WO2022116619A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022116619A1
WO2022116619A1 PCT/CN2021/117230 CN2021117230W WO2022116619A1 WO 2022116619 A1 WO2022116619 A1 WO 2022116619A1 CN 2021117230 W CN2021117230 W CN 2021117230W WO 2022116619 A1 WO2022116619 A1 WO 2022116619A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
segment
width
curved
waveguide segment
Prior art date
Application number
PCT/CN2021/117230
Other languages
English (en)
French (fr)
Inventor
尹延龙
陈思涛
隋少帅
赵其圣
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022116619A1 publication Critical patent/WO2022116619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • Optical module usually refers to an integrated module for photoelectric conversion, which can convert optical signals into electrical signals, and convert electrical signals into optical signals, and plays an important role in the field of optical communication.
  • silicon photonics chips as the optical engine technology solution in optical modules, have received more and more attention in 100G/400G and even 800G products.
  • An embodiment of the present disclosure discloses an optical module, comprising: a circuit board; a laser box, disposed on the circuit board; a silicon optical chip, which receives light emitted from the laser box and modulates it to form signal light; the The silicon optical chip includes a plurality of optical devices; the optical devices are connected by a waveguide for light transmission between the optical devices; the waveguide includes: a first straight waveguide section; a first curved waveguide section, including a first initial end and a first termination end; the first initial end is connected with the first straight waveguide segment; along the direction from the first initial end to the first termination end, the bending radius of the first curved waveguide segment gradually decreases is small, the waveguide width of the first curved waveguide segment gradually increases; the waveguide width of the first initial end is consistent with the waveguide width of the first straight waveguide segment; the second straight waveguide segment is the same as the first termination end. connected to receive light from the first curved waveguide segment.
  • Figure 1 is a connection diagram of an optical communication system
  • 2 is a structural diagram of an optical network terminal
  • FIG. 3 is a block diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • FIG. 5 is a structural diagram of a curved waveguide according to some embodiments.
  • FIG. 6 is a structural diagram of a curved waveguide according to some embodiments.
  • FIG. 7 is a structural diagram of a curved waveguide according to some embodiments.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 100 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module provided according to some embodiments
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a casing, a circuit board 300 disposed in the casing, and an optical transceiver;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two side plates located on both sides of the cover plate and perpendicular to the cover plate.
  • An upper side plate is combined with the two side plates by two side walls, so as to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the optical transceiver device inside the optical module 200 .
  • the combination of the upper case 201 and the lower case 202 is used to facilitate the installation of the circuit board 300, optical transceivers and other devices into the case, and the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels 2022 of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, limiter amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP) Wait.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, limiter amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP) Wait.
  • the circuit board 300 connects the above-mentioned devices in the optical module 200 together according to the circuit design through circuit traces, so as to realize functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. , in some embodiments disclosed in the present application, metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector; these are inconvenient to be realized by the flexible circuit board.
  • Flexible circuit boards are also used in some optical modules; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers as a supplement to the rigid circuit boards.
  • the silicon photonics chip 400 is arranged on the circuit board 300 and is electrically connected to the circuit board 300, and can be connected by a wire; the silicon photonics chip 400 is arranged on the surface of the circuit board 300, and its periphery is connected to the circuit board 300 by a plurality of conductive wires ,so.
  • the silicon photonics chip 400 receives the light from the laser box 500, modulates the received light, and in some embodiments, loads a signal onto the light; the silicon photonics chip 400 receives the light from the optical fiber socket 600, converts the optical signal for electrical signals.
  • the silicon optical chip 400 and the optical fiber socket 600 are optically connected through an optical fiber ribbon, and the optical fiber socket 600 is optically connected to the external optical fiber of the optical module 400 .
  • the light modulated by the silicon photonic chip 400 is transmitted to the optical fiber socket 600 through the optical fiber ribbon, and is transmitted to the external optical fiber through the optical fiber socket 600; Thereby, the silicon photonic chip 400 can output the light carrying data to the external optical fiber of the optical module, or receive the light carrying data from the external optical fiber of the optical module.
  • the electrical connection between the laser box 500 and the circuit board 300 may be realized, specifically, the connection may be through a flexible board.
  • the main electrical device in the laser box 500 is a laser chip; the laser chip emits light with relatively stable power, which is not modulated, does not carry information, and does not involve high-speed signal circuits; the circuit structure of the laser box 500 is relatively simple, and can
  • the board is electrically connected to the circuit board 300 , and the laser chip is electrically driven from the outside of the laser box 500 through the flexible board.
  • the laser box 500 may be disposed on the surface of the circuit board 300 or outside the circuit board 300 .
  • the laser box 500 may be provided with a temperature regulating electrical device such as a semiconductor refrigerator to provide temperature control for the laser chip, and the temperature regulating electrical device is powered and driven from outside the laser box 500 through a flexible board.
  • a temperature regulating electrical device such as a semiconductor refrigerator to provide temperature control for the laser chip
  • the laser box 500 provides light with relatively stable optical power to the silicon photonic chip 400 .
  • the laser box 500 and the silicon photonic chip 400 are connected by optical fibers/fiber ribbons.
  • a curved waveguide is arranged between different optical devices according to the curved connection form of the optical path, which is used to realize the curved arrangement of the optical channel and reduce the physical length of the optical waveguide at the same time.
  • the bending angle of the optical path is 90 degrees or 180 degrees, and an arc-shaped curved waveguide is arranged between the two straight waveguides.
  • FIG. 5 is a structural diagram of a curved waveguide according to some embodiments.
  • the two optical devices in the silicon photonics chip 400 that need to realize optical connection are respectively referred to as a first optical device and a second optical device.
  • the first optical device is linearly connected to the first straight waveguide segment 401
  • the second optical device is linearly connected to the second straight waveguide segment 402
  • a curved waveguide is arranged between the first straight waveguide segment 401 and the second straight waveguide segment 402, usually , in order to reduce the loss caused by mode mismatch, the widths of the first straight waveguide section 401 and the second straight waveguide section 402 are the same, which are defined as the straight waveguide width.
  • the curved waveguide includes: a first curved waveguide segment 403 and a second curved waveguide segment 404.
  • a first initial end 4031 of the first curved waveguide segment 403 is connected to the first straight waveguide segment 401, and a second end of the first curved waveguide segment 403 is connected to the first straight waveguide segment 401.
  • the second end of the second curved waveguide segment 404 is connected, and the first end of the second curved waveguide segment 404 is connected to the second straight waveguide segment 402 .
  • the first end of the first curved waveguide segment 403 is referred to as the first initial end 4031
  • the second end of the first curved waveguide segment 403 is referred to as the first termination end 4032
  • the second curved waveguide segment is referred to as the first termination end 4032
  • the first end of the waveguide segment 404 is referred to as the second initial end 4041
  • the second end of the first curved waveguide segment 404 is referred to as the second termination end 4042 .
  • the first straight waveguide section 401 and the second straight waveguide section 402 are perpendicular to each other.
  • the width of the first initial end 4031 is the same as the width of the first straight waveguide section 401 , and the bending radius of the first initial end 4031 and the first straight waveguide section 401 is the same.
  • the bending radius of the first initial end 4031 is the largest, which is close to infinity, and the arc length L1 of the inner diameter of the first curved waveguide section is 0 at this time.
  • the arc length L1 gradually increases, the bending radius gradually decreases, and the width of the curved waveguide gradually increases.
  • the included angle between the first termination end 4032 and the first straight waveguide is 45°. Therefore, the width of the first termination end 4032 is greater than the width of the first initial end 4031, and the width of the first termination end 4032 is the maximum width of the first curved waveguide segment.
  • the radius of the first termination end 4032 is smaller than the radius of the first initial end 4031, and the radius of the first termination end 4032 is the smallest radius of the first curved waveguide segment.
  • the first straight waveguide section 401 is connected to the first curved waveguide section. There is no difference in angle, width, and mode mismatch between the connected parts of the first curved waveguide section, thus reducing the loss in the process of light wave transmission from the first straight waveguide section 401 to the first curved waveguide section.
  • the bending radius gradually decreases as the arc length L1 gradually increases, which is beneficial to reduce the loss; at the same time, the arc length L1 of the first curved waveguide section 403 gradually increases , the width of the curved waveguide gradually increases to ensure that the light wave also exists in the waveguide when the first curved waveguide segment 403 propagates and diffuses outward, thereby reducing the bending loss.
  • the width of the second termination end 4042 is the same as the width of the first termination end 4032 , and the bending direction of the first curved waveband and the second curved waveguide segment 404 is the same.
  • the waveguide widths of the first straight waveguide section 401 and the second straight waveguide section 402 are the same, and the second curved waveguide section 404 and the first curved waveguide section 403 are mirror images of the vertical line of the first termination end.
  • the width of the second termination end 4042 is the same as the width of the first termination end 4032 , and the optical axis of the second termination end 4042 and the first termination end 4032 are parallel, when the light wave enters the second curved waveguide segment 404 from the first curved waveguide segment 403 , there is no pattern mismatch.
  • the bending radius of the second initial end 4041 is the largest. As the second initial end 4041 extends to the second termination end 4042, the arc length L2 gradually increases, the bending radius gradually decreases, and the width of the curved waveguide gradually increases. The included angle between the second termination end 4042 and the second straight waveguide is 45°. Therefore, the width of the second termination end 4042 is greater than the width of the second initial end 4041 , and the width of the second termination end 4042 is the maximum width of the second curved waveguide segment 404 . The radius of the second termination end 4042 is smaller than the radius of the second initial end 4041 , and the radius of the second termination end 4042 is the smallest radius of the second curved waveguide section 404 .
  • the width of the second initial end 4041 of the second curved waveguide section 404 is the same as the width of the second straight waveguide section 402 , and the second initial end 4041 is connected to the second straight waveguide section 402 to reduce the loss caused by mode mismatch.
  • the waveguide width of the first termination end 4032 should be less than or equal to twice the waveguide width of the first straight waveguide segment, and the bending radius of the first termination end should be determined according to the bending loss .
  • the waveguide width of the second termination end 4042 should be less than or equal to twice the waveguide width of the second straight waveguide segment, and the bending radius of the second termination end needs to be determined according to the bending loss.
  • the bending radii of the first curved waveguide segment 403 and the second curved waveguide segment 404 both refer to the inner diameter of the curved waveguide segment.
  • FIG. 6 is a second schematic structural diagram of a curved waveguide provided by an embodiment of the present disclosure.
  • the curved waveguide further includes: a third arc-shaped waveguide segment 405, which is arranged on the first Between the curved waveguide segment 403 and the second curved waveguide segment 404 , the width of the third arc-shaped waveguide segment 405 is always the same, which is the same as the width of the first termination end 4032 .
  • one end of the third arc-shaped waveguide segment 405 is connected to the first termination end 4032
  • the other end of the third arc-shaped waveguide segment 405 is connected to the second termination end 4042 .
  • the waveguide width of the first initial end 4031 is the same as the width of the first straight waveguide segment 401
  • the waveguide width of one end of the third arc waveguide segment 405 is the same as the width of the first termination end 4032
  • the waveguide of the second initial end 4041 The width is the same as that of the second straight waveguide section 402
  • the waveguide width of the other end of the third arc-shaped waveguide section 405 is the same as the width of the second termination end 4042 .
  • the bending radius of the third arc-shaped waveguide segment 405 is consistent with the bending radius of the first termination end 4032 and the second termination end 4042 .
  • FIG. 7 is a third structural schematic diagram of a curved waveguide provided by an embodiment of the present disclosure. As shown in FIG. 7 , the present disclosure also provides another embodiment.
  • the first straight waveguide A curved waveguide is arranged between the segment 401 and the second straight waveguide segment 402 , including: a first curved waveguide segment 403 and a trapezoidal waveguide segment 406 .
  • the first curved waveguide segment 403 is respectively provided with a first initial end 4031 and a first termination end 4032 along the light propagation direction, the first initial end 4031 is connected to the first straight waveguide segment 401 , and the first termination end 4032 is connected to the trapezoidal waveguide segment 406 connect.
  • the width of the waveguide in the first curved waveguide section 403 gradually increases, and the bending radius thereof gradually decreases.
  • the first initial end 4031 is connected to the first straight waveguide section 401 , and the included angle between the first termination end 4032 and the first straight waveguide section 401 is the same as the included angle between the first straight waveguide section 401 and the second straight waveguide section 402 .
  • One end of the trapezoidal waveguide segment is connected to the first termination end 4032, and the other end is connected to the second straight waveguide segment 402.
  • the width of the trapezoidal waveguide segment gradually decreases, and the central axis of the trapezoidal waveguide segment is connected to the second straight waveguide segment.
  • the central axes of the segments 402 coincide.
  • the section of the trapezoidal waveguide section along the silicon base plane is trapezoidal.
  • one end of the trapezoidal waveguide segment in order to reduce loss, has the same width as the first termination end 4032 , and the other end has the same width as the second straight waveguide segment 402 , which can effectively reduce the mode mismatch caused by loss.
  • the loss in the process of transmitting light waves from the first straight waveguide to the first curved waveguide section 403 is reduced.
  • the arc length L1 of the first curved waveguide section 403 gradually increases, The width of the curved waveguide is gradually increased to ensure that the light wave also exists in the waveguide when it spreads outward during the propagation of the curved section, thereby reducing the bending loss.
  • the angle and width of the waveguide do not change, and there is no loss caused by mode mismatch.
  • the curved waveguide structure is suitable for strip waveguides, and may also be suitable for ridge waveguides.
  • the present disclosure exemplarily provides a strip waveguide, and the waveguide structure includes: a substrate, a waveguide core layer, and a cladding layer.
  • the waveguide width mentioned in the embodiments of the present disclosure actually refers to the width of the waveguide core layer.
  • the present disclosure does not limit the cladding material, and the cladding layer may be a solid material or air.
  • the included angle between the propagation directions of light in the first straight waveguide section 401 and the second straight waveguide section 402 is 180°.
  • the two optical devices in the silicon photonics chip 400 that need to realize optical connection are respectively referred to as a first optical device and a second optical device.
  • the first optical device is linearly connected to the first straight waveguide segment 401
  • the second optical device is linearly connected to the second straight waveguide segment 402
  • a curved waveguide is arranged between the first straight waveguide segment 401 and the second straight waveguide segment 402
  • the widths of the first straight waveguide section 401 and the second straight waveguide section 402 are the same, which are defined as the straight waveguide width.
  • the curved waveguide includes: a first curved waveguide segment 403 and a second curved waveguide segment 404, the first initial end 4031 is connected to the first straight waveguide segment 401, the first terminal end 4032 is connected to the second terminal end 4042, and the second initial end 4041 Connected with the second straight waveguide segment 402 .
  • the width of the first initial end 4031 is the same as the width of the first straight waveguide section 401. In order to reduce the loss caused by mode mismatch, the bending radius of the first initial end 4031 is the largest. At this time, the inner diameter of the first curved waveguide section 403 is The arc length L1 is zero.
  • the arc length L1 gradually increases, the bending radius gradually decreases, and the width of the curved waveguide gradually increases.
  • the included angle between the first termination end 4032 and the first straight waveguide is 90°.
  • the second curved waveguide segment and the first curved waveguide segment are arranged in a mirror image. As the second initial end 4041 extends to the second termination end 4042, the arc length gradually increases, the bending radius gradually decreases, and the width of the curved waveguide gradually increases.
  • the present disclosure is applicable to the case where the waveguide widths of the first straight waveguide segment and the second straight waveguide segment are the same, and also applicable to the case where the waveguide widths of the first straight waveguide segment and the second straight waveguide segment are different. happening.
  • the present disclosure provides an optical module including: a circuit board, a laser box and a silicon photonic chip, wherein the circuit board is provided with a silicon photonic chip, and the silicon photonic chip receives light from the laser box.
  • the silicon photonic chip includes a plurality of optical devices connected by waveguides. In order to improve the integration density of the silicon photonics chip, different optical devices may be arranged in different axes.
  • the waveguide includes: a first straight waveguide section; a first curved waveguide section, including a first initial end and first termination end; the first initial end is connected to the first straight waveguide section and the waveguide width of the first initial end is consistent with the waveguide width of the first straight waveguide section, and there is no gap between the first straight waveguide section and the first curved waveguide section There is a mode mismatch, which is beneficial to reduce losses.
  • the bending radius of the first curved waveguide segment gradually decreases, and the waveguide width of the first curved waveguide segment gradually increases; the second straight waveguide segment is connected to the first termination end and receives light from the first curved waveguide segment.
  • the inner bending radius of the first curved waveguide section is gradually reduced, and the waveguide width of the first curved waveguide section is gradually increased, which is beneficial to reduce the bending loss.
  • the present disclosure realizes a small-sized, low-loss curved waveguide by optimizing the shape and width of the waveguide, which can be used in many devices in silicon optics, such as optical waveguide connections, silicon-based modulators, silicon-based microring devices, etc. Wait.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本公开公开了一种光模块,包括:电路板、激光盒和硅光芯片,其中,电路板上设有硅光芯片,硅光芯片接收来自激光盒的光。硅光芯片包括多个波导连接的光学器件,为了提高硅光芯片的集成密度,不同的光学器件可能不同轴设置,波导包括:第一直波导段;第一弯曲波导段,包括第一初始端和第一终止端;第一初始端与第一直波导段连接,宽度相同,第一直波导段与第一弯曲波导段之间不存在模式失配,有利于减少损耗。沿第一初始端到第一终止端的方向,第一弯曲波导段的弯曲半径逐步减小,第一弯曲波导段的波导宽度逐步增大有利于减少弯曲损耗。本公开通过对波导的形状以及波导宽度进行优化设计,实现了小尺寸、低损耗的弯曲波导。

Description

一种光模块
本公开要求在2020年12月04日提交中国专利局、申请号为202011410442.5、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光模块通常指用于光电转换的一种集成模块,可以将光信号转换为电信号,以及将电信号转换为光信号,在光通信领域发挥着重要作用。目前,硅光芯片作为光模块中的光引擎技术方案,在100G/400G,甚至800G产品中得到了越来越多的关注。
发明内容
本公开实施例公开了一种光模块,包括:电路板;激光盒,设置于所述电路板上;硅光芯片,接收来自所述激光盒发出的光,并进行调制形成信号光;所述硅光芯片包括多个光学器件;所述光学器件之间通过波导连接,用于光在所述光学器件之间的传输;所述波导包括:第一直波导段;第一弯曲波导段,包括第一初始端和第一终止端;所述第一初始端与所述第一直波导段连接;沿第一初始端到第一终止端的方向,所述第一弯曲波导段的弯曲半径逐步减小,所述第一弯曲波导段的波导宽度逐步增大;所述第一初始端的波导宽度与所述第一直波导段的波导宽度一致;第二直波导段,与所述第一终止端连接,接收来自所述第一弯曲波导段的光。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为光通信***连接关系图;
图2为光网络终端的结构图;
图3为根据一些实施例的光模块的结构图;
图4为根据一些实施例的光模块的分解结构图;
图5为根据一些实施例的弯曲波导的结构图;
图6为根据一些实施例的弯曲波导的结构图;
图7为根据一些实施例的弯曲波导的结构图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例 中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
光通信技术中使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的光通信***连接关系图。如图1所示,光通信***主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信***中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端 100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的光网络终端结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200***笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤100建立双向的电信号连接。
图3为根据一些实施例提供的光模块结构图,图4为根据一些实施例的光模块分解结构图。如图3和图4所示,光模块200包括壳体、设置于壳体中的电路板300及光收发器件;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,***上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200内部的光收发器件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发器件等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏 蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200***上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300通过电路走线将光模块200中的上述器件按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以***上位机笼子中的电连接器中,在本申请公开的某一些实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接,作为硬性电路板的补充。
硅光芯片400设置在电路板300上,与电路板300电连接,具体可以通过打线进行连接;硅光芯片400设置在电路板300的表面,其周边与电路板300通过多条导电线连接,所以。
硅光芯片400接收来自激光盒500的光,并对接收到的光进行调制,在一些实施例中,将信号加载到光上;硅光芯片400接收来自光纤插座600的光,将光信号转换为电信号。
硅光芯片400与光纤插座600通过光纤带实现光连接,光纤插座600实现与光模块400外部光纤的光连接。硅光芯片400调制的光通过光纤带传输至光纤插座600,通过光纤插座600传输至外部光纤;外部光纤传来的光通过光纤插座600传输至光纤带,通过光纤带传输至硅光芯片400中;从而实现硅光芯片400向光模块外部光纤输出携带数据的光,或从光模块外部光纤接收携带数据的光。
激光盒500与电路板300之间实现电连接,具体可以是通过柔性板连接。激光盒500中主要的电器件为激光芯片;激光芯片发出功率相对稳定的光,该光并没有经过调制、不携带信息,不涉及高速信号电路;激光盒500的电路结构相对简单,可以通过柔性板与电路板300实现电连接,激光芯片通过柔性板从激光盒500外部获得电驱动。激光盒500可以设置在电路板300表面,也可以设置在电路板300之外。
激光盒500中可以设置有半导体制冷器等温度调节电器件,以实现为激光芯片提供温度控制,该温度调节电器件通过柔性板从激光盒500外部获得供电驱动。
激光盒500向硅光芯片400提供光功率相对稳定的光。激光盒500与硅光芯片400之间通过光纤/光纤带连接。
硅光芯片400内部存在多个光学器件,为了减少芯片尺寸,在不同的光学器件之间按照光路的弯曲连接形态设置弯曲波导,用于实现光通道的弯曲设置,同时减小光波导的物理长度以及硅光芯片的尺寸,降低损耗。为降低硅光芯片的尺寸,通常情况下,光路弯曲的角度为90度或180度,在两个直线波导之间设置一弧形的弯曲波导。但是,这样的弯曲波导结构产生较大的损耗,原因在于一方面弧形弯曲波导与直线波导之间存在模式失配,从而产生损耗;另一方面因光线传播的波粒二象性,当波导弯曲时,光波在波导中传播时始终存在偏向波导边界扩散的现象,存在弯曲产生的损耗。
图5为根据一些实施例的一种弯曲波导的结构图。本公开中将硅光芯片400中需要实现光连接两个光学器件分别称为第一光学器件和第二光学器件。第一光学器件与第一直波导段401直线连接,第二光学器件与第二直波导段402直线连接,第一直波导段401与第二直波导段402之间设置弯曲波导,通常情况下,为减少模式失配产生的损耗,第一直波导段401与第二直波导段402的宽度相同,定义为直波导宽度。弯曲波导包括:第一弯曲波导段403和第二弯曲波导段404,第一弯曲波导段403的第一初始端4031与第一直波导段401连接,第一弯曲波导段403的第二端与第二弯曲波导段404的第二端连接,第二弯曲波导段404的第一端与第二直波导段402连接。为方便描述,本公开实施例中,将第一弯曲波导段403的第一端称为第一初始端4031,第一弯曲波导段403的第二端称为第一终止端4032,第二弯曲波导段404的第一端称为第二初始端4041,第一弯曲波导段404的第二端称为第二终止端4042。
第一直波导段401与第二直波导段402相互垂直。其中,第一初始端4031的宽度与第一直波导段401的宽度相同,第一初始端4031与第一直波导段401的弯曲半径相同。为减少模式失配产生的损耗,第一初始端4031的弯曲半径最大,接近与无穷大,此时第一弯曲波导段的内径的弧长L1为0。随第一初始端4031向第一终止端4032的延伸,弧长L1逐步增加,弯曲半径逐渐减小,弯曲波导的宽度逐渐增大。第一终止端4032与第一直波导的夹角为45°。因此,第一终止端4032的宽度大于第一初始端4031的宽度,且第一终止端4032的宽度为第一弯曲波导段的最大宽度。第一终止端4032的半径小于第一初始端4031的半径,且第一终止端4032的半径为第一弯曲波导段的最小半径。本公开实施例中通过对波导内径和外径的曲线函数进行参数设置,实现随弧长L1的增加,半径逐渐减小,并第一弯曲波导段的宽度逐渐增加。
不同于常见情况下一直线波导与弧形波导之间连接而存在模式失配,本公开实施例光波从第一直波导向第一弯曲波导段传输的过程中,因第一直波导段401与第一弯曲波导段连接的部分不存在角度、宽度的差异,不存在模式失配,因此减少了光波从第一直波导段401向第一弯曲波导段传输的过程的损耗。而另一方面,光波在第一弯曲波导段403中的传输,因随弧长L1逐步增加,弯曲半径是逐渐减小的,有利于减少损耗;同时第一弯曲波导段403弧长L1逐步增加,弯曲波导的宽度逐渐增大,保证光波在第一弯曲波导段403传播时向外扩散时也存在于波导内,减少弯曲损耗。
通常情况下,第二终止端4042的宽度与第一终止端4032的宽度相同,且第一弯曲波段与第二弯曲波导段404的弯曲方向相同。第一直波导段401与第二直波导段402的波导宽度相同,第二弯曲波导段404与第一弯曲波导段403以第一终止端的垂线镜像设置。第二终止端4042的宽度与第一终止端4032的宽度相同,且第二终止端4042与第一终止端4032的光轴平行,光波由第一弯曲波导段403进入第二弯曲波导段404时,不存在模式失配。
在本公开的一些实施例中,为减少模式失配产生的损耗,第二初始端4041的弯曲半径最大,此时第二弯曲波导段404的内外径的弧长L2为0。随第二初始端4041向第二终止端4042的延伸,弧长L2逐步增加,弯曲半径逐渐减小,弯曲波导的宽度逐渐增大。第二终止端4042与第二直波导的夹角为45°。因此,第二终止端4042的宽度大于第二初始端4041的宽度,且第二终止端4042的宽度为第二弯曲波导段404的最大宽度。第二终止端4042的半径小于第二初始端4041的半径,且第二终止端4042的半径为第二弯曲波导段404的最小半径。
第二弯曲波导段404的第二初始端4041的宽度与第二直波导段402的宽度形同,且第二初始端4041与第二直波导段402连接,减少模式失配产生的损耗。
为了避免弯曲波导占据的空间太大,造成芯片尺寸过大,第一终止端4032的波导宽度应小于等于2倍第一直波导段的波导宽度,第一终止端的弯曲半径则需根据弯曲损耗确定。同样的,第二终止端4042的波导宽度应小于等于2倍第二直波导段的波导宽度,第二终止端的弯曲半径则需根据弯曲损耗确定。
需要说明的是,本公开中第一弯曲波导段403、第二弯曲波导段404的弯曲半径均指的是的弯曲波导段的内径。
图6为本公开实施例提供的一种弯曲波导的结构示意图二,如图6所示,为了适应芯片中光学器件的位置,弯曲波导还包括:第三弧形波导段405,设置于第一弯曲波导段403与第二弯曲波导段404之间,且第三弧形波导段405的宽度始终保持一致,与第一终止端4032的宽度相同。在本公开的某一些实施例中,第三弧形波导段405的一端与第一终止端4032连接,第三弧形波导段405的另一端与第二终止端4042连接。
此时,第一初始端4031的波导宽度与第一直波导段401的宽度相同,第三弧形波导段405的一端波导宽度与第一终止端4032的宽度相同,第二初始端4041的波导宽度与第二直波导段402的宽度相同,第三弧形波导段405的另一端波导宽度与第二终止端4042的宽度相同。第三弧形波导段405的弯曲半径与第一终止端4032、第二终止端4042的弯曲半径保持一致。
图7为本公开实施例提供的一种弯曲波导的结构示意图三。如图7所示,本公开还提供了另一种实施例,第一直波导段401与第二直波导段402中光的传播方向的夹角小于90°情况下,则在第一直波导段401与第二直波导段402之间设置弯曲波导,包括:第一弯曲波导段403和梯形波导段406。其中第一弯曲波导段403沿光的传播方向分别设置第一初始端4031和第一终止端4032,第一初始端4031与第一直波导段401连接,第一终止端4032与梯形波导段406连接。沿光的传播方向,第一弯曲波导段403中波导的宽度逐渐增 大,其弯曲半径逐步减小。第一初始端4031与第一直波导段401连接,第一终止端4032与第一直波导段401的夹角,与第一直波导段401、第二直波导段402的夹角相同。
梯形波导段的一端与第一终止端4032连接,另一端与第二直波导段402连接,沿光的传播方向,梯形波导段的宽度逐渐减少,且梯形波导段的中心轴线与第二直波导段402的中心轴线重合。梯形波导段沿硅基平面的剖面为梯形。
在本公开的某一些实施例中,为减少损耗,梯形波导段的一端宽度与第一终止端4032宽度相同,另一端的宽度与第二直波导段402宽度相同,可有效减少模式失配造成的损耗。
在一些实施例中,光波从第一直波导向第一弯曲波导传输的过程中,因第一直波导与第一弯曲波导连接的部分不存在角度、宽度的差异,不存在模式失配,因此减少了光波从第一直波导向第一弯曲波导段403传输的过程的损耗。而另一方面,光波在第一弯曲导段中的传输,因随弧长L1逐步增加,弯曲半径是逐渐减小的,有利于减少损耗;同时第一弯曲波导段403弧长L1逐步增加,弯曲波导的宽度逐渐增大,保证光波在弯曲段传播时向外扩散时也存在于波导内,减少弯曲损耗。光波在第一弯曲波导段403进入梯形波导段时,波导的角度、宽度未发生变化,不存在模式失配引起的损耗。
在本公开实施例中,弯曲波导结构适用于条形波导,也可以适用于脊型波导。本公开示例性提供了一种条形波导,波导结构包括:衬底、波导芯层、包层。本公开实施例中提到的波导宽度实际是指的波导芯层的宽度。本公开未对包层材料进行限制,包层可以实体材料,也可以是空气。
根据一些实施例,第一直波导段401与第二直波导段402中光的传播方向的夹角为180°。本公开中将硅光芯片400中需要实现光连接两个光学器件分别称为第一光学器件和第二光学器件。第一光学器件与第一直波导段401直线连接,第二光学器件与第二直波导段402直线连接,第一直波导段401与第二直波导段402之间设置弯曲波导,通常情况下,为减少模式失配产生的损耗,第一直波导段401与第二直波导段402的宽度相同,定义为直波导宽度。弯曲波导包括:第一弯曲波导段403和第二弯曲波导段404,第一初始端4031与第一直波导段401连接,第一终止端4032与第二终止端4042连接,第二初始端4041与第二直波导段402连接。其中,第一初始端4031的宽度与第一直波导段401的宽度相同,为减少模式失配产生的损耗,第一初始端4031的弯曲半径最大,此时第一弯曲波导段403的内径的弧长L1为0。随第一初始端4031向第一终止端4032的延伸,弧长L1逐步增加,弯曲半径逐渐减小,弯曲波导的宽度逐渐增大。第一终止端4032与第一直波导的夹角为90°。第二弯曲波导段与第一弯曲波导段呈镜像设置。随第二初始端4041向第二终止端4042的延伸,弧长逐步增加,弯曲半径逐渐减小,弯曲波导的宽度逐渐增大。
同样的,根据前文所述,本公开适用于第一直波导段与第二直波导段的波导宽度相同的情况,同时也适用于第一直波导段与第二直波导段的波导宽度不同的情况。
综上所述,本公开提供了一种光模块,包括:电路板、激光盒和硅光芯片,其中,电路板上设有硅光芯片,硅光芯片接收来自激光盒的光。硅光芯片包括多个波导连接的光学器件,为了提高硅光芯片的集成密度,不同的光学器件可能不同轴设置,波导包括:第一 直波导段;第一弯曲波导段,包括第一初始端和第一终止端;第一初始端与第一直波导段连接且第一初始端的波导宽度与第一直波导段的波导宽度一致,第一直波导段与第一弯曲波导段之间不存在模式失配,有利于减少损耗。沿第一初始端到第一终止端的方向,第一弯曲波导段的弯曲半径逐步减小,第一弯曲波导段的波导宽度逐步增大;第二直波导段,与第一终止端连接,接收来自所述第一弯曲波导段的光。第一弯曲波导段内部弯曲半径是逐步减小的,且第一弯曲波导段的波导宽度逐步增大,有利于减少弯曲损耗。
本公开通过对波导的形状以及波导宽度进行优化设计,实现了小尺寸、低损耗的弯曲波导,可用于硅光中的很多器件,比如光波导连接、硅基调制器、硅基微环器件等等。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
需要说明的是,在本说明书中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或暗示这些实体或操作之间存在任何这种实际的关系或顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的电路结构、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种电路结构、物品或者设备所固有的要素。在没有更多限制的情况下,有语句“包括一个……”限定的要素,并不排除在包括所述要素的电路结构、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里发明的公开后,将容易想到本公开的其他实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求的内容指出。
以上所述的本公开实施方式并不构成对本公开保护范围的限定。

Claims (10)

  1. 一种光模块,包括:电路板;
    激光盒,设置于所述电路板上;
    硅光芯片,接收来自所述激光盒发出的光,并进行调制形成信号光;
    所述硅光芯片包括多个光学器件;所述光学器件之间通过波导连接,用于光在所述光学器件之间的传输;
    所述波导包括:第一直波导段;
    第一弯曲波导段,包括第一初始端和第一终止端;所述第一初始端与所述第一直波导段连接;沿第一初始端到第一终止端的方向,所述第一弯曲波导段的弯曲半径逐步减小,所述第一弯曲波导段的波导宽度逐步增大;
    所述第一初始端的波导宽度与所述第一直波导段的波导宽度一致,所述第一初始端与所述第一直波导段的弯曲半径相同;
    第二直波导段,与所述第一终止端连接,接收来自所述第一弯曲波导段的光。
  2. 根据权利要求1所述的光模块,其特征在于,所述波导还包括:第二弯曲波导段,设置于所述第一弯曲波导段与所述第二直波导段之间;
    所述第二弯曲波导段包括:第二初始端和第二终止端;所述第二终止端与所述第一终止端连接,所述第二初始端与所述第二直波导段连接;
    沿第二初始端到第二终止端的方向,所述第二弯曲波导段的弯曲半径逐步减小,所述第二弯曲波导段的波导宽度逐步增大。
  3. 根据权利要求2所述的光模块,其特征在于,所述第一终止端与所述第二终止端的波导宽度相同,且所述第一终止端与所述第二终止端的弯曲半径相同。
  4. 根据权利要求2所述的光模块,其特征在于,所述第一终止端的波导宽度小于或等于2倍的所述第一直波导段波导宽度。
  5. 根据权利要求2所述的光模块,其特征在于,所述第一直波导段与所述第二直波导段的波导宽度一致;所述第一弯曲波导段与所述第二弯曲波导段沿所述第一直波导段与所述第二直波导段的角平分线对称设置。
  6. 根据权利要求5所述的光模块,其特征在于,所述第一直波导段与所述第二直波导段夹角为90°或180°。
  7. 根据权利要求2所述的光模块,其特征在于,所述波导还包括:第三弧形波导段,设置于所述第一弯曲波导段与所述第二弯曲波导段之间;
    所述第三弧形波导段的一端与所述第一终止端的波导宽度相同,另一端与所述第二终止端的波导宽度一致;
    且所述第三弧形波导段、所述第一终止端、所述第二终止端的弯曲半径一致。
  8. 根据权利要求7所述的光模块,其特征在于,所述第三弧形波导段的波导宽度始终保持一致。
  9. 根据权利要求1所述的光模块,其特征在于,所述波导还包括:梯形波导段,一 端与所述第一终止端连接,另一端与所述第二直波导段连接。
  10. 根据权利要求9所述的光模块,其特征在于,所述梯形波导的一端波导宽度与所述第一终止端波导宽度一致,另一端的波导宽度与所述第二直波导段的波导宽度一致。
PCT/CN2021/117230 2020-12-04 2021-09-08 一种光模块 WO2022116619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011410442.5 2020-12-04
CN202011410442.5A CN114594554A (zh) 2020-12-04 2020-12-04 一种光模块

Publications (1)

Publication Number Publication Date
WO2022116619A1 true WO2022116619A1 (zh) 2022-06-09

Family

ID=81813176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117230 WO2022116619A1 (zh) 2020-12-04 2021-09-08 一种光模块

Country Status (2)

Country Link
CN (1) CN114594554A (zh)
WO (1) WO2022116619A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687144A (zh) * 2022-09-02 2024-03-12 华为技术有限公司 分光器、分光器芯片、通信设备和光分配网

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008141A1 (en) * 1997-08-04 1999-02-18 International Business Machines Corporation Curved waveguide element for connecting singlemode optical waveguides
CN1651950A (zh) * 2004-01-26 2005-08-10 林克斯光化网络公司 平面光波电路中的高容限宽带光开关
US20180081119A1 (en) * 2015-06-29 2018-03-22 Elenion Technologies, Llc Bent taper with varying widths for an optical waveguide
CN105829930B (zh) * 2014-10-24 2019-04-26 华为技术有限公司 模式复用解复用器和交换节点
CN110830119A (zh) * 2019-11-13 2020-02-21 青岛海信宽带多媒体技术有限公司 一种光模块
CN111239936A (zh) * 2020-03-20 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN111897173A (zh) * 2020-08-03 2020-11-06 浙江大学 低损耗低随机相位误差的2×2光开关及n×n光开关阵列

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201298A (ja) * 2005-01-18 2006-08-03 Nhk Spring Co Ltd 光導波路と、それを用いた光通信部品
US7881575B2 (en) * 2008-01-30 2011-02-01 Luxtera, Inc. Low-loss optical interconnect
JP6676964B2 (ja) * 2015-12-25 2020-04-08 株式会社豊田中央研究所 光導波路
JP7205101B2 (ja) * 2018-07-30 2023-01-17 住友大阪セメント株式会社 光変調器
CN109375316A (zh) * 2018-11-27 2019-02-22 武汉邮电科学研究院有限公司 一种光学混频器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008141A1 (en) * 1997-08-04 1999-02-18 International Business Machines Corporation Curved waveguide element for connecting singlemode optical waveguides
CN1651950A (zh) * 2004-01-26 2005-08-10 林克斯光化网络公司 平面光波电路中的高容限宽带光开关
CN105829930B (zh) * 2014-10-24 2019-04-26 华为技术有限公司 模式复用解复用器和交换节点
US20180081119A1 (en) * 2015-06-29 2018-03-22 Elenion Technologies, Llc Bent taper with varying widths for an optical waveguide
CN110830119A (zh) * 2019-11-13 2020-02-21 青岛海信宽带多媒体技术有限公司 一种光模块
CN111239936A (zh) * 2020-03-20 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN111897173A (zh) * 2020-08-03 2020-11-06 浙江大学 低损耗低随机相位误差的2×2光开关及n×n光开关阵列

Also Published As

Publication number Publication date
CN114594554A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2021120668A1 (zh) 一种光模块
WO2021185180A1 (zh) 一种光模块
WO2021185179A1 (zh) 一种光模块
CN213122372U (zh) 一种光模块
CN213659029U (zh) 一种光模块
CN211603626U (zh) 一种光模块
WO2020108294A1 (zh) 光模块
WO2022116619A1 (zh) 一种光模块
CN215186763U (zh) 一种光模块
WO2024016905A1 (zh) 光模块及激光组件
WO2024040967A1 (zh) 光模块
WO2023273585A1 (zh) 一种具有调制器的激光器及光模块
WO2023030457A1 (zh) 光模块
WO2022257486A1 (zh) 光模块
WO2022242309A1 (zh) 光模块
WO2022166350A1 (zh) 一种光模块
WO2023035711A1 (zh) 光模块
CN114624826B (zh) 一种光模块
CN113009649B (zh) 一种光模块
WO2022127593A1 (zh) 一种光模块
WO2022052920A1 (zh) 一种光模块
WO2022183799A1 (zh) 一种光模块
WO2022179226A1 (zh) 一种eml芯片及光模块
CN220983575U (zh) 一种光模块
WO2024060439A1 (zh) 一种电吸收调制激光器和光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899655

Country of ref document: EP

Kind code of ref document: A1