WO2020166062A1 - Zinc or zinc alloy electroplating method and system - Google Patents

Zinc or zinc alloy electroplating method and system Download PDF

Info

Publication number
WO2020166062A1
WO2020166062A1 PCT/JP2019/005548 JP2019005548W WO2020166062A1 WO 2020166062 A1 WO2020166062 A1 WO 2020166062A1 JP 2019005548 W JP2019005548 W JP 2019005548W WO 2020166062 A1 WO2020166062 A1 WO 2020166062A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
alloy electroplating
zinc alloy
alkaline
anode
Prior art date
Application number
PCT/JP2019/005548
Other languages
French (fr)
Japanese (ja)
Inventor
俊寛 新鞍
章 橋本
井上 学
Original Assignee
ディップソール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディップソール株式会社 filed Critical ディップソール株式会社
Priority to PCT/JP2019/005548 priority Critical patent/WO2020166062A1/en
Priority to EP19766159.8A priority patent/EP3715506A4/en
Priority to CN201980001581.1A priority patent/CN110462107A/en
Priority to JP2019508981A priority patent/JP6582353B1/en
Priority to US16/577,895 priority patent/US20200263314A1/en
Publication of WO2020166062A1 publication Critical patent/WO2020166062A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Definitions

  • the present invention relates to a zinc or zinc alloy electroplating method and system. Specifically, when applying zinc or zinc alloy electroplating with excellent anticorrosion property to a steel member using an alkaline zinc or zinc alloy electroplating bath, a state in which the alkali resistant ceramics can conduct electricity on the conductive base material.
  • the present invention relates to an electroplating method and system that can be used for a long period of time while maintaining plating bath performance by using an anode coated with.
  • Zinc plating has been used as an inexpensive rust preventive plating that uses a bath containing a cyanide compound and hardly contains an organic compound.
  • a zinc plating bath that does not use a highly toxic cyanide compound has been studied, and a zinc plating bath containing an organic compound such as a quaternary amine polymer has been widely used.
  • this organic compound decomposes and disappears by anodic oxidation, dendrite deposition with poor adhesion results and good zinc rust preventive plating cannot be performed.
  • Zinc alloy plating is more widely used for automobile parts and the like because it has better corrosion resistance than zinc plating.
  • alkaline zinc nickel alloy plating baths are used for fuel parts that require high corrosion resistance and engine parts that are placed in high temperature environments.
  • the alkaline zinc-nickel alloy plating bath is a plating bath in which an amine-based chelating agent suitable for the eutectoid ratio of Ni is selected to dissolve nickel, and zinc and nickel are co-deposited on the plating film.
  • an amine-based chelating agent suitable for the eutectoid ratio of Ni is selected to dissolve nickel, and zinc and nickel are co-deposited on the plating film.
  • Japanese Patent Publication No. 2002-521572 discloses a method of separating an alkaline zinc nickel alloy plating bath (catholyte) and an acidic anolyte with a cation exchange membrane made of a perfluoropolymer.
  • an acidic solution is used as the anolyte
  • an expensive corrosion-resistant member such as platinum-plated titanium must be used for the anode.
  • the diaphragm is damaged, there is a possibility that an acidic solution on the anode side and an alkaline solution on the cathode side are mixed with each other to cause a rapid chemical reaction.
  • Japanese Unexamined Patent Publication No. 2007-2274 describes a method of solving the above-mentioned problems by using a cation exchange membrane and additionally supplying an alkaline component to an alkaline anolyte.
  • this method requires additional equipment, liquid management, etc., and the operation becomes complicated.
  • a cathode region including a cathode and an anode region including an anode are separated by an anion exchange membrane, and an alkaline zinc alloy plating solution is used as a catholyte contained in the cathode region
  • a method for performing zinc alloy electroplating using an alkaline aqueous solution as an anolyte contained in the anode region is described. According to this method, the oxidative decomposition of the amine-based chelating agent in the bath at the anode is suppressed, but anions move from the plating solution to the anode electrolyte, and sodium carbonate, sodium sulfate, and sodium oxalate rapidly increase.
  • Japanese Patent Publication No. 2008-539329 discloses a zinc alloy plating bath in which electrodes of a cathode and an anode are separated by a filtration membrane.
  • the present inventors have confirmed that the disclosed filtration membrane cannot prevent the migration of the catholyte and the anolyte, and cannot prevent the decomposition of the chelating agent at the anode. Further, since the zinc alloy plating solution is used as the anolyte, the decomposition of the anolyte is greatly promoted. Therefore, it is necessary to replace the anolyte, and if not replaced, the decomposed product moves into the cathode plating solution. Therefore, it has been found that the liquid life is not substantially extended.
  • the present invention suppresses oxidative decomposition of chelating agents and brighteners on the anode surface without using a special device such as an expensive anode cell, maintains zinc or zinc alloy plating bath performance, and achieves long life.
  • An object is to provide an inexpensive and economical plating method that can be performed.
  • the present invention uses an anode in which a conductive base material is coated with an alkali-resistant ceramic in a current-carrying state, whereby oxidative decomposition does not occur on the anode surface of the amine-based chelating agent in the bath, and plating bath performance is improved. It is based on the knowledge that it will be maintained. That is, the present invention provides the following zinc or zinc alloy electroplating method and system.
  • a zinc or zinc alloy electroplating method comprising energizing in an alkaline zinc or zinc alloy electroplating bath comprising a cathode and an anode,
  • the anode is an anode coated on a conductive base material in a state in which alkali resistant ceramics can conduct electricity
  • the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive, or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive, Oxidative decomposition of the organic compound additive in the alkaline zinc plating bath or the amine-based chelating agent and organic compound additive in the alkaline zinc alloy electroplating bath caused by oxidative decomposition on the surface of the anode is coated with alkali resistant ceramics.
  • the alkali resistant ceramic contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide.
  • the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, amine-based chelating agents, and organic compound additives, and the metal ions are nickel ions.
  • a zinc or zinc alloy electroplating system comprising an alkaline zinc or zinc alloy electroplating bath comprising a cathode and an anode,
  • the anode is an anode coated on a conductive base material in a state in which alkali resistant ceramics can conduct electricity
  • the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive, or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive, Oxidative decomposition of the organic compound additive in the alkaline zinc plating bath or the amine-based chelating agent and organic compound additive in the alkaline zinc alloy electroplating bath caused by oxidative decomposition on the surface of the anode is coated with alkali resistant ceramics.
  • the zinc or zinc alloy electroplating system is suppressed compared to when the same conductive substrate is not used as the anode.
  • the zinc or zinc alloy electroplating system according to the above [8], wherein the anode in which the alkali-resistant ceramic is coated on the conductive substrate in a conductive state comprises the conductive substrate and the alkali-resistant ceramic coating.
  • the alkali-resistant ceramic contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide.
  • the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, amine-based chelating agents, and organic compound additives, and the metal ions are nickel ions.
  • the result of the plating test (plating appearance) according to the Hull cell test of Example 1 is shown.
  • the result of the plating test (plating appearance) based on the Hull cell test of Example 2 is shown.
  • the result of the plating test (plating appearance) according to the Hull cell test of Example 3 is shown.
  • the result (plating appearance) of the plating test based on the Hull cell test of Comparative Example 1 is shown.
  • the result (plating appearance) of the plating test based on the Hull cell test of Comparative Example 2 is shown.
  • the result (film thickness distribution) of the plating test based on the Hull cell test of Example 1 is shown.
  • the result (Ni eutectoid rate distribution) of the plating test based on the Hull cell test of Example 1 is shown.
  • the result (film thickness distribution) of the plating test based on the Hull cell test of Example 2 is shown.
  • the result (Ni eutectoid rate distribution) of the plating test based on the Hull cell test of Example 2 is shown.
  • the result (film thickness distribution) of the plating test based on the Hull cell test of Example 3 is shown.
  • the result (Ni eutectoid distribution) of a plating test based on the Hull cell test of Example 3 is shown.
  • the result (film thickness distribution) of the plating test based on the Hull cell test of Comparative Example 1 is shown.
  • the result of the plating test (Ni eutectoid distribution) according to the Hull cell test of Comparative Example 1 is shown.
  • the result (film thickness distribution) of the plating test based on the Hull cell test of Comparative Example 2 is shown.
  • the result (Ni eutectoid rate distribution) of the plating test based on the Hull cell test of Comparative Example 2 is shown.
  • the zinc or zinc alloy electroplating method of the present invention includes energizing in an alkaline zinc alloy electroplating bath having a cathode and an anode.
  • the metal to be combined with zinc in the zinc alloy plating include one or more metals selected from nickel, iron, cobalt, tin and manganese. Specific examples include zinc-nickel alloy plating, zinc-iron alloy plating, zinc-cobalt alloy plating, zinc-manganese alloy plating, zinc-tin alloy plating, zinc-nickel-cobalt alloy plating, but not limited to these alloy platings. Absent.
  • the zinc alloy plating is zinc nickel alloy plating.
  • the cathode is an object to be plated that is electroplated with zinc or zinc alloy.
  • an anode in which an alkali-resistant ceramic is coated on a conductive base material in a state in which current can flow is used.
  • alkali-resistant ceramics include, but are not limited to, tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, boron carbide, and the like.
  • the alkali-resistant ceramic preferably contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide.
  • the coating film of alkali-resistant ceramics can be prepared on the conductive base material by, but not limited to, sintering, vapor phase plating, or a combination of vapor phase plating and anodization.
  • a suitable pretreatment such as etching can be performed on the conductive base material in order to obtain adhesion due to the anchor effect.
  • the arithmetic average roughness (Ra) of the surface is preferably 3 to 4 ⁇ m.
  • An ion exchange resin or the like may be top-coated on the coating film of the alkali-resistant ceramics.
  • the thickness of the alkali-resistant ceramic coating film is preferably about 0.1 to 50 ⁇ m. Particularly preferably, it is 0.5 to 1 ⁇ m.
  • the coating film of the alkali-resistant ceramics may be obtained by performing the above-described manufacturing method a plurality of times so that the total film thickness thereof falls within the above range.
  • the pore diameter in the alkali-resistant ceramic coating film is preferably about 0.1 to 5 ⁇ m. More preferably, it is 0.1 to 1 ⁇ m. If the pore size exceeds 5 ⁇ m, the effect of suppressing decomposition is reduced.
  • the state in which electricity can be applied means a state in which ions and the like can move due to the above-described holes and cracks.
  • the conductive base material is preferably iron, nickel, stainless steel, carbon, titanium, zirconium, niobium, tantalum, platinum, platinum-plated titanium, palladium-tin alloy or those coated with these, but if energizable, these It is not limited to.
  • the conductive substrate more preferably contains at least one of nickel and iron.
  • the anode in which the alkali resistant ceramic is coated on the conductive base material in a conductive state is preferably an anode composed of the conductive base material and the alkali resistant ceramic coating.
  • the alkaline zinc electroplating bath used in the present invention is an alkaline zinc plating bath containing an organic compound additive.
  • the alkaline zinc electroplating bath contains one or more organic compound additives selected from the group consisting of brightening agents, auxiliary additives such as leveling agents, and defoaming agents.
  • the alkaline zinc electroplating bath preferably contains a brightener.
  • the alkaline zinc alloy electroplating bath used in the present invention is an alkaline zinc alloy electroplating bath containing an amine-based chelating agent and an organic compound additive.
  • the alkaline zinc alloy electroplating bath is an amine-based chelating agent, an organic compound additive, and one or more selected from the group consisting of auxiliary additives such as brighteners and leveling agents, and defoaming agents. Contains organic compound additives.
  • the alkaline zinc alloy electroplating bath preferably contains a brightener.
  • the brightening agent is not particularly limited as long as it is a known brightening agent in a zinc-based plating bath.
  • Anionic surfactants such as polyoxyethylene lauryl ether sulfate and alkyldiphenyl ether disulfonate; (2) polyallylamine such as copolymers of diallyldimethylammonium chloride and sulfur dioxide; condensation polymers of ethylenediamine and epichlorohydrin, dimethyl Condensation polymer of aminopropylamine and epichlorohydrin, condensation polymer of imidazole and epichlorohydrin, condensation polymer of imidazole derivative such as 1-methylimidazole and 2-methylimidazole and epichlorohydrin, triazine derivative of acetoguanamine, benzoguanamine, etc.
  • Polyepoxypolyamines such as condensation polymers of heterocyclic amines and epichlorohydrin; condensation polymers of 3-dimethylaminopropylurea and epichlorohydrin, condensation polymers of bis(N,N-dimethylaminopropyl)urea and epichlorohydrin
  • Polyamine polyurea resin such as, Polyamide polyamine such as water-soluble nylon resin such as condensation polymer of N,N-dimethylaminopropylamine, alkylenedicarboxylic acid and epichlorohydrin; Diethylenetriamine, dimethylaminopropylamine and 2,2'- Condensation polymer with dichlorodiethyl ether, condensation polymer with dimethylaminopropylamine and 1,3-dichloropropane, N,N,N',N'-tetramethyl-1,3-diaminopropane and 1, Polyalkylene polyamines such as condensation polymers with 4-dichlorobutane, condensation poly
  • quaternary ammonium salts and aromatic aldehydes are preferable.
  • These brighteners may be used alone or in combination of two or more.
  • the concentration of the brightener in the alkaline zinc or zinc alloy electroplating bath is preferably 1 to 500 mg/L, more preferably 5 to 100 mg/L in the case of aromatic aldehydes, benzoic acid or salts thereof. In this case, it is preferably 0.01 to 10 g/L, more preferably 0.02 to 5 g/L.
  • the brightener may be a nitrogen-containing heterocyclic quaternary ammonium salt.
  • the nitrogen-containing heterocyclic quaternary ammonium salt brightener is more preferably a carboxy group- and/or hydroxy group-substituted nitrogen-containing heterocyclic quaternary ammonium salt.
  • Examples of the nitrogen-containing heterocycle of the nitrogen-containing heterocycle quaternary ammonium salt include a pyridine ring, a piperidine ring, an imidazole ring, an imidazoline ring, a pyrrolidine ring, a pyrazole ring, a quinoline ring and a morpholine ring, and a pyridine ring is preferable.
  • the carboxy group and/or the hydroxy group may be substituted on the nitrogen-containing heterocycle via a substituent such as a carboxymethyl group.
  • the nitrogen-containing heterocycle may have a substituent such as an alkyl group.
  • the N substituent forming the heterocyclic quaternary ammonium cation is not particularly limited as long as it does not inhibit the effect of containing the brightening agent, and examples thereof include a substituted or unsubstituted alkyl group, aryl group, and alkoxy group.
  • Examples of the counter anion forming a salt include compounds containing a halogen anion, an oxy anion, a borate anion, a sulfonate anion, a phosphate anion, an imide anion, and the like, and a halogen anion is preferable. Since such a quaternary ammonium salt contains both a quaternary ammonium cation and an oxyanion in the molecule, it also behaves as an anion, which is preferable.
  • nitrogen-containing heterocyclic quaternary ammonium salt compound examples include, for example, N-benzyl-3-carboxypyridinium chloride, N-phenethyl-4-carboxypyridinium chloride, N-butyl-3-carboxypyridinium bromide, N-chloro.
  • Methyl-3-carboxypyridinium bromide N-hexyl-6-hydroxy-3-carboxypyridinium chloride, N-hexyl-6-3-hydroxypropyl-3-carboxypyridinium chloride, N-2-hydroxyethyl-6-methoxy- 3-carboxypyridinium chloride, N-methoxy-6-methyl-3-carboxypyridinium chloride, N-propyl-2-methyl-6-phenyl-3-carboxypyridinium chloride, N-propyl-2-methyl-6-phenyl- 3-carboxyridinium chloride, N-benzyl-3-carboxmethylpyridinium chloride, 1-butyl-3-methyl-4-carboxyimidazololium bromide, 1-butyl-3-methyl-4-carboxymethylimidazololium bromide, 1-Butyl-2-hydroxymethyl-3-methylimidazololium chloride, 1-butyl-1-methyl-3-methylcarboxypyrroli
  • nitrogen-containing heterocyclic quaternary ammonium salts may be used alone or in combination of two or more kinds.
  • concentration of the nitrogen-containing heterocyclic quaternary ammonium salt in the alkaline zinc or zinc alloy electroplating bath is preferably 0.01 to 10 g/L, more preferably 0.02 to 5 g/L.
  • auxiliary additive examples include organic acids, silicates and mercapto compounds. These auxiliary additives may be used alone or in combination of two or more.
  • concentration of the auxiliary additive in the alkaline zinc or zinc alloy electroplating bath is preferably 0.01 to 50 g/L.
  • defoaming agent examples include a surfactant and the like. These antifoaming agents may be used alone or in combination of two or more kinds.
  • concentration of the defoaming agent in the alkaline zinc or zinc alloy electroplating bath is preferably 0.01 to 5 g/L.
  • amine-based chelating agent examples include alkyleneamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine; alkylene oxide adducts such as ethylene oxide adducts and propylene oxide adducts of the alkylene amines.
  • Amino alcohols such as ethanolamine, diethanolamine, triethanolamine, diisopropanolamine, triisopropanolamine, ethylenediaminetetra-2-propanol, N-(2-aminoethyl)ethanolamine, 2-hydroxyethylaminopropylamine; N- (2-hydroxyethyl)-N,N',N'-triethylethylenediamine, N,N'-di(2-hydroxyethyl)-N,N'-diethylethylenediamine, N,N,N',N'-tetrakis Alkanolamine compounds such as (2-hydroxyethyl)propylenediamine, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine; poly(alkyleneimines obtained from ethyleneimine, 1,2-propyleneimine, etc.
  • the amine-based chelating agent preferably contains at least one selected from the group consisting of alkyleneamine compounds, alkylene oxide adducts thereof, and alkanolamine compounds. These amine-based chelating agents may be used alone or in combination of two or more kinds.
  • the concentration of the amine-based chelating agent in the alkaline zinc or zinc alloy electroplating bath is preferably 5 to 200 g/L, more preferably 30 to 100 g/L.
  • the alkaline zinc or zinc alloy electroplating bath used in the present invention contains zinc ions.
  • the concentration of zinc ions in the alkaline zinc or zinc alloy electroplating bath is preferably 2 to 20 g/L, more preferably 4 to 12 g/L.
  • Examples of the zinc ion source include Na 2 [Zn(OH) 4 ], K 2 [Zn(OH) 4 ] and ZnO. These zinc ion sources may be used alone or in combination of two or more.
  • the alkaline zinc or zinc alloy electroplating bath used in the present invention preferably contains caustic. Examples of the caustic alkali include sodium hydroxide and potassium hydroxide, but sodium hydroxide is preferable.
  • the concentration of caustic alkali in the alkaline zinc or zinc alloy electroplating bath is preferably 60 to 200 g/L, more preferably 100 to 160 g/L.
  • the alkaline zinc alloy electroplating bath used in the present invention contains metal ions other than zinc.
  • the alkaline zinc alloy electroplating bath preferably contains, as the metal ions, one or more metal ions selected from the group consisting of nickel ions, iron ions, cobalt ions, tin ions, and manganese ions.
  • the total concentration of the metal ions in the alkaline zinc alloy electroplating bath is preferably 0.4 to 4 g/L, more preferably 1 to 3 g/L.
  • the metal ion source include nickel sulfate, ferrous sulfate, cobalt sulfate, stannous sulfate, and manganese sulfate. These metal ion sources may be used alone or in combination of two or more.
  • the alkaline zinc alloy electroplating bath used in the present invention is preferably an alkaline zinc nickel alloy electroplating bath containing nickel ions as the metal ions.
  • the alkaline zinc electroplating bath is preferably an alkaline zinc electroplating bath containing at least zinc ions, caustic, and an organic compound additive.
  • the alkaline zinc alloy electroplating bath is preferably an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, an amine chelating agent, and an organic compound additive, and the metal ions are nickel ions. At least one selected from the group consisting of iron ion, cobalt ion, tin ion, and manganese ion.
  • the temperature at which zinc or zinc alloy plating is performed is preferably 15°C to 40°C, more preferably 25 to 35°C.
  • the cathode current density when performing zinc or zinc alloy plating is preferably 0.1 to 20 A/dm 2 , and more preferably 0.2 to 10 A/dm 2 .
  • the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
  • Example 1 An alkaline zinc nickel alloy plating bath shown below was used using an anode plate (surface roughness Ra: 4 ⁇ m, 64 ⁇ 64 ⁇ 2 mm) in which tantalum oxide was coated on Ni to a thickness of 0.5 to 0.8 ⁇ m ( Zinc-nickel alloy plating was carried out by applying a current of 500 mL) and 500 Ah/L.
  • the pore diameter in the coating film was 0.1 to 1 ⁇ m, and the pumping out of the plating bath was 2 mL/Ah.
  • the cathode current density is 4 A/dm 2
  • the anode current density is 9.8 A/dm 2
  • the plating bath temperature is 25°C.
  • the plating bath was cooled and maintained at 25°C.
  • An iron plate was used for the cathode.
  • the iron plate of the cathode was replaced every 16 Ah/L during energization.
  • the zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc.
  • the nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol).
  • the caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant.
  • polyamine-based IZ-250YR1 manufactured by Dipsol
  • nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 manufactured by Dipsol
  • the amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB.
  • concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyanide in the catholyte were analyzed each time 250 Ah/L was applied.
  • Plating solution composition Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ]) Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 ⁇ 6H 2 O) Caustic soda concentration 130g/L Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L) Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
  • Example 2 Using an alkaline zinc nickel alloy plating bath shown below, using an anode plate (surface roughness Ra: 4 ⁇ m, 64 ⁇ 64 ⁇ 2 mm) in which Fe is coated with tantalum oxide in a thickness of 0.5 to 0.8 ⁇ m ( Zinc-nickel alloy plating was carried out by applying a current of 500 mL) and 500 Ah/L.
  • the pore diameter in the coating film was 0.1 to 1 ⁇ m, and the pumping out of the plating bath was 2 mL/Ah.
  • the cathode current density is 4 A/dm 2
  • the anode current density is 9.8 A/dm 2
  • the plating bath temperature is 25°C.
  • the plating bath was cooled and maintained at 25°C.
  • An iron plate was used for the cathode.
  • the iron plate of the cathode was replaced every 16 Ah/L during energization.
  • the zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc.
  • the nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol).
  • the caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant.
  • polyamine-based IZ-250YR1 manufactured by Dipsol
  • nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 manufactured by Dipsol
  • the amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB.
  • concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyanide in the catholyte were analyzed each time 250 Ah/L was applied.
  • Plating solution composition Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ]) Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 ⁇ 6H 2 O) Caustic soda concentration 130g/L Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L) Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
  • Example 3 An alkaline zinc nickel alloy plating bath shown below was used using an anode plate (surface roughness Ra: 4 ⁇ m, 64 ⁇ 64 ⁇ 2 mm) in which tantalum oxide was coated on Ni to a thickness of 0.5 to 0.8 ⁇ m ( Zinc-nickel alloy plating was carried out by applying a current of 500 mL) and 500 Ah/L.
  • the pore diameter in the coating film was 0.1 to 1 ⁇ m, and the pumping out of the plating bath was 2 mL/Ah.
  • the cathode current density is 2 A/dm 2
  • the anode current density is 4.9 A/dm 2
  • the plating bath temperature is 25° C.
  • the plating bath was cooled and maintained at 25°C.
  • An iron plate was used for the cathode.
  • the iron plate of the cathode was replaced every 16 Ah/L during energization.
  • the zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc.
  • the nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol).
  • the caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant.
  • polyamine-based IZ-250YR1 manufactured by Dipsol
  • nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 manufactured by Dipsol
  • the amine chelating agent tetraethylenepentamine was supplied at a supply rate of 40 mL/kAh.
  • the concentration of the amine-based chelating agent and the concentration of cyan in the catholyte were analyzed every 250 Ah/L energization. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 2.
  • the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured. These results are shown in FIGS. 3, 10 and 11, respectively.
  • the conditions of the plating test based on the Hull cell test are 2A-20 minutes and 25°C.
  • Plating solution composition Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ]) Ni ion concentration 1.2 g / L (Ni ion source NiSO 4 ⁇ 6H 2 O) Caustic soda concentration 130g/L Amine type chelating agent (tetraethylene pentamine) 30g/L Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L) Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
  • the zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc.
  • the nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol).
  • the caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant.
  • polyamine-based IZ-250YR1 manufactured by Dipsol
  • nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 manufactured by Dipsol were supplied at a replenishment rate of 15 mL/kAh and 15 mL/kAh, respectively. did.
  • the amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB.
  • the concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyan were analyzed each time 250 Ah/L was applied. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 1. Further, the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured.
  • Plating solution composition Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ]) Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 ⁇ 6H 2 O) Caustic soda concentration 130g/L Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L) Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
  • the plating bath was cooled and maintained at 25°C.
  • An iron plate was used for the cathode.
  • the iron plate of the cathode was replaced every 16 Ah/L during energization.
  • the zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc.
  • the nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol).
  • the caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant.
  • polyamine-based IZ-250YR1 manufactured by Dipsol
  • nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 manufactured by Dipsol
  • the amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB.
  • concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyanide in the catholyte were analyzed each time 250 Ah/L was applied.
  • Plating solution composition Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ]) Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 ⁇ 6H 2 O) Caustic soda concentration 130g/L Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L) Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
  • Table 2 Changes in amine-based chelating agent concentration and cyan concentration, and presence or absence of precipitation Examples 1 to 3 have the following effects as compared with Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention provides a zinc or zinc alloy electroplating method comprising distributing electricity in an alkaline zinc or zinc alloy electroplating bath equipped with a cathode and an anode, wherein the anode comprises an electrically conductive base material which is coated with an alkali-resistant ceramic in a current-distributable manner, the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive, and the oxidative decomposition of the organic compound additive in the alkaline zinc plating bath at the surface of the anode or the oxidative decomposition of the amine chelating agent and the organic compound additive in the alkaline zinc alloy electroplating bath at the surface of the anode due to the distribution of electricity is reduced compared with the case where the same electrically conductive base material that is not coated with the alkali-resistant ceramic is used as the anode.

Description

亜鉛又は亜鉛合金電気めっき方法及びシステムZinc or zinc alloy electroplating method and system
 本発明は、亜鉛又は亜鉛合金電気めっき方法及びシステムに関する。詳細には、鋼部材などに、アルカリ性亜鉛又は亜鉛合金電気めっき浴を用いて防食性にすぐれた亜鉛又は亜鉛合金電気めっきを施す際に、導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極を使用することにより、めっき浴性能を維持しながら長期に使用できる電気めっき方法及びシステムに関する。 The present invention relates to a zinc or zinc alloy electroplating method and system. Specifically, when applying zinc or zinc alloy electroplating with excellent anticorrosion property to a steel member using an alkaline zinc or zinc alloy electroplating bath, a state in which the alkali resistant ceramics can conduct electricity on the conductive base material. The present invention relates to an electroplating method and system that can be used for a long period of time while maintaining plating bath performance by using an anode coated with.
 亜鉛めっきは、シアン化合物を含有した浴を用い有機化合物をほとんど含有しない安価な防錆めっきとして使用されてきた。しかし、近年毒性の強いシアン化合物を用いない亜鉛めっき浴が検討され、4級アミンポリマーなどの有機化合物を含有した亜鉛めっき浴が普及している。ただし、この有機化合物が陽極酸化で分解消失すると密着性の悪いデンドライト析出となり良好な亜鉛防錆めっきができなくなる。
 亜鉛合金めっきは、亜鉛めっきに比べて優れた耐食性を有することから、自動車部品などに幅広く使用されている。特に、アルカリ性亜鉛ニッケル合金めっき浴は、高い耐食性が要求される燃料部品や高温環境下に置かれるエンジン部品に使用されている。アルカリ性亜鉛ニッケル合金めっき浴は、Ni共析率に適したアミン系キレート剤を選定してニッケルを溶解させ、めっき皮膜に亜鉛とニッケルを共析させるめっき浴である。しかし、アルカリ性亜鉛ニッケル合金めっき浴を用いて電気めっきを実施する場合、通電時の陽極表面でのアミン系キレート剤の酸化分解が問題となる。ニッケルイオンや鉄イオンなどの鉄系金属イオンが共存する場合、これらが酸化触媒となりさらにアミン系キレート剤の酸化分解が促進される。よって、アルカリ性亜鉛ニッケル合金めっき浴が陽極と接触するとアミン系キレート剤は急速に分解して、めっき性能が急速に低下することになる。この分解物の蓄積により電流効率の低下、浴電圧の上昇、めっき膜厚の減少、めっき皮膜中のニッケル含有率の低下、めっき可能な電流密度範囲の縮小、光沢の低下、CODの上昇など多くの問題が発生する。このため、めっき浴を長期に使用することができず、めっき浴を交換しなければならなかった。
Zinc plating has been used as an inexpensive rust preventive plating that uses a bath containing a cyanide compound and hardly contains an organic compound. However, in recent years, a zinc plating bath that does not use a highly toxic cyanide compound has been studied, and a zinc plating bath containing an organic compound such as a quaternary amine polymer has been widely used. However, if this organic compound decomposes and disappears by anodic oxidation, dendrite deposition with poor adhesion results and good zinc rust preventive plating cannot be performed.
Zinc alloy plating is more widely used for automobile parts and the like because it has better corrosion resistance than zinc plating. In particular, alkaline zinc nickel alloy plating baths are used for fuel parts that require high corrosion resistance and engine parts that are placed in high temperature environments. The alkaline zinc-nickel alloy plating bath is a plating bath in which an amine-based chelating agent suitable for the eutectoid ratio of Ni is selected to dissolve nickel, and zinc and nickel are co-deposited on the plating film. However, when electroplating is performed using an alkaline zinc-nickel alloy plating bath, oxidative decomposition of the amine-based chelating agent on the surface of the anode during energization becomes a problem. When iron-based metal ions such as nickel ions and iron ions coexist, these serve as an oxidation catalyst and further accelerate the oxidative decomposition of the amine-based chelating agent. Therefore, when the alkaline zinc-nickel alloy plating bath comes into contact with the anode, the amine-based chelating agent is rapidly decomposed and the plating performance is rapidly lowered. Accumulation of this decomposition product causes a decrease in current efficiency, an increase in bath voltage, a decrease in plating film thickness, a decrease in the nickel content in the plating film, a reduction in the current density range that can be plated, a decrease in gloss, and an increase in COD. Problem occurs. For this reason, the plating bath cannot be used for a long period of time, and the plating bath had to be replaced.
 これを改善するための方法として、これまでにいくつかの方法が知られている。例えば、特表2002-521572号公報にはアルカリ性亜鉛ニッケル合金めっき浴(陰極液)と酸性の陽極液とを、ペルフルオロポリマからなる陽イオン交換膜で分離する方法が開示されている。しかしながら、陽極液に酸性液を用いる場合、陽極には白金めっきされたチタン等の高価な耐腐食性部材を使用しなければならい。また、隔膜が破損したときには、陽極側の酸性溶液と陰極側のアルカリ性溶液が混ざり合って急激な化学反応を起こす事故の可能性もある。一方、酸性液に代えて、陽極液にアルカリ性液を用いた場合、通電によって陽極液が陰極液に急激に移動し、陽極液の液面低下と陰極液の液面上昇が同時に発生することが、本発明者らのめっき試験によって明らかとなった。
 特開2007-2274号公報には、前記問題点を解決する方法として、カチオン交換膜を用い、アルカリ性の陽極液にアルカリ成分を追加補給する方法が記載されている。しかしながら、この方法は追加の設備や液管理等が必要であり、操作が煩雑になる。
 また、国際公開第2016/075963号には、陰極を含む陰極領域と陽極を含む陽極領域とを陰イオン交換膜で分離し、陰極領域に含まれる陰極液としてアルカリ性亜鉛合金めっき液を使用し、陽極領域に含まれる陽極液としてアルカリ性水溶液を使用して、亜鉛合金電気めっきを行う方法が記載されている。この方法によれば、浴中のアミン系キレート剤の陽極での酸化分解は抑制されるが、めっき液から陽極電解液に陰イオンが移動、炭酸ナトリウム、硫酸ナトリウム、シュウ酸ナトリウムが急激に増加して、膜に沈殿、析出し膜を破壊する問題があり、その防止の為に陽極液の不純物濃度管理と頻繁な陽極液の更新が必要であった。また、アノードセルの導入には、非常に高額な設備投資と陽極液の循環タンク、配管など広い設置場所が必要であること、アノードセルのメンテナンスや定期的な膜交換なども必要になり、経済的でなかった。
 また、特表2008-539329号公報には、陰極と陽極の電極間をろ過膜によって分離した亜鉛合金めっき浴が開示されている。しかし、本発明者らが確認したところ、開示のろ過膜では陰極液と陽極液の移動を防止することはできず、陽極でのキレート剤の分解を防止することはできないことが判明した。また、陽極液にも亜鉛合金めっき液を使用するため、陽極液の分解が非常に促進される。したがって、陽極液の交換が必要になり、交換しない場合は分解物が陰極のめっき液中に移動する。このため液寿命を実質的には延ばすことにならないことが解った。
Several methods have been known so far as methods for improving this. For example, Japanese Patent Publication No. 2002-521572 discloses a method of separating an alkaline zinc nickel alloy plating bath (catholyte) and an acidic anolyte with a cation exchange membrane made of a perfluoropolymer. However, when an acidic solution is used as the anolyte, an expensive corrosion-resistant member such as platinum-plated titanium must be used for the anode. Further, when the diaphragm is damaged, there is a possibility that an acidic solution on the anode side and an alkaline solution on the cathode side are mixed with each other to cause a rapid chemical reaction. On the other hand, when an alkaline solution is used as the anolyte instead of the acidic solution, the anolyte may rapidly move to the catholyte due to energization, and the lowering of the anolyte and the rising of the catholyte may occur at the same time. It became clear by the plating test by the present inventors.
Japanese Unexamined Patent Publication No. 2007-2274 describes a method of solving the above-mentioned problems by using a cation exchange membrane and additionally supplying an alkaline component to an alkaline anolyte. However, this method requires additional equipment, liquid management, etc., and the operation becomes complicated.
Further, in WO 2016/075963, a cathode region including a cathode and an anode region including an anode are separated by an anion exchange membrane, and an alkaline zinc alloy plating solution is used as a catholyte contained in the cathode region, A method for performing zinc alloy electroplating using an alkaline aqueous solution as an anolyte contained in the anode region is described. According to this method, the oxidative decomposition of the amine-based chelating agent in the bath at the anode is suppressed, but anions move from the plating solution to the anode electrolyte, and sodium carbonate, sodium sulfate, and sodium oxalate rapidly increase. Then, there is a problem that the film precipitates and precipitates to destroy the film, and in order to prevent this, it was necessary to control the impurity concentration of the anolyte and frequently update the anolyte. In addition, the introduction of an anode cell requires a very large amount of capital investment and a wide installation site such as an anolyte circulation tank and piping, and also requires maintenance of the anode cell and periodic membrane replacement, which is economical. It was not the target.
In addition, Japanese Patent Publication No. 2008-539329 discloses a zinc alloy plating bath in which electrodes of a cathode and an anode are separated by a filtration membrane. However, the present inventors have confirmed that the disclosed filtration membrane cannot prevent the migration of the catholyte and the anolyte, and cannot prevent the decomposition of the chelating agent at the anode. Further, since the zinc alloy plating solution is used as the anolyte, the decomposition of the anolyte is greatly promoted. Therefore, it is necessary to replace the anolyte, and if not replaced, the decomposed product moves into the cathode plating solution. Therefore, it has been found that the liquid life is not substantially extended.
 本発明は、高価なアノードセルなど特別な装置を用いることもなく、陽極表面でのキレート剤や光沢剤の酸化分解が抑制され、亜鉛又は亜鉛合金めっき浴性能を維持して長寿命化を達成することができる安価で経済的なめっき方法を提供することを課題とする。 The present invention suppresses oxidative decomposition of chelating agents and brighteners on the anode surface without using a special device such as an expensive anode cell, maintains zinc or zinc alloy plating bath performance, and achieves long life. An object is to provide an inexpensive and economical plating method that can be performed.
 本発明は、導電性基材上に耐アルカリ性セラミックスを通電可能な状態でコーティングした陽極を使用することにより、浴中のアミン系キレート剤の陽極表面での酸化分解が起こらず、めっき浴性能が維持されるとの知見に基づいてなされたものである。すなわち、本発明は、以下に示す亜鉛又は亜鉛合金電気めっき方法及びシステムを提供する。
〔1〕
 陰極と陽極を備えたアルカリ性亜鉛又は亜鉛合金電気めっき浴において通電することを含む亜鉛又は亜鉛合金電気めっき方法であって、
 陽極が、導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極であり、
 アルカリ性亜鉛又は亜鉛合金電気めっき浴が、有機化合物添加剤を含有するアルカリ性亜鉛めっき浴であるか、又はアミン系キレート剤及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、
 アルカリ性亜鉛めっき浴中の有機化合物添加剤の、又はアルカリ性亜鉛合金電気めっき浴中のアミン系キレート剤及び有機化合物添加剤の通電による前記陽極の表面での酸化分解が、耐アルカリ性セラミックスがコーティングされていない同じ導電性基材を陽極として使用した場合と比較して、抑制されている、亜鉛又は亜鉛合金電気めっき方法。
〔2〕
 導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極が、導電性基材及び耐アルカリ性セラミックスコーティングからなる、上記〔1〕に記載の亜鉛又は亜鉛合金電気めっき方法。
〔3〕
 前記導電性基材がニッケル及び鉄の少なくとも1種を含有する、上記〔1〕又は〔2〕に記載の亜鉛又は亜鉛合金電気めっき方法。
〔4〕
 前記耐アルカリ性セラミックスが、酸化タンタル、酸化アルミニウム、窒化タンタル、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、及び炭化ホウ素からなる群より選ばれる少なくとも1種を含有する、上記〔1〕~〔3〕のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。
〔5〕
 前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、苛性アルカリ、及び有機化合物添加剤を含有するアルカリ性亜鉛電気めっき浴である、上記〔1〕~〔4〕のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。
〔6〕
 前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、金属イオン、苛性アルカリ、アミン系キレート剤、及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、前記金属イオンが、ニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンからなる群より選ばれる少なくとも1種を含有する、上記〔1〕~〔4〕のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。
〔7〕
 アミン系キレート剤が、アルキレンアミン化合物、そのアルキレンオキサイド付加物、及びアルカノールアミン化合物からなる群より選ばれる少なくとも1種を含有する、上記〔6〕に記載の亜鉛又は亜鉛合金電気めっき方法。
〔8〕
 陰極と陽極を備えたアルカリ性亜鉛又は亜鉛合金電気めっき浴を含む亜鉛又は亜鉛合金電気めっきシステムであって、
 陽極が、導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極であり、
 アルカリ性亜鉛又は亜鉛合金電気めっき浴が、有機化合物添加剤を含有するアルカリ性亜鉛めっき浴であるか、又はアミン系キレート剤及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、
 アルカリ性亜鉛めっき浴中の有機化合物添加剤の、又はアルカリ性亜鉛合金電気めっき浴中のアミン系キレート剤及び有機化合物添加剤の通電による前記陽極の表面での酸化分解が、耐アルカリ性セラミックスがコーティングされていない同じ導電性基材を陽極として使用した場合と比較して、抑制されている、亜鉛又は亜鉛合金電気めっきシステム。
〔9〕
 導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極が、導電性基材及び耐アルカリ性セラミックスコーティングからなる、上記〔8〕に記載の亜鉛又は亜鉛合金電気めっきシステム。
〔10〕
 前記導電性基材がニッケル及び鉄の少なくとも1種を含有する、上記〔8〕又は〔9〕に記載の亜鉛又は亜鉛合金電気めっきシステム。
〔11〕
 前記耐アルカリ性セラミックスが、酸化タンタル、酸化アルミニウム、窒化タンタル、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、及び炭化ホウ素からなる群より選ばれる少なくとも1種を含有する、上記〔8〕~〔10〕のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。
〔12〕
 前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、苛性アルカリ、及び有機化合物添加剤を含有するアルカリ性亜鉛電気めっき浴である、上記〔8〕~〔11〕のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。
〔13〕
 前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、金属イオン、苛性アルカリ、アミン系キレート剤、及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、前記金属イオンが、ニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンからなる群より選ばれる少なくとも1種を含有する、上記〔8〕~〔11〕のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。
〔14〕
 アミン系キレート剤が、アルキレンアミン化合物、そのアルキレンオキサイド付加物、及びアルカノールアミン化合物からなる群より選ばれる少なくとも1種を含有する、上記〔13〕に記載の亜鉛又は亜鉛合金電気めっき方法。
INDUSTRIAL APPLICABILITY The present invention uses an anode in which a conductive base material is coated with an alkali-resistant ceramic in a current-carrying state, whereby oxidative decomposition does not occur on the anode surface of the amine-based chelating agent in the bath, and plating bath performance is improved. It is based on the knowledge that it will be maintained. That is, the present invention provides the following zinc or zinc alloy electroplating method and system.
[1]
A zinc or zinc alloy electroplating method comprising energizing in an alkaline zinc or zinc alloy electroplating bath comprising a cathode and an anode,
The anode is an anode coated on a conductive base material in a state in which alkali resistant ceramics can conduct electricity,
The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive, or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive,
Oxidative decomposition of the organic compound additive in the alkaline zinc plating bath or the amine-based chelating agent and organic compound additive in the alkaline zinc alloy electroplating bath caused by oxidative decomposition on the surface of the anode is coated with alkali resistant ceramics. A suppressed zinc or zinc alloy electroplating method compared to the case where the same conductive substrate is not used as the anode.
[2]
The zinc or zinc alloy electroplating method according to the above [1], wherein the anode in which the alkali-resistant ceramic is coated on the conductive substrate in a conductive state comprises the conductive substrate and the alkali-resistant ceramic coating.
[3]
The zinc or zinc alloy electroplating method according to the above [1] or [2], wherein the conductive substrate contains at least one of nickel and iron.
[4]
The above-mentioned [1] to [3], wherein the alkali resistant ceramic contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide. ] The zinc or zinc alloy electroplating method of any one of these.
[5]
The alkaline zinc electroplating bath according to any one of [1] to [4] above, wherein the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc electroplating bath containing at least zinc ions, caustic, and an organic compound additive. Zinc or zinc alloy electroplating method.
[6]
The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, amine-based chelating agents, and organic compound additives, and the metal ions are nickel ions. The zinc or zinc alloy electroplating method according to any one of the above [1] to [4], containing at least one selected from the group consisting of, iron ions, cobalt ions, tin ions, and manganese ions.
[7]
The zinc or zinc alloy electroplating method according to the above [6], wherein the amine-based chelating agent contains at least one selected from the group consisting of an alkyleneamine compound, an alkylene oxide adduct thereof, and an alkanolamine compound.
[8]
A zinc or zinc alloy electroplating system comprising an alkaline zinc or zinc alloy electroplating bath comprising a cathode and an anode,
The anode is an anode coated on a conductive base material in a state in which alkali resistant ceramics can conduct electricity,
The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive, or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive,
Oxidative decomposition of the organic compound additive in the alkaline zinc plating bath or the amine-based chelating agent and organic compound additive in the alkaline zinc alloy electroplating bath caused by oxidative decomposition on the surface of the anode is coated with alkali resistant ceramics. The zinc or zinc alloy electroplating system is suppressed compared to when the same conductive substrate is not used as the anode.
[9]
The zinc or zinc alloy electroplating system according to the above [8], wherein the anode in which the alkali-resistant ceramic is coated on the conductive substrate in a conductive state comprises the conductive substrate and the alkali-resistant ceramic coating.
[10]
The zinc or zinc alloy electroplating system according to the above [8] or [9], wherein the conductive substrate contains at least one of nickel and iron.
[11]
[8] to [10], wherein the alkali-resistant ceramic contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide. ] The zinc or zinc alloy electroplating method of any one of these.
[12]
The alkaline zinc electroplating bath according to any one of [8] to [11] above, wherein the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc electroplating bath containing at least zinc ions, caustic, and an organic compound additive. Zinc or zinc alloy electroplating method.
[13]
The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, amine-based chelating agents, and organic compound additives, and the metal ions are nickel ions. The zinc or zinc alloy electroplating method according to any one of the above [8] to [11], containing at least one selected from the group consisting of, iron ions, cobalt ions, tin ions, and manganese ions.
[14]
The zinc or zinc alloy electroplating method according to the above [13], wherein the amine-based chelating agent contains at least one selected from the group consisting of an alkyleneamine compound, an alkylene oxide adduct thereof, and an alkanolamine compound.
  本発明によると、経済的で亜鉛又は亜鉛合金電気めっき浴性能を維持して長寿命化を達成することができるめっき方法及びシステムを提供することができる。 According to the present invention, it is possible to provide a plating method and system which are economical and can maintain zinc or zinc alloy electroplating bath performance and achieve a long life.
実施例1のハルセル試験に準ずるめっき試験の結果(めっき外観)を示す。The result of the plating test (plating appearance) according to the Hull cell test of Example 1 is shown. 実施例2のハルセル試験に準ずるめっき試験の結果(めっき外観)を示す。The result of the plating test (plating appearance) based on the Hull cell test of Example 2 is shown. 実施例3のハルセル試験に準ずるめっき試験の結果(めっき外観)を示す。The result of the plating test (plating appearance) according to the Hull cell test of Example 3 is shown. 比較例1のハルセル試験に準ずるめっき試験の結果(めっき外観)を示す。The result (plating appearance) of the plating test based on the Hull cell test of Comparative Example 1 is shown. 比較例2のハルセル試験に準ずるめっき試験の結果(めっき外観)を示す。The result (plating appearance) of the plating test based on the Hull cell test of Comparative Example 2 is shown. 実施例1のハルセル試験に準ずるめっき試験の結果(膜厚分布)を示す。The result (film thickness distribution) of the plating test based on the Hull cell test of Example 1 is shown. 実施例1のハルセル試験に準ずるめっき試験の結果(Ni共析率分布)を示す。The result (Ni eutectoid rate distribution) of the plating test based on the Hull cell test of Example 1 is shown. 実施例2のハルセル試験に準ずるめっき試験の結果(膜厚分布)を示す。The result (film thickness distribution) of the plating test based on the Hull cell test of Example 2 is shown. 実施例2のハルセル試験に準ずるめっき試験の結果(Ni共析率分布)を示す。The result (Ni eutectoid rate distribution) of the plating test based on the Hull cell test of Example 2 is shown. 実施例3のハルセル試験に準ずるめっき試験の結果(膜厚分布)を示す。The result (film thickness distribution) of the plating test based on the Hull cell test of Example 3 is shown. 実施例3のハルセル試験に準ずるめっき試験の結果(Ni共析率分布)を示す。The result (Ni eutectoid distribution) of a plating test based on the Hull cell test of Example 3 is shown. 比較例1のハルセル試験に準ずるめっき試験の結果(膜厚分布)を示す。The result (film thickness distribution) of the plating test based on the Hull cell test of Comparative Example 1 is shown. 比較例1のハルセル試験に準ずるめっき試験の結果(Ni共析率分布)を示す。The result of the plating test (Ni eutectoid distribution) according to the Hull cell test of Comparative Example 1 is shown. 比較例2のハルセル試験に準ずるめっき試験の結果(膜厚分布)を示す。The result (film thickness distribution) of the plating test based on the Hull cell test of Comparative Example 2 is shown. 比較例2のハルセル試験に準ずるめっき試験の結果(Ni共析率分布)を示す。The result (Ni eutectoid rate distribution) of the plating test based on the Hull cell test of Comparative Example 2 is shown.
  本発明の亜鉛又は亜鉛合金電気めっき方法は、陰極と陽極を備えたアルカリ亜鉛合金電気めっき浴において通電することを含む。
 亜鉛合金めっきとして亜鉛と組み合わされる金属としては、例えばニッケル、鉄、コバルト、スズ、マンガンから選ばれる1種類以上の金属が挙げられる。具体的には、亜鉛ニッケル合金めっき、亜鉛鉄合金めっき、亜鉛コバルト合金めっき、亜鉛マンガン合金めっき、亜鉛スズ合金めっき、亜鉛ニッケルコバルト合金めっきなどがあるが、これらの合金めっきに限定されるものではない。好ましくは、亜鉛合金めっきは亜鉛ニッケル合金めっきである。
 陰極は、亜鉛又は亜鉛合金電気めっきが施される被めっき物である。被めっき物としては、鉄、ニッケル、銅などの各種金属、及びこれらの合金、あるいは亜鉛置換処理を施したアルミニウムなどの金属や合金の板状物、直方体、円柱、円筒、球状物など種々の形状のものが挙げられる。
The zinc or zinc alloy electroplating method of the present invention includes energizing in an alkaline zinc alloy electroplating bath having a cathode and an anode.
Examples of the metal to be combined with zinc in the zinc alloy plating include one or more metals selected from nickel, iron, cobalt, tin and manganese. Specific examples include zinc-nickel alloy plating, zinc-iron alloy plating, zinc-cobalt alloy plating, zinc-manganese alloy plating, zinc-tin alloy plating, zinc-nickel-cobalt alloy plating, but not limited to these alloy platings. Absent. Preferably, the zinc alloy plating is zinc nickel alloy plating.
The cathode is an object to be plated that is electroplated with zinc or zinc alloy. As the object to be plated, various metals such as iron, nickel, copper and the like, and alloys thereof, or plates of metal or alloy such as aluminum subjected to zinc substitution treatment, rectangular parallelepiped, cylinder, cylinder, spherical substance The thing of a shape is mentioned.
 陽極には、導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極を使用する。耐アルカリ性セラミックスとしては、酸化タンタル、酸化アルミニウム、窒化タンタル、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、炭化ホウ素などが挙げられるがこれに限定されない。耐アルカリ性セラミックスは、好ましくは酸化タンタル、酸化アルミニウム、窒化タンタル、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、及び炭化ホウ素からなる群より選ばれる少なくとも1種を含有する。耐アルカリ性セラミックスのコーティング皮膜は、焼結、気相めっき、気相めっきと陽極酸化などの組み合わせで導電性基材上に作製することができるが、これに限定されるものではない。また、導電性基材に対して、アンカー効果による密着性を得る為にエッチングなどの適した前処理を行うことができる。この場合、例えば表面の算術平均粗さ(Ra)は、好ましくは3~4μmである。なお、耐アルカリ性セラミックスのコーティング皮膜上には、イオン交換樹脂等をトップコートしてもよい。
 耐アルカリ性セラミックスのコーティング皮膜の膜厚は、おおよそ0.1~50μmであることが好ましい。特に好ましくは0.5~1μmである。前記膜厚が厚過ぎると通電性が低下し、薄過ぎると分解抑制効果が低下する。耐アルカリ性セラミックスのコーティング皮膜は、上述の作製方法を複数回行ってその合計膜厚を上記範囲としてもよい。耐アルカリ性セラミックスのコーティング皮膜中の空孔径は、おおよそ0.1~5μmが好ましい。さらに好ましくは0.1~1μmである。空孔径が5μmを越えると分解抑制効果が低下する。ここで、通電可能な状態とは、上述の空孔やクラックなどによりイオン等が移動可能である状態を意味する。
 導電性基材は、鉄、ニッケル、ステンレス、カーボン、チタン、ジルコニウム、ニオブ、タンタル、白金、白金メッキチタン、パラジウム―スズ合金またはそれらでコーティングされたものが好ましいが、通電可能であれば、これらに限定されるものではない。導電性基材は、より好ましくはニッケル及び鉄の少なくとも1種を含有する。
 導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極は、好ましくは導電性基材及び耐アルカリ性セラミックスコーティングからなる陽極である。
As the anode, an anode in which an alkali-resistant ceramic is coated on a conductive base material in a state in which current can flow is used. Examples of alkali-resistant ceramics include, but are not limited to, tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, boron carbide, and the like. The alkali-resistant ceramic preferably contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide. The coating film of alkali-resistant ceramics can be prepared on the conductive base material by, but not limited to, sintering, vapor phase plating, or a combination of vapor phase plating and anodization. In addition, a suitable pretreatment such as etching can be performed on the conductive base material in order to obtain adhesion due to the anchor effect. In this case, for example, the arithmetic average roughness (Ra) of the surface is preferably 3 to 4 μm. An ion exchange resin or the like may be top-coated on the coating film of the alkali-resistant ceramics.
The thickness of the alkali-resistant ceramic coating film is preferably about 0.1 to 50 μm. Particularly preferably, it is 0.5 to 1 μm. If the film thickness is too thick, the electrical conductivity will decrease, and if it is too thin, the decomposition suppressing effect will decrease. The coating film of the alkali-resistant ceramics may be obtained by performing the above-described manufacturing method a plurality of times so that the total film thickness thereof falls within the above range. The pore diameter in the alkali-resistant ceramic coating film is preferably about 0.1 to 5 μm. More preferably, it is 0.1 to 1 μm. If the pore size exceeds 5 μm, the effect of suppressing decomposition is reduced. Here, the state in which electricity can be applied means a state in which ions and the like can move due to the above-described holes and cracks.
The conductive base material is preferably iron, nickel, stainless steel, carbon, titanium, zirconium, niobium, tantalum, platinum, platinum-plated titanium, palladium-tin alloy or those coated with these, but if energizable, these It is not limited to. The conductive substrate more preferably contains at least one of nickel and iron.
The anode in which the alkali resistant ceramic is coated on the conductive base material in a conductive state is preferably an anode composed of the conductive base material and the alkali resistant ceramic coating.
 本発明で用いられるアルカリ性亜鉛電気めっき浴は、有機化合物添加剤を含有するアルカリ性亜鉛めっき浴である。好ましくは、アルカリ性亜鉛電気めっき浴は、光沢剤、平滑剤等の補助添加剤、及び消泡剤からなる群より選ばれる1種以上の有機化合物添加剤を含有する。アルカリ性亜鉛電気めっき浴は、光沢剤を含むのが好ましい。
 本発明で用いられるアルカリ性亜鉛合金電気めっき浴は、アミン系キレート剤及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴である。好ましくは、アルカリ性亜鉛合金電気めっき浴は、アミン系キレート剤、並びに有機化合物添加剤であって、光沢剤、平滑剤等の補助添加剤、及び消泡剤からなる群より選ばれる1種以上の有機化合物添加剤を含有する。アルカリ性亜鉛合金電気めっき浴は、光沢剤を含むのが好ましい。
The alkaline zinc electroplating bath used in the present invention is an alkaline zinc plating bath containing an organic compound additive. Preferably, the alkaline zinc electroplating bath contains one or more organic compound additives selected from the group consisting of brightening agents, auxiliary additives such as leveling agents, and defoaming agents. The alkaline zinc electroplating bath preferably contains a brightener.
The alkaline zinc alloy electroplating bath used in the present invention is an alkaline zinc alloy electroplating bath containing an amine-based chelating agent and an organic compound additive. Preferably, the alkaline zinc alloy electroplating bath is an amine-based chelating agent, an organic compound additive, and one or more selected from the group consisting of auxiliary additives such as brighteners and leveling agents, and defoaming agents. Contains organic compound additives. The alkaline zinc alloy electroplating bath preferably contains a brightener.
 光沢剤としては、亜鉛系めっき浴において公知の光沢剤であれば特に制限はないが、例えば(1)ポリオキシエチレンポリオキシプロピレンブロックポリマー、アセチレングリコールEO付加体等の非イオン系界面活性剤、ポリオキシエチレンラウリルエーテル硫酸塩、アルキルジフェニルエーテルジスルホン酸塩等のアニオン系界面活性剤;(2)ジアリルジメチルアンモニウムクロライドと二酸化硫黄の共重合体などのポリアリルアミン;エチレンジアミンとエピクロルヒドリンとの縮合重合体、ジメチルアミノプロピルアミンとエピクロルヒドリンとの縮合重合体、イミダゾールとエピクロルヒドリンとの縮合重合体、1-メチルイミダゾールや2-メチルイミダゾール等のイミダゾール誘導体とエピクロルヒドリンとの縮合重合体、アセトグアナミン、ベンゾグアナミン等のトリアジン誘導体などを含む複素環状アミンとエピクロルヒドリンとの縮合重合体などのポリエポキシポリアミン;3-ジメチルアミノプロピル尿素とエピクロルヒドリンとの縮合重合体、ビス(N,N-ジメチルアミノプロピル)尿素とエピクロルヒドリンとの縮合重合体等のポリアミンポリ尿素樹脂、N,N-ジメチルアミノプロピルアミンとアルキレンジカルボン酸とエピクロルヒドリンとの縮合重合体等の水溶性ナイロン樹脂などのポリアミドポリアミン;ジエチレントリアミン、ジメチルアミノプロピルアミン等と2,2’-ジクロルジエチルエーテルとの縮合重合体、ジメチルアミノプロピルアミンと1,3-ジクロルプロパンとの縮合重合体、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパンと1,4-ジクロルブタンとの縮合重合体、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパンと1,3-ジクロルプロパン-2-オールとの縮合重合体などのポリアルキレンポリアミン;などのポリアミン化合物類;(3)ジメチルアミン等とジクロロエチルエーテルの縮重合体;(4)ベラトルアルデヒド、バニリン、アニスアルデヒドなどの芳香族アルデヒド類、安息香酸又はその塩;(5)塩化セチルトリメチルアンモニウム、塩化3-カルバモイルベンジル、ピリジニウムなどの4級アンモニウム塩類などが挙げられる。中でも、4級アンモニウム塩類及び芳香族アルデヒド類が好ましい。これらの光沢剤は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。光沢剤のアルカリ性亜鉛又は亜鉛合金電気めっき浴中の濃度は、芳香族アルデヒド類、安息香酸又はその塩の場合、好ましくは1~500mg/L、さらに好ましくは5~100mg/Lであり、その他の場合は、好ましくは0.01~10g/L、さらに好ましくは0.02~5g/Lである。 The brightening agent is not particularly limited as long as it is a known brightening agent in a zinc-based plating bath. Anionic surfactants such as polyoxyethylene lauryl ether sulfate and alkyldiphenyl ether disulfonate; (2) polyallylamine such as copolymers of diallyldimethylammonium chloride and sulfur dioxide; condensation polymers of ethylenediamine and epichlorohydrin, dimethyl Condensation polymer of aminopropylamine and epichlorohydrin, condensation polymer of imidazole and epichlorohydrin, condensation polymer of imidazole derivative such as 1-methylimidazole and 2-methylimidazole and epichlorohydrin, triazine derivative of acetoguanamine, benzoguanamine, etc. Polyepoxypolyamines such as condensation polymers of heterocyclic amines and epichlorohydrin; condensation polymers of 3-dimethylaminopropylurea and epichlorohydrin, condensation polymers of bis(N,N-dimethylaminopropyl)urea and epichlorohydrin Polyamine polyurea resin such as, Polyamide polyamine such as water-soluble nylon resin such as condensation polymer of N,N-dimethylaminopropylamine, alkylenedicarboxylic acid and epichlorohydrin; Diethylenetriamine, dimethylaminopropylamine and 2,2'- Condensation polymer with dichlorodiethyl ether, condensation polymer with dimethylaminopropylamine and 1,3-dichloropropane, N,N,N',N'-tetramethyl-1,3-diaminopropane and 1, Polyalkylene polyamines such as condensation polymers with 4-dichlorobutane, condensation polymers with N,N,N',N'-tetramethyl-1,3-diaminopropane and 1,3-dichloropropan-2-ol Polyamine compounds such as; (3) Condensation polymers of dimethylamine and dichloroethyl ether; (4) Aromatic aldehydes such as veratraldehyde, vanillin, anisaldehyde, benzoic acid or its salts; (5) Chloride Examples thereof include quaternary ammonium salts such as cetyltrimethylammonium, 3-carbamoylbenzyl chloride and pyridinium. Of these, quaternary ammonium salts and aromatic aldehydes are preferable. These brighteners may be used alone or in combination of two or more. The concentration of the brightener in the alkaline zinc or zinc alloy electroplating bath is preferably 1 to 500 mg/L, more preferably 5 to 100 mg/L in the case of aromatic aldehydes, benzoic acid or salts thereof. In this case, it is preferably 0.01 to 10 g/L, more preferably 0.02 to 5 g/L.
 また、光沢剤は、含窒素複素環4級アンモニウム塩であってもよい。前記含窒素複素環4級アンモニウム塩光沢剤は、より好ましくはカルボキシ基及び/又はヒドロキシ基置換含窒素複素環4級アンモニウム塩である。前記含窒素複素環4級アンモニウム塩の含窒素複素環としては、例えばピリジン環、ピペリジン環、イミダゾール環、イミダゾリン環、ピロリジン環、ピラゾール環、キノリン環、モルホリン環等が挙げられ、好ましくはピリジン環であり、特に好ましくはニコチン酸又はその誘導体の4級アンモニウム塩である。前記4級アンモニウム塩化合物においてカルボキシ基及び/又はヒドロキシ基は、例えばカルボキシメチル基のように置換基を介して含窒素複素環に置換していてもよい。また、前記含窒素複素環は、カルボキシ基及び/又はヒドロキシ基以外に、例えばアルキル基等の置換基を有してもよい。また、光沢剤含有効果を阻害しない限り、複素環4級アンモニウムカチオンを形成するN置換基は、特に限定はなく、例えば置換、非置換のアルキル基、アリール基、アルコキシ基などが挙げられる。また、塩を形成する対アニオンとしては、例えばハロゲンアニオン、オキシアニオン、ボレートアニオン、スルフォネートアニオン、フォスフェートアニオン、イミドアニオンなどを含む化合物が挙げられ、好ましくはハロゲンアニオンである。このような4級アンモニウム塩は、分子内に4級アンモニウムカチオンとオキシアニオンを共に含んでいるので、陰イオンとしての挙動も示すので好ましい。含窒素複素環4級アンモニウム塩化合物の具体例としては、例えば、N-ベンジル-3-カルボキシピリジニウムクロリド、N-フェネチル-4-カルボキシピリジニウムクロリド、N-ブチル-3-カルボキシピリジニウムブロミド、N-クロロメチル-3-カルボキシピリジニウムブロミド、N-ヘキシル-6-ヒドロキシ-3-カルボキシピリジニウムクロリド、N-ヘキシル-6-3-ヒドロキシプロピル-3-カルボキシピリジニウムクロリド、N-2-ヒドロキシエチル-6-メトキシ-3-カルボキシピリジニウムクロリド、N-メトキシ-6-メチル-3-カルボキシピリジニウムクロリド、N-プロピル-2-メチル-6-フェニル-3-カルボキシピリジニウムクロリド、N-プロピル-2-メチル-6-フェニル-3-カルボキピリジニウムクロリド、N-ベンジル-3-カルボキメチルピリジニウムクロリド、1-ブチル-3-メチル-4-カルボキシイミダゾロリウムブロミド、1-ブチル-3-メチル-4-カルボキシメチルイミダゾロリウムブロミド、1-ブチル-2-ヒドロキシメチル-3-メチルイミダゾロリウムクロリド、1-ブチル-1-メチル-3-メチルカルボキシピロリジニウムクロライド、1-ブチル-1-メチル-4-メチルカルボキシピペリジニウムクロライドなどが挙げられる。これらの含窒素複素環4級アンモニウム塩は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。含窒素複素環4級アンモニウム塩のアルカリ性亜鉛又は亜鉛合金電気めっき浴中の濃度は、好ましくは0.01~10g/L、さらに好ましくは0.02~5g/Lである。 Also, the brightener may be a nitrogen-containing heterocyclic quaternary ammonium salt. The nitrogen-containing heterocyclic quaternary ammonium salt brightener is more preferably a carboxy group- and/or hydroxy group-substituted nitrogen-containing heterocyclic quaternary ammonium salt. Examples of the nitrogen-containing heterocycle of the nitrogen-containing heterocycle quaternary ammonium salt include a pyridine ring, a piperidine ring, an imidazole ring, an imidazoline ring, a pyrrolidine ring, a pyrazole ring, a quinoline ring and a morpholine ring, and a pyridine ring is preferable. And particularly preferably quaternary ammonium salt of nicotinic acid or its derivative. In the quaternary ammonium salt compound, the carboxy group and/or the hydroxy group may be substituted on the nitrogen-containing heterocycle via a substituent such as a carboxymethyl group. In addition to the carboxy group and/or the hydroxy group, the nitrogen-containing heterocycle may have a substituent such as an alkyl group. Further, the N substituent forming the heterocyclic quaternary ammonium cation is not particularly limited as long as it does not inhibit the effect of containing the brightening agent, and examples thereof include a substituted or unsubstituted alkyl group, aryl group, and alkoxy group. Examples of the counter anion forming a salt include compounds containing a halogen anion, an oxy anion, a borate anion, a sulfonate anion, a phosphate anion, an imide anion, and the like, and a halogen anion is preferable. Since such a quaternary ammonium salt contains both a quaternary ammonium cation and an oxyanion in the molecule, it also behaves as an anion, which is preferable. Specific examples of the nitrogen-containing heterocyclic quaternary ammonium salt compound include, for example, N-benzyl-3-carboxypyridinium chloride, N-phenethyl-4-carboxypyridinium chloride, N-butyl-3-carboxypyridinium bromide, N-chloro. Methyl-3-carboxypyridinium bromide, N-hexyl-6-hydroxy-3-carboxypyridinium chloride, N-hexyl-6-3-hydroxypropyl-3-carboxypyridinium chloride, N-2-hydroxyethyl-6-methoxy- 3-carboxypyridinium chloride, N-methoxy-6-methyl-3-carboxypyridinium chloride, N-propyl-2-methyl-6-phenyl-3-carboxypyridinium chloride, N-propyl-2-methyl-6-phenyl- 3-carboxyridinium chloride, N-benzyl-3-carboxmethylpyridinium chloride, 1-butyl-3-methyl-4-carboxyimidazololium bromide, 1-butyl-3-methyl-4-carboxymethylimidazololium bromide, 1-Butyl-2-hydroxymethyl-3-methylimidazololium chloride, 1-butyl-1-methyl-3-methylcarboxypyrrolidinium chloride, 1-butyl-1-methyl-4-methylcarboxypiperidinium chloride And so on. These nitrogen-containing heterocyclic quaternary ammonium salts may be used alone or in combination of two or more kinds. The concentration of the nitrogen-containing heterocyclic quaternary ammonium salt in the alkaline zinc or zinc alloy electroplating bath is preferably 0.01 to 10 g/L, more preferably 0.02 to 5 g/L.
 補助添加剤としては、例えば有機酸類、ケイ酸塩、メルカプト化合物などが挙げられる。これらの補助添加剤は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。補助添加剤のアルカリ性亜鉛又は亜鉛合金電気めっき浴中の濃度は、好ましくは0.01~50g/Lである。
 消泡剤としては、例えば界面活性剤などが挙げられる。これらの消泡剤は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。消泡剤のアルカリ性亜鉛又は亜鉛合金電気めっき浴中の濃度は、好ましくは0.01~5g/Lである。
Examples of the auxiliary additive include organic acids, silicates and mercapto compounds. These auxiliary additives may be used alone or in combination of two or more. The concentration of the auxiliary additive in the alkaline zinc or zinc alloy electroplating bath is preferably 0.01 to 50 g/L.
Examples of the defoaming agent include a surfactant and the like. These antifoaming agents may be used alone or in combination of two or more kinds. The concentration of the defoaming agent in the alkaline zinc or zinc alloy electroplating bath is preferably 0.01 to 5 g/L.
 アミン系キレート剤としては、例えばエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のアルキレンアミン化合物;前記アルキレンアミンの、エチレンオキサイド付加物、プロピレンオキサイド付加物などのアルキレンオキサイド付加物;エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミンテトラ-2-プロパノール、N-(2-アミノエチル)エタノールアミン、2-ヒドロキシエチルアミノプロピルアミンなどのアミノアルコール;N-(2-ヒドロキシエチル)-N,N’,N’-トリエチルエチレンジアミン、N,N’-ジ(2-ヒドロキシエチル)-N,N’-ジエチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)プロピレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミンなどのアルカノールアミン化合物;エチレンイミン、1,2-プロピレンイミンなどから得られるポリ(アルキレンイミン);エチレンジアミン、トリエチレンテトラミンなどから得られるポリ(アルキレンアミン)などが挙げられる。アミン系キレート剤は、好ましくはアルキレンアミン化合物、そのアルキレンオキサイド付加物、及びアルカノールアミン化合物からなる群より選ばれる1種以上を含む。これらのアミン系キレート剤は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。アルカリ性亜鉛又は亜鉛合金電気めっき浴中のアミン系キレート剤の濃度は、好ましくは5~200g/Lであり、より好ましくは30~100g/Lである。 Examples of the amine-based chelating agent include alkyleneamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine; alkylene oxide adducts such as ethylene oxide adducts and propylene oxide adducts of the alkylene amines. Amino alcohols such as ethanolamine, diethanolamine, triethanolamine, diisopropanolamine, triisopropanolamine, ethylenediaminetetra-2-propanol, N-(2-aminoethyl)ethanolamine, 2-hydroxyethylaminopropylamine; N- (2-hydroxyethyl)-N,N',N'-triethylethylenediamine, N,N'-di(2-hydroxyethyl)-N,N'-diethylethylenediamine, N,N,N',N'-tetrakis Alkanolamine compounds such as (2-hydroxyethyl)propylenediamine, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine; poly(alkyleneimines obtained from ethyleneimine, 1,2-propyleneimine, etc. ); Poly(alkylene amine) obtained from ethylene diamine, triethylene tetramine and the like. The amine-based chelating agent preferably contains at least one selected from the group consisting of alkyleneamine compounds, alkylene oxide adducts thereof, and alkanolamine compounds. These amine-based chelating agents may be used alone or in combination of two or more kinds. The concentration of the amine-based chelating agent in the alkaline zinc or zinc alloy electroplating bath is preferably 5 to 200 g/L, more preferably 30 to 100 g/L.
 本発明で用いられるアルカリ性亜鉛又は亜鉛合金電気めっき浴は、亜鉛イオンを含有する。アルカリ性亜鉛又は亜鉛合金電気めっき浴中の亜鉛イオンの濃度は、好ましくは2~20g/Lであり、より好ましくは4~12g/Lである。亜鉛イオン源としては、Na2[Zn(OH)4]、K2[Zn(OH)4]、ZnOなどが挙げられる。これらの亜鉛イオン源は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。
 本発明で用いられるアルカリ性亜鉛又は亜鉛合金電気めっき浴は、好ましくは苛性アルカリを含有する。苛性アルカリとしては、水酸化ナトリウム、水酸化カリウムなどが挙げられるが、好ましくは水酸化ナトリウムである。アルカリ性亜鉛又は亜鉛合金電気めっき浴中の苛性アルカリの濃度は、好ましくは60~200g/Lであり、より好ましくは100~160g/Lである。
The alkaline zinc or zinc alloy electroplating bath used in the present invention contains zinc ions. The concentration of zinc ions in the alkaline zinc or zinc alloy electroplating bath is preferably 2 to 20 g/L, more preferably 4 to 12 g/L. Examples of the zinc ion source include Na 2 [Zn(OH) 4 ], K 2 [Zn(OH) 4 ] and ZnO. These zinc ion sources may be used alone or in combination of two or more.
The alkaline zinc or zinc alloy electroplating bath used in the present invention preferably contains caustic. Examples of the caustic alkali include sodium hydroxide and potassium hydroxide, but sodium hydroxide is preferable. The concentration of caustic alkali in the alkaline zinc or zinc alloy electroplating bath is preferably 60 to 200 g/L, more preferably 100 to 160 g/L.
 本発明で用いられるアルカリ性亜鉛合金電気めっき浴は、亜鉛以外の金属イオンを含有する。アルカリ性亜鉛合金電気めっき浴は、前記金属イオンとして、好ましくはニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンからなる群より選ばれる1種類以上の金属イオンを含有する。アルカリ性亜鉛合金電気めっき浴中の前記金属イオンの総濃度は、好ましくは0.4~4g/Lであり、より好ましくは1~3g/Lである。金属イオン源としては、硫酸ニッケル、硫酸第一鉄、硫酸コバルト、硫酸第一錫、硫酸マンガンなどが挙げられる。これらの金属イオン源は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。本発明で用いられるアルカリ性亜鉛合金電気めっき浴は、好ましくは前記金属イオンとしてニッケルイオンを含有するアルカリ性亜鉛ニッケル合金電気めっき浴である。 The alkaline zinc alloy electroplating bath used in the present invention contains metal ions other than zinc. The alkaline zinc alloy electroplating bath preferably contains, as the metal ions, one or more metal ions selected from the group consisting of nickel ions, iron ions, cobalt ions, tin ions, and manganese ions. The total concentration of the metal ions in the alkaline zinc alloy electroplating bath is preferably 0.4 to 4 g/L, more preferably 1 to 3 g/L. Examples of the metal ion source include nickel sulfate, ferrous sulfate, cobalt sulfate, stannous sulfate, and manganese sulfate. These metal ion sources may be used alone or in combination of two or more. The alkaline zinc alloy electroplating bath used in the present invention is preferably an alkaline zinc nickel alloy electroplating bath containing nickel ions as the metal ions.
 アルカリ性亜鉛電気めっき浴は、少なくとも亜鉛イオン、苛性アルカリ、及び有機化合物添加剤を含有するアルカリ性亜鉛電気めっき浴であることが好ましい。
 アルカリ性亜鉛合金電気めっき浴は、少なくとも亜鉛イオン、金属イオン、苛性アルカリ、アミン系キレート剤、及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であることが好ましく、前記金属イオンは、ニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンからなる群より選ばれる少なくとも1種を含有する。
 亜鉛又は亜鉛合金めっきを施す際の温度は、好ましくは15℃~40℃であり、さらに好ましくは25~35℃である。亜鉛又は亜鉛合金めっきを施す際の陰極電流密度は、好ましくは0.1~20A/dm2であり、さらに好ましくは0.2~10A/dm2である。
 次に、実施例及び比較例により本発明を説明するが、本発明はこれらによって限定されるものではない。
The alkaline zinc electroplating bath is preferably an alkaline zinc electroplating bath containing at least zinc ions, caustic, and an organic compound additive.
The alkaline zinc alloy electroplating bath is preferably an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, an amine chelating agent, and an organic compound additive, and the metal ions are nickel ions. At least one selected from the group consisting of iron ion, cobalt ion, tin ion, and manganese ion.
The temperature at which zinc or zinc alloy plating is performed is preferably 15°C to 40°C, more preferably 25 to 35°C. The cathode current density when performing zinc or zinc alloy plating is preferably 0.1 to 20 A/dm 2 , and more preferably 0.2 to 10 A/dm 2 .
Next, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1)
 Ni上に酸化タンタルを0.5~0.8μmの厚みでコーティングした陽極板(表面粗さRa:4μm、64×64×2mm)を用いて下記に示すアルカリ性亜鉛ニッケル合金めっき浴を使用し(500mL)、500Ah/L通電により亜鉛ニッケル合金めっきを実施した。コーティング皮膜中の空孔径は、0.1~1μmであり、めっき浴の汲み出しは2mL/Ahとした。陰極電流密度は4A/dm2であり、陽極電流密度は9.8A/dm2であり、めっき浴温は25℃である。めっき浴は、冷却して25℃を維持した。陰極には鉄板を使用した。尚、通電中16Ah/L毎に陰極の鉄板を交換した。めっき浴の亜鉛イオン濃度は、金属亜鉛を浸漬溶解させることにより一定に維持した。めっき浴のニッケルイオン濃度は、ニッケル補給剤のIZ-250YNi(ディップソール社製)を補給して一定に維持した。めっき浴の苛性ソーダ濃度は、定期的に分析し濃度が一定になるように補給した。光沢剤は、ポリアミン系のIZ-250YR1(ディップソール社製)及び含窒素複素環4級アンモニウム塩系のIZ-250YR2(ディップソール社製)を其々補給率15mL/kAh及び15mL/kAhで補給した。アミン系キレート剤IZ-250YBは、IZ-250YBの補給率80mL/kAhで補給した。250Ah/L通電毎に陰極液中のアミン系キレート剤濃度、シュウ酸濃度、及びシアン濃度を分析した。また、沈殿物の有無を目視で確認した。これらの結果を表1に示す。さらに、500Ah/L通電時にキレート剤濃度を初期濃度に合わせ、20cmの鉄板を陰極とするロングセルを用いて、ハルセル試験に準ずるめっき試験を行い、めっき外観、膜厚分布、及びNi共析率分布を測定した。これらの結果をそれぞれ図1、図6及び図7に示す。なお、ハルセル試験に準ずるめっき試験の条件は、4A-20分、25℃である。また、アノードの表面を観察し、皮膜剥離の有無を確認した。結果を表1に示す。
めっき液組成:
 Znイオン濃度 8g/L(Znイオン源はNa2[Zn(OH)4])
 Niイオン濃度 1.6g/L(Niイオン源はNiSO4・6H2O)
 苛性ソーダ濃度 130g/L
 アミン系キレート剤(アルキレンアミンのエチレンオキサイド付加物)IZ-250YB(ディップソール社製) 60g/L
 光沢剤IZ-250YR1(ディップソール社製) 0.6mL/L(ポリアミン0.1g/L)
 光沢剤IZ-250YR2(ディップソール社製) 0.5mL/L(ニコチン酸の4級アンモニウム塩0.2g/L)
(Example 1)
An alkaline zinc nickel alloy plating bath shown below was used using an anode plate (surface roughness Ra: 4 μm, 64×64×2 mm) in which tantalum oxide was coated on Ni to a thickness of 0.5 to 0.8 μm ( Zinc-nickel alloy plating was carried out by applying a current of 500 mL) and 500 Ah/L. The pore diameter in the coating film was 0.1 to 1 μm, and the pumping out of the plating bath was 2 mL/Ah. The cathode current density is 4 A/dm 2 , the anode current density is 9.8 A/dm 2 , and the plating bath temperature is 25°C. The plating bath was cooled and maintained at 25°C. An iron plate was used for the cathode. The iron plate of the cathode was replaced every 16 Ah/L during energization. The zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc. The nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol). The caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant. As the brightener, polyamine-based IZ-250YR1 (manufactured by Dipsol) and nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 (manufactured by Dipsol) were supplied at a replenishment rate of 15 mL/kAh and 15 mL/kAh, respectively. did. The amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB. The concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyanide in the catholyte were analyzed each time 250 Ah/L was applied. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 1. Further, the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured. The results are shown in FIGS. 1, 6 and 7, respectively. The conditions of the plating test based on the Hull cell test are 4 A-20 minutes and 25° C. Further, the surface of the anode was observed to confirm the presence or absence of film peeling. The results are shown in Table 1.
Plating solution composition:
Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ])
Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 · 6H 2 O)
Caustic soda concentration 130g/L
Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L
Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L)
Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
(実施例2)
 Fe上に酸化タンタルを0.5~0.8μmの厚みでコーティングした陽極板(表面粗さRa:4μm、64×64×2mm)を用いて下記に示すアルカリ性亜鉛ニッケル合金めっき浴を使用し(500mL)、500Ah/L通電により亜鉛ニッケル合金めっきを実施した。コーティング皮膜中の空孔径は、0.1~1μmであり、めっき浴の汲み出しは2mL/Ahとした。陰極電流密度は4A/dm2であり、陽極電流密度は9.8A/dm2であり、めっき浴温は25℃である。めっき浴は、冷却して25℃を維持した。陰極には鉄板を使用した。尚、通電中16Ah/L毎に陰極の鉄板を交換した。めっき浴の亜鉛イオン濃度は、金属亜鉛を浸漬溶解させることにより一定に維持した。めっき浴のニッケルイオン濃度は、ニッケル補給剤のIZ-250YNi(ディップソール社製)を補給して一定に維持した。めっき浴の苛性ソーダ濃度は、定期的に分析し濃度が一定になるように補給した。光沢剤は、ポリアミン系のIZ-250YR1(ディップソール社製)及び含窒素複素環4級アンモニウム塩系のIZ-250YR2(ディップソール社製)を其々補給率15mL/kAh及び15mL/kAhで補給した。アミン系キレート剤IZ-250YBは、IZ-250YBの補給率80mL/kAhで補給した。250Ah/L通電毎に陰極液中のアミン系キレート剤濃度、シュウ酸濃度、及びシアン濃度を分析した。また、沈殿物の有無を目視で確認した。これらの結果を表1に示す。さらに、500Ah/L通電時にキレート剤濃度を初期濃度に合わせ、20cmの鉄板を陰極とするロングセルを用いて、ハルセル試験に準ずるめっき試験を行い、めっき外観、膜厚分布、及びNi共析率分布を測定した。これらの結果をそれぞれ図2、図8及び図9に示す。なお、ハルセル試験に準ずるめっき試験の条件は、4A-20分、25℃である。また、アノードの表面を観察し、皮膜剥離の有無を確認した。結果を表1に示す。
めっき液組成:
 Znイオン濃度 8g/L(Znイオン源はNa2[Zn(OH)4])
 Niイオン濃度 1.6g/L(Niイオン源はNiSO4・6H2O)
 苛性ソーダ濃度 130g/L
 アミン系キレート剤(アルキレンアミンのエチレンオキサイド付加物)IZ-250YB(ディップソール社製) 60g/L
 光沢剤IZ-250YR1(ディップソール社製) 0.6mL/L(ポリアミン0.1g/L)
 光沢剤IZ-250YR2(ディップソール社製) 0.5mL/L(ニコチン酸の4級アンモニウム塩0.2g/L)
(Example 2)
Using an alkaline zinc nickel alloy plating bath shown below, using an anode plate (surface roughness Ra: 4 μm, 64×64×2 mm) in which Fe is coated with tantalum oxide in a thickness of 0.5 to 0.8 μm ( Zinc-nickel alloy plating was carried out by applying a current of 500 mL) and 500 Ah/L. The pore diameter in the coating film was 0.1 to 1 μm, and the pumping out of the plating bath was 2 mL/Ah. The cathode current density is 4 A/dm 2 , the anode current density is 9.8 A/dm 2 , and the plating bath temperature is 25°C. The plating bath was cooled and maintained at 25°C. An iron plate was used for the cathode. The iron plate of the cathode was replaced every 16 Ah/L during energization. The zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc. The nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol). The caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant. As the brightener, polyamine-based IZ-250YR1 (manufactured by Dipsol) and nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 (manufactured by Dipsol) were supplied at a replenishment rate of 15 mL/kAh and 15 mL/kAh, respectively. did. The amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB. The concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyanide in the catholyte were analyzed each time 250 Ah/L was applied. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 1. Further, the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured. These results are shown in FIGS. 2, 8 and 9, respectively. The conditions of the plating test based on the Hull cell test are 4 A-20 minutes and 25° C. Further, the surface of the anode was observed to confirm the presence or absence of film peeling. The results are shown in Table 1.
Plating solution composition:
Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ])
Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 · 6H 2 O)
Caustic soda concentration 130g/L
Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L
Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L)
Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
(実施例3)
 Ni上に酸化タンタルを0.5~0.8μmの厚みでコーティングした陽極板(表面粗さRa:4μm、64×64×2mm)を用いて下記に示すアルカリ性亜鉛ニッケル合金めっき浴を使用し(500mL)、500Ah/L通電により亜鉛ニッケル合金めっきを実施した。コーティング皮膜中の空孔径は、0.1~1μmであり、めっき浴の汲み出しは2mL/Ahとした。陰極電流密度は2A/dm2であり、陽極電流密度は4.9A/dm2であり、めっき浴温は25℃である。めっき浴は、冷却して25℃を維持した。陰極には鉄板を使用した。尚、通電中16Ah/L毎に陰極の鉄板を交換した。めっき浴の亜鉛イオン濃度は、金属亜鉛を浸漬溶解させることにより一定に維持した。めっき浴のニッケルイオン濃度は、ニッケル補給剤のIZ-250YNi(ディップソール社製)を補給して一定に維持した。めっき浴の苛性ソーダ濃度は、定期的に分析し濃度が一定になるように補給した。光沢剤は、ポリアミン系のIZ-250YR1(ディップソール社製)及び含窒素複素環4級アンモニウム塩系のIZ-250YR2(ディップソール社製)を其々補給率15mL/kAh及び15mL/kAhで補給した。アミン系キレート剤テトラエチレンペンタミンは、補給率40mL/kAhで補給した。250Ah/L通電毎に陰極液中のアミン系キレート剤濃度及びシアン濃度を分析した。また、沈殿物の有無を目視で確認した。これらの結果を表2に示す。さらに、500Ah/L通電時にキレート剤濃度を初期濃度に合わせ、20cmの鉄板を陰極とするロングセルを用いて、ハルセル試験に準ずるめっき試験を行い、めっき外観、膜厚分布、及びNi共析率分布を測定した。これらの結果をそれぞれ図3、図10及び図11に示す。なお、ハルセル試験に準ずるめっき試験の条件は、2A-20分、25℃である。
めっき液組成:
 Znイオン濃度 8g/L(Znイオン源はNa2[Zn(OH)4])
 Niイオン濃度 1.2g/L(Niイオン源はNiSO4・6H2O)
 苛性ソーダ濃度 130g/L
 アミン系キレート剤(テトラエチレンペンタミン) 30g/L
 光沢剤IZ-250YR1(ディップソール社製) 0.6mL/L(ポリアミン0.1g/L)
 光沢剤IZ-250YR2(ディップソール社製) 0.5mL/L(ニコチン酸の4級アンモニウム塩0.2g/L)
(Example 3)
An alkaline zinc nickel alloy plating bath shown below was used using an anode plate (surface roughness Ra: 4 μm, 64×64×2 mm) in which tantalum oxide was coated on Ni to a thickness of 0.5 to 0.8 μm ( Zinc-nickel alloy plating was carried out by applying a current of 500 mL) and 500 Ah/L. The pore diameter in the coating film was 0.1 to 1 μm, and the pumping out of the plating bath was 2 mL/Ah. The cathode current density is 2 A/dm 2 , the anode current density is 4.9 A/dm 2 , and the plating bath temperature is 25° C. The plating bath was cooled and maintained at 25°C. An iron plate was used for the cathode. The iron plate of the cathode was replaced every 16 Ah/L during energization. The zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc. The nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol). The caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant. As the brightener, polyamine-based IZ-250YR1 (manufactured by Dipsol) and nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 (manufactured by Dipsol) were supplied at a replenishment rate of 15 mL/kAh and 15 mL/kAh, respectively. did. The amine chelating agent tetraethylenepentamine was supplied at a supply rate of 40 mL/kAh. The concentration of the amine-based chelating agent and the concentration of cyan in the catholyte were analyzed every 250 Ah/L energization. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 2. Further, the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured. These results are shown in FIGS. 3, 10 and 11, respectively. The conditions of the plating test based on the Hull cell test are 2A-20 minutes and 25°C.
Plating solution composition:
Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ])
Ni ion concentration 1.2 g / L (Ni ion source NiSO 4 · 6H 2 O)
Caustic soda concentration 130g/L
Amine type chelating agent (tetraethylene pentamine) 30g/L
Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L)
Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
(比較例1)
 下記に示すアルカリ性亜鉛ニッケル合金めっき浴を使用して(500mL)、500Ah/L通電により亜鉛ニッケル合金めっきを実施した。めっき浴の汲み出しは2mL/Ahとした。陰極電流密度は4A/dm2であり、陽極電流密度は9.8A/dm2であり、めっき浴温は25℃である。めっき液は、冷却して25℃を維持した。陰極には鉄板を使用し、陽極にはニッケル板を使用した。尚、通電中16Ah/L毎に陰極の鉄板を交換した。めっき浴の亜鉛イオン濃度は、金属亜鉛を浸漬溶解させることにより一定に維持した。めっき浴のニッケルイオン濃度は、ニッケル補給剤のIZ-250YNi(ディップソール社製)を補給して一定に維持した。めっき浴の苛性ソーダ濃度は、定期的に分析し濃度が一定になるように補給した。光沢剤は、ポリアミン系のIZ-250YR1(ディップソール社製)及び含窒素複素環4級アンモニウム塩系のIZ-250YR2(ディップソール社製)を其々補給率15mL/kAh及び15mL/kAhで補給した。アミン系キレート剤IZ-250YBは、IZ-250YBの補給率80mL/kAhで補給した。250Ah/L通電毎にアミン系キレート剤濃度、シュウ酸濃度、及びシアン濃度を分析した。また、沈殿物の有無を目視で確認した。これらの結果を表1に示す。さらに、500Ah/L通電時にキレート剤濃度を初期濃度に合わせ、20cmの鉄板を陰極とするロングセルを用いて、ハルセル試験に準ずるめっき試験を行い、めっき外観、膜厚分布、及びNi共析率分布を測定した。これらの結果をそれぞれ図4、図12及び図13に示す。なお、ハルセル試験に準ずるめっき試験の条件は、4A-20分、25℃である。
めっき液組成:
 Znイオン濃度 8g/L(Znイオン源はNa2[Zn(OH)4])
 Niイオン濃度 1.6g/L(Niイオン源はNiSO4・6H2O)
 苛性ソーダ濃度 130g/L
 アミン系キレート剤(アルキレンアミンのエチレンオキサイド付加物)IZ-250YB(ディップソール社製) 60g/L
 光沢剤IZ-250YR1(ディップソール社製) 0.6mL/L(ポリアミン0.1g/L)
 光沢剤IZ-250YR2(ディップソール社製) 0.5mL/L(ニコチン酸の4級アンモニウム塩0.2g/L)
(Comparative Example 1)
Using an alkaline zinc-nickel alloy plating bath shown below (500 mL), zinc-nickel alloy plating was carried out by applying a current of 500 Ah/L. Pumping out of the plating bath was 2 mL/Ah. The cathode current density is 4 A/dm 2 , the anode current density is 9.8 A/dm 2 , and the plating bath temperature is 25°C. The plating solution was cooled and maintained at 25°C. An iron plate was used for the cathode and a nickel plate was used for the anode. The iron plate of the cathode was replaced every 16 Ah/L during energization. The zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc. The nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol). The caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant. As the brightener, polyamine-based IZ-250YR1 (manufactured by Dipsol) and nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 (manufactured by Dipsol) were supplied at a replenishment rate of 15 mL/kAh and 15 mL/kAh, respectively. did. The amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB. The concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyan were analyzed each time 250 Ah/L was applied. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 1. Further, the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured. These results are shown in FIGS. 4, 12 and 13, respectively. The conditions of the plating test based on the Hull cell test are 4 A-20 minutes and 25° C.
Plating solution composition:
Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ])
Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 · 6H 2 O)
Caustic soda concentration 130g/L
Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L
Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L)
Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
(比較例2)
 Pt/Ti上に酸化イリジウムを0.5~0.8μmの厚みでコーティングした陽極板(表面粗さRa:4μm、64×64×2mm)を用いて下記に示すアルカリ性亜鉛ニッケル合金めっき浴を使用し(500mL)、500Ah/L通電により亜鉛ニッケル合金めっきを実施した。コーティング皮膜中の空孔径は、0.1~1μmであり、めっき浴の汲み出しは2mL/Ahとした。陰極電流密度は4A/dm2であり、陽極電流密度は9.8A/dm2であり、めっき浴温は25℃である。めっき浴は、冷却して25℃を維持した。陰極には鉄板を使用した。尚、通電中16Ah/L毎に陰極の鉄板を交換した。めっき浴の亜鉛イオン濃度は、金属亜鉛を浸漬溶解させることにより一定に維持した。めっき浴のニッケルイオン濃度は、ニッケル補給剤のIZ-250YNi(ディップソール社製)を補給して一定に維持した。めっき浴の苛性ソーダ濃度は、定期的に分析し濃度が一定になるように補給した。光沢剤は、ポリアミン系のIZ-250YR1(ディップソール社製)及び含窒素複素環4級アンモニウム塩系のIZ-250YR2(ディップソール社製)を其々補給率15mL/kAh及び15mL/kAhで補給した。アミン系キレート剤IZ-250YBは、IZ-250YBの補給率80mL/kAhで補給した。250Ah/L通電毎に陰極液中のアミン系キレート剤濃度、シュウ酸濃度、及びシアン濃度を分析した。また、沈殿物の有無を目視で確認した。これらの結果を表1に示す。さらに、500Ah/L通電時にキレート剤濃度を初期濃度に合わせ、20cmの鉄板を陰極とするロングセルを用いて、ハルセル試験に準ずるめっき試験を行い、めっき外観、膜厚分布、及びNi共析率分布を測定した。これらの結果をそれぞれ図5、図14及び図15に示す。なお、ハルセル試験に準ずるめっき試験の条件は、4A-20分、25℃である。また、アノードの表面を観察し、皮膜剥離の有無を確認した。結果を表1に示す。
めっき液組成:
 Znイオン濃度 8g/L(Znイオン源はNa2[Zn(OH)4])
 Niイオン濃度 1.6g/L(Niイオン源はNiSO4・6H2O)
 苛性ソーダ濃度 130g/L
 アミン系キレート剤(アルキレンアミンのエチレンオキサイド付加物)IZ-250YB(ディップソール社製) 60g/L
 光沢剤IZ-250YR1(ディップソール社製) 0.6mL/L(ポリアミン0.1g/L)
 光沢剤IZ-250YR2(ディップソール社製) 0.5mL/L(ニコチン酸の4級アンモニウム塩0.2g/L)
(Comparative example 2)
Using an alkaline zinc nickel alloy plating bath shown below using an anode plate (surface roughness Ra: 4 μm, 64×64×2 mm) in which Pt/Ti is coated with iridium oxide in a thickness of 0.5 to 0.8 μm. (500 mL), and zinc-nickel alloy plating was carried out by energizing 500 Ah/L. The pore diameter in the coating film was 0.1 to 1 μm, and the pumping out of the plating bath was 2 mL/Ah. The cathode current density is 4 A/dm 2 , the anode current density is 9.8 A/dm 2 , and the plating bath temperature is 25°C. The plating bath was cooled and maintained at 25°C. An iron plate was used for the cathode. The iron plate of the cathode was replaced every 16 Ah/L during energization. The zinc ion concentration in the plating bath was kept constant by dipping and dissolving metallic zinc. The nickel ion concentration in the plating bath was maintained constant by supplementing nickel replenisher IZ-250YNi (manufactured by Dipsol). The caustic soda concentration in the plating bath was analyzed periodically and replenished so that the concentration would be constant. As the brightener, polyamine-based IZ-250YR1 (manufactured by Dipsol) and nitrogen-containing heterocyclic quaternary ammonium salt-based IZ-250YR2 (manufactured by Dipsol) were supplied at a replenishment rate of 15 mL/kAh and 15 mL/kAh, respectively. did. The amine chelating agent IZ-250YB was replenished at a replenishment rate of 80 mL/kAh of IZ-250YB. The concentration of the amine-based chelating agent, the concentration of oxalic acid, and the concentration of cyanide in the catholyte were analyzed each time 250 Ah/L was applied. In addition, the presence or absence of precipitate was visually confirmed. The results are shown in Table 1. Further, the chelating agent concentration was adjusted to the initial concentration at the time of energizing 500 Ah/L, and a plating test similar to the Hull cell test was conducted using a long cell with a 20 cm iron plate as the cathode, and the plating appearance, film thickness distribution, and Ni eutectoid distribution Was measured. These results are shown in FIGS. 5, 14 and 15, respectively. The conditions of the plating test based on the Hull cell test are 4 A-20 minutes and 25° C. Further, the surface of the anode was observed to confirm the presence or absence of film peeling. The results are shown in Table 1.
Plating solution composition:
Zn ion concentration 8 g/L (Zn ion source is Na 2 [Zn(OH) 4 ])
Ni ion concentration 1.6 g / L (Ni ion source NiSO 4 · 6H 2 O)
Caustic soda concentration 130g/L
Amine type chelating agent (ethylene oxide adduct of alkylene amine) IZ-250YB (manufactured by Dipsol) 60 g/L
Brightener IZ-250YR1 (manufactured by Dipsol) 0.6 mL/L (polyamine 0.1 g/L)
Brightener IZ-250YR2 (manufactured by Dipsol) 0.5 mL/L (quaternary ammonium salt of nicotinic acid 0.2 g/L)
表1 アミン系キレート剤濃度、シュウ酸濃度、及びシアン濃度の推移、並びに沈殿及び皮膜剥離の有無
Figure JPOXMLDOC01-appb-T000001
Table 1 Changes in amine-based chelating agent concentration, oxalic acid concentration, and cyan concentration, and the presence or absence of precipitation and film peeling
Figure JPOXMLDOC01-appb-T000001
表2 アミン系キレート剤濃度及びシアン濃度の推移、並びに沈殿の有無
Figure JPOXMLDOC01-appb-T000002

 実施例1~3は、比較例1及び2に比べ以下の効果が認められる。
(1)アミン系キレート剤の分解が抑制されている。
(2)めっき外観の低下が抑制される。
(3)めっき速度の低下が抑制される。
(4)Ni共析率の低下が抑制される。
 本発明により、アルカリ性亜鉛又は亜鉛合金めっき浴、特にアルカリ性亜鉛ニッケル合金めっき浴の長寿命化が可能となった。また、アルカリ性亜鉛又は亜鉛合金めっき浴、特にアルカリ性亜鉛ニッケル合金めっき浴の長寿命化により、めっき品質の安定化、めっき時間の短縮化、排水処理の負担軽減化が可能となった。
Table 2 Changes in amine-based chelating agent concentration and cyan concentration, and presence or absence of precipitation
Figure JPOXMLDOC01-appb-T000002

Examples 1 to 3 have the following effects as compared with Comparative Examples 1 and 2.
(1) Decomposition of the amine-based chelating agent is suppressed.
(2) The deterioration of the plating appearance is suppressed.
(3) The decrease in plating rate is suppressed.
(4) A decrease in Ni eutectoid ratio is suppressed.
According to the present invention, it is possible to extend the life of an alkaline zinc or zinc alloy plating bath, especially an alkaline zinc nickel alloy plating bath. Further, by extending the life of the alkaline zinc or zinc alloy plating bath, especially the alkaline zinc-nickel alloy plating bath, it has become possible to stabilize the plating quality, shorten the plating time, and reduce the burden of wastewater treatment.

Claims (14)

  1.  陰極と陽極を備えたアルカリ性亜鉛又は亜鉛合金電気めっき浴において通電することを含む亜鉛又は亜鉛合金電気めっき方法であって、
     陽極が、導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極であり、
     アルカリ性亜鉛又は亜鉛合金電気めっき浴が、有機化合物添加剤を含有するアルカリ性亜鉛めっき浴であるか、又はアミン系キレート剤及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、
     アルカリ性亜鉛めっき浴中の有機化合物添加剤の、又はアルカリ性亜鉛合金電気めっき浴中のアミン系キレート剤及び有機化合物添加剤の通電による前記陽極の表面での酸化分解が、耐アルカリ性セラミックスがコーティングされていない同じ導電性基材を陽極として使用した場合と比較して、抑制されている、亜鉛又は亜鉛合金電気めっき方法。
    A zinc or zinc alloy electroplating method comprising energizing in an alkaline zinc or zinc alloy electroplating bath comprising a cathode and an anode,
    The anode is an anode coated on a conductive base material in a state in which alkali resistant ceramics can conduct electricity,
    The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive, or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive,
    Oxidative decomposition of the organic compound additive in the alkaline zinc plating bath or the amine-based chelating agent and organic compound additive in the alkaline zinc alloy electroplating bath caused by oxidative decomposition on the surface of the anode is coated with alkali resistant ceramics. A suppressed zinc or zinc alloy electroplating method compared to the case where the same conductive substrate is not used as the anode.
  2.  導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極が、導電性基材及び耐アルカリ性セラミックスコーティングからなる、請求項1に記載の亜鉛又は亜鉛合金電気めっき方法。 The zinc or zinc alloy electroplating method according to claim 1, wherein the anode in which the alkali resistant ceramic is coated on the conductive base material in a conductive state comprises the conductive base material and the alkali resistant ceramic coating.
  3.  前記導電性基材がニッケル及び鉄の少なくとも1種を含有する、請求項1又は2に記載の亜鉛又は亜鉛合金電気めっき方法。 The zinc or zinc alloy electroplating method according to claim 1 or 2, wherein the conductive base material contains at least one of nickel and iron.
  4.  前記耐アルカリ性セラミックスが、酸化タンタル、酸化アルミニウム、窒化タンタル、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、及び炭化ホウ素からなる群より選ばれる少なくとも1種を含有する、請求項1~3のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。 The alkali-resistant ceramics contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide. 2. The zinc or zinc alloy electroplating method according to item 1.
  5.  前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、苛性アルカリ、及び有機化合物添加剤を含有するアルカリ性亜鉛電気めっき浴である、請求項1~4のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。 The zinc or zinc according to any one of claims 1 to 4, wherein the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc electroplating bath containing at least zinc ions, caustic, and an organic compound additive. Alloy electroplating method.
  6.  前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、金属イオン、苛性アルカリ、アミン系キレート剤、及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、前記金属イオンが、ニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンからなる群より選ばれる少なくとも1種を含有する、請求項1~4のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。 The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, amine-based chelating agents, and organic compound additives, and the metal ions are nickel ions. The zinc or zinc alloy electroplating method according to any one of claims 1 to 4, containing at least one selected from the group consisting of iron ion, cobalt ion, tin ion, and manganese ion.
  7.  アミン系キレート剤が、アルキレンアミン化合物、そのアルキレンオキサイド付加物、及びアルカノールアミン化合物からなる群より選ばれる少なくとも1種を含有する、請求項6に記載の亜鉛又は亜鉛合金電気めっき方法。 The zinc or zinc alloy electroplating method according to claim 6, wherein the amine-based chelating agent contains at least one selected from the group consisting of an alkyleneamine compound, an alkylene oxide adduct thereof, and an alkanolamine compound.
  8.  陰極と陽極を備えたアルカリ性亜鉛又は亜鉛合金電気めっき浴を含む亜鉛又は亜鉛合金電気めっきシステムであって、
     陽極が、導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極であり、
     アルカリ性亜鉛又は亜鉛合金電気めっき浴が、有機化合物添加剤を含有するアルカリ性亜鉛めっき浴であるか、又はアミン系キレート剤及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、
     アルカリ性亜鉛めっき浴中の有機化合物添加剤の、又はアルカリ性亜鉛合金電気めっき浴中のアミン系キレート剤及び有機化合物添加剤の通電による前記陽極の表面での酸化分解が、耐アルカリ性セラミックスがコーティングされていない同じ導電性基材を陽極として使用した場合と比較して、抑制されている、亜鉛又は亜鉛合金電気めっきシステム。
    A zinc or zinc alloy electroplating system comprising an alkaline zinc or zinc alloy electroplating bath comprising a cathode and an anode,
    The anode is an anode coated on a conductive base material in a state in which alkali resistant ceramics can conduct electricity,
    The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc plating bath containing an organic compound additive, or an alkaline zinc alloy electroplating bath containing an amine chelating agent and an organic compound additive,
    Oxidative decomposition of the organic compound additive in the alkaline zinc plating bath or the amine-based chelating agent and organic compound additive in the alkaline zinc alloy electroplating bath caused by oxidative decomposition on the surface of the anode is coated with alkali resistant ceramics. The zinc or zinc alloy electroplating system is suppressed compared to when the same conductive substrate is not used as the anode.
  9.  導電性基材上に耐アルカリ性セラミックスが通電可能な状態でコーティングされた陽極が、導電性基材及び耐アルカリ性セラミックスコーティングからなる、請求項8に記載の亜鉛又は亜鉛合金電気めっきシステム。 The zinc or zinc alloy electroplating system according to claim 8, wherein the anode in which the alkali-resistant ceramics is coated on the conductive substrate in a conductive state comprises the conductive substrate and the alkali-resistant ceramics coating.
  10.  前記導電性基材がニッケル及び鉄の少なくとも1種を含有する、請求項8又は9に記載の亜鉛又は亜鉛合金電気めっきシステム。 The zinc or zinc alloy electroplating system according to claim 8 or 9, wherein the conductive substrate contains at least one of nickel and iron.
  11.  前記耐アルカリ性セラミックスが、酸化タンタル、酸化アルミニウム、窒化タンタル、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、及び炭化ホウ素からなる群より選ばれる少なくとも1種を含有する、請求項8~10のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。 11. The alkali resistant ceramics contains at least one selected from the group consisting of tantalum oxide, aluminum oxide, tantalum nitride, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and boron carbide. 2. The zinc or zinc alloy electroplating method according to item 1.
  12.  前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、苛性アルカリ、及び有機化合物添加剤を含有するアルカリ性亜鉛電気めっき浴である、請求項8~11のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。 The zinc or zinc according to any one of claims 8 to 11, wherein the alkaline zinc or zinc alloy electroplating bath is an alkaline zinc electroplating bath containing at least zinc ions, caustic, and an organic compound additive. Alloy electroplating method.
  13.  前記アルカリ性亜鉛又は亜鉛合金電気めっき浴が、少なくとも亜鉛イオン、金属イオン、苛性アルカリ、アミン系キレート剤、及び有機化合物添加剤を含有するアルカリ性亜鉛合金電気めっき浴であり、前記金属イオンが、ニッケルイオン、鉄イオン、コバルトイオン、スズイオン、及びマンガンイオンからなる群より選ばれる少なくとも1種を含有する、請求項8~11のいずれか1項に記載の亜鉛又は亜鉛合金電気めっき方法。 The alkaline zinc or zinc alloy electroplating bath is an alkaline zinc alloy electroplating bath containing at least zinc ions, metal ions, caustic, amine-based chelating agents, and organic compound additives, and the metal ions are nickel ions. The zinc or zinc alloy electroplating method according to any one of claims 8 to 11, containing at least one selected from the group consisting of iron ion, cobalt ion, tin ion, and manganese ion.
  14.  アミン系キレート剤が、アルキレンアミン化合物、そのアルキレンオキサイド付加物、及びアルカノールアミン化合物からなる群より選ばれる少なくとも1種を含有する、請求項13に記載の亜鉛又は亜鉛合金電気めっき方法。 The zinc or zinc alloy electroplating method according to claim 13, wherein the amine-based chelating agent contains at least one selected from the group consisting of an alkyleneamine compound, an alkylene oxide adduct thereof, and an alkanolamine compound.
PCT/JP2019/005548 2019-02-15 2019-02-15 Zinc or zinc alloy electroplating method and system WO2020166062A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/005548 WO2020166062A1 (en) 2019-02-15 2019-02-15 Zinc or zinc alloy electroplating method and system
EP19766159.8A EP3715506A4 (en) 2019-02-15 2019-02-15 Zinc or zinc alloy electroplating method and system
CN201980001581.1A CN110462107A (en) 2019-02-15 2019-02-15 Zinc or Zinc alloy electroplating method and system
JP2019508981A JP6582353B1 (en) 2019-02-15 2019-02-15 Zinc or zinc alloy electroplating method and system
US16/577,895 US20200263314A1 (en) 2019-02-15 2019-09-20 Zinc or zinc alloy electroplating method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005548 WO2020166062A1 (en) 2019-02-15 2019-02-15 Zinc or zinc alloy electroplating method and system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/577,895 Continuation US20200263314A1 (en) 2019-02-15 2019-09-20 Zinc or zinc alloy electroplating method and system

Publications (1)

Publication Number Publication Date
WO2020166062A1 true WO2020166062A1 (en) 2020-08-20

Family

ID=68095230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005548 WO2020166062A1 (en) 2019-02-15 2019-02-15 Zinc or zinc alloy electroplating method and system

Country Status (5)

Country Link
US (1) US20200263314A1 (en)
EP (1) EP3715506A4 (en)
JP (1) JP6582353B1 (en)
CN (1) CN110462107A (en)
WO (1) WO2020166062A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131340A1 (en) * 2019-12-23 2021-07-01 ディップソール株式会社 Zinc nickel plating bath and plating method using same
CN111826691B (en) * 2020-08-21 2021-09-21 东北大学 Method for preparing zinc-tantalum alloy by using solvated ionic liquid
CN116670334A (en) 2020-12-28 2023-08-29 迪普索股份公司 Method and system for electroplating articles with metal
KR20230092886A (en) 2021-12-02 2023-06-26 딥솔 가부시키가이샤 Method and system for electroplating articles with metal
WO2023100381A1 (en) 2021-12-02 2023-06-08 ディップソール株式会社 Method and system for electroplating article with metal
JP7442866B1 (en) 2022-11-25 2024-03-05 ディップソール株式会社 Electroplating anodes and methods and systems for electroplating articles with metals

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298192A (en) * 1988-05-27 1989-12-01 Ebara Yuujiraito Kk Zinc-nickel alloy plating solution
JPH03240987A (en) * 1990-02-16 1991-10-28 Tdk Corp Organic matter electrolyzing electrode and its production
JPH09157879A (en) * 1995-11-30 1997-06-17 Tdk Corp Electrolyzing electrode and production thereof
JP2000256898A (en) * 1999-03-03 2000-09-19 Permelec Electrode Ltd Copper plating method of wafer
JP2002521572A (en) 1998-07-30 2002-07-16 ヴァルター ヒレブラント ゲーエムベーハー ウント コー. ガルヴァノテヒニーク Alkaline plating bath for zinc-nickel bath
JP2004068153A (en) * 2002-07-23 2004-03-04 Nippon Hyomen Kagaku Kk Galvanizing method with zincate bath
JP2006503187A (en) * 2002-10-18 2006-01-26 エルテック・システムズ・コーポレーション Coating for inhibiting undesired oxidation in electrochemical cells
JP2007002274A (en) 2005-06-21 2007-01-11 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating method
JP2008539329A (en) 2005-04-26 2008-11-13 アトテック・ドイチュラント・ゲーエムベーハー Alkaline electroplating bath with filtration membrane
JP2013216958A (en) * 2012-04-11 2013-10-24 Matex Japan Co Ltd Insoluble metal electrode, electrolytic device and plating method
WO2016075963A1 (en) 2015-07-22 2016-05-19 ディップソール株式会社 Zinc alloy plating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522484B2 (en) * 2011-09-13 2014-06-18 学校法人同志社 Electrolytic plating anode and electrolytic plating method using the anode
WO2014147180A1 (en) * 2013-03-21 2014-09-25 Atotech Deutschland Gmbh Apparatus and method for electrolytic deposition of metal layers on workpieces
BR112015028629A2 (en) * 2015-07-22 2017-07-25 Dipsol Chem Zinc Alloy Electroplating Method
EP3358045A1 (en) * 2017-02-07 2018-08-08 Dr.Ing. Max Schlötter GmbH & Co. KG Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298192A (en) * 1988-05-27 1989-12-01 Ebara Yuujiraito Kk Zinc-nickel alloy plating solution
JPH03240987A (en) * 1990-02-16 1991-10-28 Tdk Corp Organic matter electrolyzing electrode and its production
JPH09157879A (en) * 1995-11-30 1997-06-17 Tdk Corp Electrolyzing electrode and production thereof
JP2002521572A (en) 1998-07-30 2002-07-16 ヴァルター ヒレブラント ゲーエムベーハー ウント コー. ガルヴァノテヒニーク Alkaline plating bath for zinc-nickel bath
JP2000256898A (en) * 1999-03-03 2000-09-19 Permelec Electrode Ltd Copper plating method of wafer
JP2004068153A (en) * 2002-07-23 2004-03-04 Nippon Hyomen Kagaku Kk Galvanizing method with zincate bath
JP2006503187A (en) * 2002-10-18 2006-01-26 エルテック・システムズ・コーポレーション Coating for inhibiting undesired oxidation in electrochemical cells
JP2008539329A (en) 2005-04-26 2008-11-13 アトテック・ドイチュラント・ゲーエムベーハー Alkaline electroplating bath with filtration membrane
JP2007002274A (en) 2005-06-21 2007-01-11 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating method
JP2013216958A (en) * 2012-04-11 2013-10-24 Matex Japan Co Ltd Insoluble metal electrode, electrolytic device and plating method
WO2016075963A1 (en) 2015-07-22 2016-05-19 ディップソール株式会社 Zinc alloy plating method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715506A4

Also Published As

Publication number Publication date
US20200263314A1 (en) 2020-08-20
EP3715506A1 (en) 2020-09-30
JPWO2020166062A1 (en) 2021-02-25
EP3715506A4 (en) 2021-04-14
JP6582353B1 (en) 2019-10-02
CN110462107A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2020166062A1 (en) Zinc or zinc alloy electroplating method and system
JP5830203B1 (en) Zinc alloy plating method
JP5830202B1 (en) Zinc alloy plating method
EP1292724B1 (en) Zinc-nickel electroplating
US6755960B1 (en) Zinc-nickel electroplating
EP1639155B1 (en) Zinc and zinc-alloy electroplating
US8377283B2 (en) Zinc and zinc-alloy electroplating
JP7442866B1 (en) Electroplating anodes and methods and systems for electroplating articles with metals
EP4269663A1 (en) Method and system for electroplating article with metal
JP7233793B1 (en) Method and system for electroplating articles with metal
JP2024076825A (en) Electroplating anode and method and system for electroplating an article with a metal - Patents.com
JP2024067618A (en) Electroplating brightener and electroplating bath containing same and method for electroplating an article with a metal
WO2023100381A1 (en) Method and system for electroplating article with metal

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019508981

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019766159

Country of ref document: EP

Effective date: 20190920

NENP Non-entry into the national phase

Ref country code: DE