WO2022127855A1 - 一种用于郎肯循环低温余热回收发电机 - Google Patents

一种用于郎肯循环低温余热回收发电机 Download PDF

Info

Publication number
WO2022127855A1
WO2022127855A1 PCT/CN2021/138767 CN2021138767W WO2022127855A1 WO 2022127855 A1 WO2022127855 A1 WO 2022127855A1 CN 2021138767 W CN2021138767 W CN 2021138767W WO 2022127855 A1 WO2022127855 A1 WO 2022127855A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
rotating shaft
magnetic suspension
waste heat
suspension bearing
Prior art date
Application number
PCT/CN2021/138767
Other languages
English (en)
French (fr)
Inventor
应卓霖
夏广鑫
Original Assignee
王步明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王步明 filed Critical 王步明
Publication of WO2022127855A1 publication Critical patent/WO2022127855A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby

Definitions

  • the invention relates to the technical field of expanders, in particular to a generator used for Rankine cycle low-temperature waste heat recovery.
  • Organic Rankin Cycle an environmental protection technology that uses organic working fluid instead of traditional water vapor to absorb energy from low-temperature heat sources and convert it into electrical energy. It can be used for low-temperature waste heat recovery in industry, and can also be used for solar energy, geothermal and other fields of renewable energy. At present, it has been regarded as a hot research object at home and abroad, mainly including four main mechanisms: evaporator, turbine power generation device, condenser, and working medium pump. Improving the efficiency of the turbine power generation system is the main means to improve the overall efficiency of the ORC system. Traditionally, the impeller is connected to the gear reducer, and the gear reducer is connected to the mechanical bearing low-speed generator through the coupling.
  • maglev high-speed permanent magnet synchronous generators In recent years, various high-speed generators have replaced traditional low-speed generators, eliminating the need for intermediate gear gearboxes, and the overall system efficiency has been greatly improved, the most prominent of which is the use of maglev high-speed permanent magnet synchronous generators. Verdicorp began to use a single 100-300kW maglev power generation system in 2011, and achieved great social and economic benefits. Now the use of maglev high-speed synchronous generators in ORC cycles has gradually become the mainstream trend. The domestic maglev high-speed permanent magnet synchronous generator started late, and it is rarely used in the ORC cycle, but its mainstream development trend is irresistible.
  • low-speed generators mostly use ball bearings as supporting elements, and the heat, vibration, noise, etc. generated by the friction of the ball bearings are unavoidable.
  • the ball bearings need grease lubrication and a separate oil supply system, which increases the structural complexity. The complexity requires regular maintenance of the bearing, which increases the production cost.
  • the ball bearing is used as the supporting element, because the ball bearing needs to be lubricated with grease, it is easy to mix with the organic working medium during operation, resulting in waste and danger.
  • the ball bearing cannot be used. Adjust the position of the axis of the rotating shaft by yourself, the position of the rotating shaft is offset, and it cannot be in the best working state.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a generator for Rankine cycle low temperature waste heat recovery which can reduce the friction loss of the rotating shaft, adjust the position of the rotating shaft by itself, and increase the power generation efficiency of the generator.
  • the present invention provides a generator for Rankine cycle low-temperature waste heat recovery, comprising an outer casing, an inner casing, a rotating shaft arranged in the inner casing, and fixed on the inner wall of the inner casing.
  • the stator winding, the radial magnetic suspension bearing arranged at both ends of the rotating shaft, the axial thrust magnetic suspension bearing arranged at the rotating shaft away from the power input end, the rotating shaft is the input carrier of the generator driven by external force, and the rotating shaft is fixed on the rotating shaft.
  • the protruding end of the rotating shaft is connected to an external drive turbine.
  • the generator further includes a radial sensor arranged on the radial magnetic suspension bearing, an axial sensor arranged on the axial thrust magnetic suspension bearing, and a pressure sensor arranged in the sealing plate of the junction box, and temperature sensors respectively arranged in the radial magnetic suspension bearing, the stator winding and the axial thrust magnetic suspension bearing.
  • the alarm value of the temperature sensor in the stator winding is 120°C
  • the shutdown value is 140°C
  • the alarm value of the temperature sensors in the radial magnetic suspension bearing and the axial thrust magnetic suspension bearing is 110°C
  • the shutdown value is 110°C. value 130°C.
  • the radial sensor, the axial sensor, the pressure sensor, the temperature sensor, and the radial magnetic levitation bearing all use sealed air-inserted tight outlet wires.
  • the entire generator is sealed with a tetrafluoroethylene gasket.
  • the protruding end of the rotating shaft is sealed with a piston.
  • both the radial magnetic suspension bearing and the axial thrust magnetic suspension bearing are powered externally.
  • the rotating shaft is connected with the driving turbine through a flat key to transmit motion.
  • the rotating shaft is inlaid with a permanent magnet.
  • the rotation of the rotating shaft drives the permanent magnet to rotate, so that the magnetic field rotates, and the stator winding wire cuts the magnetic field, thereby generating an induced current.
  • the radial sensor and the axial sensor monitor the rotating shaft. After collecting signals, analyzing signals, performing response actions, and collecting feedback signals, a closed loop is formed, and the axis position of the rotating shaft is continuously corrected, so that the generator always works at the best state.
  • the pressure sensor monitors the internal pressure of the generator. When the internal pressure of the generator becomes high, the heat absorption of expansion is too small, and the liquid pump at the end of the generator is started to reduce the internal pressure of the generator.
  • the generator control module makes corresponding adjustments to the generator.
  • the present invention provides a generator for Rankine cycle low-temperature waste heat recovery.
  • a magnetic suspension bearing to support the rotating shaft, the friction loss of the rotating shaft during rotation can be reduced, and the magnetic suspension can also be used.
  • the bearing does not need lubrication, which can avoid the possibility of mixing the lubricating oil with the organic working medium in the generator, and increase the safety.
  • the sensor can make the shaft in the best rotation position, the generator is always in normal working condition, and the overall power generation efficiency of the generator is high. , reduce manufacturing costs.
  • Fig. 1 is a kind of structure schematic diagram of the present invention for the Rankine cycle low-temperature waste heat recovery generator
  • Fig. 2 is a kind of ORC system cycle diagram for Rankine cycle low temperature waste heat recovery generator of the present invention
  • FIG. 3 is a schematic structural diagram of an ORC system used in a Rankine cycle low-temperature waste heat recovery generator according to the present invention.
  • the present invention provides a generator for Rankine cycle low-temperature waste heat recovery, comprising an outer casing 1 , an inner casing 2 , a rotating shaft 3 disposed in the inner casing 2 , and a fixed inner casing.
  • the permanent magnet 11 is fixed on the 3 , and the permanent magnet 11 and the stator winding 4 induce mutual induction.
  • the protruding end of the rotating shaft 3 is connected with the external driving turbine, and the power is input from the outside to drive the motor to start operating as a whole.
  • the rotating shaft 3 is connected with the driving turbine through a flat key to transmit motion.
  • the permanent magnet 11 is driven to rotate, so that the magnetic field rotates, and the wire of the stator winding 4 cuts the magnetic field, thereby generating an induced current.
  • the magnetic suspension bearing By using the magnetic suspension bearing to support the rotating shaft, the friction loss of the rotating shaft 3 during rotation can be reduced, and the magnetic suspension bearing does not need to be lubricated, which can avoid the possibility of the lubricating oil and the organic working medium in the generator being mixed, increasing the safety and the overall power generation efficiency of the generator. high, reducing manufacturing costs.
  • Both the radial magnetic suspension bearing 5 and the axial thrust magnetic suspension bearing 10 are powered by external power, which avoids the need to add lubricating oil during the working process of ordinary mechanical bearings, resulting in the danger of mixing with the organic working medium in the generator.
  • the generator also includes a radial sensor 7 arranged on the radial magnetic suspension bearing 5, an axial sensor 9 arranged on the axial thrust magnetic suspension bearing 10, a pressure sensor 6 arranged in the sealing plate 12 of the junction box, and The radial magnetic suspension bearing 5 , the stator winding 4 and the temperature sensor 8 in the axial thrust magnetic suspension bearing 10 .
  • the radial sensor 7 and the axial sensor 9 monitor the rotating shaft 3. After collecting signals, analyzing signals, performing response actions, and collecting feedback signals, a closed loop is formed, and the axis position of the rotating shaft 3 is continuously corrected, so that the generator is always Work at its best.
  • the axial position of the rotating shaft 3 is controlled by the axial thrust magnetic suspension bearing 10, the axial position of the rotating shaft 3 is determined, the power loss is reduced, and the working efficiency is improved, and the axial position can be adjusted according to the actual working conditions during the working process.
  • the rotating shaft 3 is supported by the radial magnetic suspension bearing 5, so that the rotating shaft 1 is self-suspended at the centerline of the generator, so the rotating shaft 3 will not contact other parts when it rotates, and there is no mechanical friction.
  • the radial position is determined, reducing power loss, Improve work efficiency.
  • the magnitude of the axial force generated by the axial thrust magnetic suspension bearing 10 and the radial force generated by the radial magnetic suspension bearing 5 is determined by the feedback signal of the sensor.
  • the sensor detects that the radial position of the rotating shaft 1 is offset, the radial magnetic suspension The bearing 5 will generate a corresponding pulling force to correct the position offset of the rotating shaft 1, and the same is true for the axial direction.
  • the alarm value of the temperature sensor 8 in the stator winding 4 is 120°C
  • the shutdown value is 140°C
  • the alarm value of the temperature sensor 8 in the radial magnetic suspension bearing 5 and the axial thrust magnetic suspension bearing 10 is 110°C
  • the shutdown value is 130°C
  • the temperature sensor is set
  • the alarm value and shutdown value can prevent the generator from being damaged due to abnormal conditions due to excessive operating temperature, resulting in unnecessary losses.
  • the model of the temperature sensor is PT100.
  • the temperature sensor 8, radial sensor 7, axial sensor 9 and pressure sensor 11 provided inside the generator can monitor the generator in real time online.
  • the information collected by the sensors is sent to the upper computer for processing and analysis, and converted into executable instructions for transmission.
  • the generator control module makes corresponding adjustments to the generator.
  • Both the radial sensor 7 and the axial sensor 9 are inductive displacement sensors, which can be replaced by an inductive displacement sensor whose model is VLS40-8.
  • the radial sensor 7, the axial sensor 9, the pressure sensor 6, the temperature sensor 8 and the radial magnetic suspension bearing 5 all use air-tight air-tight cables, which not only meet the overall tightness requirements of the generator, but also meet the pressure of 2MPa Require.
  • the pressure sensor 11 monitors the internal pressure of the generator. When the internal pressure of the generator becomes high and the heat absorbed by the expansion is too small, the liquid suction pump at the end of the generator is started to reduce the internal pressure of the generator.
  • the model of the pressure sensor is PT124G-210.
  • the whole generator is sealed with tetrafluoroethylene gasket, which has good sealing performance and can meet the pressure requirement of 2MPa.
  • the extension end of the rotating shaft 3 is sealed with a piston, which can meet the pressure requirement of 2MPa.
  • the present invention provides a low-temperature waste heat recovery generator for Rankine cycle by using a magnetic suspension bearing to support the rotating shaft, which can reduce the friction loss of the rotating shaft during rotation, while the magnetic suspension bearing supports the rotating shaft. No lubrication is required, the possibility of mixing the lubricating oil with the organic working medium in the generator can be avoided, the safety is increased, the overall power generation efficiency of the generator is high, and the manufacturing cost is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明公开了一种用于朗肯循环低温余热回收发电机,包括外机壳、内机壳、设置于所述内机壳中的转轴、固定在所述内机壳内壁上的定子绕组、设置于所述转轴两端的径向磁悬浮轴承、设置于所述转轴远离动力输入端的轴向推力磁悬浮轴承,所述转轴为发电机的受外力带动的输入载体,所述转轴上固定有永磁体,所述永磁体与所述定子绕组相互感应。相较于现有技术,本发明一种用于朗肯循环低温余热回收发电机功率损耗低,制造成本低,发电效率高。

Description

一种用于郎肯循环低温余热回收发电机 技术领域
本发明涉及膨胀机技术领域,具体涉及一种用于朗肯循环低温余热回收发电机。
背景技术
有机朗肯循环(Organic Rankin Cycle,简称ORC),一种利用有机工质代替传统水蒸气从低温热源吸收能量转化为电能的环保技术,可用于工业中低温余热回收,也可以用于太阳能、地热等科再生能源领域。目前国内外一直将其作为研究的热点对象,主要包括蒸发器、透平发电装置、冷凝器、工质泵四个主要机构。提高透平发电***的效率是提升ORC***整体效率的主要手段,传统的是叶轮连接齿轮减速箱,齿轮减速箱在通过联轴器连接机械轴承低速发电机。
近年来,各种高速发电机取代传统低速发电机,省去了中间齿轮变速箱的环节,整体***效率有很大的提高,其中最突出的是磁悬浮高速永磁同步发电机的运用,美国公司Verdicorp在2011开始运用单台100-300kW磁悬浮发电***,取得很大的社会和经济效益,现目前磁悬浮高速同步发电机在ORC循环中使用逐渐成为了主流趋势。国内磁悬浮高速永磁同步发电机起步较晚,运用在ORC循环中更是少之又少,但是其主流发展趋势是无法抵挡的。
现有技术中,低速发电机多采用球轴承作为支撑元件,球轴承摩擦产生的热、振动、噪声等是不可避免的,同时球轴承需要油脂润滑,需要单独的供油***,增加了结构的复杂度,需要定期对轴承进行维护,增加了生产成本,当采用球轴承作为支撑元件时,因球轴承需要油脂润滑,工作时易与有机工质混合,从而造成浪费与危险,同时球轴承无法自行进行转轴轴心位置调整,转轴的位置偏移,无法处在最佳工作状态。
发明内容
本发明的目的是克服现有技术的缺陷,提供一种能够减小转轴转动的摩擦损耗,自行调整转轴位置,增大发电机的发电效率的用于朗肯循环低温余热回收发电机。
为达到上述目的,本发明提供一种用于朗肯循环低温余热回收发电机,包括外机壳、内 机壳、设置于所述内机壳中的转轴、固定在所述内机壳内壁上的定子绕组、设置于所述转轴两端的径向磁悬浮轴承、设置于所述转轴远离动力输入端的轴向推力磁悬浮轴承,所述转轴为发电机的受外力带动的输入载体,所述转轴上固定有永磁体,所述永磁体与所述定子绕组相互感应。
在一些实施例中,所述转轴的伸出端与外部的驱动涡轮相连接。
在一些实施例中,发电机还包括设置于所述径向磁悬浮轴承上的径向传感器、设置于所述轴向推力磁悬浮轴承上的轴向传感器、设置于接线盒密封板内的压力传感器,以及分别设置于所述径向磁悬浮轴承、定子绕组和轴向推力磁悬浮轴承内的温度传感器。
在一些实施例中,所述定子绕组内的温度传感器的报警值120℃,停机值140℃,所述径向磁悬浮轴承和所述轴向推力磁悬浮轴承内的温度传感器的报警值110℃,停机值130℃。
在一些实施例中,所述径向传感器、轴向传感器、压力传感器、温度传感器和所述径向磁悬浮轴承的出线均采用密封航插密出线。
在一些实施例中,本发电机整机采用四氟乙烯垫片密封。
在一些实施例中,所述转轴的伸出端采用活塞密封。
在一些实施例中,所述径向磁悬浮轴承与所述轴向推力磁悬浮轴承均由外部供电。
转轴通过平键和驱动涡轮连接,传递运动,转轴上镶嵌有永磁体,转轴旋转带动永磁体旋转,从而磁场旋转,定子绕组导线切割磁场,从而产生感应电流。
径向传感器和轴向传感器是对转轴进行监控的,经过采集信号、分析信号、执行响应动作、采集反馈信号,形成一个闭环,不断的修正转轴的轴心位置,使发电机一直工作在最佳状态。
压力传感器监控发电机内压力,当发电机内压力变高致膨胀吸热量过小,启动发电机尾端抽液泵,降低发电机内部压力。
发电机内部设有温度传感器,径向传感器,轴向传感器和压力传感器对发电机进行在线实时监控,传感器采集的信息都送往上位机处理分析,转换成可执行指令传输给发电机控制模块,由发电机控制模块对发电机做出相应的调整。
由于上述技术方案的运用,相较于现有技术,本发明提供的一种用于朗肯循环低温余热回收发电机,通过使用磁悬浮轴承支撑转轴,能够减少转轴在转动时的摩擦损耗,同时磁悬浮轴承无需润滑,能够避免润滑油与发电机中的有机工质发生混合的可能,增加安全性,利用传感器可使得转轴处于最佳转动位置,发电机一直处于正常工作状态,发电机整体发电效率高,降低制造成本。
附图说明
图1为本发明一种用于朗肯循环低温余热回收发电机的结构示意图;
图2为本发明一种用于朗肯循环低温余热回收发电机的ORC***循环图;
图3为本发明一种用于朗肯循环低温余热回收发电机的ORC***的结构示意图。
附图标记
1、外机壳,2、内机壳,3、转轴,4、定子绕组,5、径向磁悬浮轴承,6、压力传感器,7、径向传感器,8、温度传感器,9、轴向传感器,10、轴向推力磁悬浮轴承,11、永磁体,12、接线盒密封板。
具体实施方式
下面结合附图对本发明的实施例作进一步描述。
请参阅图1至图3,本发明提供一种用于朗肯循环低温余热回收发电机,包括外机壳1、内机壳2、设置于内机壳2中的转轴3、固定在内机壳2内壁上的定子绕组4、设置于转轴3两端的径向磁悬浮轴承5、设置于转轴3远离动力输入端的轴向推力磁悬浮轴承10,转轴3为发电机的受外力带动的输入载体,转轴3上固定有永磁体11,永磁体11与定子绕组4相互感应。
转轴3的伸出端与外部的驱动涡轮相连接,动力从外界输入,带动电机整体开始运作,转轴3通过平键和驱动涡轮连接,传递运动,转轴3上镶嵌有永磁体11,转轴3旋转带动永磁体11旋转,从而磁场旋转,定子绕组4导线切割磁场,从而产生感应电流。
通过使用磁悬浮轴承支撑转轴,能够减少转轴3在转动时的摩擦损耗,同时磁悬浮轴承无需润滑,能够避免润滑油与发电机中的有机工质发生混合的可能,增加安全性,发电机整体发电效率高,降低制造成本。
径向磁悬浮轴承5与轴向推力磁悬浮轴承10均由外部供电,避免了普通机械轴承在工作过程中需要添加润滑油,导致与发电机中的有机工质产生混合的危险。
发电机还包括设置于径向磁悬浮轴承5上的径向传感器7、设置于轴向推力磁悬浮轴承10上的轴向传感器9、设置于接线盒密封板12内的压力传感器6,以及分别设置于径向磁悬浮轴承5、定子绕组4和轴向推力磁悬浮轴承10内的温度传感器8。
径向传感器7和轴向传感器9是对转轴3进行监控的,经过采集信号、分析信号、执行响应动作、采集反馈信号,形成一个闭环,不断的修正转轴3的轴心位置,使发电机一直 工作在最佳状态。
转轴3轴向位置由轴向推力磁悬浮轴承10控制,转轴3的轴向位置得以确定,减小功率损耗,提高工作效率,在工作过程中可自行根据实际工况调整轴向位置。
转轴3靠径向磁悬浮轴承5支撑,使转轴1自悬浮于发电机中心线位置,所以转轴3旋转不会和其他零件产生接触,无机械摩擦,同时径向位置得以确定,减小功率损耗,提高工作效率。
轴向推力磁悬浮轴承10产生的轴向力和径向磁悬浮轴承5产生的径向力大小是需要传感器的反馈信号来确定的,当传感器采集到转轴1径向位置有偏移时,径向磁悬浮轴承5将产生相应的拉力将转轴1的位置偏移校正,轴向同理。
定子绕组4内的温度传感器8的报警值120℃,停机值140℃,径向磁悬浮轴承5和轴向推力磁悬浮轴承10内的温度传感器8的报警值110℃,停机值130℃,设置温度传感器报警值和停机值,能够防止工作温度过高导致发电机因异常情况而损坏,造成不必要的损耗。
温度传感器的型号为PT100。
发电机内部设有的温度传感器8,径向传感器7,轴向传感器9和压力传感器11可对发电机进行在线实时监控,传感器采集的信息都送往上位机处理分析,转换成可执行指令传输给发电机控制模块,由发电机控制模块对发电机做出相应的调整。
径向传感器7和轴向传感器9均为电感式位移传感器,可用型号为VLS40-8的电感式位移传感器代替。
径向传感器7、轴向传感器9、压力传感器6、温度传感器8和径向磁悬浮轴承5的出线均采用密封航插密出线,在满足发电机整体密封性要求的同时,也能满足2MPa的压力要求。
压力传感器11监控发电机内压力,当发电机内压力变高致膨胀吸热量过小,启动发电机尾端抽液泵,降低发电机内部压力。
压力传感器的型号为PT124G-210。
本发电机整机采用四氟乙烯垫片密封,密封性好,能满足2MPa的压力要求。
转轴3的伸出端采用活塞密封,能满足2MPa的压力要求。
由于上述技术方案的运用,相较于现有技术,本发明提供的一种用于朗肯循环低温余热回收发电机通过使用磁悬浮轴承支撑转轴,能够减少转轴在转动时的摩擦损耗,同时磁悬浮轴承无需润滑,能够避免润滑油与发电机中的有机工质发生混合的可能,增加安全性, 发电机整体发电效率高,降低制造成本。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种用于朗肯循环低温余热回收发电机,其特征在于,包括外机壳(1)、内机壳(2)、设置于所述内机壳(2)中的转轴(3)、固定在所述内机壳(2)内壁上的定子绕组(4)、设置于所述转轴(3)两端的径向磁悬浮轴承(5)、设置于所述转轴(3)远离动力输入端的轴向推力磁悬浮轴承(10),所述转轴(3)为发电机的受外力带动的输入载体,所述转轴(3)上固定有永磁体(11),所述永磁体(11)与所述定子绕组(4)相互感应。
  2. 如权利要求1所述的用于朗肯循环低温余热回收发电机,其特征在于,所述转轴(3)的伸出端与外部的驱动涡轮相连接。
  3. 如权利要求1所述的用于朗肯循环低温余热回收发电机,其特征在于,发电机还包括设置于所述径向磁悬浮轴承(5)上的径向传感器(7)、设置于所述轴向推力磁悬浮轴承(10)上的轴向传感器(9)、设置于接线盒密封板(12)内的压力传感器(6),以及分别设置于所述径向磁悬浮轴承(5)、定子绕组(4)和轴向推力磁悬浮轴承(10)内的温度传感器(8)。
  4. 如权利要求3所述的一种用于朗肯循环低温余热回收发电机,其特征在于,所述定子绕组(4)内的温度传感器(8)的报警值120℃,停机值140℃,所述径向磁悬浮轴承(5)和所述轴向推力磁悬浮轴承(10)内的温度传感器(8)的报警值110℃,停机值130℃。
  5. 如权利要求3所述的一种用于朗肯循环低温余热回收发电机,其特征在于,所述径向传感器(7)、轴向传感器(9)、压力传感器(6)、温度传感器(8)和所述径向磁悬浮轴承(5)的出线均采用密封航插密出线。
  6. 如权利要求1所述的一种用于朗肯循环低温余热回收发电机,其特征在于,本发电机整机采用四氟乙烯垫片密封。
  7. 如权利要求2所述的一种用于朗肯循环低温余热回收发电机,其特征在于,所述转轴(3)的伸出端采用活塞密封。
  8. 如权利要求1所述的一种用于朗肯循环低温余热回收发电机,其特征在于,所述径向磁悬浮轴承(5)与所述轴向推力磁悬浮轴承(10)均由外部供电。
PCT/CN2021/138767 2020-12-16 2021-12-16 一种用于郎肯循环低温余热回收发电机 WO2022127855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011480738.4 2020-12-16
CN202011480738.4A CN112713710A (zh) 2020-12-16 2020-12-16 一种用于郎肯循环低温余热回收发电机

Publications (1)

Publication Number Publication Date
WO2022127855A1 true WO2022127855A1 (zh) 2022-06-23

Family

ID=75542036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138767 WO2022127855A1 (zh) 2020-12-16 2021-12-16 一种用于郎肯循环低温余热回收发电机

Country Status (2)

Country Link
CN (1) CN112713710A (zh)
WO (1) WO2022127855A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713710A (zh) * 2020-12-16 2021-04-27 湘潭华联电机有限公司 一种用于郎肯循环低温余热回收发电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444444A (en) * 1981-08-17 1984-04-24 Societe Nationale Industrielle Aerospatiale Equipment for storage of energy under kinetic form and recovery thereof in electric form and method of using such equipment
WO2007101402A1 (en) * 2006-03-06 2007-09-13 Guangzhou Zhongke Hengyuan Energy Technology Co., Ltd A wind driven generator using magnetic suspension
CN105587427A (zh) * 2016-03-18 2016-05-18 中国科学院工程热物理研究所 基于有机朗肯循环的发动机余热回收发电***
CN107476833A (zh) * 2017-06-14 2017-12-15 南京航空航天大学 零泄漏自冷却的磁悬浮透平膨胀发电机及***与方法
CN210530930U (zh) * 2019-07-24 2020-05-15 陕西博尔能源科技有限公司 一种一体化立式异步发电机组
CN111756168A (zh) * 2020-06-01 2020-10-09 裘根富 一种磁悬浮飞轮储能电机发电机
CN112713710A (zh) * 2020-12-16 2021-04-27 湘潭华联电机有限公司 一种用于郎肯循环低温余热回收发电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444444A (en) * 1981-08-17 1984-04-24 Societe Nationale Industrielle Aerospatiale Equipment for storage of energy under kinetic form and recovery thereof in electric form and method of using such equipment
WO2007101402A1 (en) * 2006-03-06 2007-09-13 Guangzhou Zhongke Hengyuan Energy Technology Co., Ltd A wind driven generator using magnetic suspension
CN105587427A (zh) * 2016-03-18 2016-05-18 中国科学院工程热物理研究所 基于有机朗肯循环的发动机余热回收发电***
CN107476833A (zh) * 2017-06-14 2017-12-15 南京航空航天大学 零泄漏自冷却的磁悬浮透平膨胀发电机及***与方法
CN210530930U (zh) * 2019-07-24 2020-05-15 陕西博尔能源科技有限公司 一种一体化立式异步发电机组
CN111756168A (zh) * 2020-06-01 2020-10-09 裘根富 一种磁悬浮飞轮储能电机发电机
CN112713710A (zh) * 2020-12-16 2021-04-27 湘潭华联电机有限公司 一种用于郎肯循环低温余热回收发电机

Also Published As

Publication number Publication date
CN112713710A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN107013260A (zh) 基于引风机汽电双驱及变频发电的***及其运行方法
WO2022127855A1 (zh) 一种用于郎肯循环低温余热回收发电机
US20140084588A1 (en) Gas bearing supported turbomachine with reduction gear assembly
CN206581991U (zh) 有机朗肯循环***涡轮膨胀机密封结构
CN103423096B (zh) 带有储能飞轮的风力发电机组
CN102619961B (zh) 汽轮机用双输入高速齿轮变速箱
CN110566286A (zh) 一种新型烟气涡轮发电装置
CN103986278A (zh) 异联电机
CN113790089A (zh) 一种低温余热发电***
CN114718682B (zh) 一种烧结汽拖***及方法
CN112513448A (zh) 热电变压器
CN210530930U (zh) 一种一体化立式异步发电机组
CN209369996U (zh) 带离合装置的给水泵
CN203522437U (zh) 一种改进的汽轮发电机
CN111472935A (zh) 一种发电效率高的海上风力发电机
CN207583644U (zh) 一种空冷风机
JP2021527775A (ja) 熱電分散型コジェネレーション用のコンパクトなランキンターボジェネレータ装置
BR112016006119B1 (pt) Turbina de recuperação de potência hidráulica e disposição de acionamento de equipamento giratória
CN215804757U (zh) 一种用于低温余热发电***的磁悬浮压缩膨胀一体设备
CN217400981U (zh) 一种best小机高速电动盘车装置
CN206389230U (zh) 一种发电机增速离合装置
CN211009174U (zh) 一种汽电双驱轴流压缩机与能量回收透平机组
CN207920904U (zh) 一种空冷风机
CN217950481U (zh) 一种采用两级透平膨胀发电一体机的orc***
CN213711122U (zh) 一种管道式磁悬浮透平高速永磁发电机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905781

Country of ref document: EP

Kind code of ref document: A1