WO2022121737A1 - 一种新型多层红外探测器及制备方法 - Google Patents

一种新型多层红外探测器及制备方法 Download PDF

Info

Publication number
WO2022121737A1
WO2022121737A1 PCT/CN2021/134561 CN2021134561W WO2022121737A1 WO 2022121737 A1 WO2022121737 A1 WO 2022121737A1 CN 2021134561 W CN2021134561 W CN 2021134561W WO 2022121737 A1 WO2022121737 A1 WO 2022121737A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixels
level
pixel
electrical connection
Prior art date
Application number
PCT/CN2021/134561
Other languages
English (en)
French (fr)
Inventor
康晓旭
陈寿面
钟晓兰
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Publication of WO2022121737A1 publication Critical patent/WO2022121737A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Definitions

  • the invention relates to the technical field of semiconductors, in particular to a novel multilayer infrared detector and a preparation method.
  • the core structure of the uncooled infrared detector product is the micro-bridge resonant cavity structure.
  • the traditional infrared detector micro-bridge resonant cavity structure is a single-layer structure, in which the support and electrical connection holes, beams, and the gap between the left and right adjacent pixels Such structures occupy the projected area of the microbridge, resulting in relatively low absorption efficiency of incident infrared rays.
  • the prior art proposes to use a multi-layer structure to improve the infrared absorption rate.
  • the multi-layer structure manufactured by the stacking scheme can only improve the re-absorption of the infrared rays transmitted from the high-rise micro-bridges, and does not use the support and electrical connection holes, beams, left and right phases.
  • the area occupied by structures such as gaps between adjacent pixels is not conducive to the expansion of the absorption area.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide a novel multilayer infrared detector and a preparation method.
  • the present invention provides the following technical solutions:
  • a novel multi-layer infrared detector comprising a multi-layer array of pixel sets arranged on a substrate with a reading circuit, and the corresponding high-level pixels and low-level pixels of the upper and lower adjacent two-layer pixel sets. They are arranged staggered from each other, and both the high-level pixel and the low-level pixel include a micro-bridge resonant cavity structure including a micro-bridge deck, beam structure, support and electrical connection holes, and the micro-bridge of the high-level pixel The projection surface of the bridge deck overlaps with the beam structure, support and electrical connection holes of the low-level pixels, and the projection surface of the gap between the left and right adjacent low-level pixels.
  • each of the low-level pixels partially overlaps with the projection surfaces of the corresponding upper-level four high-level pixels in two adjacent rows and two columns.
  • center point of the projection surface of each of the low-level pixels and the center point of the overall image formed by the projection surfaces of the corresponding upper-level left and right adjacent two rows and two columns of the four high-level pixel elements are located on the same straight line.
  • the first layer is arranged with 2*2 pixels, which are marked as A1, A2, A3, and A4 respectively, and the second layer is arranged with 2*2 pixels.
  • the layer is set with 3*3 pixels, which are marked as B1, B2...B9, then the array corresponding to the first layer pixel set is expanded to form a 4*4 array, that is (A1+B1)/4, (A1+B2)/4, (A2+B2)/4, (A2+B3)/4; (A1+B4)/4, (A1+B5)/4, (A2+B5)/4, (A2 +B6)/4; (A3+B4)/4, (A3+B5)/4, (A4+B5)/4, (A4+B6)/4; (A3+B7)/4, (A3+B8 )/4, (A4+B8)/4, (A4+B9)/4, where (A1+B1)/4 represents the quarter projection surface of pixel A1 and pixel B1 overlapping, and so on, until (A4+B9)/4.
  • the high-level pixel set includes a peripheral non-overlapping area and a central overlapping area
  • the electrical connection hole is connected with the substrate, and the high-level pixel in the center overlapping area is connected with the electrode layer of the corresponding low-level pixel through the support and the electrical connection hole.
  • the pixels of each layer of the pixel set are respectively provided with a sensitive layer, an electrode layer, a release protection layer and an absorption layer from bottom to top, the electrode layer is located on the sensitive layer and covers the surface of each pixel, and has a graph;
  • the sensitive layer resistance defined by the electrode pattern connects the electrode layers of the two adjacent low-level pixels on the left and right through two support and electrical connection holes, respectively.
  • one of the support and electrical connection holes is deeper than the other, and the sensitive layer resistance defined by the electrode pattern is electrically connected to the substrate through the support and electrical connection holes with a large depth, and is electrically connected to the substrate through the support and electrical connection holes with a small depth.
  • the supporting and electrical connection holes connect the electrode layers of the upper and lower adjacent low-level pixels.
  • the two supporting and electrical connection holes of the high-level pixel located in the central overlapping area are respectively connected to the two low-level pixels located just below the diagonal position of the high-level pixel.
  • Step 1 on the substrate with the reading circuit, fabricate a plurality of micro-bridge resonant cavity structures arranged in an M*N array to form a first-layer pixel set;
  • Step 2 Continue to fabricate a plurality of micro-bridge resonant cavity structures arranged in a (M+1)*(N+1) array on the first-layer pixel set to form a second-layer pixel set.
  • the layer pixel set completely covers the first layer pixel set and is staggered in pairs.
  • the micro-bridge resonant cavity structure of each pixel includes a Two support and electrical connection holes,
  • the bottoms of its two support and electrical connection holes are in contact with the positions near the center of the two left and right adjacent pixels of the first layer pixel set directly below it, and are in contact with the The electrode layers of the micro-bridge resonator structure of the two left and right adjacent pixels are connected;
  • the depth of one support and electrical connection hole is greater than that of the other, and the bottom of the support and electrical connection hole with a smaller depth is the corresponding pixel of the first layer pixel set directly below it.
  • the position near the center is in contact, and is connected with the electrode layer of the micro-bridge resonant cavity structure of the corresponding pixel; the bottom of the support and the electrical connection hole with a large depth is connected with the substrate;
  • Step 3 Repeat steps 1 to 2.
  • the number of rows and columns in the high-level array of the pixel sets on the upper and lower adjacent layers is one more row and/or one more column than the number of rows and columns in the low-level array, until the completion The production of cell sets for all layers.
  • the micro-bridge deck of high-level pixels covers the beam structure, support and electrical connection holes of the micro-bridges of low-level pixels, and the gap between the left and right adjacent low-level pixels to increase the absorption area of infrared rays and improve Infrared absorption efficiency, and improve product performance under the premise of controllable cost.
  • each low-level pixel overlaps with the quarter projection surface of the four high-level pixels in the two adjacent rows and two columns of the corresponding upper level, and its center overlaps with the four-level projection surface of the four high-level pixels.
  • the center of one-half of the projection surface is on the same line, so that a beam of infrared rays is irradiated from the center of the four high-level pixels, and each of the infrared rays is divided into four beams and incident into the lower-level pixel directly below, and the low-level pixel is completed in disguised form.
  • the array expansion of the collection improves the accuracy of infrared imaging, greatly improves the performance of the product, and has great application prospects.
  • Fig. 1 is the partial cross-sectional view of the center overlapping area of the pixel set arranged in the two-layer array according to the present invention and the comparison schematic diagram of the three-dimensional structure;
  • FIG. 2 is a partial cross-sectional view of a peripheral non-overlapping area of a pixel set arranged in a two-layer array of the present invention
  • FIG. 3 is a schematic top view of a pixel set arranged in a two-layer array according to the present invention.
  • FIG. 4 is a schematic top view of the present invention when the 2*2 pixel set on the first layer and the 3*3 pixel set on the second layer are staggered.
  • the present invention provides a novel multi-layer infrared detector, which includes a multi-layer array of pixel sets arranged on a substrate with a reading circuit.
  • the high-level pixels and low-level pixels of the element set are arranged staggered from each other, and the projection surface of the micro-bridge deck of the high-level pixel and the beam structure, support and electrical connection holes of the micro-bridge of the low-level pixel, and the left and right adjacent low-level
  • the projected surfaces of the gaps between cells overlap.
  • the micro-bridge deck of the high-level pixel covers the beam structure, support and electrical connection holes of the micro-bridge of the low-level pixel, and the gap between the left and right adjacent low-level pixels, thereby increasing the absorption area of infrared rays and improving the Infrared absorption efficiency, and improve product performance under the premise of controllable cost.
  • each low-level pixel is partially overlapped with the projection surfaces of the four high-level pixels corresponding to the two adjacent rows and two columns of the upper level, so that the partial projection surfaces of the four high-level pixels.
  • the combination covers most of the low-level pixels, and the gaps, supports and electrical connection holes between the corresponding left and right adjacent low-level pixels, and even the beam structure falls on the micro-bridge surface of the low-level pixels, thus increasing the infrared ray.
  • the absorption area is increased to improve the infrared absorption efficiency, or, the quarter projection surfaces of the four high-level pixels overlap with the low-level pixels, and the center point of the quarter-projection surfaces of the four high-level pixels overlaps with the low-level pixels.
  • each low-level pixel is equally divided into four parts.
  • a beam of infrared rays irradiates from the center of a high-level pixel and is divided into four beams that are incident directly below.
  • Four adjacent low-level pixels can complete the array expansion of the low-level pixel set in disguise, improve the accuracy of infrared imaging, greatly improve the performance of the product, and have great application prospects.
  • two layers of pixel sets arranged in an array are arranged on the substrate with the reading circuit.
  • the first layer (the lower layer) is arranged with 2*2 pixels, which are marked as A1 respectively.
  • A2, A3, A4 the second layer (high level) is set with 3*3 pixels, which are marked as B1, B2...B9, then the array corresponding to the first layer pixel set is expanded and formed is 4* 4 arrays, i.e. (B1+A1)/4, (A1+B2)/4, (A2+B2)/4, (A2+B3)/4; (A1+B4)/4, (A1+B5)/ 4.
  • the high-level pixel sets of the upper and lower adjacent two-layer pixel sets can cover all the low-level pixel sets, and they are arranged in a staggered manner. If the high-level pixel sets are divided into surrounding non- The overlapping area and the center overlapping area, as shown in Figure 1-4, then the high-level pixel in the center overlap area is connected to the electrode layer of the corresponding low-level pixel through the support and electrical connection holes, and finally realizes the electrical connection with the substrate; Some high-level pixels in the surrounding non-overlapping area are in a suspended state, and a deep support and electrical connection hole can be used to directly electrically connect to the substrate.
  • support of course, support can also be achieved through fake structures; and some high-rise pixels in the surrounding non-overlapping area that are not suspended can be connected to the corresponding lower-level pixels through the same support and electrical connection holes as the high-rise pixels in the center overlapping area.
  • the electrode layer of the pixel is connected, and finally realizes the electrical connection with the substrate.
  • the same position is located on the same projection surface of the second layer.
  • the signal strength of the layer is the same.
  • the middle area enclosed by the solid line is the center overlap area, that is, the new 4*4 array expanded by the algorithm, and the other areas are the surrounding non-overlapping areas.
  • the newly expanded pixel in the upper left corner It is the 1/4 area of the upper left corner of the pixel A1, which overlaps with the 1/4 area of the lower right corner of the pixel B1.
  • the input optical signal illuminates the 1/4 area of the pixel A1, and then projects to the 1/4 area of the pixel B1.
  • the signal intensity corresponding to the newly expanded pixel is the sum of the signal intensity corresponding to pixel A1/4 and pixel B1/4.
  • the signal intensities of the four pixels in the first row after expansion are:
  • the signal intensities of the four pixels of the second row of pixels are:
  • the signal intensities of the four pixels of the third row of pixels are:
  • the signal intensities of the four pixels of the fourth row of pixels are:
  • each layer of pixel sets are respectively provided with a sacrificial layer, a sensitive layer, an electrode layer, a release protective layer and an absorption layer from bottom to top, and the electrode layer is located on the sensitive layer and covers the micro-bridge surface of each pixel.
  • the micro-bridge deck of high-level pixels covers the beam structure, support and electrical connection holes of the micro-bridge of low-level pixels, and the adjacent low-level pixels on the left and right. The gap between them is thus simplified, the stability of the whole structure is guaranteed, and a good electrical connection effect is achieved.
  • one of the support and electrical connection holes has a greater depth than the other, and the sensitive layer resistance defined by the electrode pattern is electrically connected to the substrate through the support and electrical connection holes with a large depth, and the resistance of the sensitive layer defined by the electrode pattern is electrically connected to the substrate through the support and electrical connection holes with a large depth.
  • the support and electrical connection holes are connected to the electrode layers of the left and right adjacent low-level pixels until they are electrically connected to the substrate.
  • these two support and electrical connection holes with different depths can also be arranged at the opposite corners of the high-level pixels. The position is consistent with the high-level pixel in the center overlapping area, which is convenient for unified production, convenient for process realization, and reduces the complexity of the process.
  • the present invention also provides a preparation method based on the novel infrared detector described above, as shown in Figures 1 and 2, which specifically includes the following steps:
  • Step 1 on the substrate with the reading circuit, using deposition and etching processes to fabricate a plurality of micro-bridge resonant cavity structures arranged in an M*N array to form a first-layer pixel set;
  • Step 2 Continue to fabricate a plurality of micro-bridge resonant cavity structures arranged in (M+1)*(N+1) array on the first-layer pixel set to form a second-layer pixel set, the second-layer pixel set.
  • the set completely covers the first-layer pixel set and is staggered in pairs.
  • the micro-bridge resonant cavity structure of each pixel includes two supports and electrical connections arranged at diagonal positions. hole.
  • the bottoms of its two support and electrical connection holes are in contact with the positions near the center of the two left and right adjacent low-level pixels of the first layer pixel set directly below it, and are in contact with the first layer pixel set.
  • the electrode layers of the micro-bridge resonant cavity structure of the two left and right adjacent low-level pixels of the first-level pixel set are connected;
  • the depth of one support and electrical connection hole is greater than that of the other, and the bottom of the support and electrical connection hole with a smaller depth is the corresponding lower layer image of the first layer pixel set directly below it.
  • the position near the center of the element is in contact, and is connected with the electrode layer of the micro-bridge resonant cavity structure of the corresponding low-level pixel set of the first-layer pixel set; the bottom of the support and electrical connection holes with large depth is connected with the substrate;
  • Step 3 Repeat steps 1 to 2.
  • the number of rows and columns in the high-level array of the pixel sets on the upper and lower adjacent layers is one more row and/or one more column than the number of rows and columns in the low-level array, until the completion The production of a collection of all layer cells to form the final product.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明属于半导体的技术领域,公开了一种新型多层红外探测器,包括设置在带读取电路的衬底上的多层阵列排布的像元集合,上下相邻两层的像元集合的对应的高层像元与低层像元之间相互错开排布,所述高层像元与所述低层像元均包括含微桥桥面、梁结构、支撑及电连接孔在内的微桥谐振腔结构,且高层像元的微桥桥面的投影面与低层像元的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙的投影面重叠。本发明的多层红外探测器借助错开排布,高层像元的微桥桥面覆盖低层像元的微桥的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙,增加红外线的吸收面积,提高红外吸收效率,并在成本可控的前提下提升产品性能。

Description

一种新型多层红外探测器及制备方法
交叉引用
本申请要求2020年12月11日提交的申请号为202011464304.5的中国专利申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本发明涉及半导体的技术领域,尤其涉及一种新型多层红外探测器及制备方法。
技术背景
非制冷式红外探测器产品的核心结构是微桥谐振腔结构,传统红外探测器微桥谐振腔结构为单层结构,其中,支撑和电连接孔、梁、左右相邻像元之间的间隙等结构占用微桥投影面积,导致入射红外线的吸收效率相对较低。现有技术提出使用多层结构来提升红外吸收率,通过叠层方案制造的多层结构只能提高从高层微桥透射的红外线的再吸收,并没有利用支撑和电连接孔、梁、左右相邻像元之间的间隙等结构占用的面积,不利于吸收面积的扩大。
发明概要
本发明的目的在于克服现有技术存在的上述缺陷,提供一种新型多层红外探测器及制备方法。
为实现上述目的,本发明提供如下技术方案:
一种新型多层红外探测器,包括设置在带读取电路的衬底上的多层阵列排布的像元集合,上下相邻两层的像元集合的对应的高层像元与低层像元之间相互错开排布,所述高层像元与所述低层像元均包括含微桥桥面、梁结构、支撑及电连接孔在内的微桥谐振腔结构,且高层像元的微桥桥面的投影面与低层像元的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙的投影面重叠。
进一步,每个所述低层像元的投影面与对应的上层左右相邻两行及两列 的四个高层像元的投影面均部分重叠。
进一步,每个所述低层像元的投影面中心点与对应的上层左右相邻两行及两列的四个高层像元的投影面组成的整体图像的中心点位于同一直线上。
进一步,在带读取电路的所述衬底上设置有两层阵列排布的像元集合,第一层设置有2*2个像元,分别标记为A1、A2、A3、A4,第二层设置有3*3个像元,分别标记为B1、B2…B9,则第一层像元集合对应的阵列被扩充后形成的阵列为4*4阵列,即(A1+B1)/4、(A1+B2)/4、(A2+B2)/4、(A2+B3)/4;(A1+B4)/4、(A1+B5)/4、(A2+B5)/4、(A2+B6)/4;(A3+B4)/4、(A3+B5)/4、(A4+B5)/4、(A4+B6)/4;(A3+B7)/4、(A3+B8)/4、(A4+B8)/4、(A4+B9)/4,其中,(A1+B1)/4表示像元A1与像元B1重叠的四分之一投影面,依次类推,直至(A4+B9)/4。
进一步,上下相邻两层的所述像元集合的高层像元集合全部覆盖低层像元集合,高层像元集合包括周边非重叠区和中心重叠区,处于周边非重叠区的高层像元通过支撑及电连接孔与衬底连接,处于中心重叠区的高层像元通过支撑及电连接孔与对应的低层像元的电极层连接。
进一步,每层所述像元集合的像元由下至上分别设置有敏感层、电极层、释放保护层和吸收层,所述电极层位于敏感层之上,并覆盖于每个像元表面,且具有图形;其中,
处于中心重叠区的高层像元,由电极图形定义的敏感层电阻通过两个支撑及电连接孔分别连接左右相邻的两个低层像元的电极层,
处于周边非重叠区的高层像元,其中一个支撑及电连接孔的深度大于另一个,由电极图形定义的敏感层电阻通过深度大的支撑及电连接孔与衬底电连接,并通过深度小的支撑及电连接孔连接上下相邻的低层像元的电极层。
进一步,与位于所述中心重叠区的高层像元的两个支撑及电连接孔分别连接位于所述高层像元对角位置的正下方的两个低层像元。
一种基于上文所述的新型多层红外探测器的制备方法,包括以下步骤:
步骤一、在带有读取电路的衬底上,制作M*N阵列排布的多个微桥谐振腔结构,形成第一层像元集合;
步骤二、在所述第一层像元集合上继续制作(M+1)*(N+1)阵列排布 的多个微桥谐振腔结构,形成第二层像元集合,所述第二层像元集合全覆盖第一层像元集合完且两两对应错开排布,在所述第二层像元集合中,每个像元的微桥谐振腔结构均包括设置在对角位置的两个支撑及电连接孔,
对于处于中心重叠区的第二层像元,其两个支撑及电连接孔的底部分别与其正下方第一层像元集合的两个左右相邻像元的中心附近位置接触,且与所述两个左右相邻像元的微桥谐振腔结构的电极层相连;
对于处于周边非重叠区的第二层像元,其中一个支撑及电连接孔的深度大于另一个,深度小的支撑及电连接孔的底部与其正下方第一层像元集合的对应像元的中心附近位置接触,且与所述对应像元的微桥谐振腔结构的电极层连接;深度大的支撑及电连接孔的底部与衬底连接;
步骤三、重复步骤一至二,上下相邻两层的像元集合的高层阵列排布的行数和列数相对于低层阵列排布的行数和列数多一行和/或多一列,直至完成所有层像元集合的制作。
本发明有益的技术效果在于:
1、借助错开排布,高层像元的微桥桥面覆盖低层像元的微桥的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙,增加红外线的吸收面积,提高红外吸收效率,并在成本可控的前提下提升产品性能。
2、每个低层像元的投影面与对应的上层左右相邻的两行及两列的四个高层像元的四分之一投影面均重叠,且其中心与四个高层像元的四分之一投影面的中心处于同一直线上,从而分别自四个高层像元的中心照射一束红外线,各所述红外线被分成四束并入射进入正下方的低层像元,变相完成低层像元集合的阵列扩充,提高红外成像的精度,大幅度提升产品的性能,极具应用前景。
附图说明
图1为本发明的两层阵列排布的像元集合的中心重叠区的局部剖面图与立体结构的对照示意图;
图2为本发明的两层阵列排布的像元集合的周边非重叠区的局部剖面图;
图3为本发明的两层阵列排布的像元集合的俯视示意图;
图4为本发明的第一层2*2像元集合和第二层3*3像元集合错开排布时的俯视示意图。
发明内容
下面结合附图及较佳实施例详细说明本发明的具体实施方式。
本发明提供了一种新型多层红外探测器,包括设置在带读取电路的衬底上的多层阵列排布的像元集合,如图1和2所示,上下相邻两层的像元集合的高层像元与低层像元之间相互错开排布,且高层像元的微桥桥面的投影面与低层像元的微桥的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙的投影面重叠。这样,借助错开排布,高层像元的微桥桥面覆盖低层像元的微桥的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙,增加红外线的吸收面积,提高红外吸收效率,并在成本可控的前提下提升产品性能。
具体地,每个低层像元的投影面与对应的上层左右相邻两行及两列对应的四个高层像元的投影面均部分重叠,这样,所述四个高层像元的部分投影面组合覆盖了大部分低层像元,且对应的左右相邻低层像元之间的间隙、支撑及电连接孔,甚至是梁结构都落在了低层像元的微桥表面,从而增加了对红外线的吸收面积,提高红外吸收效率,或,所述四个高层像元的四分之一投影面均与低层像元重叠,四个高层像元的四分之一投影面的中心点与低层像元的中心点位于同一直线上,相当于每个低层像元都被均分成四份,这样,可以认为一束红外线自一个高层像元的中心照射,并被分成四束分别入射至正下方的四个左右相邻的低层像元,从而变相完成对低层像元集合的阵列扩充,提高红外成像的精度,大幅度提升产品的性能,极具应用前景。
例如,在带读取电路的衬底上设置有两层阵列排布的像元集合,如图3和4所示,第一层(低层)设置有2*2个像元,分别标记为A1、A2、A3、A4,第二层(高层)设置有3*3个像元,分别标记为B1、B2…B9,则第一层像元集合对应的阵列被扩充后形成的阵列为4*4阵列,即(B1+A1)/4、(A1+B2)/4、(A2+B2)/4、(A2+B3)/4;(A1+B4)/4、(A1+B5)/4、(A2+B5)/4、(A2+B6)/4;(A3+B4)/4、(A3+B5)/4、(A4+B5)/4、(A4+B6)/4;(A3+B7)/4、(A3+B8)/4、(A4+B8)/4、(A4+B9)/4, 其中,(A1+B1)/4表示像元A1与像元B1重叠的四分之一投影面,(A1+B2)/4表示像元A1与像元B2重叠的四分之一投影面,(A2+B2)/4表示像元A2与像元B2重叠的四分之一投影面,依次类推,直至(A4+B9)/4。
在进行多层像元集合制作时,上下相邻两层的像元集合的高层像元集合可将低层像元集合全部覆盖,且两两对应错开排布,如果将高层像元集合分成周边非重叠区和中心重叠区,如图1-4所示,那么处于中心重叠区的高层像元通过支撑及电连接孔与对应的低层像元的电极层连接,最终实现与衬底电连接;而处于周边非重叠区的部分高层像元处于悬空状态,可以用一个深度较大的支撑及电连接孔直接与衬底电连接,这样,在实现电连接的同时,也可以给周边的高层像元提供支撑,当然也可以通过假结构实现支撑;而处于周边非重叠区的没有悬空的部分高层像元,则可以通过与中心重叠区的高层像元相同的支撑及电连接孔连接到对应的低层像元的电极层连接,最终实现与衬底电连接。
假设入射光信号经过光学成像镜头汇聚成像后,先穿过第一层,然后透射到第二层,相同位置即位于第二层的同一投影面,入射到第一层的信号与入射到第二层的信号的强度一样。如图4所示,实线所圈定的中间区域为中心重叠区,也就是经算法扩充的新的4*4阵列,其它区域为周边非重叠区,此时,处于左上角的新扩充的像素为像素A1的左上角1/4面积,其与像素B1的右下角1/4面积交叠,输入的光信号照射了像素A1的1/4面积,然后投射照射到像素B1的1/4面积,假设每个像素对应面积内的信号强度均匀相等,新扩充的像素对应的信号强度为像素A1/4与像素B1/4对应的信号强度之和。
依此类推:
扩充后第一行的四个像素的信号强度为:
像素A1/4与像素B1/4的信号强度之和、像素A1/4与像素B2/4的信号强度之和、像素A2/4与像素B2/4的信号强度之和、像素A2/4与像素B3/4的信号强度之和;
第二行像素的四个像素的信号强度为:
像素A1/4与像素B4/4的信号强度之和、像素A1/4与像素B5/4的信号强度之和、像素A2/4与像素B5/4的信号强度之和、像素A2/4与像素B6/4 的信号强度之和;
第三行像素的四个像素的信号强度为:
像素A3/4与像素B4/4的信号强度之和、像素A3/4与像素B5/4的信号强度之和、像素A4/4与像素B5/4的信号强度之和、像素A4/4与像素B6/4的信号强度之和;
第四行像素的四个像素的信号强度为:
像素A3/4与像素B7/4的信号强度之和、像素A3/4与像素B8/4的信号强度之和、像素A4/4与像素B8/4的信号强度之和、像素A4/4与像素B9/4的信号强度之和。
假设每层像元集合的像元由下至上分别设置有牺牲层、敏感层、电极层、释放保护层和吸收层,其电极层位于敏感层之上,覆盖于每个像元的微桥表面,且具有图形,这样,处于中心重叠区的高层像元,由电极图形定义的敏感层电阻通过两个支撑及电连接孔分别连接到左右相邻的两个低层像元的电极层,直至电连接到衬底,可以将这两个支撑及电连接孔设置在高层像元的对角位置,那么与之连接的两个低层像元则位于高层像元对角位置的正下方,可以是左下、右上或者左上、右下,如图3所示,借助错开排布,高层像元的微桥桥面覆盖低层像元的微桥的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙,从而简化结构并保障整个结构的稳定性,而且,实现良好的电连接效果。
而处于周边非重叠区的高层像元,其中一个支撑及电连接孔的深度大于另一个,由电极图形定义的敏感层电阻通过深度大的支撑及电连接孔与衬底电连接,通过深度小的支撑及电连接孔连接到左右相邻的低层像元的电极层,直至电连接到衬底,同样,也可以将这两个深度不同的支撑及电连接孔设置在高层像元的对角位置,与处于中心重叠区域的高层像元一致,便于进行统一制作,方便工艺实现,降低工艺的复杂度。
本发明还提供了一种基于上文所述的新型红外探测器的制备方法,如图1和2所示,具体包括以下步骤:
步骤一、在带有读取电路的衬底上,利用沉积及刻蚀工艺制作M*N阵列排布的多个微桥谐振腔结构,形成第一层像元集合;
步骤二、在第一层像元集合上继续制作(M+1)*(N+1)阵列排布的多 个微桥谐振腔结构,形成第二层像元集合,该第二层像元集合完全覆盖第一层像元集合且两两对应错开排布,在第二层像元集合中,每个像元的微桥谐振腔结构均包括设置在对角位置的两个支撑及电连接孔。
对于处于中心重叠区的第二层像元,其两个支撑及电连接孔的底部分别与其正下方第一层像元集合的两个左右相邻低层像元的中心附近位置接触,且与第一层像元集合的两个左右相邻低层像元的微桥谐振腔结构的电极层相连;
对于处于周边非重叠区的第二层像元,其中一个支撑及电连接孔的深度大于另一个,深度小的支撑及电连接孔的底部与其正下方第一层像元集合的对应的低层像元的中心附近位置接触,且与第一层像元集合的对应的低层像元的微桥谐振腔结构的电极层相连;深度大的支撑及电连接孔的底部与衬底连接;
步骤三、重复步骤一至二,上下相邻两层的像元集合的高层阵列排布的行数和列数相对于低层阵列排布的行数和列数多一行和/或多一列,直至完成所有层像元集合的制作,形成最终产品。
以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。

Claims (8)

  1. 一种新型多层红外探测器,其特征在于:包括设置在带读取电路的衬底上的多层阵列排布的像元集合,上下相邻两层的像元集合的对应的高层像元与低层像元之间相互错开排布,所述高层像元与所述低层像元均包括含微桥桥面、梁结构、支撑及电连接孔在内的微桥谐振腔结构,且高层像元的微桥桥面的投影面与低层像元的梁结构、支撑及电连接孔、左右相邻低层像元之间的间隙的投影面重叠。
  2. 根据权利要求1所述的新型多层红外探测器,其特征在于:每个所述低层像元的投影面与对应的上层左右相邻两行及两列的四个高层像元的投影面均部分重叠。
  3. 根据权利要求2所述的新型多层红外探测器,其特征在于:每个所述低层像元的投影面中心点与对应的上层左右相邻两行及两列的四个高层像元的投影面组成的整体图像的中心点位于同一直线上。
  4. 根据权利要求3所述的新型多层红外探测器,其特征在于:在带读取电路的所述衬底上设置有两层阵列排布的像元集合,第一层设置有2*2个像元,分别标记为A1、A2、A3、A4,第二层设置有3*3个像元,分别标记为B1、B2…B9,则第一层像元集合对应的阵列被扩充后形成的阵列为4*4阵列,即(A1+B1)/4、(A1+B2)/4、(A2+B2)/4、(A2+B3)/4;(A1+B4)/4、(A1+B5)/4、(A2+B5)/4、(A2+B6)/4;(A3+B4)/4、(A3+B5)/4、(A4+B5)/4、(A4+B6)/4;(A3+B7)/4、(A3+B8)/4、(A4+B8)/4、(A4+B9)/4,其中,(A1+B1)/4表示像元A1与像元B1重叠的四分之一投影面,依次类推,直至(A4+B9)/4。
  5. 根据权利要求3所述的新型多层红外探测器,其特征在于:上下相邻两层的所述像元集合的高层像元集合全部覆盖低层像元集合,高层像元集合包括周边非重叠区和中心重叠区,处于周边非重叠区的高层像元通过支撑及电连接孔与衬底连接,处于中心重叠区的高层像元通过支撑及电连接孔与 对应的低层像元的电极层连接。
  6. 根据权利要求5所述的新型多层红外探测器,其特征在于:每层所述像元集合的像元由下至上分别设置有敏感层、电极层、释放保护层和吸收层,所述电极层位于敏感层之上,并覆盖每个像元表面,且具有图形;其中,
    处于中心重叠区的高层像元,由电极图形定义的敏感层通过两个支撑及电连接孔分别连接左右相邻的两个低层像元的电极层,
    处于周边非重叠区的高层像元,其中一个支撑及电连接孔的深度大于另一个,由电极图形定义的敏感层通过深度大的支撑及电连接孔与衬底电连接,并通过深度小的支撑及电连接孔连接上下相邻的低层像元的电极层。
  7. 根据权利要求6所述的新型多层红外探测器,其特征在于:位于所述中心重叠区的高层像元的两个支撑及电连接孔分别连接位于所述高层像元对角位置的正下方的两个低层像元。
  8. 一种如权利要求1所述的新型多层红外探测器的制备方法,其特征在于包括以下步骤:
    步骤一、在带有读取电路的衬底上,制作M*N阵列排布的多个微桥谐振腔结构,形成第一层像元集合;
    步骤二、在所述第一层像元集合上继续制作(M+1)*(N+1)阵列排布的多个微桥谐振腔结构,形成第二层像元集合,所述第二层像元集合完全覆盖第一层像元集合且两两对应错开排布,在所述第二层像元集合中,每个像元的微桥谐振腔结构均包括设置在对角位置的两个支撑及电连接孔,
    对于处于中心重叠区的第二层像元,其两个支撑及电连接孔的底部分别与其正下方第一层像元集合的两个左右相邻像元的中心附近位置接触,且与所述两个左右相邻像元的微桥谐振腔结构的电极层相连;
    对于处于周边非重叠区的第二层像元,其中一个支撑及电连接孔的深度大于另一个,深度小的支撑及电连接孔的底部与其正下方第一层像元集合的 对应像元的中心附近位置接触,且与所述对应像元的微桥谐振腔结构的电极层连接;深度大的支撑及电连接孔的底部与衬底连接;
    步骤三、重复步骤一至二,上下相邻两层的像元集合的高层阵列排布的行数和列数相对于低层阵列排布的行数和列数多一行和/或多一列,直至完成所有层像元集合的制作。
PCT/CN2021/134561 2020-12-11 2021-11-30 一种新型多层红外探测器及制备方法 WO2022121737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011464304.5A CN112563292A (zh) 2020-12-11 2020-12-11 一种新型多层红外探测器及制备方法
CN202011464304.5 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022121737A1 true WO2022121737A1 (zh) 2022-06-16

Family

ID=75063949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134561 WO2022121737A1 (zh) 2020-12-11 2021-11-30 一种新型多层红外探测器及制备方法

Country Status (2)

Country Link
CN (1) CN112563292A (zh)
WO (1) WO2022121737A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563292A (zh) * 2020-12-11 2021-03-26 上海集成电路研发中心有限公司 一种新型多层红外探测器及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445215A (zh) * 2008-10-16 2009-06-03 上海集成电路研发中心有限公司 红外探测器及其制造方法
CN102169919A (zh) * 2011-03-17 2011-08-31 上海集成电路研发中心有限公司 探测器及其制造方法
WO2012029974A1 (ja) * 2010-09-03 2012-03-08 日本電気株式会社 赤外線検知センサおよび電子機器
CN103759838A (zh) * 2014-01-13 2014-04-30 浙江大立科技股份有限公司 微桥结构红外探测器及其制造方法
CN103776546A (zh) * 2014-01-21 2014-05-07 武汉高芯科技有限公司 双层结构的非制冷红外焦平面阵列探测器
CN112563292A (zh) * 2020-12-11 2021-03-26 上海集成电路研发中心有限公司 一种新型多层红外探测器及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244357B (zh) * 2015-08-31 2018-06-26 上海集成电路研发中心有限公司 可见光红外混合成像探测器像元结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445215A (zh) * 2008-10-16 2009-06-03 上海集成电路研发中心有限公司 红外探测器及其制造方法
WO2012029974A1 (ja) * 2010-09-03 2012-03-08 日本電気株式会社 赤外線検知センサおよび電子機器
CN102169919A (zh) * 2011-03-17 2011-08-31 上海集成电路研发中心有限公司 探测器及其制造方法
CN103759838A (zh) * 2014-01-13 2014-04-30 浙江大立科技股份有限公司 微桥结构红外探测器及其制造方法
CN103776546A (zh) * 2014-01-21 2014-05-07 武汉高芯科技有限公司 双层结构的非制冷红外焦平面阵列探测器
CN112563292A (zh) * 2020-12-11 2021-03-26 上海集成电路研发中心有限公司 一种新型多层红外探测器及制备方法

Also Published As

Publication number Publication date
CN112563292A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022121737A1 (zh) 一种新型多层红外探测器及制备方法
JP6758053B2 (ja) 向上した機械的強度を有する封入構造を有する放射検出装置
US20050178967A1 (en) Thermal infrared sensor device and thermal infrared sensor array
CN103759838A (zh) 微桥结构红外探测器及其制造方法
CN105565249B (zh) 一种微辐射探测器的微桥结构及其阵列
JP6123397B2 (ja) 撮像装置
WO2020125324A1 (zh) 一种具有高效能谐振腔的红外探测器及其制备方法
CN107478342A (zh) 一种钽酸锂窄带探测器及其制备方法
JPH056353B2 (zh)
JP5737669B2 (ja) 超伝導トンネル接合検出器
CN114335203B (zh) 像元结构、红外探测器以及制备方法
US8232524B2 (en) Highly isolated thermal detector
JP2841037B2 (ja) Ccd固体撮像素子の製造方法
CN114050167B (zh) 面向医疗领域的半导体硅基的混合成像芯片及其制备方法
JPH05243543A (ja) 固体撮像装置
CN110361096B (zh) 一种高填充因子的红外探测器结构
CN114050168B (zh) 面向医疗成像的半导体硅基的混合成像芯片及制备方法
JP2806972B2 (ja) 熱画像作成装置
CN106449852A (zh) 悬挂式红外探测器像元结构及其制备方法
CN117012708B (zh) 一种铟柱的制备方法及红外探测器阵列互连电路
CN113422211B (zh) 一种带双层耦合介质环周期阵列的太赫兹石墨烯吸收器
CN113654664B (zh) 一种光谱分离与全透复合的超像素红外探测器
CN107271042A (zh) 一种探测器串音测试装置、其制作方法及串音测试方法
CN114001832B (zh) 一种非制冷红外偏振探测像元结构、芯片及探测器
JPH0548980A (ja) 固体撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902444

Country of ref document: EP

Kind code of ref document: A1