WO2022117119A1 - 一种空调器及其除霜控制方法 - Google Patents

一种空调器及其除霜控制方法 Download PDF

Info

Publication number
WO2022117119A1
WO2022117119A1 PCT/CN2022/071177 CN2022071177W WO2022117119A1 WO 2022117119 A1 WO2022117119 A1 WO 2022117119A1 CN 2022071177 W CN2022071177 W CN 2022071177W WO 2022117119 A1 WO2022117119 A1 WO 2022117119A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind speed
air conditioner
outdoor
defrosting
outdoor ambient
Prior art date
Application number
PCT/CN2022/071177
Other languages
English (en)
French (fr)
Inventor
张立龙
赵志林
聂正伟
连建春
李国彦
王准
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022117119A1 publication Critical patent/WO2022117119A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • F24F2110/32Velocity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention belongs to the technical field of air conditioners and their control, and in particular relates to an air conditioner and a defrosting control method thereof.
  • the outdoor heat exchanger When the air conditioner is in heating operation, due to the low outdoor ambient temperature, the outdoor heat exchanger has the risk of frost formation. After the outdoor heat exchanger is frosted, in order to ensure the heating effect, the outdoor heat exchanger needs to be defrosted.
  • the method for determining the end of defrosting is to exit the defrosting when the outdoor coil temperature is greater than the exit temperature for a certain period of time.
  • the heat exchange of the outdoor heat exchanger is affected by the outdoor environment, especially in windy weather.
  • the frost near the fins or copper pipes of the outdoor heat exchanger will first be solidified into a solid state. The liquid loses its adhesion, and the remaining solid frost particles are easily blown off by the wind.
  • the heat exchange rate of the outdoor heat exchanger through the airflow is faster, and the temperature of the coil cannot reach the defrosting speed.
  • the exit temperature will cause the defrosting exit to be delayed or even unable to exit, which will seriously affect the indoor comfort.
  • the present invention provides an air conditioner and a defrosting control method thereof, so as to solve the problem that the actual defrosting of the outdoor heat exchanger in the existing air conditioner has been completed in strong windy weather, but the actual detected disk
  • the technical problem that the tube temperature cannot reach the defrost exit temperature causes the defrost exit to be delayed or even impossible to exit.
  • a defrosting control method for an air conditioner is:
  • different wind speed levels correspond to different defrost exit temperatures, and the wind speed levels are negatively correlated with the defrost exit temperatures.
  • the air conditioner has several outdoor environmental wind speed levels and their corresponding compressor maximum operating frequencies, and the wind speed levels are positively correlated with the compressor maximum operating frequencies.
  • the air conditioner includes an outdoor ambient wind speed sensor, and the outdoor ambient wind speed is detected by the outdoor ambient wind speed sensor; or, the air conditioner includes a communication module, and the communication module is connected through the Internet Get the outdoor ambient wind speed.
  • the air conditioner includes at least two outdoor ambient wind speed sensors, located on different surfaces of the outdoor unit casing of the air conditioner, according to the detection values of the at least two outdoor ambient wind speed sensors Determine the outdoor ambient wind speed.
  • An air conditioner comprising:
  • the wind speed acquisition module is used to obtain the wind speed of the outdoor environment
  • the outdoor coil temperature detection module is used to detect the outdoor coil temperature
  • the control module is used to obtain the defrost exit temperature corresponding to the wind speed class to which the outdoor ambient wind speed belongs, and control the air conditioner when the outdoor coil temperature is higher than the defrost exit temperature corresponding to the wind speed class to which the outdoor ambient wind speed belongs. out of defrost;
  • the storage module is used to store the defrost exit temperature corresponding to the wind speed level
  • different wind speed levels correspond to different defrost exit temperatures, and the wind speed levels are negatively correlated with the defrost exit temperatures.
  • control module is configured to limit the maximum operating frequency of the compressor according to the outdoor ambient wind speed when the air conditioner is in defrosting operation.
  • the storage module stores several outdoor environmental wind speed levels and their corresponding compressor maximum operating frequencies, and the wind speed levels are positively correlated with the compressor maximum operating frequencies.
  • the wind speed acquisition module is an outdoor environmental wind speed sensor or a communication module
  • the outdoor environmental wind speed sensor detects the outdoor environmental wind speed
  • the communication module obtains the outdoor environmental wind speed through the Internet.
  • the air conditioner includes at least two outdoor ambient wind speed sensors, which are located on different surfaces of the outdoor unit casing of the air conditioner, and the control module determines according to the detection values of the at least two outdoor ambient wind speed sensors Outdoor ambient wind speed.
  • the defrosting control method of the air conditioner of the present invention obtains the outdoor ambient wind speed, detects the outdoor coil temperature, and obtains the outdoor ambient wind speed when the air conditioner is in defrosting operation.
  • the defrosting exit temperature corresponding to the wind speed level when the outdoor coil temperature is higher than the defrosting exit temperature corresponding to the wind speed level to which the outdoor ambient wind speed belongs, the air conditioner is controlled to exit the defrosting; among them, different wind speed levels correspond to different defrosting exit temperatures , the wind speed level is negatively correlated with the defrost exit temperature.
  • the present invention sets different defrosting exit temperatures according to the wind speed level, and the defrosting exit temperature can reflect the actual state of the current wind speed level when defrosting is completed, avoid the influence of ambient wind on the temperature of the outdoor coil, and ensure that the defrosting can exit in time when the defrosting is completed. Defrost to ensure indoor heating comfort.
  • the air conditioner of the invention includes a wind speed acquisition module, an outdoor coil temperature detection module, a control module and a storage module.
  • the wind speed acquisition module is used to acquire the outdoor ambient wind speed;
  • the outdoor coil temperature detection module is used to detect the outdoor coil temperature;
  • the control module is used for Obtain the defrost exit temperature corresponding to the wind speed level to which the outdoor ambient wind speed belongs, and control the air conditioner to exit the defrost when the outdoor coil temperature is higher than the defrost exit temperature corresponding to the wind speed level to which the outdoor ambient wind speed belongs;
  • the storage module is used to store the wind speed The defrost exit temperature corresponding to the level; among them, different wind speed levels correspond to different defrost exit temperatures, and the wind speed level is negatively correlated with the defrost exit temperature.
  • the present invention sets different defrosting exit temperatures according to the wind speed level, and the defrosting exit temperature can reflect the actual state of the current wind speed level when defrosting is completed, avoid the influence of ambient wind on the temperature of the outdoor coil, and ensure that the defrosting can exit in time when the defrosting is completed. Defrost to ensure indoor heating comfort.
  • FIG. 1 is a flow chart of a method for controlling an air conditioner according to a specific embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of an air conditioner according to a specific embodiment of the present invention.
  • 3 and 4 are schematic diagrams showing the installation positions of the wind speed sensor according to the specific embodiment of the present invention.
  • the air conditioner When the air conditioner is running for heating in winter, when the outdoor ambient temperature is low and the evaporation temperature of the outdoor heat exchanger is low, the moisture in the air will form frost on the surface of the outdoor heat exchanger, and with the increase of the operating time of the air conditioner , the thickness of the frosting will increase, resulting in a decrease in the heat exchange capacity of the hot outdoor heat exchanger and a decrease in the heating effect. In order to prevent such a phenomenon, the frost layer on the heat exchanger should be removed in time, and the air conditioner will continue to perform heating operation after the defrosting is completed.
  • the method for determining the end of defrosting is to exit the defrosting when the outdoor coil temperature is greater than the exit temperature for a certain period of time.
  • the heat exchange of the outdoor heat exchanger is affected by the outdoor.
  • the present embodiment proposes a defrosting control method for an air conditioner, focusing on the control of exiting defrosting and defrosting processes.
  • the outdoor coil temperature Te and the outdoor ambient temperature Tao are detected to obtain the frost point temperature Tes corresponding to different outdoor ambient temperature ranges.
  • the outdoor coil temperature Te ⁇ Tes corresponds to the outdoor ambient temperature range to which the outdoor ambient temperature belongs.
  • Tes Tao4°C
  • Tes ⁇ -18°C when the calculated Tes ⁇ -18°C, Tes selects -18°C.
  • the air conditioner enters the defrosting state after meeting the above conditions. Specifically, the outdoor heat exchanger is switched to the heating state by switching the four-way valve, so as to melt the frost on the outdoor heat exchanger.
  • the indoor fan When the air conditioner enters the defrosting state, the indoor fan is controlled to be weak wind to reduce the influence on the indoor temperature, and the outdoor fan is stopped to limit the maximum frequency of the compressor operation.
  • the maximum operating frequency of the compressor is limited according to the outdoor ambient wind speed.
  • the air conditioner has several outdoor environmental wind speed levels and their corresponding maximum compressor operating frequencies, and the wind speed level is positively correlated with the compressor maximum operating frequency.
  • f1, f2, f3 are the optimal values determined in advance according to experiments.
  • the air conditioner is controlled to exit the defrosting
  • T1 T0-t1°C
  • t1, t2, t3 are the optimal values determined in advance according to experiments.
  • the air conditioner includes an outdoor ambient wind speed sensor, and the outdoor ambient wind speed is detected by the outdoor ambient wind speed sensor.
  • This method needs to add a wind speed sensor to the outdoor unit of the air conditioner, which requires a certain cost.
  • the measured wind speed is the real-time wind speed of the location of the outdoor heat exchanger of the air conditioner, and the control is more accurate.
  • the air conditioner includes at least two outdoor ambient wind speed sensors, which are located on different surfaces of the outdoor unit casing of the air conditioner, and determine the outdoor ambient wind speed according to the detection values of the at least two outdoor ambient wind speed sensors.
  • the two wind speed sensors are located on two adjacent surfaces of the outdoor unit casing of the air conditioner.
  • the outdoor ambient wind speed can be determined by the maximum value of the two outdoor ambient wind speed sensors, or by The average value determines the outdoor ambient wind speed.
  • the air conditioner includes a communication module, and the communication module obtains the outdoor ambient wind speed through the Internet.
  • the air conditioner is equipped with a communication module, and the outdoor ambient wind speed can be obtained after networking.
  • the disadvantage is that the current wind speed cannot be obtained when the air conditioner cannot be connected to the network. The wind speed at the location where the outdoor unit of the air conditioner is located may cause certain errors.
  • control method of the air conditioner in this embodiment includes the following steps:
  • the air conditioner enters the heating operation.
  • the air conditioner enters the defrosting operation.
  • S6 control the indoor fan to be weak wind, stop the outdoor fan, obtain the outdoor ambient wind speed, and limit the maximum frequency of compressor operation according to the outdoor ambient wind speed.
  • step S8 Determine whether the outdoor coil temperature Te is higher than the defrosting exit temperature T1 corresponding to the wind speed level to which the outdoor ambient wind speed belongs. If so, go to step S9; otherwise, go to step S6.
  • step S9 the air conditioner exits from defrosting, and proceeds to step S2.
  • the air conditioner includes a wind speed acquisition module, an outdoor coil temperature detection module, a control module and a storage module.
  • the specific instructions are as follows:
  • the wind speed acquisition module is used to acquire the outdoor ambient wind speed m.
  • the wind speed acquisition module is an outdoor environmental wind speed sensor or a communication module.
  • the outdoor environmental wind speed is detected by the outdoor environmental wind speed sensor.
  • This method needs to add a wind speed sensor to the outdoor unit of the air conditioner, which requires a certain cost.
  • the measured wind speed is the real-time wind speed of the location of the outdoor heat exchanger of the air conditioner, and the control is more accurate.
  • the air conditioner includes at least two outdoor ambient wind speed sensors located on different surfaces of the outdoor unit casing of the air conditioner, and the control module determines the outdoor ambient wind speed according to the detection values of the at least two outdoor ambient wind speed sensors.
  • the two wind speed sensors are located on two adjacent surfaces of the outdoor unit casing of the air conditioner.
  • the outdoor ambient wind speed can be determined by the maximum value of the two outdoor ambient wind speed sensors, or by The average value determines the outdoor ambient wind speed.
  • the casing of the outdoor unit includes a column 1 and a panel connected to the column, and the column includes a first surface 11 and a second surface 12 that are connected to each other.
  • the two sides 12 are at a certain angle (90 degrees), one outdoor ambient wind speed sensor 21 is located on the first side 11 , and the other outdoor ambient wind speed sensor 12 is located on the second side 22 .
  • the communication module obtains the outdoor ambient wind speed through the Internet.
  • the air conditioner is equipped with a communication module, and the outdoor ambient wind speed can be obtained after networking.
  • the disadvantage is that the current wind speed cannot be obtained when the air conditioner cannot be connected to the network.
  • the wind speed at the location of the outdoor unit of the air conditioner may cause certain errors.
  • the outdoor coil temperature detection module is used to detect the outdoor coil temperature Te.
  • the control module is used to control the switching between the heating operation and the defrosting operation of the air conditioner according to the acquired information.
  • the air conditioner When the air conditioner is in heating operation, obtain the outdoor coil temperature Te and the outdoor ambient temperature Tao, and obtain the frost point temperature Tes corresponding to different outdoor ambient temperature ranges.
  • the outdoor coil temperature Te ⁇ Tes corresponds to the outdoor ambient temperature range to which the outdoor ambient temperature belongs.
  • Tes Tao4°C
  • Tes ⁇ -18°C when the calculated Tes ⁇ -18°C, Tes selects -18°C.
  • control module controls the air conditioner to enter the defrosting state. Specifically, by switching the four-way valve, the outdoor heat exchanger is switched to the heating state to defrost the frost on the outdoor heat exchanger.
  • the control module controls the indoor fan to be weak wind to reduce the impact on the indoor temperature, and the outdoor fan stops to limit the maximum frequency of compressor operation.
  • control module is used to limit the maximum operating frequency of the compressor according to the outdoor ambient wind speed.
  • the control module obtains the outdoor ambient wind speed m, the air conditioner has several outdoor ambient wind speed levels and their corresponding compressor maximum operating frequencies, and the wind speed levels are positively correlated with the compressor maximum operating frequency.
  • f1, f2, f3 are the optimal values determined in advance according to experiments.
  • the control module is used to obtain the defrost exit temperature corresponding to the wind speed class to which the outdoor ambient wind speed belongs, and controls the air conditioner to exit the defrost when the outdoor coil temperature is higher than the defrost exit temperature corresponding to the wind speed class to which the outdoor ambient wind speed belongs.
  • T1 T0-t1°C
  • t1, t2, t3 are the optimal values determined in advance according to experiments.
  • the storage module is used to store the defrost exit temperature corresponding to the wind speed level
  • different wind speed levels correspond to different defrost exit temperatures, and the wind speed levels are negatively correlated with the defrost exit temperatures.
  • the storage module also stores a number of outdoor environmental wind speed levels and their corresponding maximum compressor operating frequencies, and the wind speed levels are positively correlated with the compressor maximum operating frequency.
  • the key point of this embodiment is to set different defrosting exit temperatures according to the wind speed level.
  • the defrosting exit temperature can reflect the actual state of the current wind speed level when the defrosting is completed, avoid the influence of ambient wind on the temperature of the outdoor coil, and ensure that the defrosting exit temperature is completed when the defrosting is completed. It can exit the defrosting in time to ensure indoor heating comfort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供了一种空调器及其除霜控制方法,在空调器除霜运行时,获取室外环境风速,检测室外盘管温度,获取室外环境风速所属的风速等级对应的除霜退出温度,在室外盘管温度高于室外环境风速所属的风速等级对应的除霜退出温度时,控制空调器退出除霜;其中,不同风速等级对应不同的除霜退出温度,风速等级与除霜退出温度负相关。本发明根据风速等级设置不同的除霜退出温度,除霜退出温度能够反应当前风速等级除霜完成时的真实状态,避免环境风对室外盘管温度的影响,保证在除霜完成时能够及时退出除霜,保证室内制热舒适度。

Description

一种空调器及其除霜控制方法 技术领域
本发明属于空调器及其控制技术领域,具体涉及一种空调器及其除霜控制方法。
背景技术
空调器在制热运行时,由于室外环境温度低,室外换热器存在结霜风险,在室外换热器结霜后,为了保证制热效果,需要对室外换热器进行除霜。
现有空调器除霜时,判定除霜结束的方法为,在室外盘管温度大于退出温度一定时间时退出除霜,例如室外盘管温度大于10℃持续30s则退出除霜。然而,由于室外机位于室外,其室外换热器的换热情况受室外环境影响,特别是在大风天气,除霜时,靠近室外换热器翅片或者铜管的霜会先由固态化为液态失去附着力,剩余的固体霜粒,很容易被风吹掉,在实际化霜已经完成时,由于风力较大,室外换热器通过气流换热速度较快,盘管温度无法到达除霜退出温度,导致除霜退出延迟甚至无法退出,严重影响室内舒适度。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
技术问题
本发明针对现有技术中存在的上述问题,提供一种空调器及其除霜控制方法,以解决现有空调器在大风天气存在室外换热器实际化霜已经完成,但是,实际检测的盘管温度无法达到除霜退出温度导致除霜退出延迟甚至无法退出的技术问题。
技术解决方案
为达到上述技术目的,本发明采用以下技术方案实现:
一种空调器的除霜控制方法,所述方法为:
空调器除霜运行时,获取室外环境风速,检测室外盘管温度;
获取室外环境风速所属的风速等级对应的除霜退出温度;
在所述室外盘管温度高于所述室外环境风速所属的风速等级对应的除霜退出温度时,控制所述空调器退出除霜;
其中,不同风速等级对应不同的除霜退出温度,所述风速等级与所述除霜退出温度负相关。
如上所述的空调器的除霜控制方法,所述空调器除霜运行时,根据所述室外环境风速限制所述压缩机的最高运行频率。
如上所述的空调器的除霜控制方法,所述空调器具有若干室外环境风速等级及其对应的压缩机最高运行频率,所述风速等级与所述压缩机最高运行频率正相关。
如上所述的空调器的除霜控制方法,所述空调器包括室外环境风速传感器,通过所述室外环境风速传感器检测室外环境风速;或者,所述空调器包括通讯模块,所述通讯模块通过互联网获取室外环境风速。
如上所述的空调器的除霜控制方法,所述空调器包括至少两个室外环境风速传感器,位于所述空调器室外机壳体的不同面上,根据至少两个室外环境风速传感器的检测值确定室外环境风速。
一种空调器,所述空调器包括:
风速获取模块,用于获取室外环境风速;
室外盘管温度检测模块,用于检测室外盘管温度;
控制模块,用于获取室外环境风速所属的风速等级对应的除霜退出温度,在所述室外盘管温度高于所述室外环境风速所属的风速等级对应的除霜退出温度时,控制所述空调器退出除霜;
存储模块,用于存储风速等级对应的除霜退出温度;
其中,不同风速等级对应不同的除霜退出温度,所述风速等级与所述除霜退出温度负相关。
如上所述的空调器,所述控制模块用于在所述空调器除霜运行时,根据所述室外环境风速限制所述压缩机的最高运行频率。
如上所述的空调器,所述存储模块存储有若干室外环境风速等级及其对应的压缩机最高运行频率,所述风速等级与所述压缩机最高运行频率正相关。
如上所述的空调器,所述风速获取模块为室外环境风速传感器或者通讯模块,所述室外环境风速传感器检测室外环境风速;所述通讯模块通过互联网获取室外环境风速。
如上所述的空调器,所述空调器包括至少两个室外环境风速传感器,位于所述空调器室外机壳体的不同面上,所述控制模块根据至少两个室外环境风速传感器的检测值确定室外环境风速。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明空调器的除霜控制方法在空调器除霜运行时,获取室外环境风速,检测室外盘管温度,获取室外环境风速所属的风速等级对应的除霜退出温度,在室外盘管温度高于室外环境风速所属的风速等级对应的除霜退出温度时,控制空调器退出除霜;其中,不同风速等级对应不同的除霜退出温度,风速等级与除霜退出温度负相关。本发明根据风速等级设置不同的除霜退出温度,除霜退出温度能够反应当前风速等级除霜完成时的真实状态,避免环境风对室外盘管温度的影响,保证在除霜完成时能够及时退出除霜,保证室内制热舒适度。
本发明空调器包括风速获取模块、室外盘管温度检测模块、控制模块和存储模块,风速获取模块用于获取室外环境风速;室外盘管温度检测模块用于检测室外盘管温度;控制模块用于获取室外环境风速所属的风速等级对应的除霜退出温度,在室外盘管温度高于室外环境风速所属的风速等级对应的除霜退出温度时,控制空调器退出除霜;存储模块用于存储风速等级对应的除霜退出温度;其中,不同风速等级对应不同的除霜退出温度,风速等级与除霜退出温度负相关。本发明根据风速等级设置不同的除霜退出温度,除霜退出温度能够反应当前风速等级除霜完成时的真实状态,避免环境风对室外盘管温度的影响,保证在除霜完成时能够及时退出除霜,保证室内制热舒适度。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具体实施例空调器控制方法的流程图。
图2为本发明具体实施例空调器的原理框图。
图3、4为本发明具体实施例风速传感器安装位置示意图。
本发明的最佳实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
空调器在冬季制热运行时,由于室外环境温度低,室外热交换器的蒸发温度较低时,空气中的水分就会在室外换热器表面结霜,而随着空调器运转时间的增加,结霜的厚度就会越来越大,从而导致热室外换热器换热能力下降,制热效果降低。为了防止这样的现象发生,应该及时的除去换热器上的霜层,在除霜完成以后,空调才会继续进行制热运行。
现有空调器除霜时,判定除霜结束的方法为,在室外盘管温度大于退出温度一定时间时退出除霜,然而,由于室外机位于室外,其室外换热器的换热情况受室外环境影响,特别是在大风天气除霜时,在实际化霜已经完成时,由于室外换热器通过气流换热速度较快,盘管温度无法到达除霜退出温度,导致除霜退出延迟甚至无法退出,使得空调器无法及时切换至制热状态,严重影响室内舒适度。
为了解决上述问题,本实施例提出了一种空调器的除霜控制方法,着重于退出除霜和除霜过程的控制。
首先,说明空调器从正常制热运行状态进入除霜状态的过程:
空调制热运行时,检测室外盘管温度Te,室外环境温度Tao,获取不同室外环境温度范围对应的霜点温度Tes,在室外环境温度所属的室外环境温度范围内室外盘管温度Te<Tes对应的的霜点温度时,进入除霜。
具体的,室外环境温度范围与对应的霜点温度Tes的关系如下:
Tao≥6℃, Tes=-6℃。
-15℃≤Tao<6℃, Tes=Tao- 3℃,且Tes<-6℃,在计算的Tes≥-6℃时,Tes选取-6℃。
Tao<-15℃, Tes=Tao4℃,且Tes<-18℃,在计算的Tes≥-18℃时,Tes选取-18℃。
空调器在符合上述条件后进入除霜状态,具体通过切换四通阀的方式,将室外换热器切换为制热状态,以化掉室外换热器上的霜。
其次,说明空调器在除霜状态时的控制:
空调器进入除霜状态时,控制室内风机为微弱风,以减小对室内温度的影响,室外风机停,限制压缩机运行的最高频率。
由于室外环境风速对室外换热器的换热能够起到很大的促进作用,为了提高除霜效率,根据室外环境风速限制压缩机的最高运行频率。
获取室外环境风速m,空调器具有若干室外环境风速等级及其对应的压缩机最高运行频率,风速等级与压缩机最高运行频率正相关。
具体的,根据风速大小设定判定值为a,b,c,压缩机运行最高频率为fmax,压缩机运行最高基础频率为f,则风速等级与压缩机最高运行频率fmax的对应关系如下:
m≤a, fmax=f;
a<m≤b, fmax=f+f1Hz;
b<m≤c, fmax=f1+f2Hz;
c<m, fmax=f1+f3Hz;
其中,f1、 f2、f3为事先根据实验确定的最优数值。
例如,f1=5,f2=10,f3=15Hz为一组优选值。
最后,说明空调器退出除霜的控制过程:
空调器除霜运行时,获取室外环境风速m,检测室外盘管温度Te;
获取室外环境风速所属的风速等级对应的除霜退出温度;
在室外盘管温度高于室外环境风速所属的风速等级对应的除霜退出温度时,控制空调器退出除霜;
其中,不同风速等级对应不同的除霜退出温度,风速等级与除霜退出温度负相关。
具体的,根据风速大小设定判定值为a,b,c,除霜退出温度T1,除霜基础退出温度为T0,则风速等级与除霜退出温度T1的对应关系如下:
m≤a, T1=T0;
a<m≤b, T1=T0-t1℃;
b<m≤c, T1=T0- t2℃;
c<m, T1=T0- t3℃;
其中,t1、 t2、 t3为事先根据实验确定的最优数值。
例如:t1=2,t2=4,t3=6℃为一组优选值。
对于获取室外环境风速m的方式,可以采用如下两种方式:
方式一:空调器包括室外环境风速传感器,通过室外环境风速传感器检测室外环境风速。
此种方式需要在空调室外机上增加风速传感器,此种方式需要增加一定的成本,但是,测得的风速为空调室外换热器所处位置的实时风速,控制更加精确。
为了进一步提高检测精度,空调器包括至少两个室外环境风速传感器,位于空调器室外机壳体的不同面上,根据至少两个室外环境风速传感器的检测值确定室外环境风速。
一般设置有两个室外环境风速传感器即可,两个风速传感器位于空调室外机壳体的两个相邻面上,例如,可以通过两个室外环境风速传感器的最大值确定室外环境风速,或者通过平均值确定室外环境风速。
方式二:空调器包括通讯模块,通讯模块通过互联网获取室外环境风速。
此种方式成本较低,空调器一般都设置通讯模块,联网后即可获取室外环境风速,缺点在于,空调器无法联网时无法获取当前风速,另外,联网获得的风速为当前大气风速,并不是空调室外机所处位置的风速,有可能会产生一定的误差。
如图1所示,本实施例空调器的控制方法包括如下步骤:
S1、开机。
S2、空调器进入制热运行。
S3、检测室外盘管温度Te,室外环境温度Tao,获取不同室外环境温度范围对应的霜点温度Tes。
S4、判断Te<Tes,若是,进入步骤S5,否则,进入步骤S3。
S5、空调器进入除霜运行。
S6、控制室内风机为微弱风,室外风机停,获取室外环境风速,根据室外环境风速限制压缩机运行的最高频率。
S7、获取室外环境风速m,检测室外盘管温度Te;获取室外环境风速所属的风速等级对应的除霜退出温度T1。
S8、判断室外盘管温度Te是否高于室外环境风速所属的风速等级对应的除霜退出温度T1,若是,进入步骤S9,否则,进入步骤S6。
S9、空调器退出除霜,进入步骤S2。
如图2所示,本实施例还提出了一种空调器,空调器包括风速获取模块、室外盘管温度检测模块、控制模块和存储模块。具体说明如下:
风速获取模块,用于获取室外环境风速m。
其中,风速获取模块为室外环境风速传感器或者通讯模块。
空调器包括室外环境风速传感器时,通过室外环境风速传感器检测室外环境风速。
此种方式需要在空调室外机上增加风速传感器,此种方式需要增加一定的成本,但是,测得的风速为空调室外换热器所处位置的实时风速,控制更加精确。
为了进一步提高检测精度,空调器包括至少两个室外环境风速传感器,位于空调器室外机壳体的不同面上,控制模块根据至少两个室外环境风速传感器的检测值确定室外环境风速。
一般设置有两个室外环境风速传感器即可,两个风速传感器位于空调室外机壳体的两个相邻面上,例如,可以通过两个室外环境风速传感器的最大值确定室外环境风速,或者通过平均值确定室外环境风速。
如图3、4所示,本实施例中,室外机的壳体包括立柱1和与立柱相接的面板,立柱包括相接的第一面11和第二面12,第一面11和第二面12呈一定角度(90度),一个室外环境风速传感器21位于第一面11上,另一个室外环境风速传感器12位于第二面22上。
空调器包括通讯模块时,通讯模块通过互联网获取室外环境风速。
此种方式成本较低,空调器一般都设置通讯模块,联网后即可获取室外环境风速,缺点在于,空调器无法联网时无法获取当前风速,另外,联网获得的风速为当前大气风速,并不是空调室外机所处位置的风速,有可能会产生一定的误差。
室外盘管温度检测模块,用于检测室外盘管温度Te。
控制模块,用于根据获取的信息控制空调制热运行和除霜运行的切换。
空调制热运行时,获取室外盘管温度Te、室外环境温度Tao,获取不同室外环境温度范围对应的霜点温度Tes,在室外环境温度所属的室外环境温度范围内室外盘管温度Te<Tes对应的的霜点温度时,进入除霜。
具体的,室外环境温度范围与对应的霜点温度Tes的关系如下:
Tao≥6℃, Tes=-6℃。
-15℃≤Tao<6℃, Tes=Tao- 3℃,且Tes<-6℃,在计算的Tes≥-6℃时,Tes选取-6℃。
Tao<-15℃, Tes=Tao4℃,且Tes<-18℃,在计算的Tes≥-18℃时,Tes选取-18℃。
在符合上述条件后,控制模块控制空调器进入除霜状态,具体通过切换四通阀的方式,将室外换热器切换为制热状态,以化掉室外换热器上的霜。
空调器在除霜状态时,控制模块控制室内风机为微弱风,以减小对室内温度的影响,室外风机停,限制压缩机运行的最高频率。
由于室外环境风速对室外换热器的换热能够起到很大的促进作用,为了提高除霜效率,控制模块用于根据室外环境风速限制压缩机的最高运行频率。
控制模块获取室外环境风速m,空调器具有若干室外环境风速等级及其对应的压缩机最高运行频率,风速等级与压缩机最高运行频率正相关。
具体的,根据风速大小设定判定值为a,b,c,压缩机运行最高频率为fmax,压缩机运行最高基础频率为f,则风速等级与压缩机最高运行频率fmax的对应关系如下:
m≤a, fmax=f;
a<m≤b, fmax=f+f1Hz;
b<m≤c, fmax=f1+f2Hz;
c<m, fmax=f1+f3Hz;
其中,f1、 f2、f3为事先根据实验确定的最优数值。
例如,f1=5,f2=10,f3=15Hz为一组优选值。
控制模块用于获取室外环境风速所属的风速等级对应的除霜退出温度,在室外盘管温度高于室外环境风速所属的风速等级对应的除霜退出温度时,控制空调器退出除霜。
其中,不同风速等级对应不同的除霜退出温度,风速等级与除霜退出温度负相关。
具体的,根据风速大小设定判定值为a,b,c,除霜退出温度T1,除霜基础退出温度为T0,则风速等级与除霜退出温度T1的对应关系如下:
m≤a, T1=T0;
a<m≤b, T1=T0-t1℃;
b<m≤c, T1=T0- t2℃;
c<m, T1=T0- t3℃;
其中,t1、 t2、 t3为事先根据实验确定的最优数值。
例如:t1=2,t2=4,t3=6℃为一组优选值。
存储模块,用于存储风速等级对应的除霜退出温度;
其中,不同风速等级对应不同的除霜退出温度,所述风速等级与所述除霜退出温度负相关。
存储模块还存储有若干室外环境风速等级及其对应的压缩机最高运行频率,风速等级与压缩机最高运行频率正相关。
本实施例重点在于根据风速等级设置不同的除霜退出温度,除霜退出温度能够反应当前风速等级除霜完成时的真实状态,避免环境风对室外盘管温度的影响,保证在除霜完成时能够及时退出除霜,保证室内制热舒适度。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种空调器的除霜控制方法,其特征在于,所述方法为:
    空调器除霜运行时,获取室外环境风速,检测室外盘管温度;
    获取室外环境风速所属的风速等级对应的除霜退出温度;
    在所述室外盘管温度高于所述室外环境风速所属的风速等级对应的除霜退出温度时,控制所述空调器退出除霜;
    其中,不同风速等级对应不同的除霜退出温度,所述风速等级与所述除霜退出温度负相关。
  2. 根据权利要求1所述的空调器的除霜控制方法,其特征在于,所述空调器除霜运行时,根据所述室外环境风速限制所述压缩机的最高运行频率。
  3. 根据权利要求2所述的空调器的除霜控制方法,其特征在于,所述空调器具有若干室外环境风速等级及其对应的压缩机最高运行频率,所述风速等级与所述压缩机最高运行频率正相关。
  4. 根据权利要求1-3任意一项所述的空调器的除霜控制方法,其特征在于,所述空调器包括室外环境风速传感器,通过所述室外环境风速传感器检测室外环境风速;或者,所述空调器包括通讯模块,所述通讯模块通过互联网获取室外环境风速。
  5. 根据权利要求4所述的空调器的除霜控制方法,其特征在于,所述空调器包括至少两个室外环境风速传感器,位于所述空调器室外机壳体的不同面上,根据至少两个室外环境风速传感器的检测值确定室外环境风速。
  6. 一种空调器,其特征在于,所述空调器包括:
    风速获取模块,用于获取室外环境风速;
    室外盘管温度检测模块,用于检测室外盘管温度;
    控制模块,用于获取室外环境风速所属的风速等级对应的除霜退出温度,在所述室外盘管温度高于所述室外环境风速所属的风速等级对应的除霜退出温度时,控制所述空调器退出除霜;
    存储模块,用于存储风速等级对应的除霜退出温度;
    其中,不同风速等级对应不同的除霜退出温度,所述风速等级与所述除霜退出温度负相关。
  7. 根据权利要求6所述的空调器,其特征在于,所述控制模块用于在所述空调器除霜运行时,根据所述室外环境风速限制所述压缩机的最高运行频率。
  8. 根据权利要求7所述的空调器,其特征在于,所述存储模块存储有若干室外环境风速等级及其对应的压缩机最高运行频率,所述风速等级与所述压缩机最高运行频率正相关。
  9. 根据权利要求6-8任意一项所述的空调器,其特征在于,所述风速获取模块为室外环境风速传感器或者通讯模块,所述室外环境风速传感器检测室外环境风速;所述通讯模块通过互联网获取室外环境风速。
  10. 根据权利要求9所述的空调器,其特征在于,所述空调器包括至少两个室外环境风速传感器,位于所述空调器室外机壳体的不同面上,所述控制模块根据至少两个室外环境风速传感器的检测值确定室外环境风速。
PCT/CN2022/071177 2021-03-31 2022-01-11 一种空调器及其除霜控制方法 WO2022117119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110348674.0 2021-03-31
CN202110348674.0A CN113091214B (zh) 2021-03-31 2021-03-31 一种空调器及其除霜控制方法

Publications (1)

Publication Number Publication Date
WO2022117119A1 true WO2022117119A1 (zh) 2022-06-09

Family

ID=76671802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071177 WO2022117119A1 (zh) 2021-03-31 2022-01-11 一种空调器及其除霜控制方法

Country Status (2)

Country Link
CN (1) CN113091214B (zh)
WO (1) WO2022117119A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413416A (zh) * 2022-01-26 2022-04-29 宁波奥克斯电气股份有限公司 一种多联机空调除霜控制方法、存储介质及多联机空调

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091214B (zh) * 2021-03-31 2022-07-19 青岛海尔空调器有限总公司 一种空调器及其除霜控制方法
CN114098546B (zh) * 2021-07-15 2023-02-28 浙江绍兴苏泊尔生活电器有限公司 清洁基站的控制方法、清洁基站和清洁***
CN113606760B (zh) * 2021-07-28 2022-07-12 珠海格力电器股份有限公司 温度调节设备控制方法、装置、电子设备及存储介质
CN115468276A (zh) * 2022-09-30 2022-12-13 珠海格力电器股份有限公司 一种空调器的除霜控制装置、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111120A (ja) * 1998-10-07 2000-04-18 Daikin Ind Ltd 外気温検出機能を備えた空調室外機
CN103234254A (zh) * 2013-04-12 2013-08-07 惠州Tcl家电集团有限公司 基于服务器的空调性能参数优化的方法、空调及服务器
CN110360722A (zh) * 2018-04-09 2019-10-22 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN111664547A (zh) * 2020-05-06 2020-09-15 海信(山东)空调有限公司 一种空调器
CN113091214A (zh) * 2021-03-31 2021-07-09 青岛海尔空调器有限总公司 一种空调器及其除霜控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596032B (zh) * 2014-12-31 2017-08-29 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN105674496B (zh) * 2016-02-02 2019-07-23 青岛海尔空调器有限总公司 一种空调除霜方法
CN106839301A (zh) * 2017-01-24 2017-06-13 青岛海尔空调器有限总公司 空调器除霜逻辑控制方法及装置
CN109114730B (zh) * 2018-07-26 2021-04-20 青岛海尔空调器有限总公司 一种母婴空调除霜控制方法和空调器
CN110470007A (zh) * 2019-08-02 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111120A (ja) * 1998-10-07 2000-04-18 Daikin Ind Ltd 外気温検出機能を備えた空調室外機
CN103234254A (zh) * 2013-04-12 2013-08-07 惠州Tcl家电集团有限公司 基于服务器的空调性能参数优化的方法、空调及服务器
CN110360722A (zh) * 2018-04-09 2019-10-22 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN111664547A (zh) * 2020-05-06 2020-09-15 海信(山东)空调有限公司 一种空调器
CN113091214A (zh) * 2021-03-31 2021-07-09 青岛海尔空调器有限总公司 一种空调器及其除霜控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413416A (zh) * 2022-01-26 2022-04-29 宁波奥克斯电气股份有限公司 一种多联机空调除霜控制方法、存储介质及多联机空调

Also Published As

Publication number Publication date
CN113091214B (zh) 2022-07-19
CN113091214A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022117119A1 (zh) 一种空调器及其除霜控制方法
CN107131611B (zh) 空调器除霜控制方法
CN111141007B (zh) 一种调节空调结霜的控制方法、控制***及空调
JP4624385B2 (ja) 空気調和機
CN109282430B (zh) 一种检测控制空调除霜的方法
WO2021000944A1 (zh) 空调器及其控制方法
WO2019037721A1 (zh) 空调装置及其控制方法
CN110726202A (zh) 一种空调器的外风机控制方法及空调器
WO2019158048A1 (zh) 空调器除霜控制方法
WO2022222940A1 (zh) 空调机组及其除霜控制方法
CN110454915A (zh) 空调***及其控制方法
WO2020187235A1 (zh) 空调器自清洁控制方法和空调器
CN110836435B (zh) 空调器抑制结霜控制方法
WO2020143133A1 (zh) 空调器除霜控制方法
CN112303816B (zh) 一种室外换热器结霜识别方法及除霜控制方法
CN110285527A (zh) 显示室内环境温度的方法、装置和空调
CN110836439A (zh) 空调器除霜控制方法
Tu et al. Determination criterion of defrosting condition for variable refrigerant flow air conditioning system
CN110454916B (zh) 空调器的化霜方法和空调器
CN110186154A (zh) 空调的化霜方法及装置
CN113375380A (zh) 一种空气源热泵除霜控制***和控制方法
CN110836436A (zh) 空调器除霜控制方法
CN206018931U (zh) 蒸发器防冻结装置和空调器
CN110836450A (zh) 空调器除霜控制方法
CN110836490B (zh) 空调器除霜控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22728014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22728014

Country of ref document: EP

Kind code of ref document: A1