WO2022118876A1 - Acidic plating system and anode cell - Google Patents

Acidic plating system and anode cell Download PDF

Info

Publication number
WO2022118876A1
WO2022118876A1 PCT/JP2021/044069 JP2021044069W WO2022118876A1 WO 2022118876 A1 WO2022118876 A1 WO 2022118876A1 JP 2021044069 W JP2021044069 W JP 2021044069W WO 2022118876 A1 WO2022118876 A1 WO 2022118876A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
aqueous solution
alkaline aqueous
acidic plating
cation exchange
Prior art date
Application number
PCT/JP2021/044069
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 田中
慶 茂手木
学 井上
Original Assignee
ディップソール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディップソール株式会社 filed Critical ディップソール株式会社
Publication of WO2022118876A1 publication Critical patent/WO2022118876A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Definitions

  • the present invention relates to an acidic plating system and an anode cell, and particularly to an acidic plating system and an anode cell using a cation exchange membrane.
  • Plating with zinc using an acid plating bath is widely used as a surface treatment for iron plates, bolts, nuts, etc. Since the current efficiency of the soluble anode that supplies metal ions is higher than the current efficiency of the cathode where metal is deposited, the metal ion concentration in the acidic plating bath may increase excessively, which may adversely affect the plating performance. be. Diluting excess metal ions is not preferable because it increases the cost of waste liquid treatment and increases the burden on the environment.
  • an object of the present invention is to provide an acidic plating system in which chlorine gas is less likely to be generated even if chloride ions are mixed in the anode chamber.
  • the present invention provides the acidic plating system, the plating method, and the anode cell shown below.
  • An acidic plating system including an acidic plating bath containing a cathode and a soluble anode which are objects to be plated, a cation exchange membrane, and an alkaline aqueous solution containing an insoluble anode.
  • An acidic plating system in which the acidic plating bath is in contact with the alkaline aqueous solution via the cation exchange membrane, and the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less.
  • the soluble anode contains one or more metals selected from the group consisting of zinc, nickel, manganese, tin, copper and cobalt.
  • a plating method including a step of energizing the acidic plating bath and applying a film to the object to be plated. [10] The plating method according to the above [9], wherein the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath.
  • An anode cell including a cation exchange membrane and an alkaline aqueous solution containing an insoluble anode, wherein the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less, and the anode is used as an anode in an acidic plating bath.
  • Anode cell which is a thing.
  • an alkaline aqueous solution as the anode solution, it is possible to suppress the generation of chlorine gas when chloride ions are mixed in the anode chamber.
  • the change of voltage according to the amount of energization is shown.
  • the potassium hydroxide concentration of the anode solution was 75 g / L ( ⁇ ), 150 g / L ( ⁇ ), or 250 g / L ( ⁇ ).
  • the acidic plating system of the present invention includes an acidic plating bath containing a cathode and a soluble anode which are objects to be plated, a cation exchange film, and an alkaline aqueous solution containing an insoluble anode, and the acidic plating bath is the positive. It is in contact with the alkaline aqueous solution via the ion exchange film.
  • the cathode chamber containing the acidic plating bath and the anode chamber containing the alkaline aqueous solution are separated from each other by the cation exchange membrane.
  • the acidic plating system of the present invention can be applied to various objects to be plated without particular limitation, and the object to be plated is, for example, various metals such as iron, nickel, copper, zinc and aluminum. And articles containing or formed from these alloys.
  • the shape of the object to be plated is not particularly limited, and examples thereof include plate-shaped objects such as steel plates and plated steel plates, and various shaped objects such as rectangular parallelepipeds, cylinders, cylinders, and spherical objects.
  • the shape products include fastener parts such as bolts, nuts and washers, pipe parts such as fuel pipes, cast iron parts such as brake calipers and common rails, as well as connectors, plugs, housings, caps and seatbelt anchors.
  • fastener parts such as bolts, nuts and washers
  • pipe parts such as fuel pipes
  • cast iron parts such as brake calipers and common rails
  • connectors, plugs, housings, caps and seatbelt anchors Various things can be mentioned.
  • the term "soluble anode” refers to an anode that supplies metal ions for forming a plating film on the object to be plated into the plating bath when energized in the plating bath. ..
  • the soluble anode can be appropriately selected depending on the type of plating, and those usually used in the art can be adopted without particular limitation.
  • the soluble anode can be zinc or nickel.
  • the shape of the soluble anode is not particularly limited, but may be, for example, plate-shaped, rod-shaped, ball-shaped, chip-shaped, or the like.
  • the acidic plating bath is an electrolytic cell containing a plating solution containing metal ions appropriately selected according to the type of plating.
  • metal ion those usually used in the art can be adopted without particular limitation, and for example, zinc ion, nickel ion, manganese ion, tin ion, copper ion, and cobalt ion can be used. There may be.
  • the acidic plating bath contains zinc ions.
  • the ion source that brings about the zinc ion those usually used in the art can be adopted without particular limitation, but a water-soluble zinc salt is preferable, for example, zinc chloride, zinc sulfate, or oxidation.
  • the zinc ion source may be used alone or in combination of two or more.
  • the concentration of the zinc ion in the acidic plating bath is not particularly limited, but may be, for example, about 15 to about 62 g / L, preferably about 19 to about 62 g / L, and more preferably. Is about 29 to about 53 g / L.
  • the acidic plating bath contains other metal ions in addition to zinc ions.
  • the other metal ions are not particularly limited as long as they can form a zinc alloy film, but may be at least one selected from the group consisting of, for example, nickel ions, iron ions, cobalt ions, tin ions, manganese ions and the like. good.
  • the ion source that brings about the other metal ions is not particularly limited, but a water-soluble salt is preferable, and for example, nickel chloride (II), nickel sulfate (II), iron (II) chloride, iron (III) chloride, iron sulfate.
  • the other metal ion sources may be used alone or in combination of two or more.
  • the total concentration of the other metal ions in the acidic plating bath is not particularly limited, but may be, for example, about 0.2 to about 40 g / L, preferably about 17 to about 37 g / L. It is also good, more preferably about 18 to about 30 g / L.
  • the plating solution of the acidic plating bath may further contain various additives used for acidic plating.
  • additives those usually used in the art can be adopted without particular limitation, and for example, a primary brightener, a secondary brightener, a metal complexing agent, a conductive salt, or a conductive salt can be used. , Buffering agent, etc. may be used.
  • the primary brightener is not particularly limited, but is at least one selected from the group consisting of, for example, an anionic surfactant, a nonionic surfactant, polyethyleneimine, and an aromatic carboxylic acid or a derivative thereof or a salt thereof. It may contain seeds.
  • an anionic surfactant include a naphthol-based anionic surfactant, a cumylphenol-based anionic surfactant, a salt of an aromatic sulfonic acid aldehyde condensate, and the like.
  • the naphthol-based anionic surfactant or cumylphenol-based anionic surfactant has a total of 3 to 65 mol of ethylene oxide (EO) and / or propylene oxide (PO) per mol of naphthol or cumylphenol.
  • ⁇ -naphthol is particularly preferable.
  • Examples of the salt in the naphthol-based anionic surfactant or the cumylphenol-based anionic surfactant include potassium salts, sodium salts, amine salts and the like.
  • Specific examples thereof include ⁇ [(3-sulfopropoxy) -polyethoxy-polyisopropoxy] -betanaphthyl ether ⁇ potassium salt, polyoxyethylene p-cumylphenyl ether sulfate sodium salt, and the like.
  • Examples of the salt of the aromatic sulfonic acid aldehyde condensate include sodium salts of the naphthalene sulfonic acid formalin condensate.
  • nonionic surfactant examples include a naphthol-based nonionic surfactant, a cumylphenol-based nonionic surfactant, a nonylphenol-based nonionic surfactant, and the like.
  • the naphthol-based nonionic surfactant examples include ⁇ -naphthol ethoxylate
  • examples of the cumylphenol-based nonylphenol surfactant include polyoxyethylene p-cumylphenyl ether.
  • nonylphenol-based nonionic surfactant examples include nonylphenol ethoxylate and the like.
  • the polyethyleneimine may have a number average molecular weight of about 300 to about 70,000, preferably a number average molecular weight of about 300 to about 10,000, and more preferably a number average molecular weight. It is about 300 to about 1,800.
  • the aromatic carboxylic acid and its derivative and a salt thereof are preferably an aromatic carboxylic acid having 7 to 15 carbon atoms, a derivative thereof and a salt thereof. Specific examples thereof include benzoic acid, sodium benzoate, terephthalic acid, sodium terephthalate, ethyl benzoate and the like.
  • the anionic surfactant, the nonionic surfactant, the polyethyleneimine, and the aromatic carboxylic acid or its derivative or a salt thereof may be used alone or in combination of two or more.
  • the concentration of the primary brightener in the acidic plating bath is not particularly limited, but for example, the anionic surfactant may be about 0.1 to about 10 g / L, preferably about. It is 0.2 to about 5 g / L, and the nonionic surfactant may be about 0.1 to about 10 g / L, preferably about 0.2 to about 5 g / L, and the polyethylene.
  • the imine may be about 0.1 to about 10 g / L, preferably about 0.2 to about 5 g / L, and the aromatic carboxylic acid or a derivative thereof or a salt thereof is about 0. It may be .5 to about 5 g / L, preferably about 1 to about 3 g / L.
  • the secondary brightener is not particularly limited, but may contain at least one selected from the group consisting of, for example, aromatic aldehydes and aromatic ketones.
  • aromatic aldehyde examples include o-carboxybenzaldehyde, benzaldehyde, o-chlorbenzaldehyde, p-tolvaldehyde, anisaldehyde, p-dimethylaminobenzaldehyde, and terephthalaldehyde.
  • the aromatic aldehyde is an aromatic aldehyde having 7 to 10 carbon atoms.
  • the aromatic ketone examples include benzalacetone, benzophenone, acetophenone, and terephthaloylbenzyl chloride. Particularly preferred compounds are benzalacetone and o-chlorbenzaldehyde.
  • the aromatic ketone is an aromatic ketone having 8 to 14 carbon atoms.
  • the aromatic aldehyde and / or aromatic ketone may be used alone or in combination of two or more.
  • the concentration of the secondary brightener in the acidic plating bath is not particularly limited, but may be, for example, about 0.1 to about 50 mg / L, preferably about 0.1 to about 20 mg / L. It may be more preferably about 0.3 to about 10 mg / L.
  • the metal complexing agent is not particularly limited, but may contain, for example, an amine-based chelating agent.
  • the amine-based chelating agent include alkylene amine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, ethylene oxide adducts and propylene oxide adducts of the alkyleneamine; N- (2-aminoethyl).
  • Amino alcohols such as ethanolamine, 2-hydroxyethylaminopropylamine; N-2 (-hydroxyethyl) -N, N', N'-triethylethylenediamine, N, N'-di (2-hydroxyethyl) -N, Poly (hydroxyalkyl) such as N'-diethylethylenediamine, N, N, N', N'-tetrakis (2-hydroxyethyl) propylenediamine, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine.
  • the amine-based chelating agent is an alkylene amine compound having 1 to 12 carbon atoms (preferably 2 to 10 carbon atoms) and 2 to 7 nitrogen atoms (preferably 2 to 6 nitrogen atoms), and adducting ethylene oxide thereof. A substance or a propylene oxide adduct.
  • the metal complexing agent may be used alone or in combination of two or more.
  • the concentration of the metal complexing agent in the acidic plating bath is not particularly limited, but may be, for example, about 0.5 to about 50 g / L, preferably about 1 to about 5 g / L. ..
  • the conductive salt is not particularly limited, but may contain, for example, chloride, sulfate, carbonate and the like, and preferably at least one chloride selected from potassium chloride, ammonium chloride, sodium chloride and the like. It may contain an object. More preferably, the conductive salt is potassium chloride and / or ammonium chloride.
  • the concentration of the conductive salt in the acidic plating bath is not particularly limited, but for example, when the conductive salt is potassium chloride alone, the concentration may be about 150 to about 250 g / L. When the conductive salt is ammonium chloride alone, its concentration may be about 150 to about 300 g / L.
  • the conductive salt is a combination of potassium chloride and ammonium chloride, for example, it may be about 70 to about 200 g / L for potassium chloride and about 15 to about 150 g / L for ammonium chloride.
  • the buffer is not particularly limited, but may contain, for example, ammonia or ammonium salt, borate or borate, and / or acetic acid or acetate.
  • the concentration of the buffering agent in the acidic plating bath is not particularly limited, but for example, the total concentration of the ammonia and / or ammonium salt may be about 15 to about 300 g / L, and the borate. And / or the total concentration of borate may be from about 15 to about 90 g / L, and the total concentration of the acetic acid and / or acetate may be from about 5 to about 140 g / L, preferably about. It is 7 to about 140 g / L, more preferably about 8 to about 120 g / L.
  • the buffer may be used alone or in combination of two or more. Further, even when ammonium chloride is used as the conductive salt, the buffering agent can be appropriately used.
  • Electroplating is used as a plating method using the acidic plating bath of the present invention. Electroplating can be performed by direct current or pulse current.
  • the plating method can be appropriately carried out under the conditions usually adopted in the art.
  • the bath temperature of the acidic plating bath may be usually in the range of 20 to 50 ° C, preferably in the range of 25 to 50 ° C, and more preferably in the range of 30 to 45 ° C.
  • the pH of the acidic plating bath may be usually in the range of 3.5 to 6.9, preferably in the range of 4.5 to 6.3, and more preferably in the range of 5.2 to 5.8. be.
  • the pH of the plating bath can be easily adjusted by using hydrochloric acid, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of ammonia, an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, acetic acid, an aqueous solution of sodium acetate, an aqueous solution of potassium acetate, or the like.
  • the cathode current density of the acidic plating bath is usually in the range of 0.1 to 15 A / dm 2 , preferably in the range of 0.2 to 10 A / dm 2 , and more preferably in the range of 0.5 to 10 A / dm 2 . It is better to do it under electrolytic conditions. Further, when plating is performed, it is preferable to stir the liquid by air blow or jet jet because the cathode current density can be further increased.
  • the "insoluble anode” described in the present specification refers to an anode that does not easily generate metal ions even when energized in an anode solution.
  • the insoluble anode those usually used in the art can be adopted without particular limitation.
  • the insoluble anode includes iron, nickel, stainless steel, copper, platinum, titanium, carbon, and the like. It may contain one or more selected from the group consisting of ceramics, or may be plated on various materials (for example, an iron plate having plating containing nickel).
  • the shape of the insoluble anode is not particularly limited, but may be, for example, a plate shape or a rod shape.
  • the insoluble anode is contained in the alkaline aqueous solution, metals such as iron and nickel that dissolve in the acidic solution can also be adopted, such as platinum. Since it is not necessary to use expensive metal, plating can be performed economically.
  • the size and number of the soluble anode and the insoluble anode are not particularly limited as long as a desired plating film can be formed on the object to be plated.
  • the cation exchange membrane is a membrane that selectively permeates cations, but when used in a general acidic plating bath, it can suppress the permeation of chloride ions but cannot completely prevent it. Have difficulty. In the acidic plating system of the present invention, even if chloride ions are mixed in the anode chamber, the generation of chlorine gas in the anode chamber can be suppressed.
  • the cation exchange membrane those usually used in the art can be adopted without particular limitation.
  • the cation exchange membrane may be a fluorine-based cation exchange membrane or a hydrocarbon-based membrane. It may be a cation exchange membrane, and a fluorine-based cation exchange membrane is particularly preferable because it has high chemical resistance.
  • the cation exchange membrane has chemical resistance (acid resistance or alkali resistance), and particularly acid resistance and alkali resistance.
  • the cation exchange film has a strong acid group such as a sulfo group and / or a weak acid group such as a carboxy group as an ion exchange group, for example, a fluorine-based cation exchange film having a sulfo group (fluorine-based sulfonic acid cation). It may be an ion exchange film).
  • the alkaline aqueous solution is used as an anode solution, and the concentration of the alkaline substance in the alkaline aqueous solution is about 4 M or less.
  • the concentration of the alkaline substance in the alkaline aqueous solution may be about 3.5 M or less, about 3 M or less or about 2.5 M or less, about 0.5 M or more, about 1 M or more or about 1.5 M. It may be the above.
  • the concentration of the alkaline substance is in such a range, the generation of chlorine gas in the anode chamber can be suppressed more efficiently without causing an increase in voltage.
  • alkaline substance those usually used in the art can be adopted without particular limitation, and for example, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, and quaternary ammonium hydroxide can be used.
  • a substance each alkyl group of the substituent may independently contain an alkyl group having 1 to 6 carbon atoms
  • aqueous ammonia may be contained.
  • chloride ions are less likely to be oxidized to chlorine gas in an alkaline solution due to the high overvoltage of chlorine gas generation.
  • the amount of the acidic plating bath and the amount of the alkaline aqueous solution are not particularly limited as long as a desired plating film can be formed on the object to be plated.
  • the amount of the acidic plating bath and the amount of the alkaline aqueous solution may be about 10: 1 to about 60: 1 in volume ratio, or may be about 20: 1 to about 50: 1.
  • the acidic plating system of the present invention may be configured, for example, by partitioning the electrolytic cell with the cation exchange membrane and providing a cathode chamber containing the acidic plating bath and an anode chamber containing the alkaline aqueous solution.
  • the acidic plating system is configured by installing an anode cell (diaphragm anode) including the cation exchange membrane and an alkaline aqueous solution containing the insoluble anode, side by side with the soluble anode contained in the acidic plating bath. You may.
  • the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in the anode cell separable from the acidic plating bath.
  • the anode cell those usually used in the art can be adopted without particular limitation, and for example, a columnar or rectangular parallelepiped anode cell may be used.
  • the anode cell may have the cation exchange membrane on a part of the side surface, or may have it on the entire side surface.
  • the acidic plating system of the present invention may further include a reserve tank for replenishing the alkaline aqueous solution. Since the cations in the alkaline aqueous solution move from the anode chamber side to the cathode chamber side through the cation exchange membrane during energization, if the spare tank is installed, it is effective on the anode chamber side. An alkaline aqueous solution can be replenished.
  • the present invention also relates to a plating method, wherein the plating method comprises an acidic plating bath containing a cathode and a soluble anode as an object to be plated, a cation exchange film, and an alkaline aqueous solution containing an insoluble anode.
  • the acidic plating bath is in contact with the alkaline aqueous solution via the cation exchange film, and the concentration of the alkaline substance in the alkaline aqueous solution is about 4 M or less. It includes a step of energizing the acidic plating bath and applying a film to the object to be plated.
  • the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath.
  • the invention also relates to an anode cell used as an anode in an acidic plating bath, wherein the anode cell comprises a cation exchange membrane and an alkaline aqueous solution containing an insoluble anode.
  • concentration of the alkaline substance in the alkaline aqueous solution is about 4 M or less.
  • Test Example 1 The electrolytic tank is partitioned by a fluorosulfonic acid cation exchange film, while the zinc-nickel alloy plating solution (pH 5.4) having the composition shown in Table 1 below, an iron plate as a cathode, and soluble are in one (cathode chamber). A zinc plate and a nickel plate as an anode are put in one by one, and a 75 g / L (about 1.3 M) potassium hydroxide aqueous solution and a nickel plate as an insoluble anode are put in the other (anode chamber). An acid plating system was constructed.
  • the plating system was configured. Then, in the acidic plating systems of Example 1 and Comparative Example 1, energization was performed under the conditions that the plating bath temperature was 35 ° C. and the cathode current density was 3.0 A / dm 2 .
  • the electrolytic tank is partitioned by a fluorosulfonic acid cation exchange film, and a zinc-nickel alloy plating solution (pH 5.4) having the composition shown in Table 1 and an iron plate as a cathode are placed in one (cathode chamber), and the other (anode) is placed.
  • Room contains potassium hydroxide at a concentration of 50 g / L (about 0.89 M), 100 g / L (about 1.8 M), 175 g / L (about 3.1 M), or 250 g / L (about 4.5 M).
  • An aqueous solution (anode solution) and a nickel plate as an insoluble anode were added.
  • Test Example 3 The same as in Test Example 2 except that the concentration of potassium hydroxide in the anode chamber was 75 g / L (about 1.3 M), 150 g / L (about 2.67 M), or 250 g / L (about 4.5 M).
  • An electrolytic cell was prepared. The current density of the diaphragm was 5.7 A / dm 2 , and the voltage change between the cathode and the insoluble anode was measured.
  • supply appropriately so as to maintain the initial concentrations of IZA-2500A, IZA-2500B, IZA-2500C, and IZA-2500DP, and keep the pH of the zinc-nickel alloy plating solution constant. was replenished with hydrochloric acid.
  • Test Example 4 An electrolytic cell was prepared in the same manner as in Test Example 2 except that a 150 g / L potassium hydroxide aqueous solution (alkaline) or a 10 g / L sulfuric acid aqueous solution (acidic) was placed in the anode chamber and a carbon plate was used as the anode electrode. .. The chlorine gas concentration directly above the anode chamber before, 10 minutes after, and 30 minutes after energization is measured under the condition that the anode current density is 3 A / dm 2 , and the chlorine gas detector tube (No. 8La, Gastech Co., Ltd.) is used. Measured by the company). In the preparation of the anode solution, ion-exchanged water was used to eliminate the influence of residual chlorine. The results are shown in Table 4.

Abstract

The purpose of the present invention is to provide an acidic plating system which is not likely to generate chlorine gas even if chloride ions enter an anode chamber. This acidic plating system comprises: an acidic plating bath containing a cathode, which is an object to be plated, and a soluble anode; a cation exchange membrane; and an alkaline aqueous solution containing an insoluble anode. The acidic plating bath is in contact with the alkaline aqueous solution through the cation exchange membrane, and the concentration of an alkaline substance in the alkaline aqueous solution is at most 4 M.

Description

酸性めっきシステム及びアノードセルAcid plating system and anode cell
 本発明は、酸性めっきシステム及びアノードセルに関しており、特に陽イオン交換膜を使用した酸性めっきシステム及びアノードセルに関している。 The present invention relates to an acidic plating system and an anode cell, and particularly to an acidic plating system and an anode cell using a cation exchange membrane.
 酸性めっき浴を用いた亜鉛などによるめっき処理は、鉄板、ボルト、及びナットなどの表面処理として広く行われている。金属イオンを供給する可溶性陽極の電流効率の方が、金属が析出する陰極の電流効率よりも高いため、当該酸性めっき浴中の金属イオン濃度が過剰に上昇し、めっき性能に悪影響を及ぼすことがある。過剰の金属イオンを希釈すると、廃液処理のコストが生じたり環境への負荷が高くなったりするため好ましくない。また、可溶性陽極及び不溶性陽極を併用し、可溶性陽極に流れる過剰の電流を不溶性陽極に流すことで、酸性めっき浴中の金属イオン濃度の上昇を抑え、それを一定に保とうとすると、当該不溶性陽極において、酸性めっき浴中の添加剤などに由来する塩化物イオンにより塩素ガスが発生したり添加剤などの有機物の酸化分解が起こったりすることがある。特許文献1~3には、このような問題を解決するため、陽イオン交換膜により酸性めっき浴と隔てられた陽極室に酸性陽極液及び不溶性陽極を入れる構成を採用する旨が記載されている。 Plating with zinc using an acid plating bath is widely used as a surface treatment for iron plates, bolts, nuts, etc. Since the current efficiency of the soluble anode that supplies metal ions is higher than the current efficiency of the cathode where metal is deposited, the metal ion concentration in the acidic plating bath may increase excessively, which may adversely affect the plating performance. be. Diluting excess metal ions is not preferable because it increases the cost of waste liquid treatment and increases the burden on the environment. Further, when a soluble anode and an insoluble anode are used in combination and an excessive current flowing through the soluble anode is passed through the insoluble anode to suppress an increase in the metal ion concentration in the acidic plating bath and to keep it constant, the insoluble anode is said to be present. In the above, chloride gas derived from an additive or the like in an acidic plating bath may generate chlorine gas or oxidative decomposition of an organic substance such as an additive may occur. Patent Documents 1 to 3 describe that in order to solve such a problem, a configuration is adopted in which an acidic anode solution and an insoluble anode are placed in an anode chamber separated from an acidic plating bath by a cation exchange membrane. ..
国際公開第2014/147180号International Publication No. 2014/147180 特開2006-322069号公報Japanese Unexamined Patent Publication No. 2006-322069 特開昭56-112500号公報Japanese Unexamined Patent Publication No. 56-112,500
 従来の酸性めっきシステムにおいては、陽イオン交換膜により有機物の不溶性陽極側への移動を遮断することはできたが、塩化物イオンの移動を完全に遮断することはできなかった。酸性陽極液中に塩化物イオンが混入すると、陽極室内の不溶性陽極上で塩素ガスが発生し得る。そこで、本発明は、たとえ陽極室内に塩化物イオンが混入しても塩素ガスが発生しにくい酸性めっきシステムを提供することを目的としている。 In the conventional acidic plating system, the movement of organic substances to the insoluble anode side could be blocked by the cation exchange membrane, but the movement of chloride ions could not be completely blocked. When chloride ions are mixed in the acidic anode solution, chlorine gas may be generated on the insoluble anode in the anode chamber. Therefore, an object of the present invention is to provide an acidic plating system in which chlorine gas is less likely to be generated even if chloride ions are mixed in the anode chamber.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、陽極液にアルカリ性水溶液を用いることで、陽極室内に塩化物イオンが混入したときの塩素ガスの発生を抑えることができることを見出し、本発明を完成させた。すなわち、本発明は、以下に示す酸性めっきシステム、めっき方法、及びアノードセルを提供するものである。
〔1〕被めっき物である陰極及び可溶性陽極を含む酸性めっき浴と、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを備える酸性めっきシステムであって、
 前記酸性めっき浴が、前記陽イオン交換膜を介して前記アルカリ性水溶液と接しており、前記アルカリ性水溶液中のアルカリ性物質の濃度が、4M以下である、酸性めっきシステム。
〔2〕前記アルカリ性水溶液中のアルカリ性物質の濃度が、0.4M以上である、前記〔1〕に記載の酸性めっきシステム。
〔3〕前記可溶性陽極が、亜鉛、ニッケル、マンガン、すず、銅及びコバルトからなる群から選択される1種以上の金属を含む、前記〔1〕又は〔2〕に記載の酸性めっきシステム。
〔4〕前記不溶性陽極が、鉄、ニッケル、ステンレス、カーボン及びセラミックからなる群から選択される1種以上を含む、前記〔1〕~〔3〕のいずれか1項に記載の酸性めっきシステム。
〔5〕前記陽イオン交換膜が、耐酸性かつ耐アルカリ性である、前記〔1〕~〔4〕のいずれか1項に記載の酸性めっきシステム。
〔6〕前記陽イオン交換膜と、前記不溶性陽極を含む前記アルカリ性水溶液とが、前記酸性めっき浴から分離可能なアノードセルに含まれている、前記〔1〕~〔5〕のいずれか1項に記載の酸性めっきシステム。
〔7〕前記酸性めっき浴の量と前記アルカリ性水溶液の量との比が、体積比で10:1~60:1である、前記〔1〕~〔6〕のいずれか1項に記載の酸性めっきシステム。
〔8〕前記アルカリ性水溶液を補給する予備槽をさらに備える、前記〔1〕~〔7〕のいずれか1項に記載の酸性めっきシステム。
〔9〕被めっき物である陰極及び可溶性陽極を含む酸性めっき浴と、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを用意する工程であって、前記酸性めっき浴が、前記陽イオン交換膜を介して前記アルカリ性水溶液と接しており、前記アルカリ性水溶液中のアルカリ性物質の濃度が、4M以下である工程と、
 前記酸性めっき浴に通電し、前記被めっき物に皮膜を施す工程と
を含むめっき方法。
〔10〕前記陽イオン交換膜と、前記不溶性陽極を含む前記アルカリ性水溶液とが、前記酸性めっき浴から分離可能なアノードセルに含まれている、前記〔9〕に記載のめっき方法。
〔11〕陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを備えるアノードセルであって、前記アルカリ性水溶液中のアルカリ性物質の濃度が、4M以下であり、酸性めっき浴中で陽極として使用されるものである、アノードセル。
〔12〕前記アルカリ性水溶液中のアルカリ性物質の濃度が、0.4M以上である、前記〔11〕に記載のアノードセル。
〔13〕前記不溶性陽極が、鉄、ニッケル、ステンレス、カーボン及びセラミックからなる群から選択される1種以上を含む、前記〔11〕又は〔12〕に記載のアノードセル。
〔14〕前記陽イオン交換膜が、耐酸性かつ耐アルカリ性である、前記〔11〕~〔13〕のいずれか1項に記載のアノードセル。
As a result of diligent studies to solve the above problems, the present inventors have found that by using an alkaline aqueous solution for the anode solution, it is possible to suppress the generation of chlorine gas when chloride ions are mixed in the anode chamber. The present invention has been completed. That is, the present invention provides the acidic plating system, the plating method, and the anode cell shown below.
[1] An acidic plating system including an acidic plating bath containing a cathode and a soluble anode which are objects to be plated, a cation exchange membrane, and an alkaline aqueous solution containing an insoluble anode.
An acidic plating system in which the acidic plating bath is in contact with the alkaline aqueous solution via the cation exchange membrane, and the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less.
[2] The acidic plating system according to the above [1], wherein the concentration of the alkaline substance in the alkaline aqueous solution is 0.4 M or more.
[3] The acidic plating system according to the above [1] or [2], wherein the soluble anode contains one or more metals selected from the group consisting of zinc, nickel, manganese, tin, copper and cobalt.
[4] The acidic plating system according to any one of [1] to [3] above, wherein the insoluble anode contains at least one selected from the group consisting of iron, nickel, stainless steel, carbon and ceramic.
[5] The acid plating system according to any one of [1] to [4] above, wherein the cation exchange membrane is acid resistant and alkali resistant.
[6] Any one of the above [1] to [5], wherein the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath. Acid plating system described in.
[7] The acidity according to any one of [1] to [6] above, wherein the ratio of the amount of the acidic plating bath to the amount of the alkaline aqueous solution is 10: 1 to 60: 1 in volume ratio. Plating system.
[8] The acid plating system according to any one of [1] to [7], further comprising a spare tank for replenishing the alkaline aqueous solution.
[9] A step of preparing an acidic plating bath containing a cathode and a soluble anode as an object to be plated, a cation exchange film, and an alkaline aqueous solution containing an insoluble anode, wherein the acid plating bath exchanges the cations. A step in which the alkaline aqueous solution is in contact with the alkaline aqueous solution through a film and the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less.
A plating method including a step of energizing the acidic plating bath and applying a film to the object to be plated.
[10] The plating method according to the above [9], wherein the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath.
[11] An anode cell including a cation exchange membrane and an alkaline aqueous solution containing an insoluble anode, wherein the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less, and the anode is used as an anode in an acidic plating bath. Anode cell, which is a thing.
[12] The anode cell according to the above [11], wherein the concentration of the alkaline substance in the alkaline aqueous solution is 0.4 M or more.
[13] The anode cell according to the above [11] or [12], wherein the insoluble anode contains one or more selected from the group consisting of iron, nickel, stainless steel, carbon and ceramic.
[14] The anode cell according to any one of [11] to [13], wherein the cation exchange membrane is acid-resistant and alkali-resistant.
 本発明に従えば、陽極液にアルカリ性水溶液を用いることで、陽極室内に塩化物イオンが混入したときの塩素ガスの発生を抑えることができる。 According to the present invention, by using an alkaline aqueous solution as the anode solution, it is possible to suppress the generation of chlorine gas when chloride ions are mixed in the anode chamber.
通電量に応じた電圧の変化を示す。陽極液の水酸化カリウム濃度は、75g/L(○)、150g/L(□)、又は250g/L(×)だった。The change of voltage according to the amount of energization is shown. The potassium hydroxide concentration of the anode solution was 75 g / L (◯), 150 g / L (□), or 250 g / L (×).
 以下、本発明をさらに詳細に説明する。
 本発明の酸性めっきシステムは、被めっき物である陰極及び可溶性陽極を含む酸性めっき浴と、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを備えており、前記酸性めっき浴が、前記陽イオン交換膜を介して前記アルカリ性水溶液と接している。換言すれば、本発明の酸性めっきシステムにおいては、前記酸性めっき浴を含む陰極室と、前記アルカリ性水溶液を含む陽極室とが、前記陽イオン交換膜によって互いに分離された構成となっている。本発明の酸性めっきシステムは、種々の被めっき物に対して特に制限されることなく適用することができるが、例えば、前記被めっき物は、鉄、ニッケル、銅、亜鉛、アルミニウムなどの各種金属及びこれらの合金を含む又はそれらから形成される物品であってもよい。また、前記被めっき物の形状についても特に制限はなく、例えば鋼板、めっき鋼板などの板状物や、直方体、円柱、円筒、球状物などの形状品など種々のものが挙げられる。当該形状品として具体的には、例えばボルト、ナット、ワッシャーなどの締結部品、燃料パイプなどのパイプ部品、ブレーキキャリパー、コモンレールなどの鋳鉄部品の他、コネクタ、プラグ、ハウジング、口金、シートベルトアンカーなど種々のものが挙げられる。
Hereinafter, the present invention will be described in more detail.
The acidic plating system of the present invention includes an acidic plating bath containing a cathode and a soluble anode which are objects to be plated, a cation exchange film, and an alkaline aqueous solution containing an insoluble anode, and the acidic plating bath is the positive. It is in contact with the alkaline aqueous solution via the ion exchange film. In other words, in the acidic plating system of the present invention, the cathode chamber containing the acidic plating bath and the anode chamber containing the alkaline aqueous solution are separated from each other by the cation exchange membrane. The acidic plating system of the present invention can be applied to various objects to be plated without particular limitation, and the object to be plated is, for example, various metals such as iron, nickel, copper, zinc and aluminum. And articles containing or formed from these alloys. Further, the shape of the object to be plated is not particularly limited, and examples thereof include plate-shaped objects such as steel plates and plated steel plates, and various shaped objects such as rectangular parallelepipeds, cylinders, cylinders, and spherical objects. Specifically, the shape products include fastener parts such as bolts, nuts and washers, pipe parts such as fuel pipes, cast iron parts such as brake calipers and common rails, as well as connectors, plugs, housings, caps and seatbelt anchors. Various things can be mentioned.
 本明細書に記載の「可溶性陽極」とは、めっき浴中で通電したときに、前記被めっき物上にめっき皮膜を形成するための金属イオンを当該めっき浴中に供給する陽極のことをいう。前記可溶性陽極は、めっきの種類に応じて適宜選択することができ、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、前記可溶性陽極は、亜鉛、ニッケル、マンガン、すず、銅及びコバルトからなる群から選択される1種以上の金属を含んでもよい。また、前記可溶性陽極の形状は、特に限定されないが、例えば、板状、棒状、ボール状、又はチップ状などであってもよい。 As used herein, the term "soluble anode" refers to an anode that supplies metal ions for forming a plating film on the object to be plated into the plating bath when energized in the plating bath. .. The soluble anode can be appropriately selected depending on the type of plating, and those usually used in the art can be adopted without particular limitation. For example, the soluble anode can be zinc or nickel. , Manganese, tin, copper and one or more metals selected from the group consisting of cobalt. The shape of the soluble anode is not particularly limited, but may be, for example, plate-shaped, rod-shaped, ball-shaped, chip-shaped, or the like.
 前記酸性めっき浴は、めっきの種類に応じて適宜選択された金属イオンを含むめっき液を含む電解槽である。前記金属イオンとしては、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、亜鉛イオン、ニッケルイオン、マンガンイオン、すずイオン、銅イオン、及び、コバルトイオンであってもよい。前記被めっき物に亜鉛めっきを施す場合には、前記酸性めっき浴は亜鉛イオンを含む。前記亜鉛イオンをもたらすイオン源としては、当技術分野で通常使用されるものを特に制限されることなく採用することができるが、水溶性亜鉛塩が好ましく、例えば、塩化亜鉛、硫酸亜鉛、又は酸化亜鉛などであってもよい。前記亜鉛イオン源は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。前記酸性めっき浴中の前記亜鉛イオンの濃度は、特に限定されないが、例えば、約15~約62g/Lであってもよく、好ましくは約19~約62g/Lであってもよく、さらに好ましくは約29~約53g/Lである。 The acidic plating bath is an electrolytic cell containing a plating solution containing metal ions appropriately selected according to the type of plating. As the metal ion, those usually used in the art can be adopted without particular limitation, and for example, zinc ion, nickel ion, manganese ion, tin ion, copper ion, and cobalt ion can be used. There may be. When zinc plating is applied to the object to be plated, the acidic plating bath contains zinc ions. As the ion source that brings about the zinc ion, those usually used in the art can be adopted without particular limitation, but a water-soluble zinc salt is preferable, for example, zinc chloride, zinc sulfate, or oxidation. It may be zinc or the like. The zinc ion source may be used alone or in combination of two or more. The concentration of the zinc ion in the acidic plating bath is not particularly limited, but may be, for example, about 15 to about 62 g / L, preferably about 19 to about 62 g / L, and more preferably. Is about 29 to about 53 g / L.
 前記被めっき物に亜鉛合金めっきを施す場合には、前記酸性めっき浴は亜鉛イオンに加えて他の金属イオンを含む。前記他の金属イオンは、亜鉛合金皮膜を形成できる限り特に制限されないが、例えば、ニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンなどからなる群より選択される少なくとも1種であってもよい。前記他の金属イオンをもたらすイオン源は、特に限定されないが、水溶性塩が好ましく、例えば、塩化ニッケル(II)、硫酸ニッケル(II)、塩化鉄(II)、塩化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、塩化コバルト(II)、塩化コバルト(III)、硫酸コバルト(II)、硫酸コバルト(III)、塩化錫(II)、硫酸錫(II)、塩化マンガン(II)、又は硫酸マンガン(II)などであってもよい。前記他の金属イオン源は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。前記酸性めっき浴中の前記他の金属イオンの総濃度は、特に限定されないが、例えば、約0.2~約40g/Lであってもよく、好ましくは約17~約37g/Lであってもよく、さらに好ましくは約18~約30g/Lである。 When zinc alloy plating is applied to the object to be plated, the acidic plating bath contains other metal ions in addition to zinc ions. The other metal ions are not particularly limited as long as they can form a zinc alloy film, but may be at least one selected from the group consisting of, for example, nickel ions, iron ions, cobalt ions, tin ions, manganese ions and the like. good. The ion source that brings about the other metal ions is not particularly limited, but a water-soluble salt is preferable, and for example, nickel chloride (II), nickel sulfate (II), iron (II) chloride, iron (III) chloride, iron sulfate. (II), iron sulfate (III), cobalt chloride (II), cobalt chloride (III), cobalt sulfate (II), cobalt sulfate (III), tin chloride (II), tin sulfate (II), manganese chloride (II). ), Or manganese sulfate (II), or the like. The other metal ion sources may be used alone or in combination of two or more. The total concentration of the other metal ions in the acidic plating bath is not particularly limited, but may be, for example, about 0.2 to about 40 g / L, preferably about 17 to about 37 g / L. It is also good, more preferably about 18 to about 30 g / L.
 前記酸性めっき浴のめっき液は、酸性めっきに用いられる種々の添加剤をさらに含んでもよい。前記添加剤としては、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、1次光沢剤、2次光沢剤、金属錯化剤、導電性塩、又は、緩衝剤などであってもよい。 The plating solution of the acidic plating bath may further contain various additives used for acidic plating. As the additive, those usually used in the art can be adopted without particular limitation, and for example, a primary brightener, a secondary brightener, a metal complexing agent, a conductive salt, or a conductive salt can be used. , Buffering agent, etc. may be used.
 前記1次光沢剤は、特に限定されないが、例えば、アニオン界面活性剤、ノニオン界面活性剤、ポリエチレンイミン、及び、芳香族カルボン酸若しくはその誘導体又はそれらの塩などからなる群から選択される少なくとも1種を含んでもよい。前記アニオン界面活性剤としては、例えば、ナフトール系アニオン界面活性剤、クミルフェノール系アニオン界面活性剤、又は芳香族スルホン酸アルデヒド縮合物の塩などが挙げられる。好ましくは、前記ナフトール系アニオン界面活性剤又はクミルフェノール系アニオン界面活性剤は、ナフトール又はクミルフェノール1モル当たりにエチレンオキサイド(EO)及び/又はプロピレンオキサイド(PO)が合計で3~65モル、好ましくは8~62モル付加された、スルホ基を有する化合物の塩である。ナフトールは、特にβ-ナフトールが好ましい。前記ナフトール系アニオン界面活性剤又はクミルフェノール系アニオン界面活性剤における塩としては、カリウム塩、ナトリウム塩、及びアミン塩などが挙げられる。具体的には、{[(3-スルホプロポキシ)-ポリエトキシ-ポリイソプロポキシ]-ベーターナフチルエーテル}カリウム塩、又はポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩などが挙げられる。前記芳香族スルホン酸アルデヒド縮合物の塩としては、例えば、ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩などが挙げられる。 The primary brightener is not particularly limited, but is at least one selected from the group consisting of, for example, an anionic surfactant, a nonionic surfactant, polyethyleneimine, and an aromatic carboxylic acid or a derivative thereof or a salt thereof. It may contain seeds. Examples of the anionic surfactant include a naphthol-based anionic surfactant, a cumylphenol-based anionic surfactant, a salt of an aromatic sulfonic acid aldehyde condensate, and the like. Preferably, the naphthol-based anionic surfactant or cumylphenol-based anionic surfactant has a total of 3 to 65 mol of ethylene oxide (EO) and / or propylene oxide (PO) per mol of naphthol or cumylphenol. A salt of a compound having a sulfo group, preferably added in an amount of 8 to 62 mol. As the naphthol, β-naphthol is particularly preferable. Examples of the salt in the naphthol-based anionic surfactant or the cumylphenol-based anionic surfactant include potassium salts, sodium salts, amine salts and the like. Specific examples thereof include {[(3-sulfopropoxy) -polyethoxy-polyisopropoxy] -betanaphthyl ether} potassium salt, polyoxyethylene p-cumylphenyl ether sulfate sodium salt, and the like. Examples of the salt of the aromatic sulfonic acid aldehyde condensate include sodium salts of the naphthalene sulfonic acid formalin condensate.
 前記ノニオン界面活性剤としては、例えば、ナフトール系ノニオン界面活性剤、クミルフェノール系ノニオン界面活性剤、又はノニルフェノール系ノニオン界面活性剤などが挙げられる。前記ナフトール系ノニオン界面活性剤としては、例えば、β-ナフトールエトキシレートなどが挙げられ、前記クミルフェノール系ノニオン界面活性剤としては、例えば、ポリオキシエチレンp-クミルフェニルエーテルなどが挙げられ、前記ノニルフェノール系ノニオン界面活性剤としては、例えば、ノニルフェノールエトキシレートなどが挙げられる。また、前記ポリエチレンイミンは、数平均分子量が約300~約70,000であってもよく、好ましくは数平均分子量が約300~約10,000であってもよく、さらに好ましくは数平均分子量が約300~約1,800である。また、前記芳香族カルボン酸及びその誘導体及びそれらの塩としては、好ましくは、炭素数7~15の芳香族カルボン酸及びその誘導体及びそれらの塩である。具体的には、例えば、安息香酸、安息香酸ナトリウム、テレフタル酸、テレフタル酸ナトリウム、安息香酸エチルなどが挙げられる。 Examples of the nonionic surfactant include a naphthol-based nonionic surfactant, a cumylphenol-based nonionic surfactant, a nonylphenol-based nonionic surfactant, and the like. Examples of the naphthol-based nonionic surfactant include β-naphthol ethoxylate, and examples of the cumylphenol-based nonylphenol surfactant include polyoxyethylene p-cumylphenyl ether. Examples of the nonylphenol-based nonionic surfactant include nonylphenol ethoxylate and the like. Further, the polyethyleneimine may have a number average molecular weight of about 300 to about 70,000, preferably a number average molecular weight of about 300 to about 10,000, and more preferably a number average molecular weight. It is about 300 to about 1,800. Further, the aromatic carboxylic acid and its derivative and a salt thereof are preferably an aromatic carboxylic acid having 7 to 15 carbon atoms, a derivative thereof and a salt thereof. Specific examples thereof include benzoic acid, sodium benzoate, terephthalic acid, sodium terephthalate, ethyl benzoate and the like.
 前記アニオン界面活性剤、前記ノニオン界面活性剤、前記ポリエチレンイミン、及び、前記芳香族カルボン酸若しくはその誘導体又はそれらの塩は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記酸性めっき浴中の前記1次光沢剤の濃度は、特に限定されないが、例えば、前記アニオン界面活性剤については、約0.1~約10g/Lであってもよく、好ましくは約0.2~約5g/Lであり、前記ノニオン界面活性剤については、約0.1~約10g/Lであってもよく、好ましくは約0.2~約5g/Lであり、前記ポリエチレンイミンについては、約0.1~約10g/Lであってもよく、好ましくは約0.2~約5g/Lであり、前記芳香族カルボン酸若しくはその誘導体又はそれらの塩については、約0.5~約5g/Lであってもよく、好ましくは約1~約3g/Lである。 The anionic surfactant, the nonionic surfactant, the polyethyleneimine, and the aromatic carboxylic acid or its derivative or a salt thereof may be used alone or in combination of two or more. The concentration of the primary brightener in the acidic plating bath is not particularly limited, but for example, the anionic surfactant may be about 0.1 to about 10 g / L, preferably about. It is 0.2 to about 5 g / L, and the nonionic surfactant may be about 0.1 to about 10 g / L, preferably about 0.2 to about 5 g / L, and the polyethylene. The imine may be about 0.1 to about 10 g / L, preferably about 0.2 to about 5 g / L, and the aromatic carboxylic acid or a derivative thereof or a salt thereof is about 0. It may be .5 to about 5 g / L, preferably about 1 to about 3 g / L.
 前記2次光沢剤は、特に限定されないが、例えば、芳香族アルデヒド及び芳香族ケトンなどからなる群より選択される少なくとも1種を含んでもよい。前記芳香族アルデヒドとしては、例えば、o-カルボキシベンズアルデヒド、ベンズアルデヒド、o-クロルベンズアルデヒド、p-トルアルデヒド、アニスアルデヒド、p-ジメチルアミノベンズアルデヒド、テレフタルアルデヒドなどが挙げられる。好ましくは、前記芳香族アルデヒドは、炭素数7~10の芳香族アルデヒドである。また、前記芳香族ケトンとしては、例えば、ベンザールアセトン、ベンゾフェノン、アセトフェノン、塩化テレフタロイルベンジルなどが挙げられる。特に好ましい化合物は、ベンザールアセトンとo-クロルベンズアルデヒドである。好ましくは、前記芳香族ケトンは、炭素数8~14の芳香族ケトンである。前記芳香族アルデヒド及び/又は芳香族ケトンは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。前記酸性めっき浴中の前記2次光沢剤の濃度は、特に限定されないが、例えば、約0.1~約50mg/Lであってもよく、好ましくは約0.1~約20mg/Lであってもよく、さらに好ましくは約0.3~約10mg/Lである。 The secondary brightener is not particularly limited, but may contain at least one selected from the group consisting of, for example, aromatic aldehydes and aromatic ketones. Examples of the aromatic aldehyde include o-carboxybenzaldehyde, benzaldehyde, o-chlorbenzaldehyde, p-tolvaldehyde, anisaldehyde, p-dimethylaminobenzaldehyde, and terephthalaldehyde. Preferably, the aromatic aldehyde is an aromatic aldehyde having 7 to 10 carbon atoms. Examples of the aromatic ketone include benzalacetone, benzophenone, acetophenone, and terephthaloylbenzyl chloride. Particularly preferred compounds are benzalacetone and o-chlorbenzaldehyde. Preferably, the aromatic ketone is an aromatic ketone having 8 to 14 carbon atoms. The aromatic aldehyde and / or aromatic ketone may be used alone or in combination of two or more. The concentration of the secondary brightener in the acidic plating bath is not particularly limited, but may be, for example, about 0.1 to about 50 mg / L, preferably about 0.1 to about 20 mg / L. It may be more preferably about 0.3 to about 10 mg / L.
 前記金属錯化剤は、特に限定されないが、例えば、アミン系キレート剤などを含んでもよい。前記アミン系キレート剤としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のアルキレンアミン化合物、前記アルキレンアミンのエチレンオキサイド付加物、プロピレンオキサイド付加物;N-(2-アミノエチル)エタノールアミン、2-ヒドロキシエチルアミノプロピルアミンなどのアミノアルコール;N-2(-ヒドロキシエチル)-N,N’,N’-トリエチルエチレンジアミン、N,N’-ジ(2-ヒドロキシエチル)-N,N’-ジエチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)プロピレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミンなどのポリ(ヒドロキシアルキル)アルキレンジアミン;エチレンイミン、1,2-プロピレンイミンなどから得られるポリ(アルキレンイミン)、エチレンジアミン、トリエチレンテトラミン、エタノールアミン、ジエタノールアミンなどから得られるポリ(アルキレンアミン)又はポリ(アミノアルコール)などが挙げられる。好ましくは、前記アミン系キレート剤は、炭素数1~12(好ましくは炭素数2~10)で窒素原子数2~7(好ましくは窒素原子数2~6)のアルキレンアミン化合物、そのエチレンオキサイド付加物、又はプロピレンオキサイド付加物である。前記金属錯化剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記酸性めっき浴中の前記金属錯化剤の濃度は、特に限定されないが、例えば、約0.5~約50g/Lであってもよく、好ましくは約1~約5g/Lである。 The metal complexing agent is not particularly limited, but may contain, for example, an amine-based chelating agent. Examples of the amine-based chelating agent include alkylene amine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, ethylene oxide adducts and propylene oxide adducts of the alkyleneamine; N- (2-aminoethyl). Amino alcohols such as ethanolamine, 2-hydroxyethylaminopropylamine; N-2 (-hydroxyethyl) -N, N', N'-triethylethylenediamine, N, N'-di (2-hydroxyethyl) -N, Poly (hydroxyalkyl) such as N'-diethylethylenediamine, N, N, N', N'-tetrakis (2-hydroxyethyl) propylenediamine, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine. ) Alkylenediamine; poly (alkyleneimine) obtained from ethyleneimine, 1,2-propyleneimine, etc., poly (alkyleneamine) or poly (aminoalcohol) obtained from ethylenediamine, triethylenetetramine, ethanolamine, diethanolamine, etc. Can be mentioned. Preferably, the amine-based chelating agent is an alkylene amine compound having 1 to 12 carbon atoms (preferably 2 to 10 carbon atoms) and 2 to 7 nitrogen atoms (preferably 2 to 6 nitrogen atoms), and adducting ethylene oxide thereof. A substance or a propylene oxide adduct. The metal complexing agent may be used alone or in combination of two or more. The concentration of the metal complexing agent in the acidic plating bath is not particularly limited, but may be, for example, about 0.5 to about 50 g / L, preferably about 1 to about 5 g / L. ..
 前記導電性塩は、特に限定されないが、例えば、塩化物、硫酸塩、又は炭酸塩などを含んでもよく、好ましくは、塩化カリウム、塩化アンモニウム、及び塩化ナトリウムなどから選択される少なくとも1種の塩化物を含んでもよい。さらに好ましくは、前記導電性塩は、塩化カリウム及び/又は塩化アンモニウムである。前記酸性めっき浴中の前記導電性塩の濃度は、特に限定されないが、例えば、前記導電性塩が塩化カリウム単独である場合、その濃度は、約150~約250g/Lであってもよく、前記導電性塩が塩化アンモニウム単独である場合、その濃度は、約150~約300g/Lであってもよい。前記導電性塩が塩化カリウム及び塩化アンモニウムの併用の場合は、例えば、塩化カリウムについて約70~約200g/Lで、塩化アンモニウムについて約15~約150g/Lであってもよい。 The conductive salt is not particularly limited, but may contain, for example, chloride, sulfate, carbonate and the like, and preferably at least one chloride selected from potassium chloride, ammonium chloride, sodium chloride and the like. It may contain an object. More preferably, the conductive salt is potassium chloride and / or ammonium chloride. The concentration of the conductive salt in the acidic plating bath is not particularly limited, but for example, when the conductive salt is potassium chloride alone, the concentration may be about 150 to about 250 g / L. When the conductive salt is ammonium chloride alone, its concentration may be about 150 to about 300 g / L. When the conductive salt is a combination of potassium chloride and ammonium chloride, for example, it may be about 70 to about 200 g / L for potassium chloride and about 15 to about 150 g / L for ammonium chloride.
 前記緩衝剤は、特に限定されないが、例えば、アンモニアやアンモニウム塩、ホウ酸やホウ酸塩、及び/又は、酢酸や酢酸塩を含んでもよい。また、前記酸性めっき浴中の前記緩衝剤の濃度は、特に限定されないが、例えば、前記アンモニア及び/又はアンモニウム塩の合計濃度は、約15~約300g/Lであってもよく、前記ホウ酸及び/又はホウ酸塩の合計濃度は約15~約90g/Lであってもよく、前記酢酸及び/又は酢酸塩の合計濃度は約5~約140g/Lであってもよく、好ましくは約7~約140g/L、より好ましくは約8~約120g/Lである。前記緩衝剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記導電性塩として塩化アンモニウムを用いる場合であっても、前記緩衝剤を適宜用いることができる。 The buffer is not particularly limited, but may contain, for example, ammonia or ammonium salt, borate or borate, and / or acetic acid or acetate. The concentration of the buffering agent in the acidic plating bath is not particularly limited, but for example, the total concentration of the ammonia and / or ammonium salt may be about 15 to about 300 g / L, and the borate. And / or the total concentration of borate may be from about 15 to about 90 g / L, and the total concentration of the acetic acid and / or acetate may be from about 5 to about 140 g / L, preferably about. It is 7 to about 140 g / L, more preferably about 8 to about 120 g / L. The buffer may be used alone or in combination of two or more. Further, even when ammonium chloride is used as the conductive salt, the buffering agent can be appropriately used.
 本発明の酸性めっき浴を用いるめっき方法として電気めっきが用いられる。電気めっきは、直流もしくはパルス電流により行うことができる。前記めっき方法は、当技術分野で通常採用される条件下で適宜実施することができる。例えば、前記酸性めっき浴の浴温は、通常、20~50℃の範囲であってもよく、好ましくは25~50℃の範囲、より好ましくは30~45℃の範囲である。前記酸性めっき浴のpHは、通常、3.5~6.9の範囲であってもよく、好ましくは4.5~6.3の範囲、より好ましくは5.2~5.8の範囲である。尚、めっき浴のpHは、塩酸、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水、炭酸ナトリウム水溶液、炭酸カリウム水溶液、酢酸、酢酸ナトリウム水溶液、又は酢酸カリウム水溶液などを用いて容易に調整できる。前記酸性めっき浴の陰極電流密度は、通常、0.1~15A/dm2の範囲、好ましくは0.2~10A/dm2の範囲、より好ましくは0.5~10A/dm2の範囲の電解条件で行うのが良い。また、めっきを実施する場合は、エアーブローやジェット噴流により液撹拌をすると、陰極電流密度をさらに高くすることができるため好ましい。 Electroplating is used as a plating method using the acidic plating bath of the present invention. Electroplating can be performed by direct current or pulse current. The plating method can be appropriately carried out under the conditions usually adopted in the art. For example, the bath temperature of the acidic plating bath may be usually in the range of 20 to 50 ° C, preferably in the range of 25 to 50 ° C, and more preferably in the range of 30 to 45 ° C. The pH of the acidic plating bath may be usually in the range of 3.5 to 6.9, preferably in the range of 4.5 to 6.3, and more preferably in the range of 5.2 to 5.8. be. The pH of the plating bath can be easily adjusted by using hydrochloric acid, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of ammonia, an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, acetic acid, an aqueous solution of sodium acetate, an aqueous solution of potassium acetate, or the like. The cathode current density of the acidic plating bath is usually in the range of 0.1 to 15 A / dm 2 , preferably in the range of 0.2 to 10 A / dm 2 , and more preferably in the range of 0.5 to 10 A / dm 2 . It is better to do it under electrolytic conditions. Further, when plating is performed, it is preferable to stir the liquid by air blow or jet jet because the cathode current density can be further increased.
 本明細書に記載の「不溶性陽極」とは、陽極液中で通電しても金属イオンを生じにくい陽極のことをいう。前記不溶性陽極としては、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、前記不溶性陽極は、鉄、ニッケル、ステンレス、銅、白金、チタン、カーボン、及びセラミックからなる群から選択される1種以上を含んでもよく、各種素材に対してめっきを施したもの(例えばニッケルを含むめっきを有する鉄板など)であってもよい。また、前記不溶性陽極の形状は、特に限定されないが、例えば、板状、又は棒状などであってもよい。本発明の酸性めっきシステムにおいては、前記不溶性陽極が前記アルカリ性水溶液中に含まれているため、酸性溶液中では溶解してしまうような鉄やニッケルなどの金属も採用することができ、白金などの高価な金属を使用する必要がないため、経済的にめっきを行うことができる。前記可溶性陽極や前記不溶性陽極の大きさや数は、前記被めっき物上に所望のめっき皮膜を形成することができる限り特に制限されない。 The "insoluble anode" described in the present specification refers to an anode that does not easily generate metal ions even when energized in an anode solution. As the insoluble anode, those usually used in the art can be adopted without particular limitation. For example, the insoluble anode includes iron, nickel, stainless steel, copper, platinum, titanium, carbon, and the like. It may contain one or more selected from the group consisting of ceramics, or may be plated on various materials (for example, an iron plate having plating containing nickel). The shape of the insoluble anode is not particularly limited, but may be, for example, a plate shape or a rod shape. In the acidic plating system of the present invention, since the insoluble anode is contained in the alkaline aqueous solution, metals such as iron and nickel that dissolve in the acidic solution can also be adopted, such as platinum. Since it is not necessary to use expensive metal, plating can be performed economically. The size and number of the soluble anode and the insoluble anode are not particularly limited as long as a desired plating film can be formed on the object to be plated.
 前記陽イオン交換膜は、陽イオンを選択的に透過させる膜ではあるが、一般的な酸性めっき浴に使用される場合、塩化物イオンの透過を抑制することはできても完全に防ぐことは困難である。本発明の酸性めっきシステムにおいては、たとえ塩化物イオンが陽極室に混入しても、当該陽極室での塩素ガスの発生を抑制することができる。前記陽イオン交換膜としては、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、前記陽イオン交換膜は、フッ素系陽イオン交換膜、又は炭化水素系陽イオン交換膜であってもよく、特にフッ素系陽イオン交換膜は、耐薬品性が高いため好ましい。すなわち、ある好ましい態様では、前記陽イオン交換膜は、耐薬品性(耐酸性又は耐アルカリ性)を有しており、特に耐酸性かつ耐アルカリ性を有している。また、前記陽イオン交換膜は、イオン交換基としてスルホ基などの強酸基及び/又はカルボキシ基などの弱酸基を有するもの、例えば、スルホ基を有するフッ素系陽イオン交換膜(フッ素系スルホン酸陽イオン交換膜)であってもよい。 The cation exchange membrane is a membrane that selectively permeates cations, but when used in a general acidic plating bath, it can suppress the permeation of chloride ions but cannot completely prevent it. Have difficulty. In the acidic plating system of the present invention, even if chloride ions are mixed in the anode chamber, the generation of chlorine gas in the anode chamber can be suppressed. As the cation exchange membrane, those usually used in the art can be adopted without particular limitation. For example, the cation exchange membrane may be a fluorine-based cation exchange membrane or a hydrocarbon-based membrane. It may be a cation exchange membrane, and a fluorine-based cation exchange membrane is particularly preferable because it has high chemical resistance. That is, in a preferred embodiment, the cation exchange membrane has chemical resistance (acid resistance or alkali resistance), and particularly acid resistance and alkali resistance. Further, the cation exchange film has a strong acid group such as a sulfo group and / or a weak acid group such as a carboxy group as an ion exchange group, for example, a fluorine-based cation exchange film having a sulfo group (fluorine-based sulfonic acid cation). It may be an ion exchange film).
 本発明の酸性めっきシステムにおいては、前記アルカリ性水溶液は陽極液として使用されており、当該アルカリ性水溶液中のアルカリ性物質の濃度は約4M以下である。ある態様では、前記アルカリ性水溶液中のアルカリ性物質の濃度は、約3.5M以下、約3M以下又は約2.5M以下であってもよく、約0.5M以上、約1M以上又は約1.5M以上であってもよい。前記アルカリ性物質の濃度がこのような範囲にあると、電圧の上昇を引き起こさずに、陽極室における塩素ガスの発生をより効率的に抑制することができる。前記アルカリ性物質としては、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、第4級アンモニウム水酸化物(置換基の各アルキル基は、それぞれ独立して炭素数1~6のアルキル基)、又はアンモニア水を含んでもよい。特定の理論に拘束されるものではないが、一般に、アルカリ性の溶液中においては、塩素ガス発生の過電圧が高いために塩化物イオンは塩素ガスに酸化されにくい。仮に、塩素分子が形成された場合にも、一度形成された塩素分子が陽極室内のアルカリ性物質と反応することで次亜塩素酸イオンが形成されるため、塩素ガスの発生を抑制できると考えられる。また、アルカリ性水溶液中では、塩化物イオンに起因する不溶性陽極の損耗も抑制され得る。 In the acidic plating system of the present invention, the alkaline aqueous solution is used as an anode solution, and the concentration of the alkaline substance in the alkaline aqueous solution is about 4 M or less. In some embodiments, the concentration of the alkaline substance in the alkaline aqueous solution may be about 3.5 M or less, about 3 M or less or about 2.5 M or less, about 0.5 M or more, about 1 M or more or about 1.5 M. It may be the above. When the concentration of the alkaline substance is in such a range, the generation of chlorine gas in the anode chamber can be suppressed more efficiently without causing an increase in voltage. As the alkaline substance, those usually used in the art can be adopted without particular limitation, and for example, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, and quaternary ammonium hydroxide can be used. A substance (each alkyl group of the substituent may independently contain an alkyl group having 1 to 6 carbon atoms) or aqueous ammonia may be contained. Although not bound by a specific theory, in general, chloride ions are less likely to be oxidized to chlorine gas in an alkaline solution due to the high overvoltage of chlorine gas generation. Even if chlorine molecules are formed, it is considered that the generation of chlorine gas can be suppressed because the once formed chlorine molecules react with the alkaline substance in the anode chamber to form hypochlorite ions. .. Further, in an alkaline aqueous solution, wear of the insoluble anode due to chloride ions can be suppressed.
 前記酸性めっき浴の量や前記アルカリ性水溶液の量は、前記被めっき物上に所望のめっき皮膜を形成することができる限り特に制限されないが、例えば、前記酸性めっき浴の量と前記アルカリ性水溶液の量との比が、体積比で約10:1~約60:1であってもよく、約20:1~約50:1であってもよい。 The amount of the acidic plating bath and the amount of the alkaline aqueous solution are not particularly limited as long as a desired plating film can be formed on the object to be plated. For example, the amount of the acidic plating bath and the amount of the alkaline aqueous solution. The ratio to and from may be about 10: 1 to about 60: 1 in volume ratio, or may be about 20: 1 to about 50: 1.
 本発明の酸性めっきシステムは、例えば、電解槽を前記陽イオン交換膜で仕切り、前記酸性めっき浴を含む陰極室と、前記アルカリ性水溶液を含む陽極室とを設けることにより構成してもよい。あるいは、前記酸性めっきシステムは、前記酸性めっき浴に含まれる前記可溶性陽極と並べて、前記陽イオン交換膜と、前記不溶性陽極を含むアルカリ性水溶液とを備えるアノードセル(隔膜陽極)を設置することにより構成してもよい。すなわち、ある態様では、前記陽イオン交換膜と、前記不溶性陽極を含む前記アルカリ性水溶液とが、前記酸性めっき浴から分離可能なアノードセルに含まれている。前記アノードセルとしては、当技術分野で通常用いられるものを特に制限されることなく採用することができるが、例えば、円柱状又は直方体状のアノードセルであってもよい。また、前記アノードセルは、前記陽イオン交換膜を側面の一部に有していてもよく、あるいはそれを側面全体に有していてもよい。 The acidic plating system of the present invention may be configured, for example, by partitioning the electrolytic cell with the cation exchange membrane and providing a cathode chamber containing the acidic plating bath and an anode chamber containing the alkaline aqueous solution. Alternatively, the acidic plating system is configured by installing an anode cell (diaphragm anode) including the cation exchange membrane and an alkaline aqueous solution containing the insoluble anode, side by side with the soluble anode contained in the acidic plating bath. You may. That is, in one embodiment, the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in the anode cell separable from the acidic plating bath. As the anode cell, those usually used in the art can be adopted without particular limitation, and for example, a columnar or rectangular parallelepiped anode cell may be used. Further, the anode cell may have the cation exchange membrane on a part of the side surface, or may have it on the entire side surface.
 ある態様では、本発明の酸性めっきシステムは、前記アルカリ性水溶液を補給する予備槽をさらに備えていてもよい。前記アルカリ性水溶液中の陽イオンは、通電中に前記陽イオン交換膜を通って陽極室側から陰極室側に移動してしまうので、前記予備槽が設置されていれば、当該陽極室側に効果的にアルカリ性水溶液を補給することができる。 In some embodiments, the acidic plating system of the present invention may further include a reserve tank for replenishing the alkaline aqueous solution. Since the cations in the alkaline aqueous solution move from the anode chamber side to the cathode chamber side through the cation exchange membrane during energization, if the spare tank is installed, it is effective on the anode chamber side. An alkaline aqueous solution can be replenished.
 別の態様では、本発明はめっき方法にも関しており、当該めっき方法は、被めっき物である陰極及び可溶性陽極を含む酸性めっき浴と、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを用意する工程であって、前記酸性めっき浴が、前記陽イオン交換膜を介して前記アルカリ性水溶液と接しており、前記アルカリ性水溶液中のアルカリ性物質の濃度が、約4M以下である工程と、
 前記酸性めっき浴に通電し、前記被めっき物に皮膜を施す工程と
を含む。ある態様では、前記陽イオン交換膜と、前記不溶性陽極を含む前記アルカリ性水溶液とは、前記酸性めっき浴から分離可能なアノードセルに含まれている。
In another aspect, the present invention also relates to a plating method, wherein the plating method comprises an acidic plating bath containing a cathode and a soluble anode as an object to be plated, a cation exchange film, and an alkaline aqueous solution containing an insoluble anode. In the step of preparing the above, the acidic plating bath is in contact with the alkaline aqueous solution via the cation exchange film, and the concentration of the alkaline substance in the alkaline aqueous solution is about 4 M or less.
It includes a step of energizing the acidic plating bath and applying a film to the object to be plated. In some embodiments, the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath.
 別の態様では、本発明は酸性めっき浴中で陽極として使用されるアノードセルにも関しており、当該アノードセルは、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを備えており、前記アルカリ性水溶液中のアルカリ性物質の濃度は約4M以下である。 In another aspect, the invention also relates to an anode cell used as an anode in an acidic plating bath, wherein the anode cell comprises a cation exchange membrane and an alkaline aqueous solution containing an insoluble anode. The concentration of the alkaline substance in the alkaline aqueous solution is about 4 M or less.
 以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the scope of the present invention is not limited to these Examples.
〔試験例1〕
 フッ素系スルホン酸陽イオン交換膜で電解槽を仕切り、一方(陰極室)には以下の表1に記載の組成を有する亜鉛ニッケル合金めっき液(pH5.4)、陰極としての鉄板、並びに、可溶性陽極としての亜鉛板及びニッケル板を1つずつ入れ、他方(陽極室)には75g/L(約1.3M)の水酸化カリウム水溶液及び不溶性陽極としてのニッケル板を入れて、実施例1の酸性めっきシステムを構成した。
[Test Example 1]
The electrolytic tank is partitioned by a fluorosulfonic acid cation exchange film, while the zinc-nickel alloy plating solution (pH 5.4) having the composition shown in Table 1 below, an iron plate as a cathode, and soluble are in one (cathode chamber). A zinc plate and a nickel plate as an anode are put in one by one, and a 75 g / L (about 1.3 M) potassium hydroxide aqueous solution and a nickel plate as an insoluble anode are put in the other (anode chamber). An acid plating system was constructed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 電解槽を仕切らずに、表1に記載の組成を有する亜鉛ニッケル合金めっき液(pH5.4)、陰極としての鉄板、並びに、可溶性陽極としての亜鉛板及びニッケル板を入れ、比較例1の酸性めっきシステムを構成した。そして、実施例1及び比較例1の酸性めっきシステムにおいて、めっき浴の温度が35℃、陰極電流密度が3.0A/dm2の条件で通電した。このとき、各陽極にそれぞれ独立した整流器を接続して、実施例1においては、亜鉛板、ニッケル板(可溶性陽極)、及びニッケル板(不溶性陽極)に流れる電流が17対14対69になるように調節し、比較例1においては、亜鉛板及びニッケル板(可溶性陽極)に流れる電流が8対2になるように調節した。また、通電量が約1.58Ah/Lになるごとに、IZA-2500Aを0.32mL/L、IZA-2500Bを0.3mL/L、IZA-2500Cを0.1mL/L、そしてIZA-2500DPを0.2g/Lそれぞれ補給し、かつ、亜鉛ニッケル合金めっき液のpHが一定になるように塩酸を補給した。そして、通電量が約48Ah/Lのときに、めっき浴中の亜鉛イオン及びニッケルイオンの濃度を常法により測定した。結果を表2に示す。 A zinc-nickel alloy plating solution (pH 5.4) having the composition shown in Table 1, an iron plate as a cathode, and a zinc plate and a nickel plate as a soluble anode were put in without partitioning the electrolytic cell, and the acidity of Comparative Example 1 was added. The plating system was configured. Then, in the acidic plating systems of Example 1 and Comparative Example 1, energization was performed under the conditions that the plating bath temperature was 35 ° C. and the cathode current density was 3.0 A / dm 2 . At this time, an independent rectifier is connected to each anode so that the current flowing through the zinc plate, the nickel plate (soluble anode), and the nickel plate (insoluble anode) becomes 17:14:69 in the first embodiment. In Comparative Example 1, the current flowing through the zinc plate and the nickel plate (soluble anode) was adjusted to 8: 2. Also, every time the amount of electricity reaches about 1.58 Ah / L, IZA-2500A is 0.32 mL / L, IZA-2500B is 0.3 mL / L, IZA-2500C is 0.1 mL / L, and IZA-2500DP. Was replenished at 0.2 g / L, respectively, and hydrochloric acid was replenished so that the pH of the zinc-nickel alloy plating solution became constant. Then, when the energization amount was about 48 Ah / L, the concentrations of zinc ions and nickel ions in the plating bath were measured by a conventional method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 不溶性陽極を採用しない酸性めっきシステムでは、通電するに従い亜鉛イオン濃度が大幅に上昇したが(比較例1)、不溶性陽極を採用し、そこへ電流を分配することにより、亜鉛イオン及びニッケルイオンのどちらについても、通電中に初期濃度を維持することができた(実施例1)。 In the acidic plating system that does not use an insoluble anode, the zinc ion concentration increased significantly as the power was applied (Comparative Example 1), but by using an insoluble anode and distributing the current to it, either zinc ion or nickel ion Also, the initial concentration could be maintained during energization (Example 1).
〔試験例2〕
 フッ素系スルホン酸陽イオン交換膜で電解槽を仕切り、一方(陰極室)には表1に記載の組成を有する亜鉛ニッケル合金めっき液(pH5.4)及び陰極としての鉄板を入れ、他方(陽極室)には50g/L(約0.89M)、100g/L(約1.8M)、175g/L(約3.1M)、又は250g/L(約4.5M)の濃度の水酸化カリウム水溶液(陽極液)及び不溶性陽極としてのニッケル板を入れた。そして、陽極液に種々の濃度で塩化カリウムを添加し、陽極電流密度が3.0A/dm2の条件で2時間通電して、陽極の損耗状況を目視により以下の基準で判定した。結果を表3に示す。
(陽極の損耗状況)
  ○:損耗なし
  △:視認できる損耗はないが陽極側の溶液に濁りあり
  ×:損耗(溶解又は欠損)あり
[Test Example 2]
The electrolytic tank is partitioned by a fluorosulfonic acid cation exchange film, and a zinc-nickel alloy plating solution (pH 5.4) having the composition shown in Table 1 and an iron plate as a cathode are placed in one (cathode chamber), and the other (anode) is placed. Room) contains potassium hydroxide at a concentration of 50 g / L (about 0.89 M), 100 g / L (about 1.8 M), 175 g / L (about 3.1 M), or 250 g / L (about 4.5 M). An aqueous solution (anode solution) and a nickel plate as an insoluble anode were added. Then, potassium chloride was added to the anode solution at various concentrations, and the current was applied for 2 hours under the condition that the anode current density was 3.0 A / dm 2 , and the wear state of the anode was visually determined according to the following criteria. The results are shown in Table 3.
(Anode wear status)
◯: No wear △: No visible wear, but turbidity in the solution on the anode side ×: Wear (dissolution or defect)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 陽イオン交換膜が設置されていても、一部の塩化物イオンは陰極室から陽極室に移動し(この点について要すれば後述の試験例4も参照)、陽極の損耗の原因となり得るが、陽極室に水酸化カリウムを含む酸性めっきシステムにおいては、そのような損耗を抑制することができた(添加なしの群を参照)。また、意図的に塩化物イオンの量を増やしても、水酸化カリウムの濃度を高めることで、陽極の損耗を効果的に抑制できることが分かった。 Even if a cation exchange membrane is installed, some chloride ions move from the cathode chamber to the anode chamber (see also Test Example 4 below if necessary in this regard), which can cause wear of the anode. In an acidic plating system containing potassium hydroxide in the anode chamber, such wear could be suppressed (see No Addition Group). It was also found that even if the amount of chloride ions was intentionally increased, the wear of the anode could be effectively suppressed by increasing the concentration of potassium hydroxide.
〔試験例3〕
 陽極室の水酸化カリウムの濃度を75g/L(約1.3M)、150g/L(約2.67M)、又は250g/L(約4.5M)とした以外は試験例2と同様にして電解槽を用意した。隔膜電流密度が5.7A/dm2の条件で通電し、陰極と不溶性陽極との間の電圧の変化を測定した。また、電圧測定時に、IZA-2500A、IZA-2500B、IZA-2500C、及び、IZA-2500DPの初期濃度を維持するよう、それぞれ適宜補給し、かつ、亜鉛ニッケル合金めっき液のpHが一定になるように塩酸を補給した。
[Test Example 3]
The same as in Test Example 2 except that the concentration of potassium hydroxide in the anode chamber was 75 g / L (about 1.3 M), 150 g / L (about 2.67 M), or 250 g / L (about 4.5 M). An electrolytic cell was prepared. The current density of the diaphragm was 5.7 A / dm 2 , and the voltage change between the cathode and the insoluble anode was measured. In addition, at the time of voltage measurement, supply appropriately so as to maintain the initial concentrations of IZA-2500A, IZA-2500B, IZA-2500C, and IZA-2500DP, and keep the pH of the zinc-nickel alloy plating solution constant. Was replenished with hydrochloric acid.
 その結果、図1に示されているように、水酸化カリウムの濃度が250g/L(約4.5M)の場合には、通電量が増加するのに伴って電圧も上昇したが、他の濃度ではそれと比較して電圧上昇が有意に低かった。また、水酸化カリウムの濃度が250g/L(約4.5M)の場合には、陽イオン交換膜において、その表面への白色の生成物の沈着や膜自体の変形という異常が顕著に観察された。 As a result, as shown in FIG. 1, when the concentration of potassium hydroxide was 250 g / L (about 4.5 M), the voltage increased as the energization amount increased, but other At the concentration, the voltage rise was significantly lower than that. Further, when the concentration of potassium hydroxide is 250 g / L (about 4.5 M), abnormalities such as deposition of white products on the surface of the cation exchange membrane and deformation of the membrane itself are remarkably observed. rice field.
〔試験例4〕
 陽極室に150g/Lの水酸化カリウム水溶液(アルカリ性)又は10g/Lの硫酸水溶液(酸性)を入れて、陽極電極として炭素板を用いた以外は試験例2と同様にして電解槽を用意した。陽極電流密度が3A/dm2の条件で通電し、通電前、通電10分後、及び、通電30分後の陽極室直上における塩素ガスの濃度を、塩素検知管(No.8La、ガステック株式会社製)により測定した。なお、陽極液の調製においては、残留塩素の影響を排除するためイオン交換水を用いた。結果を表4に示す。
[Test Example 4]
An electrolytic cell was prepared in the same manner as in Test Example 2 except that a 150 g / L potassium hydroxide aqueous solution (alkaline) or a 10 g / L sulfuric acid aqueous solution (acidic) was placed in the anode chamber and a carbon plate was used as the anode electrode. .. The chlorine gas concentration directly above the anode chamber before, 10 minutes after, and 30 minutes after energization is measured under the condition that the anode current density is 3 A / dm 2 , and the chlorine gas detector tube (No. 8La, Gastech Co., Ltd.) is used. Measured by the company). In the preparation of the anode solution, ion-exchanged water was used to eliminate the influence of residual chlorine. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 陽極液がアルカリ性の場合は、塩素ガスは発生しなかったが、陽極液が酸性の場合は、通電開始後から塩素ガスの臭気が認知され、検知管によって塩素ガスの発生が確認された。陽極液には塩化物イオンを添加していないため、この塩素ガスは、陰極室側から陽イオン交換膜を通過して混入した塩化物イオンに由来していると考えられる。 When the anolyte was alkaline, chlorine gas was not generated, but when the anolyte was acidic, the odor of chlorine gas was recognized after the start of energization, and the generation of chlorine gas was confirmed by the detector tube. Since no chloride ion was added to the anode solution, it is considered that this chlorine gas is derived from the chloride ion mixed through the cation exchange membrane from the cathode chamber side.
 このように、陽極液にアルカリ性水溶液を用いることで、陽極室内に塩化物イオンが混入したときの塩素ガスの発生を抑えることができ、かつ不溶性陽極の損耗も抑制できることが分かった。 As described above, it was found that by using an alkaline aqueous solution for the anode solution, it is possible to suppress the generation of chlorine gas when chloride ions are mixed in the anode chamber, and it is also possible to suppress the wear of the insoluble anode.

Claims (14)

  1.  被めっき物である陰極及び可溶性陽極を含む酸性めっき浴と、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを備える酸性めっきシステムであって、
     前記酸性めっき浴が、前記陽イオン交換膜を介して前記アルカリ性水溶液と接しており、前記アルカリ性水溶液中のアルカリ性物質の濃度が、4M以下である、酸性めっきシステム。
    An acidic plating system including an acidic plating bath containing a cathode and a soluble anode which are objects to be plated, a cation exchange membrane, and an alkaline aqueous solution containing an insoluble anode.
    An acidic plating system in which the acidic plating bath is in contact with the alkaline aqueous solution via the cation exchange membrane, and the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less.
  2.  前記アルカリ性水溶液中のアルカリ性物質の濃度が、0.4M以上である、請求項1に記載の酸性めっきシステム。 The acidic plating system according to claim 1, wherein the concentration of the alkaline substance in the alkaline aqueous solution is 0.4 M or more.
  3.  前記可溶性陽極が、亜鉛、ニッケル、マンガン、すず、銅及びコバルトからなる群から選択される1種以上の金属を含む、請求項1又は2に記載の酸性めっきシステム。 The acidic plating system according to claim 1 or 2, wherein the soluble anode contains one or more metals selected from the group consisting of zinc, nickel, manganese, tin, copper and cobalt.
  4.  前記不溶性陽極が、鉄、ニッケル、ステンレス、カーボン及びセラミックからなる群から選択される1種以上を含む、請求項1~3のいずれか1項に記載の酸性めっきシステム。 The acidic plating system according to any one of claims 1 to 3, wherein the insoluble anode contains at least one selected from the group consisting of iron, nickel, stainless steel, carbon and ceramic.
  5.  前記陽イオン交換膜が、耐酸性かつ耐アルカリ性である、請求項1~4のいずれか1項に記載の酸性めっきシステム。 The acid plating system according to any one of claims 1 to 4, wherein the cation exchange membrane is acid-resistant and alkali-resistant.
  6.  前記陽イオン交換膜と、前記不溶性陽極を含む前記アルカリ性水溶液とが、前記酸性めっき浴から分離可能なアノードセルに含まれている、請求項1~5のいずれか1項に記載の酸性めっきシステム。 The acidic plating system according to any one of claims 1 to 5, wherein the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath. ..
  7.  前記酸性めっき浴の量と前記アルカリ性水溶液の量との比が、体積比で10:1~60:1である、請求項1~6のいずれか1項に記載の酸性めっきシステム。 The acid plating system according to any one of claims 1 to 6, wherein the ratio of the amount of the acidic plating bath to the amount of the alkaline aqueous solution is 10: 1 to 60: 1 in volume ratio.
  8.  前記アルカリ性水溶液を補給する予備槽をさらに備える、請求項1~7のいずれか1項に記載の酸性めっきシステム。 The acid plating system according to any one of claims 1 to 7, further comprising a spare tank for replenishing the alkaline aqueous solution.
  9.  被めっき物である陰極及び可溶性陽極を含む酸性めっき浴と、陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを用意する工程であって、前記酸性めっき浴が、前記陽イオン交換膜を介して前記アルカリ性水溶液と接しており、前記アルカリ性水溶液中のアルカリ性物質の濃度が、4M以下である工程と、
     前記酸性めっき浴に通電し、前記被めっき物に皮膜を施す工程と
    を含むめっき方法。
    A step of preparing an acidic plating bath containing a cathode and a soluble anode as an object to be plated, a cation exchange film, and an alkaline aqueous solution containing an insoluble anode, wherein the acid plating bath passes through the cation exchange film. In a step in which the alkaline substance is in contact with the alkaline aqueous solution and the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less.
    A plating method including a step of energizing the acidic plating bath and applying a film to the object to be plated.
  10.  前記陽イオン交換膜と、前記不溶性陽極を含む前記アルカリ性水溶液とが、前記酸性めっき浴から分離可能なアノードセルに含まれている、請求項9に記載のめっき方法。 The plating method according to claim 9, wherein the cation exchange membrane and the alkaline aqueous solution containing the insoluble anode are contained in an anode cell separable from the acidic plating bath.
  11.  陽イオン交換膜と、不溶性陽極を含むアルカリ性水溶液とを備えるアノードセルであって、前記アルカリ性水溶液中のアルカリ性物質の濃度が、4M以下であり、酸性めっき浴中で陽極として使用されるものである、アノードセル。 An anode cell including a cation exchange membrane and an alkaline aqueous solution containing an insoluble anode, wherein the concentration of the alkaline substance in the alkaline aqueous solution is 4 M or less, and the anode is used as an anode in an acidic plating bath. , Anode cell.
  12.  前記アルカリ性水溶液中のアルカリ性物質の濃度が、0.4M以上である、請求項11に記載のアノードセル。 The anode cell according to claim 11, wherein the concentration of the alkaline substance in the alkaline aqueous solution is 0.4 M or more.
  13.  前記不溶性陽極が、鉄、ニッケル、ステンレス、カーボン及びセラミックからなる群から選択される1種以上を含む、請求項11又は12に記載のアノードセル。 The anode cell according to claim 11 or 12, wherein the insoluble anode contains at least one selected from the group consisting of iron, nickel, stainless steel, carbon and ceramic.
  14.  前記陽イオン交換膜が、耐酸性かつ耐アルカリ性である、請求項11~13のいずれか1項に記載のアノードセル。 The anode cell according to any one of claims 11 to 13, wherein the cation exchange membrane is acid-resistant and alkali-resistant.
PCT/JP2021/044069 2020-12-04 2021-12-01 Acidic plating system and anode cell WO2022118876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202032A JP2024016297A (en) 2020-12-04 2020-12-04 Acid plating system and anode cell
JP2020-202032 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118876A1 true WO2022118876A1 (en) 2022-06-09

Family

ID=81853260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044069 WO2022118876A1 (en) 2020-12-04 2021-12-01 Acidic plating system and anode cell

Country Status (2)

Country Link
JP (1) JP2024016297A (en)
WO (1) WO2022118876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714803A (en) * 2018-08-27 2021-04-27 叶涛 Plating solution production and regeneration process and device for insoluble anode acid copper electroplating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112500A (en) * 1980-02-09 1981-09-04 Ebara Yuujiraito Kk Method for electroplating
JP2006322069A (en) * 2005-04-19 2006-11-30 Yuken Industry Co Ltd Recovery type electrogalvanizing method and device
JP2017002370A (en) * 2015-06-12 2017-01-05 石川金属工業株式会社 Nickel electrodeposition recovery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112500A (en) * 1980-02-09 1981-09-04 Ebara Yuujiraito Kk Method for electroplating
JP2006322069A (en) * 2005-04-19 2006-11-30 Yuken Industry Co Ltd Recovery type electrogalvanizing method and device
JP2017002370A (en) * 2015-06-12 2017-01-05 石川金属工業株式会社 Nickel electrodeposition recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714803A (en) * 2018-08-27 2021-04-27 叶涛 Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
CN112714803B (en) * 2018-08-27 2022-11-08 叶涛 Plating solution production and regeneration process and device for insoluble anode acid copper electroplating

Also Published As

Publication number Publication date
JP2024016297A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN106550606B (en) Kirsite method for plating
JP5830202B1 (en) Zinc alloy plating method
WO2020166062A1 (en) Zinc or zinc alloy electroplating method and system
JP2007002274A (en) Zinc-nickel alloy plating method
WO2022118876A1 (en) Acidic plating system and anode cell
EP1292724B2 (en) Zinc-nickel electroplating
EP1639155B1 (en) Zinc and zinc-alloy electroplating
CN109642337A (en) Ternary zinc-nickel-ferroalloy and the alkaline electrolyte for this alloy to be electroplated
US8377283B2 (en) Zinc and zinc-alloy electroplating
US20060254923A1 (en) Low hydrogen embrittlement (LHE) zinc-nickel plating for high strength steels (HSS)
EP4083269A1 (en) Zinc-nickel-silica composite plating bath and method for plating using said plating bath
CN114787425A (en) Method and system for depositing zinc-nickel alloy on substrate
JP5728711B2 (en) Zincate-type zinc-based plating bath additive, zincate-type zinc-based plating bath, and method for producing zinc-based plated member
EP4269663A1 (en) Method and system for electroplating article with metal
JP5747359B2 (en) Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member
JP7233793B1 (en) Method and system for electroplating articles with metal
EP4067539A1 (en) Electroplating device and process for depositing nickel alloys with a solid replenisher
TW202132628A (en) Zinc-nickel plating bath and plating method using the bath
JP2024067618A (en) Electroplating brightener and electroplating bath containing same and method for electroplating an article with a metal
WO2023100381A1 (en) Method and system for electroplating article with metal
US20110108430A1 (en) Galvanization system and method of galvanizing treatment using thereof
US20110108431A1 (en) Galvanization system and method of galvanizing treatment using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP