accuracy becomes the worst appears 6 times in one cycle of the electric angle, so that the controllability of the current deteriorates at that moment and the electric angle is 6 times.
  • Current vibrations occur at frequencies.
  • torque ripple of 6 times the electric angle is originally generated by motor control etc.
  • the vibration of the current at the frequency of 6 times the electric angle caused by the deterioration of the current detection accuracy causes further deterioration of the torque ripple, and there is a problem of vibration or noise. Becomes noticeable.
  • the maximum phase is constant at the value obtained by subtracting the multiplication value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak, so that the current having an electric angle of 6 times the frequency due to the current detection accuracy is constant. Vibration can be reduced.
  • Patent Document 1 also presents a method of modulating the average value of the maximum phase and the minimum phase as a superposed voltage when the difference between the maximum phase and the minimum phase exceeds the magnitude of the power supply voltage.
  • the maximum phase peak appears 6 times in one electrical angle cycle, so even if this method is applied when the difference between the maximum phase and the minimum phase does not exceed the magnitude of the power supply voltage, the problem can be solved. do not become.
  • the minimum phase of the three-phase correction voltage command is the lower limit of the inverter output when the modulation rate of the three-phase basic voltage command is larger than the modulation rate of the predetermined value.
  • the line voltage is distorted, causing another problem of increased vibration or noise. From this point of view, in the modulation method in the present embodiment, as shown in FIG.
  • the peak voltage Vpeak is calculated and the maximum phase is constant at the value obtained by subtracting the multiplication value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak.
  • the maximum phase becomes constant at a value exceeding the current detection upper limit voltage value UVi, and it is possible to prevent the minimum phase from falling below the lower limit of the inverter.
  • the peak voltage Vpeak is calculated, and the maximum phase is a value obtained by subtracting the product value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak. Therefore, it is possible to avoid deterioration of the current detection accuracy of all three phases without making the maximum phase unnecessarily large and constant.
  • Patent Document 2 also shows an example in which only the upper solid modulation is used, but it is the same as Patent Document 1 in that the value for making the maximum phase constant needs to be determined in advance, and is compared with the present embodiment. Is the same. Further, in another embodiment of Patent Document 2, when the amplitude of the three-phase fundamental voltage command is smaller than the threshold value, the maximum phase becomes constant at the current detection upper limit voltage value, and the amplitude of the three-phase fundamental voltage command is larger than the threshold value. An example of performing modulation so that the maximum phase becomes constant at the upper limit of the inverter output is also shown.
  • the value of the maximum phase of the three-phase correction voltage command changes from the current detection upper limit value to the inverter output upper limit. Jump to the value.
  • the value of the maximum phase of the phase correction voltage command jumps from the inverter output upper limit value to the current detection upper limit value. That is, in this example, the voltage offset may be discontinuous, which causes an increase in vibration and noise. On the other hand, in the method of the present embodiment, the voltage offset is not discontinuous.
  • the modulation control unit issues the DC voltage, the maximum phase, and the three-phase basic voltage command.
  • the amplitude of the 3-phase fundamental voltage command is large by calculating the 1st voltage offset based on the sum of squares and outputting the 3-phase correction voltage command by subtracting the 1st voltage offset from the 3-phase fundamental voltage command, the inverter Even if the output does not fall below the lower limit of the output and the amplitude of the three-phase basic voltage command is small, the accuracy of the three-phase current detection is not deteriorated, and the offset voltage does not become discontinuous.
  • the timing of deterioration of the current detection accuracy occurs 6 times in 1 cycle of the electric angle, so that the electric angle of the current is 1 cycle. Vibration of 6 times frequency can be prevented.
  • the first voltage offset is modulated so that the maximum phase is constant at the value obtained by subtracting the multiplication value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak.
  • the three-phase correction voltage commands Vu, Vv, and Vw are closer to the inverter output lower limit value IOlo side.
  • the current detection accuracy is improved, but the energization time of the lower arm becomes longer and the heat generation of the lower arm increases.
  • the maximum phase should be shifted from the peak voltage Vpeak minus the product of DC voltage Vdc and 0.5 as shown below. Modulation may be performed.
  • FIG. 5 is a flowchart showing the arithmetic processing of the modulation control unit 6 in the second embodiment.
  • step S201 the maximum phase Vmax when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb is calculated.
  • step S202 the peak voltage Vpeak is calculated by calculating the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • the peak voltage calculation method is the ⁇ -phase basic voltage command V ⁇ , which is obtained by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method. It is also possible to perform the calculation using V ⁇ or the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system by the same known coordinate conversion method.
  • step S203 the value obtained by multiplying the peak voltage Vpeak calculated in step S202 by 0.5 is subtracted from the maximum phase Vmax calculated in step S201, and the value obtained by subtracting 0.5 from the first constant k1 is subtracted from the DC voltage Vdc.
  • the second voltage offset Voffset2 is calculated by subtracting the value obtained by multiplying by.
  • step S204 the second voltage offset Voffset2 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated.
  • the second voltage offset Voffset2 is represented by the equation (5).
  • the first constant k1 is a number that determines the center values of the three-phase correction voltage commands Vu, Vv, and Vw.
  • k1 0.
  • Set to 5 if the modulation factor of the three-phase basic voltage command is 1 or less, the three-phase correction voltage command does not exceed the upper and lower limits of the output.
  • the center values of the three-phase correction voltage commands Vu, Vv, and Vw are (k1-0.5) * Vdc.
  • the three-phase basic voltage commands Vub, Vvb, and Vwb are shown in the first stage from the top, and the value obtained by subtracting the multiplication value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak is shown in the second stage.
  • the second voltage offset Voffset2 is shown in the eyes, and the three-phase correction voltage commands Vu, Vv, and Vw are shown in the fourth stage.
  • the first voltage offset is modulated so that the maximum phase is constant at the value obtained by subtracting the multiplication value of the DC voltage Vdc and 0.5 from the peak voltage Vpeak.
  • the three-phase correction voltage command moves toward the lower limit side of the inverter output.
  • the current detection accuracy is improved, but the energization time of the lower arm becomes longer and the heat generation of the lower arm increases. If a problem such as heat generation occurs due to moving toward the lower limit of the inverter output, control the first voltage offset to zero when the modulation factor of the three-phase basic voltage command is lower than the modulation factor threshold value as shown below. You may go.
  • FIG. 7 is a flowchart showing the arithmetic processing of the modulation control unit 6 in the third embodiment.
  • the peak voltage Vpeak is calculated by calculating the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • the peak voltage calculation method is the ⁇ -phase basic voltage command V ⁇ , which is obtained by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method. It is also possible to perform the calculation using V ⁇ or the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system by the same known coordinate conversion method.
  • step S302 the modulation factor M is calculated by dividing the peak voltage Vpeak obtained in step S301 by the DC voltage Vdc.
  • step S303 it is determined whether the modulation factor M obtained in step S302 is larger than the modulation factor threshold value Mth.
  • step S303 If it is determined in step S303 that the modulation factor M is a value equal to or higher than the modulation factor threshold value Mth, the process proceeds to step S304.
  • step S304 the maximum phase Vmax when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb is calculated.
  • step S305 the peak voltage Vpeak calculated in step S301 is subtracted from the maximum phase Vmax calculated in step S304, and the value obtained by multiplying the DC voltage Vdc by 0.5 is subtracted from that value to calculate the first voltage offset Voffset1. do.
  • step S303 If it is determined in step S303 that the modulation factor M is smaller than the modulation factor threshold value Mth, the process proceeds to step S306.
  • step S306 the first voltage offset Voffset1 is set to 0.
  • step S307 the three-phase correction voltage commands Vu, Vv, and Vw are calculated by subtracting the first voltage offset Voffset1 calculated in step S305 or step S306 from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively.
  • the modulation factor M is represented by the equation (6).
  • the three-phase correction voltage commands Vu, Vv, and Vw coincide with the three-phase basic voltage commands Vub, Vvb, and Vwb, although not shown newly.
  • the average time for energizing the lower arm and the average time for energizing the upper arm of each phase are equal.
  • the modulation factor M becomes a value equal to or higher than the modulation factor threshold Mth, the maximum phase peak is prevented from appearing 6 times in one electrical angle cycle, so that the timing of deterioration of the current detection accuracy is one electrical angle cycle. It is possible to prevent the vibration of the frequency 6 times the electric angle of one cycle of the electric current due to the generation of the electric current 6 times.
  • Embodiment 4 modulation is performed so that the voltage offset becomes 0 when the modulation factor of the three-phase basic voltage command is lower than the modulation factor threshold, but in that case, the maximum phase changes from the peak voltage Vpeak to the DC voltage Vdc. Modulation may be performed so as to shift from the value obtained by subtracting the multiplication value of 0.5.
  • FIG. 8 is a flowchart showing the arithmetic processing of the modulation control unit 6 in the fourth embodiment.
  • the peak voltage Vpeak is calculated by calculating the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • the peak voltage calculation method is the ⁇ -phase basic voltage command V ⁇ , which is obtained by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method. It is also possible to perform the calculation using V ⁇ or the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system by the same known coordinate conversion method.
  • step S402 the modulation factor M is calculated by dividing the peak voltage Vpeak obtained in step S401 by the DC voltage Vdc.
  • step S403 the maximum phase Vmax when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb is calculated.
  • step S404 it is determined whether the modulation factor M obtained in step S402 is larger than the modulation factor threshold value Mth.
  • Mth is set to be equal to or less than the modulation factor of the voltage value at the upper limit of current detection. For example, assuming that the current detection upper limit is 90% duty, Mth is set to a value of 0.9 or less. If it is determined in step S404 that the modulation factor M is a value equal to or higher than the modulation factor threshold value Mth, the process proceeds to step S405.
  • step S405 the peak voltage Vpeak calculated in step S401 is subtracted from the maximum phase Vmax calculated in step S403, and the value obtained by multiplying the DC voltage Vdc by 0.5 is subtracted from that value to calculate the first voltage offset Voffset1. do.
  • step S406 the first voltage offset Voffset1 calculated in step S405 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated.
  • step S404 If it is determined in step S404 that the modulation factor M is smaller than the modulation factor threshold value Mth, the process proceeds to step S407.
  • step S407 the value obtained by multiplying the peak voltage Vpeak calculated in step S401 by 0.5 is subtracted from the maximum phase Vmax calculated in step S403, and the value obtained by subtracting 0.5 from the first constant k1 is subtracted from the DC voltage Vdc.
  • the second voltage offset Voffset2 is calculated by subtracting the value obtained by multiplying by.
  • step S408 the second voltage offset Voffset2 calculated in step S407 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated.
  • the second voltage offset Voffset2 is represented by the equation (5).
  • the first constant k1 is a number that determines the center values of the three-phase correction voltage commands Vu, Vv, and Vw.
  • the second voltage offset Voffset2 3 The maximum phase of the phase correction voltage command becomes a voltage value corresponding to the modulation factor threshold Mth, and the voltage offset becomes continuous even when switching to Voffset1.
  • the modulation factor threshold Mth is 0.9 and k1 is 0.45, which is 0.5 times the modulation factor threshold Mth.
  • the modulation factor M is equal to or higher than the modulation factor threshold value Mth, and the minimum value of the three-phase correction voltage commands Vu, Vv, and Vw is the lower limit of the inverter, and the maximum phase is constant at the value of Vpeak-0.5Vdc. It has become.
  • the modulation factor M is smaller than the modulation factor threshold value Mth, and the median values of the three-phase correction voltage commands Vu, Vv, and Vw are (k1-0.5) Vdc.
  • the timing of deterioration of the current detection accuracy occurs 6 times in 1 cycle of the electric angle, so that the electric angle of the current is 1 cycle. Vibration of 6 times frequency can be prevented.
  • FIG. 11 is a flowchart showing the calculation of the modulation control unit 6 in the fifth embodiment.
  • step S501 the maximum phase Vmax when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb is calculated.
  • step S502 the minimum phase Vmin is calculated.
  • step S503 the intermediate phase Vmid is calculated from the maximum phase Vmax and the minimum phase Vmin.
  • step S504 it is determined whether or not the intermediate phase Vmid obtained in step S503 is equal to or less than the intermediate phase threshold value Vmidth.
  • the intermediate phase threshold value Vmidth is set to 0.
  • step S504 If it is determined in step S504 that the intermediate phase Vmid is a value equal to or less than the intermediate phase threshold value Vmidth, the process proceeds to step S505.
  • the peak voltage Vpeak is calculated by calculating the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • the peak voltage calculation method is the ⁇ -phase basic voltage command V ⁇ , which is obtained by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method. It is also possible to perform the calculation using V ⁇ or the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system by the same known coordinate conversion method.
  • step S506 the peak voltage Vpeak calculated in step S505 is subtracted from the maximum phase Vmax calculated in step S501, and the value obtained by multiplying the DC voltage Vdc by 0.5 is subtracted from that value to calculate the first voltage offset Voffset1. do.
  • step S507 the first voltage offset Voffset1 calculated in step S506 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated. If it is determined in step S504 that the intermediate phase Vmid is larger than the intermediate phase threshold value Vmidth, the process proceeds to step S508. In step S508, the third voltage offset Voffset3 is calculated by adding the value obtained by subtracting the second constant k2 from 0.5 and the product of the DC voltage Vdc to the minimum phase Vmin calculated in step S502.
  • step S509 the three-phase correction voltage commands Vu, Vv, and Vw are calculated by subtracting the Voffset3 calculated in step S508 from the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • the third voltage offset Voffset3 is represented by the equation (7).
  • the second constant k2 is a number that determines the value of the minimum phase of the three-phase correction voltage commands Vu, Vv, and Vw.
  • the second constant k2 0.
  • the minimum phase becomes a constant value at a place where the intermediate phase is larger than the intermediate phase threshold value Vmidth
  • the maximum phase becomes constant at a place where the intermediate phase is equal to or less than the intermediate phase threshold value Vmidth.
  • the peak of the maximum phase of the three-phase correction voltage command is avoided to appear 6 times in one cycle of the electric angle, and the deterioration timing of the current detection accuracy occurs 6 times in one cycle of the electric angle. It is possible to prevent vibration at a frequency 6 times the electric angle of the current for one cycle.
  • Embodiment 6 Hereinafter, the sixth embodiment will be described, but the description of the overlapping portion with the fifth embodiment will be omitted.
  • the modulation factor of the three-phase basic voltage command approaches 1
  • the maximum phase approaches the upper limit of the inverter output and the duty approaches 100%.
  • the current detection when the current is detected at the moment when the carrier wave reaches the maximum value, the current detection cannot be taken because the duty of the maximum phase is around 100%, and the other two phases are detected.
  • FIG. 13 is a flowchart showing the arithmetic processing of the modulation control unit 6 in the sixth embodiment.
  • the peak voltage Vpeak is calculated by calculating the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • the peak voltage calculation method is the ⁇ -phase basic voltage command V ⁇ , which is obtained by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method. It is also possible to perform the calculation using V ⁇ or the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system by the same known coordinate conversion method.
  • step S602 the peak voltage Vpeak is divided by the DC voltage Vdc to calculate the modulation factor M.
  • step S603 the maximum phase Vmax when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb is calculated.
  • step S604 it is determined whether the modulation factor M is equal to or less than the modulation factor threshold value Mth.
  • the modulation factor threshold value Mth is a value equal to or higher than the modulation factor of the upper limit of current detection and lower than or lower than the modulation factor that can be output by the inverter.
  • step S604 If it is determined in step S604 that the modulation factor M is a value equal to or less than the modulation factor threshold value Mth, the process proceeds to step S605.
  • step S605 the minimum phase Vmin is calculated.
  • step S606 the intermediate phase Vmid is calculated from the maximum phase Vmax and the minimum phase Vmin.
  • step S607 it is determined whether the intermediate phase Vmid is equal to or less than the intermediate phase threshold value Vmidth.
  • the intermediate phase threshold value Vmidth is set to 0.
  • step S607 If it is determined in step S607 that the intermediate phase Vmid is a value equal to or less than the intermediate phase threshold value Vmidth, the process proceeds to step S608.
  • step S608 the peak voltage Vpeak is subtracted from the maximum phase Vmax, and the value obtained by multiplying the DC voltage Vdc by 0.5 is subtracted from the value to calculate the first voltage offset Voffset1.
  • step S609 the first voltage offset Voffset1 calculated in step S608 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated.
  • step S610 the third voltage offset Voffset3 is calculated by adding the value obtained by subtracting the second constant k2 from 0.5 and the multiplication value of the DC voltage Vdc to the minimum phase Vmin.
  • step S611 the three-phase correction voltage commands Vu, Vv, and Vw are calculated by subtracting the fourth voltage offset Voffset4 calculated in step S610 from the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • step S604 If it is determined in step S604 that the modulation factor M is larger than the modulation factor threshold value Mth, the process proceeds to step S612.
  • step S612 the fourth voltage offset Voffset 4 is calculated by subtracting the value obtained by subtracting 0.5 from the third constant k3 from the maximum phase Vmax and the multiplication value of the DC voltage Vdc.
  • step S613 the three-phase correction voltage commands Vu, Vv, and Vw are calculated by subtracting the third voltage offset Voffset3 calculated in step S612 from the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • the fourth voltage offset Voffset 4 is represented by the equation (8).
  • FIG. 14 shows an example in which the modulation factor threshold Mth is 0.95. In FIG. 14, when the modulation factor is larger than the modulation factor threshold value, the maximum phase is constant at the upper limit of the inverter output. Further, although not shown newly, when the modulation factor is equal to or less than the modulation factor threshold value, the same as that of the sixth embodiment is obtained.
  • FIG. 15 is a flowchart showing the arithmetic processing of the modulation control unit 6 in the seventh embodiment.
  • step S701 the maximum phase Vmax when the maximum phase, the intermediate phase, and the minimum phase are set in descending order of the three-phase basic voltage commands Vub, Vvb, and Vwb is calculated.
  • step S702 the minimum phase Vmin is calculated.
  • step S703 it is determined whether the difference between the maximum phase Vmax and the minimum phase Vmin is equal to or greater than the voltage threshold value Vth.
  • step S703 If it is determined in step S703 that the difference between the maximum phase Vmax and the minimum phase Vmin is equal to or greater than the voltage threshold value Vth, the process proceeds to step S704.
  • step S704 the intermediate phase Vmid is calculated from the maximum phase Vmax and the minimum phase Vmin.
  • step S705 it is determined whether the intermediate phase Vmid is equal to or less than the intermediate phase threshold value Vmidth.
  • the intermediate phase threshold value Vmidth is set to 0. If it is determined in step S705 that the intermediate phase Vmid is equal to or less than the intermediate phase threshold value Vmidth, the process proceeds to step S706.
  • step S706 it is determined whether the modulation one control cycle before is the modulation using the third voltage offset Voffset 3, which will be described later. If it is determined in step S706 that the modulation before one control cycle is not the modulation using the third voltage offset Voffset 3, the process proceeds to step S707.
  • step S707 the peak voltage Vpeak is calculated by calculating the positive square root of the value obtained by multiplying the sum of squares of the three-phase basic voltage commands Vub, Vvb, and Vwb by 2.
  • the peak voltage calculation method is the ⁇ -phase basic voltage command V ⁇ , which is obtained by converting the three-phase basic voltage commands Vub, Vvb, and Vwb into the ⁇ -axis coordinate system by a known coordinate conversion method. It is also possible to perform the calculation using V ⁇ or the dq phase basic voltage commands Vd and Vq converted into the dq axis coordinate system by the same known coordinate conversion method.
  • step S708 the peak voltage Vpeak is subtracted from the maximum phase Vmax, and the value obtained by multiplying the DC voltage Vdc by 0.5 is subtracted from the value to calculate the first voltage offset Voffset1.
  • step S709 the first voltage offset Voffset1 calculated in step S708 is subtracted from the three-phase basic voltage commands Vub, Vvb, and Vwb, respectively, and the three-phase correction voltage commands Vu, Vv, and Vw are calculated.
  • step S705 If it is determined in step S705 that the intermediate phase Vmid is larger than the intermediate phase threshold value Vmidth, or if it is determined in step S706 that the modulation one control cycle before is the modulation using the third voltage offset Voffset 3, the process proceeds to step S710.
  • step S710 the fourth voltage offset Voffset 4 is calculated by adding the value obtained by subtracting the third constant k3 from 0.5 and the multiplication value of the DC voltage Vdc to the minimum phase Vmin.
  • step S711 the three-phase correction voltage commands Vu, Vv, and Vw are calculated by subtracting the fourth voltage offset Voffset4 calculated in step S710 from the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • step S712 it is determined whether the modulation one control cycle before is the modulation using the first voltage offset Voffset1. If it is determined in step S712 that the modulation one control cycle before is the modulation using the first voltage offset Voffset 1, the process proceeds to step S704. If it is determined in step S712 that the modulation one control cycle before is not the modulation using the first voltage offset Voffset 1, the process proceeds to step S713.
  • step S713 the third voltage offset Voffset3 is calculated by subtracting the value obtained by subtracting 0.5 from the second constant k2 from the maximum phase Vmax and the multiplication value of the DC voltage Vdc.
  • step S714 the three-phase correction voltage commands Vu, Vv, and Vw are calculated by subtracting the third voltage offset Voffset3 calculated in step S713 from the three-phase basic voltage commands Vub, Vvb, and Vwb.
  • the third voltage offset Voffset3 is represented by the equation (7).
  • the fourth voltage offset Voffset4 is represented by the equation (8).
  • k3 is a number that determines the value of the maximum phase of the three-phase correction voltage commands Vu, Vv, and Vw, and is used here as the modulation factor of the current detection upper limit voltage value.
  • FIG. 16 shows an example of the output waveform of this embodiment.
  • This embodiment is a method of switching the modulation method according to the difference between the maximum phase and the minimum phase.
  • the voltage threshold Vth for determining the difference between the maximum phase and the minimum phase is the voltage value at the upper limit of current detection.
  • the modulation method one control cycle before is referred to in steps S706 and S712 of FIG. 15, and the next modulation method is determined by the modulation method.
  • step S709 and step S714 is both a modulation method in which the maximum phase is set to a constant value.
  • the maximum phase is set to be constant at Vpeak-0.5Vdc, whereas in step S714, it is determined in advance. Make it constant with a value.
  • FIG. 17 a flowchart in the case where step S706 and step S712 are not present is shown in FIG.
  • step S714 is determined in the next control cycle. There can be moments that are modulated by. Of course, the reverse is also true, and after modulation in step S714, there may be a moment of modulation in step S709 in the next determination.
  • Step S709 is switched to step S714 at the locations of ⁇ 1, ⁇ 3, and ⁇ 5 in FIG. 18, and steps S714 are switched to step S709 at the locations of ⁇ 2, ⁇ 4, and ⁇ 6. Therefore, the maximum phase jumps at that moment, and the maximum phase peak occurs 6 times in one cycle of the electric angle. When the maximum phase peak occurs 6 times, the current pulsates at the frequency of the 6th order of the electric angle, which leads to vibration and noise. Therefore, by introducing the conditions of step S706 and step S712 of FIG. 15 in the present embodiment, it is configured so that switching from step S709 to step S714 or from step S714 to step S709 does not occur.
  • step S709 is switched to step S711, and then step S711 is switched to step S714. And vice versa.
  • the maximum phase jump does not occur and the voltage offset becomes continuous.
  • the peak of the maximum phase of the three-phase correction voltage command is avoided to appear 6 times in one cycle of the electric angle, and the deterioration timing of the current detection accuracy occurs 6 times in one cycle of the electric angle. It is possible to prevent vibration at a frequency 6 times the electric angle of the current for one cycle.
  • the modulation control unit 6 is composed of a processor 601 and a storage device 602, as shown in FIG. 19 as an example of hardware.
  • the storage device 602 includes, for example, a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, the auxiliary storage device of the hard disk may be provided instead of the flash memory.
  • the processor 601 executes the program input from the storage device 602. In this case, the program is input from the auxiliary storage device to the processor 601 via the volatile storage device. Further, the processor 601 may output data such as a calculation result to the volatile storage device of the storage device 602, or may store the data in the auxiliary storage device via the volatile storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

変調制御部(6)は、基本電圧指令に基づいて、電圧オフセットを演算し、電圧オフセットを基本電圧指令に重畳して修正電圧指令を演算し、インバータ(3)は、直流電圧を変調制御部(6)で演算された修正電圧指令に基づいて3相電圧に変換して交流回転機の3相巻線に電圧を印加し、基本電圧指令を3相電圧指令に変換した場合において、3相電圧指令を大きい順に最大相、中間相、最小相としたとき、変調制御部(6)は、直流電圧と、最大相と、基本電圧指令の二乗和に基づいて、第1電圧オフセットを演算する。

Description

電力変換装置
 本願は、3相電圧指令に基づいて直流電圧を3相電圧に変換して出力する電力変換装置に関する。
 従来から、PWMインバータの電圧利用率を向上させるため、電圧を変調する技術が広く知られている。さらに、電圧利用率の向上に加えて様々な目的に応じた変調方法が提案されている。例えば、特許文献1では、3相電圧指令を大きい順に最大相、中間相、最小相としたとき、最大相と最小相の差に応じて、最大相を一定にする変調と最小相を一定にする変調を切り替えている。
 以下では、最大相を一定にする変調を上ベタ変調、最小相を一定にする変調を下ベタ変調と呼ぶ。上ベタ変調は、下アームに取り付けられた電流検出素子の電圧降下による損失を小さくする目的で行われ、下ベタ変調は電流検出可能時間を最大にする目的で行われる。上ベタ変調では、最大相が予め決められた電圧値となるように変調されており、また下ベタ変調も同様に予め決められた電圧値となるように変調されている。特許文献2では、2相変調となる区間を減らし、電圧振幅に応じて変調方法を切り替えて出力電圧がインバータ出力可能範囲を超えないようにしている。
特許第5161985号公報 特許第6525364号公報
 3相電圧指令の振幅が大きいときは、最大相ピークも大きくなりデューティも大きくなる。インバータの各下アームに3相電流検出用抵抗素子がある場合、デューティが大きいと、下アームの電流検出用抵抗素子に通電される時間が短くなるため、電流検出精度が悪化する。
 電流検出のための下アーム通電時間を最大限確保するため下ベタ変調を行った場合、電気角1周期中に変調後の最大相のピークが6回現れるため、1周期中において電流検出精度が悪化するタイミングが6回生じることになる。インバータを用いたモータ制御を行う場合、モータは構造的に電気角1周期の6倍の周波数で誘起電圧脈動が発生しやすいことが知られており、その周波数のトルクリップルが振動、騒音問題を引き起こす。電流検出が1周期で6回悪化した状態で電流制御を行うと、電気角1周期の6倍の周波数のトルクリップルがさらに悪化するという課題がある。
 特許文献1では、最大相と最小相の差が大きい瞬間は下ベタ変調を選択しており、最大相と最小相の差が大きい瞬間はディーティが大きいため、上記課題を引き起こす。また、最大相と最小相の差が電源電圧の大きさを超えた場合に最大相と最小相の平均値を重畳電圧として変調する方法も提示されているが、この変調方法を用いた場合でも最大相のピークは電気角1周期で6回現れているため、上記課題を引き起こす。
 特許文献2では、3相電圧指令の振幅が小さいときは上ベタ変調を選択し、大きいときは下ベタ変調を選択する実施の形態が示されているが、この方法では3相電圧指令の振幅が大きいときはデューティも大きいため、特許文献1と同様に上記課題を引き起こす。また、他の実施例で上ベタ変調のみを行う例も示している。しかし、上ベタ変調は前述の通り、最大相が予め決められた電圧値で一定となるように変調されるため、電圧指令が予め決められた値を超えた場合にその変調を行うと、電圧指令が出力下限を超えるため線間電圧が歪み、それにより新たな振動・騒音の発生につながる。
 また予め決められた値を出力上限とした場合では、電圧指令が小さい瞬間でも常に最大相を出力上限となるように変調するため、必然的に最小相の電圧値も大きくなり、その瞬間は3相とも電流検出が困難になり、制御に支障をきたす。また電圧指令の振幅が小さいときは最大相を電流検出可能な値となるように上ベタ変調し、電圧指令の振幅が大きいときは最大相を出力上限となるように上ベタ変調を行う方法も開示しているが、この方法では切り替え時に最大相が不連続となるため、その不連続性に起因した別の振動・騒音を引き起こす可能性がある。
 本願は、上記のような問題点を解決するためになされたものであり、基本電圧指令の二乗和を用いて電圧オフセットを演算することで、電流検出精度が悪化することがなく、また、基本電圧指令の二乗和を用いることで、予め決められた電圧値ではなく、基本電圧指令に応じた電圧値で最大相を一定にすることが可能となるため、インバータ出力下限を下回ることがない電力変換装置を得ることを目的とする。
 本願に開示される電力変換装置は、基本電圧指令を出力する基本電圧指令部と、基本電圧指令に基づいて、電圧オフセットを演算し、電圧オフセットを基本電圧指令に重畳して修正電圧指令を演算する変調制御部と、直流電圧を変調制御部で演算された修正電圧指令に基づいて3相電圧に変換して交流回転機の3相巻線に電圧を印加し、スイッチング素子に直列接続された電流検出用抵抗素子の電圧降下によって3相巻線の各相を流れる電流を検出する電流検出部を有するインバータと、を備え、基本電圧指令を3相電圧指令に変換した場合において、3相電圧指令を大きい順に最大相、中間相、最小相としたとき、変調制御部は、直流電圧と、最大相と、基本電圧指令の二乗和に基づいて、第1電圧オフセットを演算する。
 本願の電力変換装置によれば、基本電圧指令の二乗和を用いて電圧オフセットを演算することで、電流検出精度が悪化することはない。
 また、基本電圧指令の二乗和を用いることで、予め決められた電圧値ではなく、基本電圧指令に応じた電圧値で最大相を一定にすることが可能となるため、インバータ出力下限を下回ることはない。
実施の形態1に係わる電力変換装置を示す全体構成図である。 実施の形態1に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態1に係わる電力変換装置の出力波形を示す図である。 実施の形態1に係わる電力変換装置の出力波形を示す図である。 実施の形態2に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態2に係わる電力変換装置の出力波形を示す図である。 実施の形態3に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態4に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態4に係わる電力変換装置の出力波形を示す図である。 実施の形態4に係わる電力変換装置の出力波形を示す図である。 実施の形態5に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態5に係わる電力変換装置の出力波形を示す図である。 実施の形態6に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態6に係わる電力変換装置の出力波形を示す図である。 実施の形態7に係わる電力変換装置における変調制御部の演算処理を示すフローチャートである。 実施の形態7に係わる電力変換装置の出力波形を示す図である。 実施の形態7に係わる電力変換装置における変調制御部の別の演算処理を示すフローチャートである。 実施の形態7に係わる電力変換装置の別の出力波形を示す図である。 実施の形態に係わる電力変換装置における変調制御部のハードウェア構成の一例を示す図である。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置を示す全体構成図である。図1において、交流回転機1は3相巻線U、V、Wを有する交流回転機であり、例えば、永久磁石同期回転機、巻線界磁同期回転機、誘導回転機、シンクロナスリラクタンスモータ等である。
 直流電源2はインバータ3に直流電圧Vdcを印加する。インバータ3は3相修正電圧指令Vu、Vv、Vw、および直流電圧Vdcに基づいて、キャリア周期TcでPWM変調して交流回転機の3相巻線U、V、Wに電圧を印加する。スイッチ(スイッチング素子)Sup、Svp、Swp、Sun、Svn、Swnには、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等の半導体スイッチング素子とダイオードとを逆並列に接続したものを用いる。
 インバータ3の下側アーム素子(スイッチング素子)Sun、Svn、Swnとそれぞれ直列に、電流検出用抵抗素子Ru、Rv、Rwが接続されている。電流検出用抵抗素子Ruは、下側アーム素子Sunがオンするタイミングでその両端電圧を取得することにより、交流回転機1のU相巻線を流れる電流を検出する。電流検出用抵抗素子Rvは、下側アーム素子Svnがオンするタイミングでその両端電圧を取得することにより、交流回転機1のV相巻線を流れる電流を検出する。電流検出用抵抗素子Rwは、下側アーム素子Swnがオンするタイミングでその両端電圧を取得することにより、交流回転機1のW相巻線を流れる電流を検出する。平滑コンデンサ4は、直流電源2の直流電圧Vdcを安定化させるコンデンサである。また、基本電圧指令部5は、交流回転機1を駆動するための3相基本電圧指令Vub、Vvb、Vwbを指令する。
 変調制御部6は、3相基本電圧指令Vub、Vvb、Vwbに基づいて、第1電圧オフセットVoffset1を演算し、3相基本電圧指令Vub、Vvb、Vwbに重畳する。
 図2は変調制御部6の演算処理を示すフローチャートである。図2において、ステップS101では3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。ステップS102では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を減算してピーク電圧Vpeakを演算する。ステップS103では、ステップS101で演算した最大相VmaxからステップS102で演算したピーク電圧Vpeakを減算し、さらに直流電圧Vdcに0.5を乗算した値を減算して第1電圧オフセットVoffset1を演算する。ステップS104では、3相基本電圧指令Vub、Vvb、Vwbからそれぞれ第1電圧オフセットVoffset1を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。ピーク電圧Vpeakは式(1)、第1電圧オフセットVoffset1は式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 図3は実施の形態1に係る3相基本電圧指令Vub、Vvb、Vwbの変調率が電流検出上限電圧値の変調率を超える場合の電力変換装置の各出力波形を示す説明図であり、図4は変調率が3相基本電圧指令Vub、Vvb、Vwbの変調率が電流検出上限電圧値の変調率を超えない場合の電力変換装置の各出力波形を示す説明図である。
 図3、図4において、上から1段目に3相基本電圧指令Vub、Vvb、Vwbを示し、2段目にピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値を示し、3段目に第1電圧オフセットVoffset1を示し、4段目に3相修正電圧指令Vu、Vv、Vwを示している。
 ここで、インバータの出力上限値IOupはVdc/2、出力下限値IOloは-Vdc/2であり、電流検出上限値は、電流検出用抵抗素子Ru、Rv、Rwでの電流検出に必要な下側アームスイッチング素子Sun、Svn、Swnの通電時間の下限値によって決まる。例えば、電流検出に必要な下側アームスイッチング素子Sun,Svn,Swnの通電時間の下限値が5μsの場合,キャリア周期Tcが50μsとすると,下限値5μsのキャリア周期に対する割合は10%である。
 よって,電流検出には下側オンデューティは最低限10%必要であり、換言すると、上側オンデューティは90%以下である必要がある。Vdcを12Vとすると、出力上限値は6Vで、12Vの10%が1.2Vであるから、上限値6Vより1.2V以上低い電圧であること、つまり4.8V以下であることが電流検出条件である。よって、この場合の電流検出上限電圧値UViは4.8Vとなることを意味する。
 図3、図4より3相修正電圧指令Vu、Vv、Vwの最大相の値が常にピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値で一定となっていることがわかる。
 前述した課題では、最大相の値が電気角1周期の6倍周波数で変動することにより、電流検出用抵抗素子Ru、Rv、Rwの検出精度悪化タイミングが電気角1周期の6倍周波数で生じることで、その周波数の振動・騒音問題を引き起こしていたが、本実施の形態による変調方法によって最大相が常に一定となるため、電気角の6倍周波数の振動・騒音を低減する効果が得られる。
 尚、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて計算することもできる。3相基本電圧指令Vub、Vvb、Vwbを絶対変換によりαβ相基本電圧指令Vα、Vβ、またはdq相基本電圧指令Vd、Vqに変換した場合のピーク電圧Vpeakの演算式を式(3)、式(4)に示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 次に、特許文献1に対する効果を説明する。特許文献1では、最大相と最小相の差が電流検出上限電圧値より小さい場合に最大相が予め決めた値(電流検出上限電圧値)で一定になり、最大相と最小相の差が電流検出上限電圧値よりも大きい場合に最小相が予め決めた値(インバータ出力下限値)で一定になるような変調を行う例が示されている。この例では、最大相と最小相の差が電流検出上限電圧値UViよりも大きい場合に、最小相を予め決めた一定値に変調すると最大相が電気角1周期で6回のピークを持つことになる。
 この場合、最大相がピークとなる瞬間で下側アームスイッチング素子のオン時間が最小となり、その瞬間で電流検出精度が最悪となる。このときに検出した電流を用いて電流フィードバック制御を行った場合、検出精度が最悪となる瞬間が電気角1周期で6回現れるため、その瞬間で電流の制御性が低下し、電気角6倍周波数で電流の振動が発生する。モータ制御などで元々電気角6倍周波数のトルクリップルが生じている場合、電流検出精度の悪化により生じる電気角6倍周波数で電流の振動により、さらにトルクリップルの悪化を招き、振動あるいは騒音の問題が顕著となる。
 本実施の形態では、前述した通り、最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値で一定となるため、電流検出精度に起因する電気角6倍周波数の電流の振動を低減することができる。特許文献1において、最大相と最小相の差が電源電圧の大きさを超えた場合に、最大相と最小相の平均値を重畳電圧として変調する方法も提示されている。しかし、この変調方法でも最大相ピークが電気角1周期で6回現れるため、仮に最大相と最小相の差が電源電圧の大きさを超えていないときにこの方法を適用しても課題の解決にならない。
 また、特許文献1で説明されている上ベタ変調のみを用いた場合、最大相ピークが電気角1周期で6回現れることは回避できる。しかし、最大相が予め決める値で一定となるように変調するため、3相基本電圧指令の変調率が予め決める値の変調率より大きい場合に、3相修正電圧指令の最小相がインバータ出力下限を下回る。出力下限を下回ると線間電圧が歪み、振動あるいは騒音が増大するという別の問題を発生させる。この観点では、本実施の形態における変調方法は、図3に示すようにピーク電圧Vpeakを算出した上で最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値で一定となるように変調することで、図3のように最大相が電流検出上限電圧値UViを超えた値で一定となり、最小相がインバータ下限を下回ることを回避できる。
 また特許文献1で説明されている上ベタ変調について、予め決める値をインバータ出力上限値とすると、3相修正電圧指令の最小相がインバータ出力下限値を下回ることはない。
 しかし、3相基本電圧指令の振幅が小さい場合に、最大相をインバータ出力上限値になるように変調するため、最小相も必然的にインバータ出力上限値に近い値となり、3相全ての下側アームスイッチング素子のオン時間が短くなり、3相全ての電流検出精度が極端に悪化する。この観点では、本実施の形態における変調方法は、図4に示すようにピーク電圧Vpeakを算出した上で最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値となるように変調するため、最大相を無用に大きい値で一定にすることがなく、3相全ての電流検出精度の悪化を回避することができる。
 特許文献2においても上ベタ変調のみを使う例が示されているが、最大相を一定にする値は予め決める必要があるという点で、特許文献1と同様であり本実施の形態との対比も同様である。また、特許文献2の他の実施例において、3相基本電圧指令の振幅が閾値より小さい場合に最大相が電流検出上限電圧値で一定になり、3相基本電圧指令の振幅が閾値より大きい場合に最大相がインバータ出力上限値で一定になるように変調を行う例も示されている。
 この例では、例えば3相基本電圧指令の振幅が閾値より小さい瞬間があり、次の瞬間に閾値より大きくなった場合、3相修正電圧指令の最大相の値が電流検出上限値からインバータ出力上限値にジャンプする。当然ながら、その逆の場合なら相修正電圧指令の最大相の値がインバータ出力上限値から電流検出上限値にジャンプすることになる。つまり、この例においては電圧オフセットが不連続となることがあり、それに起因する振動・騒音の増大を招く問題もある。対して本実施の形態の方法では、電圧オフセットは不連続となることはない。
 以上のように、実施の形態1によれば、変調制御部は3相基本電圧指令を大きい順に最大相、中間相、最小相としたとき、直流電圧、最大相と、3相基本電圧指令の二乗和に基づいて第1電圧オフセットを演算し、3相基本電圧指令から第1電圧オフセットを減算して3相修正電圧指令を出力することにより、3相基本電圧指令の振幅が大きい場合インバータの出力下限を下回らず、3相基本電圧指令の振幅が小さい場合でも3相の電流検出精度を悪化させることはなく、オフセット電圧が不連続となることはない。
 その上で、最大相のピークが電気角1周期で6回発生することを回避することで、電流検出精度の悪化タイミングが電気角1周期で6回発生することによる電流の電気角1周期の6倍周波数の振動を防ぐことができる。
実施の形態2.
 実施の形態1において、第1電圧オフセットは最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値で一定となるように変調を行っていた。この場合、図4に示すように3相基本電圧指令Vub、Vvb、Vwbの振幅が小さいと3相修正電圧指令Vu、Vv、Vwはインバータ出力下限値IOlo側に寄ることになる。これにより電流検出精度は上昇するが、下側アームの通電時間が長くなり下側アームの発熱が大きくなる。発熱等、インバータ出力下限値IOlo側に寄ることによる問題が生じる場合は、以下に示すように最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値からシフトするように変調を行ってもよい。
 実施の形態1と重複する部分については説明を省略する。図5は実施の形態2における変調制御部6の演算処理を示すフローチャートである。図5において、ステップS201では3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。
 ステップS202では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を演算してピーク電圧Vpeakを演算する。尚、実施の形態1でも説明したが、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて演算することも可能である。
 ステップS203では、ステップS201で演算した最大相VmaxからステップS202で演算したピーク電圧Vpeakに0.5を乗算した値を減算し、さらに第1定数k1から0.5を減算した値に直流電圧Vdcを乗算した値を減算して第2電圧オフセットVoffset2を演算する。
 ステップS204では、3相基本電圧指令Vub、Vvb、Vwbからそれぞれ第2電圧オフセットVoffset2を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。第2電圧オフセットVoffset2は式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、第1定数k1は、3相修正電圧指令Vu、Vv、Vwの中心値を定める数となる。例えば、インバータの出力可能範囲が-6Vから6Vであるとき、3相修正電圧指令Vu、Vv、Vwの中心値をインバータの出力可能範囲の中心値である0Vとするときは、k1=0.5と設定する。本実施の形態ではk1=0.5とすることで、3相基本電圧指令の変調率が1以下であれば、3相修正電圧指令が出力上下限を超えることはない。
 図6に本実施の形態2におけるk1=0.5とした場合の電力変換装置の各出力波形を示す。この変調方法により3相修正電圧指令Vu、Vv、Vwの中心値は(k1-0.5)*Vdcとなる。図6において、上から1段目に3相基本電圧指令Vub、Vvb、Vwbを示し、2段目にピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値を示し、3段目に第2電圧オフセットVoffset2を示し、4段目に3相修正電圧指令Vu、Vv、Vwを示している。
 図6より、3相修正電圧指令Vu、Vv、Vwを実施の形態1の状態からインバータ出力上限値IOup側にシフトすることにより、下側アームの通電時間が短くなり発熱量が減少する。また最大相ピークが電気角1周期に6回現れることを回避することで、電流検出精度の悪化タイミングが電気角1周期で6回発生することによる電流の電気角1周期の6倍周波数の振動を防ぐことができる。
実施の形態3.
 実施の形態1において、第1電圧オフセットは最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値で一定となるように変調を行っていた。この場合、図4に示すように3相基本電圧指令の振幅が小さいと3相修正電圧指令はインバータ出力下限側に寄ることになる。これにより電流検出精度は上昇するが、下側アームの通電時間が長くなり下側アームの発熱が大きくなる。発熱等、インバータ出力下限側に寄ることによる問題が生じる場合は、以下に示すように3相基本電圧指令の変調率が変調率閾値を下回る場合に第1電圧オフセットを零とするように制御を行ってもよい。
 実施の形態1と重複する部分については説明を省略する。図7は実施の形態3における変調制御部6の演算処理を示すフローチャートである。図7において、ステップS301では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を演算してピーク電圧Vpeakを演算する。尚、実施の形態1でも説明したが、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて演算することも可能である。
 ステップS302では、ステップS301で求めたピーク電圧Vpeak を直流電圧Vdcで除算して変調率Mを演算する。
 ステップS303では、ステップS302で求めた変調率Mが変調率閾値Mthより大きいかを判定する。ここで、Mthは3相基本電圧指令の最大相が電流検出上限の電圧値を上回ることを回避できる値に設定する。例えば、電流検出上限がデューティ90% だとすると、電流検出上限電圧値UViは(0.9-0.5)*Vdc=0.4Vdcなるので、Mthを0.4√3以下の値で設定する。
 ステップS303で変調率Mが変調率閾値Mth以上の値と判定されるとステップS304に進む。ステップS304では3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。
 ステップS305では、ステップS304で演算した最大相VmaxからステップS301で演算したピーク電圧Vpeakを減算し、その値から直流電圧Vdcに0.5を乗算した値を減算して第1電圧オフセットVoffset1を演算する。
 ステップS303で変調率Mが変調率閾値Mthより小さいと判定されるとステップS306に進む。ステップS306では、第1電圧オフセットVoffset1を0とする。
 ステップS307では、3相基本電圧指令Vub、Vvb、VwbからそれぞれステップS305、またはステップS306で演算した第1電圧オフセットVoffset1を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。変調率Mは式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 実施の形態3により、変調率Mが変調率閾値Mthより小さい場合は、新たな図示はしないが3相修正電圧指令Vu、Vv、Vwは3相基本電圧指令Vub、Vvb、Vwbと一致し、各相の下アーム通電平均時間と上アーム通電平均時間は等しくなる。また、変調率Mが変調率閾値Mth以上の値となった場合には、最大相ピークが電気角1周期に6回現れることを回避することで、電流検出精度の悪化タイミングが電気角1周期で6回発生することによる電流の電気角1周期の6倍周波数の振動を防ぐことができる。
実施の形態4.
 実施の形態3において、3相基本電圧指令の変調率が変調率閾値を下回る場合に電圧オフセットが0となるように変調を行ったが、その場合において最大相がピーク電圧Vpeakから直流電圧Vdcと0.5の乗算値を減算した値からシフトするように変調を行ってもよい。
 実施の形態3と重複する部分の説明は省略する。図8は実施の形態4における変調制御部6の演算処理を示すフローチャートである。図8において、ステップS401では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を演算してピーク電圧Vpeakを演算する。尚、実施の形態1でも説明したが、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて演算することも可能である。
 ステップS402では、ステップS401で求めたピーク電圧Vpeak を直流電圧Vdcで除算して変調率Mを演算する。
 ステップS403では3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。
 ステップS404では、ステップS402で求めた変調率Mが変調率閾値Mthより大きいかを判定する。ここで、Mthは電流検出上限の電圧値の変調率以下に設定する。例えば、電流検出上限がデューティ90%だとすると、Mthを0.9以下の値で設定する。
 ステップS404で変調率Mが変調率閾値Mth以上の値と判定されるとステップS405に進む。
 ステップS405では、ステップS403で演算した最大相VmaxからステップS401で演算したピーク電圧Vpeakを減算し、その値から直流電圧Vdcに0.5を乗算した値を減算して第1電圧オフセットVoffset1を演算する。
 ステップS406では、3相基本電圧指令Vub、Vvb、VwbからそれぞれステップS405で演算した第1電圧オフセットVoffset1を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。
 ステップS404で変調率Mが変調率閾値Mthより小さいと判定されるとステップS407に進む。
 ステップS407では、ステップS403で演算した最大相VmaxからステップS401で演算したピーク電圧Vpeakに0.5を乗算した値を減算し、さらに第1定数k1から0.5を減算した値に直流電圧Vdcを乗算した値を減算して第2電圧オフセットVoffset2を演算する。
 ステップS408では、3相基本電圧指令Vub、Vvb、VwbからそれぞれステップS407で演算した第2電圧オフセットVoffset2を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。第2電圧オフセットVoffset2は式(5)で表される。
 ここで、第1定数k1は、3相修正電圧指令Vu、Vv、Vwの中心値を定める数となる。この実施の形態においては、k1を変調率閾値Mthの0.5倍の値とすることで、3相基本電圧指令の変調率Mが変調率閾値Mthに近づくと、第2電圧オフセットVoffset2による3相修正電圧指令の最大相が変調率閾値Mthに相当する電圧値となり、Voffset1に切り替わっても電圧オフセットは連続となる。
 図9、図10に変調率閾値Mthを0.9とし、k1を変調率閾値Mthの0.5倍である0.45とした例を示す。図9は、変調率Mが変調率閾値Mth以上となっており、3相修正電圧指令Vu、Vv、Vwは、最小値がインバータ下限となり、最大相はVpeak-0.5Vdcの値で一定となっている。図10は、変調率Mが変調率閾値Mthより小さい値となっており、3相修正電圧指令Vu、Vv、Vwは中央値が(k1-0.5)Vdcとなっている。
 本実施の形態により、最大相ピークが電気角1周期に6回現れることを回避することで、電流検出精度の悪化タイミングが電気角1周期で6回発生することによる電流の電気角1周期の6倍周波数の振動を防ぐことができる。
実施の形態5.
 以下、実施の形態5について説明するが、実施の形態1と重複する部分については説明を省略する。図11は実施の形態5における変調制御部6の演算を示すフローチャートである。
 図11において、ステップS501では、3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。
ステップS502では、最小相Vminを演算する。ステップS503では、最大相Vmaxと最小相Vminから中間相Vmidを演算する。ステップS504では、ステップS503で求めた中間相Vmidが中間相閾値Vmidth以下かを判定する。ここで、中間相閾値Vmidthは0とする。
 ステップS504で中間相Vmidが中間相閾値Vmidth以下の値と判定されるとステップS505に進む。
 ステップS505では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を演算してピーク電圧Vpeakを演算する。尚、実施の形態1でも説明したが、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて演算することも可能である。
 ステップS506では、ステップS501で演算した最大相VmaxからステップS505で演算したピーク電圧Vpeakを減算し、その値から直流電圧Vdcに0.5を乗算した値を減算して第1電圧オフセットVoffset1を演算する。
 ステップS507では、3相基本電圧指令Vub、Vvb、VwbからそれぞれステップS506で演算した第1電圧オフセットVoffset1を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。
 ステップS504で中間相Vmidが中間相閾値Vmidthより大きいと判定されるとステップS508に進む。
 ステップS508では、ステップS502で演算した最小相Vminに、0.5から第2定数k2を減算した値と直流電圧Vdcの乗算値を加算して第3電圧オフセットVoffset3を演算する。
 ステップS509では、3相基本電圧指令Vub、Vvb、VwbからステップS508で演算したVoffset3を減算して3相修正電圧指令Vu、Vv、Vwを演算する。
 第3電圧オフセットVoffset3は式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、第2定数k2は3相修正電圧指令Vu、Vv、Vwの最小相の値を決める数である。最小相をインバータ出力下限値で一定にする場合は第2定数k2=0とする。二相変調を避ける場合は、第2定数k2はPWMの最小パルスデューティとし、例えばキャリア周期が50μsでインバータの最小パルス幅が0.5μsであるとすると、k2は0.5/50=0.01と設定する。
 図12に第2定数k2=0とした例を示す。図12では、中間相が中間相閾値Vmidthより大きい箇所では最小相が一定値になり、中間相が中間相閾値Vmidth以下の箇所では最大相が一定となる。図12で示す通り、3相修正電圧指令の最大相のピークは電気角1周期で6回現れることを回避しており、電流検出精度の悪化タイミングが電気角1周期で6回発生することによる電流の電気角1周期の6倍周波数の振動を防ぐことができる。
実施の形態6.
 以下、実施の形態6について説明するが、実施の形態5と重複する部分については説明を省略する。3相基本電圧指令の変調率が1に近くなると、最大相はインバータ出力上限に近くなりデューティが100%に近づく。電流検出において、キャリア波が最大値をとる瞬間で電流検出を行う場合、最大相はデューティが100%付近であるため電流検出はとれなくなり、他の2相を検出することになる。
 このとき、最大相デューティが完全に100%でなければ、最大相においてもスイッチングが発生する。この場合は、最大相のスイッチングタイミングは、キャリア波が最大値をとる瞬間付近となるため、最大相のスイッチングノイズが他相の電流検出に悪影響を及ぼす可能性がある。このスイッチングノイズによる悪影響を回避するため、3相基本電圧指令の変調率が1付近となる場合に、最大相をインバータ出力上限値で一定とし、デューティを100%とすることでスイッチングを発生させない方法をとることができる。図13は実施の形態6における変調制御部6の演算処理を示すフローチャートである。
 図13において、ステップS601では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を演算してピーク電圧Vpeakを演算する。尚、実施の形態1でも説明したが、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて演算することも可能である。
 ステップS602では、ピーク電圧Vpeak を直流電圧Vdcで除算して変調率Mを演算する。
 ステップS603では、3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。
 ステップS604では、変調率Mが変調率閾値Mth以下かを判定する。変調率閾値Mthは、電流検出上限の変調率以上で、かつインバータ出力可能な変調率以下の値とする。
 ステップS604で変調率Mが変調率閾値Mth以下の値と判定されるとステップS605に進む。
 ステップS605では、最小相Vminを演算する。ステップS606では、最大相Vmaxと最小相Vminから中間相Vmidを演算する。ステップS607では、中間相Vmidが中間相閾値Vmidth以下かを判定する。ここで、中間相閾値Vmidthは0とする。
 ステップS607で中間相Vmidが中間相閾値Vmidth以下の値と判定されるとステップS608に進む。
 ステップS608では、最大相Vmaxからピーク電圧Vpeakを減算し、その値から直流電圧Vdcに0.5を乗算した値を減算して第1電圧オフセットVoffset1を演算する。
 ステップS609では、3相基本電圧指令Vub、Vvb、VwbからそれぞれステップS608で演算した第1電圧オフセットVoffset1を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。
 ステップS607で中間相Vmidが中間相閾値Vmidthより大きいと判定されるとステップS610に進む。
 ステップS610では、最小相Vminに、0.5から第2定数k2を減算した値と直流電圧Vdcの乗算値を加算して第3電圧オフセットVoffset3を演算する。
 ステップS611では、3相基本電圧指令Vub、Vvb、VwbからステップS610で演算した第4電圧オフセットVoffset4を減算して3相修正電圧指令Vu、Vv、Vwを演算する。
 ステップS604で変調率Mが変調率閾値Mthより大きいと判定されるとステップS612に進む。
ステップS612では、最大相Vmaxから第3定数k3から0.5を減算した値と直流電圧Vdcの乗算値を減算して第4電圧オフセットVoffset4を演算する。
 ステップS613では、3相基本電圧指令Vub、Vvb、VwbからステップS612で演算した第3電圧オフセットVoffset3を減算して3相修正電圧指令Vu、Vv、Vwを演算する。
 第4電圧オフセットVoffset4は式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、k3は3相修正電圧指令Vu、Vv、Vwの最大相の値を決める数であり、最大相をインバータ出力上限値で一定にする場合はk3=1とする。図14に変調率閾値Mthを0.95とした例を示す。図14では、変調率が変調率閾値より大きい場合に最大相がインバータ出力上限で一定になっている。また、新たな図示はしないが、変調率が変調率閾値以下であるときは、実施の形態6と同じとなる。
実施の形態7.
 以下、実施の形態7について説明するが、実施の形態1と重複する部分については説明を省略する。図15は実施の形態7における変調制御部6の演算処理を示すフローチャートである。
 ステップS701では、3相基本電圧指令Vub、Vvb、Vwbのうち大きい順に最大相、中間相、最小相としたときの最大相Vmaxを演算する。ステップS702では、最小相Vminを演算する。ステップS703では、最大相Vmaxと最小相Vminの差が電圧閾値Vth以上かを判定する。
 ステップS703で最大相Vmaxと最小相Vminの差が電圧閾値Vth以上であると判定されるとステップS704に進む。ステップS704では、最大相Vmaxと最小相Vminから中間相Vmidを演算する。
 ステップS705では、中間相Vmidが中間相閾値Vmidth以下かを判定する。ここで、中間相閾値Vmidthは0とする。
 ステップS705で中間相Vmidが中間相閾値Vmidth以下であると判定されるとステップS706に進む。
 ステップS706では、1制御周期前の変調が後述の第3電圧オフセットVoffset3を用いた変調であるかを判定する。
 ステップS706で、1制御周期前の変調は第3電圧オフセットVoffset3を用いた変調でないと判定されるとステップS707に進む。
 ステップS707では、3相基本電圧指令Vub、Vvb、Vwbの2乗和に2を乗算した値の正の平方根を演算してピーク電圧Vpeakを演算する。尚、実施の形態1でも説明したが、ピーク電圧の算出方法は、3相基本電圧指令Vub、Vvb、Vwbを、公知の座標変換方法によりαβ軸座標系に変換したαβ相基本電圧指令Vα、Vβあるいは、同じく公知の座標変換方法によりdq軸座標系に変換したdq相基本電圧指令Vd、Vqを用いて演算することも可能である。
 ステップS708では、最大相Vmaxからピーク電圧Vpeakを減算し、その値から直流電圧Vdcに0.5を乗算した値を減算して第1電圧オフセットVoffset1を演算する。
 ステップS709では、3相基本電圧指令Vub、Vvb、VwbからそれぞれステップS708で演算した第1電圧オフセットVoffset1を減算して、3相修正電圧指令Vu、Vv、Vwを演算する。
 ステップS705で中間相Vmidが中間相閾値Vmidthより大きいと判定されるか、ステップS706で1制御周期前の変調は第3電圧オフセットVoffset3を用いた変調であると判定されるとステップS710に進む。
ステップS710では、最小相Vminに、0.5から第3定数k3を減算した値と直流電圧Vdcの乗算値を加算して第4電圧オフセットVoffset4を演算する。
 ステップS711では、3相基本電圧指令Vub、Vvb、VwbからステップS710で演算した第4電圧オフセットVoffset4を減算して3相修正電圧指令Vu、Vv、Vwを演算する。
 ステップS703で、最大相Vmaxと最小相Vminの差が電圧閾値Vthより小さいと判定されるとステップS712に進む。
 ステップS712では、1制御周期前の変調が第1電圧オフセットVoffset1を用いた変調であるかを判定する。
 ステップS712で、1制御周期前の変調が第1電圧オフセットVoffset1を用いた変調であると判定されると、ステップS704に進む。
 ステップS712で、1制御周期前の変調が第1電圧オフセットVoffset1を用いた変調でないと判定されると、ステップS713に進む。
 ステップS713では、最大相Vmaxから第2定数k2から0.5を減算した値と直流電圧Vdcの乗算値を減算して第3電圧オフセットVoffset3を演算する。
 ステップS714では、3相基本電圧指令Vub、Vvb、VwbからステップS713で演算した第3電圧オフセットVoffset3を減算して3相修正電圧指令Vu、Vv、Vwを演算する。
 第3電圧オフセットVoffset3は式(7)で表される。k2は3相修正電圧指令Vu、Vv、Vwの最小相の値を決める数である。最小相をインバータ出力下限値で一定にする場合はk2=0とする。二相変調を避ける場合は、k2はPWMの最小パルスdutyとし、例えばキャリア周期が50μsでインバータの最小パルス幅が0.5μsであるとすると、k3は0.5/50=0.01と設定する。
 第4電圧オフセットVoffset4は式(8)で表される。k3は3相修正電圧指令Vu、Vv、Vwの最大相の値を決める数であり、ここでは電流検出上限電圧値の変調率とする。図16に本実施の形態の出力波形例を示す。
 本実施の形態は最大相と最小相の差に応じて変調方法を切り替える方式である。
 最大相と最小相の差を判定する電圧閾値Vthは電流検出上限の電圧値とする。この方式では図15のステップS706とステップS712で1制御周期前の変調方法を参照し、その変調方法によって次の変調方法を決めるという構成になっている。
 このような構成にしている理由を説明する。
 電気角1周期中において、3相基本電圧指令の変調率が一定である場合でも最大相と最小相の差は一定にならずに変動する。そのため、3相基本電圧指令の変調率が一定であっても変調方式が適時切り替わることとなる。
 ステップS709とステップS714の変調は、どちらも最大相を一定値にする変調方法であるが、ステップS709は最大相をVpeak-0.5Vdcで一定にしているのに対し、ステップS714では予め決めた値で一定にする。ここで、ステップS706とステップS712が無い場合のフローチャートを図17に示す。図17の場合では、3相基本電圧指令の変調率が一定の場合においても最大相と最小相の差が一定ではないことから、ステップS709で変調した後、次の制御周期の判定でステップS714で変調する瞬間が存在し得る。無論、その逆も同様でステップS714で変調した後、次の判定でステップS709で変調する瞬間も存在し得る。
 この場合の出力波形を図18に示す。図18のθ1、θ3、θ5の箇所においてステップS709からステップS714に切り替わっており、θ2、θ4、θ6の箇所においてステップS714からステップS709に切り替わっている。そのため、その瞬間において最大相がジャンプし、電気角1周期中に最大相ピークが6回生じている。最大相ピークが6回生じると、電気角6次の周波数で電流が脈動し振動・騒音に繋がる。そのため、本実施の形態において図15のステップS706とステップS712の条件を導入することにより、ステップS709からステップS714に、またはステップS714からステップS709に切り替わりが生じないように構成している。
 ステップS706とステップS712の導入により、ステップS709からステップS711に切り替わり、その後ステップS711からステップS714に切り替わるようになる。また、逆も同様である。ステップS709からステップS711への切り替わりと、ステップS714からステップS711への切り替わりでは最大相のジャンプが起こらず電圧オフセットは連続となる。本実施の形態により、3相修正電圧指令の最大相のピークは電気角1周期で6回現れることを回避しており、電流検出精度の悪化タイミングが電気角1周期で6回発生することによる電流の電気角1周期の6倍周波数の振動を防ぐことができる。
 なお、変調制御部6は、ハードウェアの一例を図19に示すように、プロセッサ601と記憶装置602から構成される。記憶装置602は、例えば、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ601は、記憶装置602から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ601にプログラムが入力される。また、プロセッサ601は、演算結果等のデータを記憶装置602の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 3 インバータ、5 基本電圧指令部、6 変調制御部、Sup,Svp,Swp,Sun,Svn,Swn スイッチ(スイッチング素子)、Ru,Rv,Rw 電流検出用抵抗素子

Claims (20)

  1.  基本電圧指令を出力する基本電圧指令部と、前記基本電圧指令に基づいて、電圧オフセットを演算し、前記電圧オフセットを前記基本電圧指令に重畳して修正電圧指令を演算する変調制御部と、直流電圧を前記変調制御部で演算された前記修正電圧指令に基づいて3相電圧に変換して交流回転機の3相巻線に電圧を印加し、スイッチング素子に直列接続された電流検出用抵抗素子の電圧降下によって前記3相巻線の各相を流れる電流を検出する電流検出部を有するインバータと、を備え、
    前記基本電圧指令を3相電圧指令に変換した場合において、前記3相電圧指令を大きい順に最大相、中間相、最小相としたとき、前記変調制御部は、前記直流電圧と、前記最大相と、前記基本電圧指令の二乗和に基づいて、第1電圧オフセットを演算することを特徴とした電力変換装置。
  2.  前記変調制御部は、前記直流電圧と、前記最大相と、第1定数と前記基本電圧指令の二乗和に基づいて、第2電圧オフセットを演算することを特徴とする請求項1に記載の電力変換装置。
  3.  前記変調制御部は、前記基本電圧指令の変調率が第1閾値を下回る場合に前記第1電圧オフセットを0とすることを特徴とする請求項1に記載の電力変換装置。
  4.  前記変調制御部は、前記基本電圧指令の変調率が第2閾値を下回る場合に、前記第2電圧オフセットを演算することを特徴とする請求項2に記載の電力変換装置。
  5.  前記変調制御部は、前記中間相における前記基本電圧指令の変調率が第3閾値を上回る場合に、前記直流電圧と、前記最小相と、第2定数に基づいて第3電圧オフセットを演算することを特徴とする請求項1に記載の電力変換装置。
  6.  前記変調制御部は、前記基本電圧指令の変調率が第2閾値を上回る場合に、前記直流電圧と、前記最大相と、第3定数に基づいて第4電圧オフセットを演算することを特徴とする請求項1または請求項5に記載の電力変換装置。
  7.  前記変調制御部は、1制御周期前の変調方法に応じて変調方法を選択することを特徴とする請求項1に記載の電力変換装置。
  8.  前記変調制御部は、前記最大相と前記最小相の差が第4閾値を下回り、1制御周期前に計算された電圧オフセットが前記第1電圧オフセットでない場合に、前記直流電圧と、前記最大相と、第3定数に基づいて第4電圧オフセットを演算することを特徴とする請求項1または請求項7に記載の電力変換装置。
  9.  前記変調制御部は、前記最大相と前記最小相の差が前記第4閾値を上回り、前記中間相が予め設定した第3閾値を上回る場合に、前記最小相と、前記直流電圧と、第2定数に基づいて第3電圧オフセットを演算することを特徴とする請求項8に記載の電力変換装置。
  10.  前記変調制御部は、前記最大相と前記最小相の差が前記第4閾値を上回り、前記中間相が前記第3閾値を下回り、1制御周期前に計算された前記電圧オフセットが前記第4電圧オフセットである場合に、前記最小相と、前記直流電圧と、第2定数に基づいて第3電圧オフセットを演算することを特徴とする請求項9に記載の電力変換装置。
  11.  前記変調制御部は、前記最大相と前記最小相の差が前記第4閾値を上回り、前記中間相における前記基本電圧指令の変調率が第1閾値を下回り、1制御周期前に計算された前記電圧オフセットが前記第4電圧オフセットでない場合に、前記第1電圧オフセットを演算することを特徴とする請求項8から請求項10の何れか1項に記載の電力変換装置。
  12.  前記変調制御部は、前記最大相と前記最小相の差が前記第4閾値を下回り、1制御周期前に計算された前記電圧オフセットが前記第1電圧オフセットである場合に、前記第1電圧オフセットを演算することを特徴とする請求項8から請求項11の何れか1項に記載の電力変換装置。
  13.  前記変調制御部は、前記第1閾値を、前記基本電圧指令が前記電流検出用抵抗素子で電流検出が可能な上限電圧値以下となる変調率に設定することを特徴とする請求項3に記載の電力変換装置。
  14.  前記変調制御部は、前記第2閾値を、前記電流検出用抵抗素子で電流検出が可能な上限電圧値の変調率以上かつ、インバータが出力可能な変調率以下の値に設定することを特徴とする請求項4または請求項6に記載の電力変換装置。
  15.  前記変調制御部は、前記第3閾値を前記インバータが出力可能範囲の中心値に設定することを特徴とする請求項5、請求項9、請求項10の何れか1項に記載の電力変換装置。
  16.  前記変調制御部は、前記第4閾値を、前記電流検出用抵抗素子で電流検出が可能な変調率の上限値に前記直流電圧を乗算した値に設定することを特徴とする請求項8から請求項12の何れか1項に記載の電力変換装置。
  17.  前記変調制御部は、前記第1定数を、前記修正電圧指令の中心値が前記インバータの出力可能範囲の中心値以下に設定することを特徴とする請求項2または請求項4に記載の電力変換装置。
  18.  前記変調制御部は、前記第2定数を、前記最小相を予め設定された下限値に設定することを特徴とする請求項5、請求項9、請求項10の何れか1項に記載の電力変換装置。
  19.  前記変調制御部は、前記第3定数を、前記最大相を予め設定された上限値に設定することを特徴とする請求項6または請求項8に記載の電力変換装置。
  20.  前記第3定数は、前記インバータが出力可能範囲の上限値となることを特徴とする請求項19に記載の電力変換装置。
PCT/JP2020/046656 2020-12-15 2020-12-15 電力変換装置 WO2022130480A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/046656 WO2022130480A1 (ja) 2020-12-15 2020-12-15 電力変換装置
US18/039,081 US20240007021A1 (en) 2020-12-15 2020-12-15 Power conversion device
JP2022569351A JP7504230B2 (ja) 2020-12-15 電力変換装置
EP20965868.1A EP4266567A4 (en) 2020-12-15 2020-12-15 POWER CONVERSION DEVICE
CN202080107842.0A CN116601860A (zh) 2020-12-15 2020-12-15 功率转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046656 WO2022130480A1 (ja) 2020-12-15 2020-12-15 電力変換装置

Publications (1)

Publication Number Publication Date
WO2022130480A1 true WO2022130480A1 (ja) 2022-06-23

Family

ID=82057445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046656 WO2022130480A1 (ja) 2020-12-15 2020-12-15 電力変換装置

Country Status (4)

Country Link
US (1) US20240007021A1 (ja)
EP (1) EP4266567A4 (ja)
CN (1) CN116601860A (ja)
WO (1) WO2022130480A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225364B2 (ja) 1982-08-04 1990-06-01 Mitsubishi Rayon Co
JPH05168244A (ja) * 1991-12-10 1993-07-02 Toyo Electric Mfg Co Ltd Pwm制御装置
JP5161985B2 (ja) 2011-02-16 2013-03-13 三菱電機株式会社 電力変換装置および電動パワーステアリングの制御装置
WO2016132427A1 (ja) * 2015-02-16 2016-08-25 三菱電機株式会社 電力変換装置
WO2016132426A1 (ja) * 2015-02-16 2016-08-25 三菱電機株式会社 電力変換装置
WO2016143121A1 (ja) * 2015-03-12 2016-09-15 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2016207206A (ja) * 2015-04-14 2016-12-08 エルエス産電株式会社Lsis Co., Ltd. 系統連系型インバータ制御装置
WO2017221339A1 (ja) * 2016-06-22 2017-12-28 三菱電機株式会社 電力変換装置
JP2020096399A (ja) * 2018-12-10 2020-06-18 三菱電機株式会社 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577738B2 (ja) * 1987-05-20 1997-02-05 三菱電機株式会社 Pwmインバ−タ装置
JP6516857B2 (ja) * 2015-10-13 2019-05-22 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
WO2017168522A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 電力変換装置
WO2018131093A1 (ja) * 2017-01-11 2018-07-19 三菱電機株式会社 モータ制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225364B2 (ja) 1982-08-04 1990-06-01 Mitsubishi Rayon Co
JPH05168244A (ja) * 1991-12-10 1993-07-02 Toyo Electric Mfg Co Ltd Pwm制御装置
JP5161985B2 (ja) 2011-02-16 2013-03-13 三菱電機株式会社 電力変換装置および電動パワーステアリングの制御装置
WO2016132427A1 (ja) * 2015-02-16 2016-08-25 三菱電機株式会社 電力変換装置
WO2016132426A1 (ja) * 2015-02-16 2016-08-25 三菱電機株式会社 電力変換装置
WO2016143121A1 (ja) * 2015-03-12 2016-09-15 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2016207206A (ja) * 2015-04-14 2016-12-08 エルエス産電株式会社Lsis Co., Ltd. 系統連系型インバータ制御装置
WO2017221339A1 (ja) * 2016-06-22 2017-12-28 三菱電機株式会社 電力変換装置
JP2020096399A (ja) * 2018-12-10 2020-06-18 三菱電機株式会社 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266567A4

Also Published As

Publication number Publication date
EP4266567A4 (en) 2024-01-24
EP4266567A1 (en) 2023-10-25
US20240007021A1 (en) 2024-01-04
CN116601860A (zh) 2023-08-15
JPWO2022130480A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
JP4956123B2 (ja) モータ制御装置
US8278865B2 (en) Control device
JP4749874B2 (ja) 電力変換装置及びそれを用いたモータ駆動装置
US9093932B2 (en) Control system for three-phase rotary machine
US10374503B2 (en) Power conversion device
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
US11218107B2 (en) Control device for power converter
JP6275214B2 (ja) 車両用回転電機の制御装置、及び制御方法
US20130278200A1 (en) System for controlling controlled variable of rotary machine
EP2763309A2 (en) Inverter apparatus and method of controlling inverter apparatus
JP6078282B2 (ja) 交流電動機駆動システム及び電動機車両
US10608572B2 (en) Motor drive control device
JP6129972B2 (ja) 交流電動機の制御装置、交流電動機駆動システム、流体圧制御システム、位置決めシステム
JP2011211818A (ja) 電力変換装置,電力変換方法及び電動機駆動システム
JP4529113B2 (ja) 電圧形インバータ及びその制御方法
US8749184B2 (en) Control apparatus for electric motor
JP2013141345A (ja) モータ制御装置及び空気調和機
WO2017030055A1 (ja) 回転機の制御装置および制御方法
WO2022130480A1 (ja) 電力変換装置
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
JP7504230B2 (ja) 電力変換装置
JP6729250B2 (ja) 電力変換器の制御装置
JP2019083676A (ja) モータ駆動制御装置
JP2012085405A (ja) 電力変換装置,電力変換方法及び電動機駆動システム
JP2010142022A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039081

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022569351

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107842.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020965868

Country of ref document: EP

Effective date: 20230717