WO2022114938A1 - 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법 - Google Patents

높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법 Download PDF

Info

Publication number
WO2022114938A1
WO2022114938A1 PCT/KR2021/095108 KR2021095108W WO2022114938A1 WO 2022114938 A1 WO2022114938 A1 WO 2022114938A1 KR 2021095108 W KR2021095108 W KR 2021095108W WO 2022114938 A1 WO2022114938 A1 WO 2022114938A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
aminophenoxy
phenyl
dianhydride
benzene
Prior art date
Application number
PCT/KR2021/095108
Other languages
English (en)
French (fr)
Inventor
김동영
유대건
원동영
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Priority to US18/037,675 priority Critical patent/US20240026098A1/en
Priority to JP2023528935A priority patent/JP2023552081A/ja
Priority to CN202180072878.4A priority patent/CN116406395A/zh
Publication of WO2022114938A1 publication Critical patent/WO2022114938A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide film in which wrinkles do not occur because flatness is maintained even after a metal foil is coated, sputtered or deposited, and a method for manufacturing the same.
  • Polyimide (PI) is a polymer material with the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance, and weather resistance among organic materials based on an imide ring with excellent chemical stability along with a rigid aromatic main chain. to be.
  • the polyimide film is spotlighted as a material for various electronic devices requiring the above-described properties.
  • microelectronic components to which the polyimide film is applied include thin circuit boards that have high circuit integration and are flexible to respond to weight reduction and miniaturization of electronic products. have.
  • the thin circuit board generally has a structure in which a circuit including a metal foil is formed on an insulating film.
  • a thin circuit board is called a Flexible Metal Foil Clad Laminate
  • a thin copper plate is made of metal foil.
  • FCCL Flexible Copper Clad Laminate
  • a manufacturing method of a flexible metal foil laminate for example, (i) a casting method in which polyamic acid, a precursor of polyimide, is cast or coated on a metal foil, and then imidized, (ii) sputtering a metallizing method in which a metal layer is directly provided on the polyimide film by the method;
  • the metallizing method produces a flexible metal foil laminate by sequentially depositing a tie layer and a seed layer by sputtering a metal such as copper on a polyimide film having a thickness of 20 to 38 ⁇ m, for example.
  • This method has an advantage in forming ultra-fine circuits having a circuit pattern pitch of 35 ⁇ m or less, and is widely used in manufacturing flexible metal foil laminates for COF (chip on film).
  • a polyimide film used for a flexible metal foil laminate manufactured by a metallizing method or the like has a problem in that the flatness is lowered and wrinkles are generated after the metal foil is laminated.
  • Patent Document 1 Republic of Korea Patent No. 10-1375276
  • Patent Document 2 Republic of Korea Patent Publication No. 2016-0002402
  • an object of the present invention is to provide a polyimide film that is not wrinkled by maintaining flatness even after being coated, sputtered or deposited on a metal foil.
  • thermomechanical analyzer TMA
  • a polyimide film satisfying 1 A polyimide film satisfying 1
  • the TD direction dimension measurement (cooling, 50°C) is the TD direction dimension measurement value measured at 50°C during the cooling process.
  • the dimensional measurement value in the TD direction is a dimensional measurement value in the TD direction measured at 50° C. in the initial stage of the temperature increase process.
  • Another aspect of the present invention is a method for manufacturing the polyimide film, the process of providing a polyamic acid solution obtained from a dianhydride component and a diamine component; a process of manufacturing a self-supporting film of the polyamic acid solution by casting the polyamic acid solution on a support and heating it; and imidizing and stretching the self-supporting film to prepare a polyimide film.
  • Another aspect of the present invention provides a flexible metal foil laminate comprising the polyimide film and an electrically conductive metal foil.
  • Another aspect of the present invention provides an electronic component comprising the flexible metal foil laminate.
  • the present invention provides a polyimide film excellent in flatness even after lamination of a metal foil by providing a polyimide film having a specific dimensional change range.
  • Such a polyimide film can be applied to various fields requiring a polyimide film with excellent flatness, for example, a flexible metal foil laminate manufactured by a metallizing method or an electronic component including such a flexible metal foil laminate.
  • thermomechanical analyzer TMA
  • a temperature increase process from 25° C. to 400° C. followed by a cooling process from 400° C. to 25° C. of the films of Examples 1 and 2 of the present application.
  • thermomechanical analyzer TMA
  • a temperature increase process from 25° C. to 400° C. followed by a cooling process from 400° C. to 25° C. of the films of Comparative Examples 1 to 3 of the present application.
  • dianhydride is intended to include precursors or derivatives thereof, which may not technically be dianhydride acids, but will nevertheless react with a diamine to form a polyamic acid, which in turn is a polyamic acid can be converted to mid.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which in turn are polyamic acids. can be converted to mid
  • thermomechanical analyzer TMA
  • the polyimide film according to an embodiment of the present invention undergoes a temperature increase process from 25° C. to 400° C. followed by a cooling process from 400° C. to 25° C., the following formula (1) satisfies
  • TD direction width direction of film, perpendicular to MD direction
  • Dimensional value cooling, 50°C
  • TD direction dimensional measurement temperature rising, 50°C
  • the TD direction dimension measurement (cooling, 50°C) is the TD direction dimension measurement value measured at 50°C during the cooling process.
  • the dimensional measurement value in the TD direction is a dimensional measurement value in the TD direction measured at 50° C. in the initial stage of the temperature increase process.
  • the value obtained by subtracting the TD direction dimension measurement value (temperature increase, 50° C.) from the TD direction dimension measurement value (cooling, 50° C.) is negative.
  • This negative calculated value is because the polyimide film shrinks in the TD direction during the cooling process after the temperature rise.
  • the value calculated by Formula (1) of the polyimide film of the present invention may be ⁇ 5 ⁇ m or less, more preferably, the value calculated by Formula (1) may be ⁇ 10 ⁇ m or less, and further Preferably, the value according to the above formula (1) may be ⁇ 20 ⁇ m or less.
  • the polyimide film having a negative value calculated by Equation (1) maintained the flatness of the polyimide film even after lamination of a metal foil through coating, sputtering, or vapor deposition, and almost no wrinkling occurred.
  • the flatness of the polyimide film was lowered after lamination of a metal foil through coating, sputtering, or vapor deposition, and many wrinkles were generated.
  • This calculated value of 0 or more is because the polyimide film expands in the TD direction during cooling after temperature rise.
  • thermomechanical analyzer TMA
  • Measuring mode tensile mode, load 5 g,
  • Cooling end temperature 25°C
  • Measuring atmosphere nitrogen.
  • the coefficient of thermal expansion (CTE) of the polyimide film of the present invention in the MD direction is 2 to 6.5 ppm/°C, and the coefficient of thermal expansion in the TD direction is It may be 1-6 ppm/°C.
  • a value obtained by subtracting the coefficient of thermal expansion in the TD direction from the coefficient of thermal expansion in the MD direction may be 0 or more and 2.5 ppm/°C or less.
  • the elastic modulus of the polyimide film may be 5 GPa or more and 11 GPa or less, and the glass transition temperature may be 360°C or more and 400°C or less.
  • the polyimide film of the present invention is pyromellitic dianhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (s) -BPDA), 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride (DSDA), bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane Dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA), bis(3 ,4-dicarboxyphen
  • Paraphenylenediamine PPD
  • metaphenylenediamine 3,3'-dimethylbenzidine, 2,2'-dimethylbenzidine, 2,4-diaminotoluene, 2,6-diaminotoluene, 3,5-dia minobenzoic acid (DABA), 4,4'-diaminodiphenyl ether (ODA), 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane (methylenediamine), 3, 3'-Dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'- Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,
  • the polyimide film is preferably a dianhydride comprising at least one of 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA) It may be obtained by imidating a polyamic acid solution containing a water component and a diamine component including at least one of paraphenylene diamine (PPD) and 4,4'-diaminodiphenyl ether (ODA).
  • s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the content of the 3,3',4,4'-biphenyltetracarboxylic dianhydride is 40 mol% or more and 60 mol% or less
  • the content of pyromellitic dianhydride is 40 mol% or more and 60 mol% or less
  • the content of paraphenylene diamine is 80 mol% or more and 90 mol% or less, and the content of 4,4'-diaminodiphenyl ether is 10 mol% or more 20 It may be less than or equal to mole %.
  • the preparation of the polyamic acid is, for example,
  • the stretching is biaxial stretching, and tension is applied so that the stretching ratios in the MD direction and the TD direction are the same.
  • Such a stretching ratio can be confirmed through the balance between the MD and TD directions of the polyimide film by the TMA measurement.
  • the balance between the MD direction and the TD direction of the polyimide film obtained through stretching is the value obtained by subtracting the coefficient of thermal expansion in the TD direction from the coefficient of thermal expansion in the MD direction.
  • the polymerization method of the polyamic acid as described above can be defined as a random polymerization method, and the polyimide film prepared from the polyamic acid of the present invention prepared by the above process is a method of the present invention that increases flatness. It can be preferably applied in terms of maximizing the effect.
  • the polymerization method of the polyamic acid may be a block polymerization method.
  • combining a polyamic acid is not specifically limited, Any solvent can be used as long as it is a solvent in which a polyamic acid is dissolved, It is preferable that it is an amide type solvent.
  • the organic solvent may be an organic polar solvent, specifically an aprotic polar solvent, for example, N,N-dimethylformamide (DMF), N,N -Dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), may be at least one selected from the group consisting of Diglyme (Diglyme), but is not limited thereto. Or it can be used in combination of 2 or more types.
  • DMF N,N-dimethylformamide
  • NMP N-methyl-pyrrolidone
  • GBL gamma butyrolactone
  • N,N-dimethylformamide and N,N-dimethylacetamide may be particularly preferably used.
  • a filler may be added for the purpose of improving various properties of the film, such as sliding properties, thermal conductivity, corona resistance, and loop hardness.
  • the filler to be added is not particularly limited, but preferred examples thereof include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
  • the particle size of the filler is not particularly limited, and may be determined according to the characteristics of the film to be modified and the type of filler to be added. Generally, the average particle diameter is 0.05 to 100 ⁇ m, preferably 0.1 to 75 ⁇ m, more preferably 0.1 to 50 ⁇ m, particularly preferably 0.1 to 25 ⁇ m.
  • the modifying effect becomes difficult to appear, and when the particle size exceeds this range, the surface properties may be greatly impaired or the mechanical properties may be greatly reduced.
  • the added amount of a filler is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight based on 100 parts by weight of polyimide.
  • the method of adding a filler is not specifically limited, Any well-known method can also be used.
  • the polyimide film may be prepared by thermal imidization and chemical imidization.
  • it may be prepared by a complex imidization method in which thermal imidization and chemical imidization are combined.
  • the thermal imidization method is a method in which a chemical catalyst is excluded and the imidization reaction is induced by a heat source such as hot air or an infrared dryer.
  • the thermal imidization method can imidize the amic acid group present in the gel film by heat-treating the gel film at a variable temperature in the range of 100 to 600 ° C., specifically 200 to 500 ° C., more specifically, The amic acid group present in the gel film can be imidized by heat treatment at 300 to 500 °C.
  • the polyamic acid composition is dried at a variable temperature in the range of 50 °C to 200 °C. and may also be included in the scope of the thermal imidization method.
  • a polyimide film may be prepared by using a dehydrating agent and an imidizing agent according to a method known in the art.
  • a polyimide film can be manufactured by heating.
  • the present invention provides a flexible metal foil laminate comprising the above-described polyimide film and an electrically conductive metal foil.
  • the metal foil to be used is not particularly limited, but when the flexible metal foil laminate of the present invention is used for electronic or electrical equipment applications, for example, copper or copper alloy, stainless steel or an alloy thereof, nickel or a nickel alloy (alloy 42) also included), may be a metal foil comprising aluminum or an aluminum alloy.
  • copper foils such as rolled copper foils and electrolytic copper foils are often used, and they can be preferably used in the present invention as well.
  • the antirust layer, the heat-resistant layer, or the adhesive layer may be apply
  • the thickness of the metal foil is not particularly limited, and may have a thickness capable of exhibiting a sufficient function according to its use.
  • the flexible metal foil laminate according to the present invention may be obtained by laminating, coating, sputtering or depositing a metal foil on at least one surface of the polyimide film.
  • the flexible metal foil laminate can be used as FCCL for 2 layers, and in particular, it can be used for mobile phones, displays (LCD, PDP, OLED, etc.), and can be used for FPCB and COF.
  • the electronic component including the flexible metal foil laminate may be, for example, a communication circuit for a portable terminal, a communication circuit for a computer, or a communication circuit for aerospace, but is not limited thereto.
  • the polyimide film of the present invention can be prepared by a conventional method known in the art as follows. First, a polyamic acid solution is obtained by reacting the above-described dianhydride acid with the diamine component in an organic solvent.
  • the solvent is generally an amide solvent, and an aprotic polar solvent, for example, N,N'-dimethylformamide, N,N'-dimethylacetamide, N-methyl-pyrrolidone, or Combinations of these may be used.
  • the input form of the dianhydride and the diamine component may be in powder, lump, or solution form. At the beginning of the reaction, it is added in powder form to proceed with the reaction, and thereafter, it is preferable to input in the form of a solution to control polymerization viscosity. .
  • the obtained polyamic acid solution may be mixed with an imidization catalyst and a dehydrating agent and applied to a support.
  • the catalyst used include tertiary amines (eg, isoquinoline, ⁇ -picoline, pyridine, etc.), and examples of the dehydrating agent include, but are not limited to, acid anhydride.
  • the support used in the above may include, but is not limited to, a glass plate, an aluminum foil, a circulation stainless belt or a stainless drum.
  • the film applied on the support is gelled on the support by dry air and heat treatment.
  • the gelled film is separated from the support and heat-treated to complete drying and imidization.
  • the film may be heat treated under a certain tension to remove residual stress in the film generated during the film forming process.
  • the thus-prepared polyamic acid was stirred to have a final viscosity of 100,000 to 120,000 cP.
  • a polyimide film was prepared using an applicator.
  • CTE Coefficient of thermal expansion
  • the film flatness (creation amount) after coating was confirmed.
  • thermomechanical analyzer TMA
  • the dimensional change was measured by a thermomechanical analyzer (TMA), which was subjected to a temperature increase from 25° C. to 400° C. followed by a cooling process from 400° C. to 25° C.
  • CTE coefficient of thermal expansion
  • the glass transition temperature (T g ) was obtained by obtaining the loss modulus and storage modulus of each film using DMA, and the inflection point was measured as the glass transition temperature in their tangent graph.
  • the elastic modulus of the polyimide film was measured according to ASTM D882.
  • FIGS. 1A and 1B Graphs of measurement results of dimensional changes in Examples 1 and 2 are shown in FIGS. 1A and 1B, respectively.
  • graphs of the dimensional change measurement results of Comparative Examples 1 to 3 are shown in FIGS. 2A, 2B, and 2C, respectively.
  • the calculated value by Equation (1) of Examples 1 and 2 corresponds to a negative number.
  • the calculated value by Formula (1) of Comparative Examples 1-3 corresponded to a positive number.
  • the present invention provides a polyimide film excellent in flatness even after lamination of a metal foil by providing a polyimide film having a specific dimensional change range.
  • Such a polyimide film is applicable to various fields requiring an excellent flatness polyimide film, for example, a flexible metal foil laminate manufactured by a metallizing method or an electronic component including such a flexible metal foil laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

본 발명은 25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화 측정에서, 하기 식(1)을 만족시키는 폴리이미드 필름 및 그 제조방법을 제공한다. 식(1) TD 방향 치수 측정값(냉각, 50℃)-TD 방향 치수 측정값(승온, 50℃) < 0 μm

Description

높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
본 발명은 금속박이 코팅, 스퍼터 또는 증착된 후에도 평탄성이 유지되어 주름이 발생하지 않는 폴리이미드 필름 및 그 제조방법에 관한 것이다.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄와 함께 화학적 안정성이 매우 우수한 이미드 고리를 기초로 하여, 유기 재료들 중에서도 최고 수준의 내열성, 내약품성, 전기 절연성, 내화학성, 내후성을 가지는 고분자 재료이다.
폴리이미드 필름은 전술한 특성들이 요구되는 다양한 전자 디바이스의 소재로서 각광받고 있다.
폴리이미드 필름이 적용되는 미소 전자 부품의 예로는 전자제품의 경량화와 소형화에 대응 가능하도록 회로 집적도가 높고 유연한 박형 회로기판을 들 수 있으며, 폴리이미드 필름은 특히 박형 회로기판의 절연필름으로 널리 이용되고 있다.
상기 박형 회로기판은, 절연필름 상에 금속박을 포함하는 회로가 형성되어 있는 구조가 일반적이며, 이러한 박형 회로기판을 넓은 의미로서 연성 금속박 적층판(Flexible Metal Foil Clad Laminate)이라 지칭하고 금속박으로 얇은 구리판을 이용할 때에는 보다 좁은 의미에서 연성 동박 적층판(Flexible Copper Clad Laminate; FCCL)으로 지칭하기도 한다.
연성 금속박 적층판의 제조 방법으로는, 예를 들면 (i) 금속박 상에 폴리이미드의 전구체인 폴리아믹산을 유연(casting), 또는 도포한 후, 이미드화하는 캐스팅법, (ii) 스퍼터링(Sputtering)에 의해 폴리이미드 필름 상에 직접 금속층을 설치하는 메탈라이징법, 및 (iii) 열가소성 폴리이미드를 통해 폴리이미드 필름과 금속박을 열과 압력으로 접합시키는 라미네이트법을 들 수 있다.
특히, 메탈라이징법은 예를 들어, 20 내지 38 ㎛ 두께의 폴리이미드 필름상에 구리 등의 금속을 스퍼터링하여, 타이(Tie)층, 시드(Seed)층을 순차적으로 증착함으로써 연성 금속박 적층판을 생산하는 방법이며, 회로 패턴의 피치(pitch)가 35 ㎛ 이하인 초미세회로를 형성시키는데 유리한 점이 있으며, COF(chip on film)용 연성 금속박 적층판을 제조하는데 널리 사용되고 있다.
최근, 메탈라이징법 등에 의해 제조된 연성 금속박 적층판에 사용되는 폴리이미드 필름은 금속박 적층 후, 평탄성이 저하되어 주름이 발생하는 문제가 발생하고 있다.
따라서, 금속박 적층 후에도, 평탄성이 유지되는 폴리이미드 필름이 절실히 요구되고 있다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제10-1375276호
(특허문헌 2) 대한민국 공개특허공보 제2016-0002402호
이에 본 발명은 금속박에 코팅, 스퍼터 또는 증착된 후에도 평탄성이 유지되어 주름이 발생하지 않는 폴리이미드 필름을 제공하는 것을 목적으로 한다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면은 25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화 측정에서, 하기 식(1)을 만족시키는, 폴리이미드 필름을 제공한다.
식(1)
TD 방향 치수 측정값(냉각, 50℃)-TD 방향 치수 측정값(승온, 50℃) < 0 μm
상기 식 1에서
TD 방향 치수 측정값(냉각, 50℃)은 냉각 과정 중 50℃에서 측정된 TD 방향의 치수 측정값이고.
TD 방향 치수 측정값(승온, 50℃)은 승온 과정 초기 50℃에서 측정된 TD 방향의 치수 측정값이다.
본 발명의 또 다른 측면은 상기 폴리이미드 필름을 제조하는 방법으로서, 이무수물산 성분과 디아민 성분으로부터 얻어지는 폴리아믹산 용액을 제공하는 공정; 상기 폴리아믹산 용액을 지지체 상에 유연 도포하고, 가열하여 폴리아믹산 용액의 자기 지지성 필름을 제조하는 공정; 및 상기 자기 지지성 필름을 이미드화하고 연신하여 폴리이미드 필름을 제조하는 공정;을 포함하는, 폴리이미드 필름의 제조 방법을 제공한다.
본 발명의 또 다른 측면은 상기 폴리이미드 필름과 전기 전도성의 금속박을 포함하는, 연성 금속박 적층판을 제공한다.
본 발명의 또 다른 측면은 상기 연성 금속박 적층판을 포함하는, 전자 부품을 제공한다.
본 발명은 특정 치수 변화 범위를 가지는 폴리이미드 필름을 제공함으로써, 금속박 적층 후에도 평탄성이 우수한 폴리이미드 필름을 제공한다.
이러한 폴리이미드 필름은 우수한 평탄성의 폴리이미드 필름이 요구되는 다양한 분야, 예를 들어, 메탈라이징법에 의해 제조되는 연성 금속박 적층판 또는 이러한 연성 금속박 적층판을 포함하는 전자 부품에 적용이 가능하다.
도 1은 본원의 실시예 1 및 실시예 2의 필름의 25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화 측정의 결과 그래프이다.
도 2은 본원의 비교예 1 내지 비교예 3의 필름의 25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화 측정의 결과 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 "이무수물산"은 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 이무수물산이 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.
수치 값의 범위가 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다. 본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
본 발명의 일 구현예에 의한 폴리이미드 필름은 25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화 측정에서, 하기 식(1)을 만족시킨다.
식(1)
TD방향(필름의 폭 방향, MD 방향과 수직) 치수 측정값(냉각, 50℃)-TD 방향 치수 측정값(승온, 50℃) < 0 μm
상기 식 1에서
TD 방향 치수 측정값(냉각, 50℃)은 냉각 과정 중 50℃에서 측정된 TD 방향의 치수 측정값이고.
TD 방향 치수 측정값(승온, 50℃)은 승온 과정 초기 50℃에서 측정된 TD 방향의 치수 측정값이다.
즉, 본 발명의 폴리이미드 필름은 상기 식 (1)에 나타낸 바와 같이, TD 방향 치수 측정값(냉각, 50℃)에서 TD 방향 치수 측정값(승온, 50℃)을 뺀 값이 음수이다.
이러한 음수의 계산값은 폴리이미드 필름이 승온 후 냉각 과정에서 TD 방향으로 수축하기 때문이다.
바람직하게는, 본 발명의 폴리이미드 필름의 상기 식 (1)에 의해서 계산된 값이 - 5 μm 이하일 수 있고, 더 바람직하게는 상기 식 (1)에 의한 값이 - 10 μm 이하일 수 있으며, 더욱 바람직하게는 상기 식 (1)에 의한 값이 - 20 μm 이하일 수 있다.
상기 식 (1)에 의해서 계산된 값이 음수인 폴리이미드 필름은 코팅, 스퍼터링 또는 증착을 통한 금속박 적층 후에도 폴리이미드 필름의 평탄성이 유지되고, 주름이 거의 발생하지 않았다.
상기 식(1)에 의해서 계산된 값이 0 이상인 폴리이미드 필름은 코팅, 스퍼터링 또는 증착을 통한 금속박 적층 후에 폴리이미드 필름의 평탄성이 저하되고, 주름이 다수 발생하였다.
이러한 0 이상의 계산값은 폴리이미드 필름이 승온 후 냉각 과정에서 TD 방향으로 팽창하기 때문이다.
여기서, 상기 열기계 분석기(TMA)에 의한 치수 변화 측정은 하기의 조건에서 행해졌다.
측정 모드: 인장 모드, 하중 5 g,
시료 길이: 15 mm,
시료폭: 4 mm,
승온 개시 온도: 25℃,
승온 종료 온도: 400℃(400℃에서의 유지 시간은 없음),
냉각 종료 온도: 25℃,
승온 및 냉각 속도: 10℃/min,
측정 분위기: 질소.
본 발명의 폴리이미드 필름의 MD 방향(연속제막방향; 필름의 길이 방향, TD 방향과 수직)의 열팽창계수(Coefficient of Thermal Expansion, CTE)가 2~6.5 ppm/℃이고, TD 방향의 열팽창계수가 1~6 ppm/℃일 수 있다.
또한, 상기 MD 방향의 열팽창계수에서 상기 TD 방향의 열팽창계수를 뺀 값이 0 이상 2.5 ppm/℃ 이하일 수 있다.
그 밖에도, 상기 폴리이미드 필름의 탄성율은 5 GPa 이상 11 GPa 이하이고, 유리전이온도가 360℃ 이상, 400℃ 이하일 수 있다.
한편, 본 발명의 폴리이미드 필름은 피로멜리틱 디안하이드라이드(PMDA), 옥시디프탈릭 디안하이드라이드(ODPA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA), 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로판 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(BTDA), 비스(3,4-디카르복시페닐)메탄 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로판 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로판 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드 및 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드로 이루어진 군에서 선택되는 1 종 이상의 이무수물산 성분과,
파라페닐렌디아민(PPD), 메타페닐렌디아민, 3,3'-디메틸벤지딘, 2,2'-디메틸벤지딘, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(DABA), 4,4'-디아미노디페닐에테르(ODA), 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐메탄(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메탄, 3,3'-디카르복시-4,4'-디아미노디페닐메탄, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메탄, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐메탄, 2,2-비스(3-아미노페닐)프로판, 2,2-비스(4-아미노페닐)프로판, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드, 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠(TPE-R), 1,4-비스(3-아미노페녹시)벤젠(TPE-Q) 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메탄, 비스〔3-(4-아미노페녹시)페닐〕메탄, 비스〔4-(3-아미노페녹시)페닐〕메탄, 비스〔4-(4-아미노페녹시)페닐〕메탄, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로판, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로판, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로판, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로판(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판 및 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판으로 이루어진 군에서 선택되는 1 종 이상의 디아민 성분을 이미드화하여 반응하여 얻어질 수 있다.
상기 폴리이미드 필름은 바람직하게는 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 및 피로멜리틱디안하이드라이드(PMDA) 중 어느 하나 이상을 포함하는 이무수물산 성분과, 파라페닐렌 디아민(PPD) 및 4,4'-디아미노디페닐에테르(ODA) 중 어느 하나 이상을 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어질 수 있다.
또한, 상기 이무수물산 성분의 총함량 100 몰%를 기준으로, 상기 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이며, 상기 피로멜리틱디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이고,
상기 디아민 성분의 총함량 100 몰%를 기준으로, 상기 파라페닐렌 디아민의 함량이 80 몰% 이상 90 몰% 이하이고, 상기 4,4'-디아미노디페닐에테르 의 함량이 10 몰% 이상 20 몰% 이하일 수 있다.
본 발명에서 폴리아믹산의 제조는 예를 들어,
(1) 디아민 성분 전량을 용매 중에 넣고, 그 후 이무수물산 성분을 디아민 성분과 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(2) 이무수물산 성분 전량을 용매 중에 넣고, 그 후 디아민 성분을 이무수물산 성분과 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(3) 디아민 성분 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 이무수물산 성분 중 일부 성분을 약 95~105 몰%의 비율로 혼합한 후, 나머지 디아민 성분을 첨가하고 이에 연속해서 나머지 이무수물산 성분을 첨가하여, 디아민 성분 및 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 이무수물산 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95~105 몰%의 비율로 혼합한 후, 다른 이무수물산 성분을 첨가하고 계속되어 나머지 디아민 성분을 첨가하여, 디아민 성분 및 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법;
(5) 용매 중에서 일부 디아민 성분과 일부 이무수물산 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 성분과 일부 이무수물산 성분을 어느 하나가 과량이 되도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 성분이 과잉일 경우, 제 2조성물에서는 이무수물산 성분을 과량으로 하고, 제1 조성물에서 이무수물산 성분이 과잉일 경우, 제2 조성물에서는 디아민 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 성분과 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
하나의 구체적인 예에서, 본 발명에 따른 폴리이미드 필름의 제조방법은,
이무수물산 성분과 디아민 성분으로부터 얻어지는 폴리아믹산 용액을 제공하는 공정;
상기 폴리아믹산 용액을 지지체 상에 유연 도포하고, 가열하여 폴리아믹산 용액의 자기 지지성 필름을 제조하는 공정; 및
상기 자기 지지성 필름을 이미드화하고 연신하여 폴리이미드 필름을 제조하는 공정;을 포함할 수 있다.
상기 연신은 이축 연신으로, MD 방향과 TD 방향의 연신 비율이 동일하도록 장력을 가한다.
이러한 연신 비율은 상기 TMA 측정으로 상기 폴리이미드 필름의 MD 방향과 TD 방향의 균형(balance)을 통하여 확인할 수 있다.
즉, 연신을 통한 얻어진 상기 폴리이미드 필름의 MD 방향과 TD 방향의 균형이 MD 방향의 열팽창계수에서 상기 TD 방향의 열팽창계수를 뺀 값이 0이상 2.5 ppm/℃ 이하인 것으로 나타내어 진다.
본 발명에서는, 상기와 같은 폴리아믹산의 중합 방법을 임의(random) 중합 방식으로 정의할 수 있으며, 상기와 같은 과정으로 제조된 본 발명의 폴리아믹산으로부터 제조된 폴리이미드 필름은 평탄성을 높이는 본 발명의 효과를 극대화시키는 측면에서 바람직하게 적용될 수 있다.
다만, 상기 중합 방법은 앞서 설명한 고분자 사슬 내의 반복단위의 길이가 상대적으로 짧게 제조되므로, 이무수물산 성분으로부터 유래되는 폴리이미드 사슬이 가지는 각각의 우수한 특성을 발휘하기에는 한계가 있을 수 있다. 따라서, 본 발명에서 바람직하게 이용될 수 있는 폴리아믹산의 중합 방법은 블록 중합 방식일 수 있다.
한편, 폴리아믹산을 합성하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있지만, 아미드계 용매인 것이 바람직하다.
구체적으로는, 상기 유기 용매는 유기 극성 용매일 수 있고, 상세하게는 비양성자성 극성 용매(aprotic polar solvent)일 수 있으며, 예를 들어, N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2종 이상 조합해서 사용할 수 있다.
하나의 예에서, 상기 유기 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 특히 바람직하게 사용될 수 있다.
또한, 폴리아믹산 제조 공정에서는 접동성, 열전도성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 충전재를 첨가할 수도 있다. 첨가되는 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.
충전재의 입경은 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류과 따라서 결정하면 된다. 일반적으로는, 평균 입경이 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 75 ㎛, 더욱 바람직하게는 0.1 내지 50 ㎛, 특히 바람직하게는 0.1 내지 25 ㎛이다.
입경이 이 범위를 하회하면 개질 효과가 나타나기 어려워지고, 이 범위를 상회하면 표면성을 크게 손상시키거나, 기계적 특성이 크게 저하되는 경우가 있다.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정하면 된다. 일반적으로, 충전재의 첨가량은 폴리이미드 100 중량부에 대하여 0.01 내지 100 중량부, 바람직하게는 0.01 내지 90 중량부, 더욱 바람직하게는 0.02 내지 80 중량부이다.
충전재 첨가량이 이 범위를 하회하면, 충전재에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 필름의 기계적 특성이 크게 손상될 가능성이 있다. 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.
본 발명의 제조방법에서 폴리이미드 필름은 열 이미드화법 및 화학적 이미드화법에 의해서 제조될 수 있다.
또한, 열 이미드화법 및 화학적 이미드화법이 병행되는 복합 이미드화법에 의해서 제조될 수도 있다.
상기 열 이미드화법이란, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법이다.
상기 열 이미드화법은 상기 겔 필름을 100 내지 600 ℃의 범위의 가변적인 온도에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있으며, 상세하게는 200 내지 500 ℃, 더욱 상세하게는, 300 내지 500 ℃에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있다.
다만, 겔 필름을 형성하는 과정에서도 아믹산 중 일부(약 0.1 몰% 내지 10 몰%)가 이미드화될 수 있으며, 이를 위해 50 ℃ 내지 200 ℃의 범위의 가변적인 온도에서 폴리아믹산 조성물을 건조할 수 있고, 이 또한 상기 열 이미드화법의 범주에 포함될 수 있다.
화학적 이미드화법의 경우, 당업계에 공지된 방법에 따라 탈수제 및 이미드화제를 이용하여, 폴리이미드 필름을 제조할 수 있다.
복합이미드화법의 한예로 폴리아믹산 용액에 탈수제 및 이미드화 제를 투입한 후 80 내지 200℃, 바람직하게는 100 내지 180℃에서 가열하여, 부분적으로 경화 및 건조한 후에 200 내지 400℃에서 5 내지 400 초간 가열함으로써 폴리이미드 필름을 제조할 수 있다.
본 발명은, 상술한 폴리이미드 필름과 전기전도성의 금속박을 포함하는 연성 금속박 적층판을 제공한다.
사용하는 금속박으로는 특별히 한정되는 것은 아니지만, 전자 기기 또는 전기 기기용도에 본 발명의 연성 금속박 적층판을 이용하는 경우에는, 예를 들면 구리 또는 구리 합금, 스테인레스강 또는 그의 합금, 니켈 또는 니켈 합금(42 합금도 포함함), 알루미늄 또는 알루미늄 합금을 포함하는 금속박일 수 있다.
일반적인 연성 금속박 적층판에서는 압연 동박, 전해 동박이라는 구리박이 많이 사용되며, 본 발명에서도 바람직하게 사용할 수 있다. 또한, 이들 금속박의 표면에는 방청층, 내열층 또는 접착층이 도포되어 있을 수도 있다.
본 발명에서 상기 금속박의 두께에 대해서는 특별히 한정되는 것은 아니고, 그 용도에 따라서 충분한 기능을 발휘할 수 있는 두께이면 된다.
본 발명에 따른 연성 금속박 적층판은, 상기 폴리이미드 필름의 적어도 한 면에 금속박이 라미네이트, 코팅, 스퍼터링 또는 증착되어 얻어질 수 있다.
또한, 상기 연성 금속박 적층판을 2 layer용 FCCL로 사용할 수 있고, 특히, 휴대전화, 디스플레이(LCD, PDP, OLED 등) 등에 사용 할 수 있고 FPCB, COF용으로 사용할 수 있다.
상기 연성 금속박 적층판을 포함하는 전자 부품은 예를 들어, 휴대 단말기용 통신 회로, 컴퓨터용 통신 회로, 또는 우주 항공용 통신회로일 수 있으나 이것으로 한정되는 것은 아니다.
이하, 발명의 구체적인 제조예 및 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 제조예 및 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 한정되는 것은 아니다.
제조예: 폴리이미드 필름의 제조
본 발명의 폴리이미드 필름은 다음과 같은 당업계에 공지된 통상적인 방법으로 제조될 수 있다. 먼저, 유기 용매에 전술한 이무수물산과 디아민 성분을 반응시켜 폴리아믹산 용액을 얻는다.
이때, 용매는 일반적으로 아미드계 용매로 비양성자성 극성 용매(Aprotic solvent), 예를 들어 N,N'-디메틸포름아마이드, N,N'-디메틸아세트아미드, N-메틸-피롤리돈, 또는 이들의 조합을 사용할 수 있다.
상기 이무수물산과 디아민 성분의 투입형태는 분말, 덩어리 및 용액 형태로 투입할 수 있으며 반응 초기에는 분말 형태로 투입하여 반응을 진행한 다음, 이후에는 중합 점도 조절을 위해 용액 형태로 투입하는 것이 바람직하다.
얻어진 폴리아믹산 용액은 이미드화 촉매 및 탈수제와 혼합되어 지지체에 도포될 수 있다.
사용되는 촉매의 예로는 3급 아민류(예컨대, 이소퀴놀린, β-피콜린, 피리딘 등)가 있고, 탈수제의 예로는 무수산이 있으나, 이에 제한되지 않는다. 또한, 상기에서 사용되는 지지체로는 유리판, 알루미늄박, 순환 스테인레스 벨트 또는 스테인레스 드럼 등을 들 수 있으나, 이에 제한되지 않는다.
상기 지지체 상에 도포된 필름은 건조 공기 및 열처리에 의해 지지체 위에서 겔화된다.
상기 겔화된 필름은 지지체에서 분리되어 열처리하여 건조 및 이미드화가 완료된다.
상기 열처리를 마친 필름은 일정한 장력 하에서 열처리되어 제막 과정에서 발생한 필름 내부의 잔류응력이 제거될 수 있다.
구체적으로, 교반기 및 질소 주입·배출관을 구비한 반응기에 질소를 주입시키면서 DMF를 500 ml 투입하고, 반응기의 온도를 30 ℃로 설정한 후, 비페닐테트라카르복실릭디안하이드라이드(50 mol%), 피로멜리틱디안하이드라이드(50 mol%), 파라페닐렌 디아민(13 mol%) 및 4,4'-디아미노디페닐에테르(87 mol%)를 조절된 조성비 및 정해진 순서대로 투입하여 완전히 용해시킨다. 이후, 질소 분위기하에서 40 ℃로 반응기의 온도를 올려 가열하면서 120분간 교반을 계속해주어 1차 반응 점도가 1,500cP인 폴리아믹산을 제조하였다.
이렇게 제조한 폴리아믹산을 최종 점도 100,000~120,000cP가 되도록 교반시켰다.
준비된 최종 폴리아믹산에 촉매 및 탈수제의 함량을 조절하여 첨가시킨 후, 어플리케이터를 이용하여 폴리이미드 필름을 제조하였다.
실시예 및 비교예
상기 제조예를 따라서 제조되었고, 다만 하기 표 1에 나타낸 바와 같이, 실시예 및 비교예의 연신 정도를 조절하여, 폴리이미드 필름을 제조하였다.
즉, 실시예 1의 연신 정도를 100%로 보았을 때, 실시예 2의 연신 정도는 120%이었고, 비교예 1 내지 3의 연신 정도는 각각 150%, 140% 및 70%이었다.
공정 조건 CTE(ppm/℃) 식(1)에 의한 계산값
(μm)
코팅 후
필름 평탄성
(주름 생성량)
연신 MD TD
실시예 1 100% 5.7 4.8 -32 전혀 없음
실시예 2 120% 6.0 5.3 -20 거의 없음
비교예 1 150% 5.2 4.3 24 매우 많음
비교예 2 140% 5.6 4.7 8 많음
비교예 3 70% 14.7 14.4 75 매우 많음
제조된 폴리이미드 필름의 열팽창계수(coefficient of thermal expansion, CTE), 유리전이온도, 탄성율 및 금속박 적층 후 평탄성을 측정하였다.
또한, 제조된 폴리이미드 필름 상에 스퍼터링을 통하여 금속층을 형성한 후, 코팅후 필름 평탄성(주름 생성량)을 확인하였다.
(1) 치수 변화 측정
25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화를 측정하였다.
(2) 열팽창계수 측정
열팽창 계수(CTE)는 TA사 열기계 분석기(thermomechanical analyzer) Q400 모델을 사용하였으며, 폴리이미드 필름을 폭 4 mm, 길이 20 mm로 자른 후 질소 분위기하에서 0.05 N의 장력을 가하면서, 10 ℃/min의 속도로 상온에서 300℃까지 승온 후 다시 10 ℃/min의 속도로 냉각하면서 100℃ 에서 200℃ 구간의 기울기를 측정하였다.
(3) 필름 평탄성 측정
육안 검사를 통하여 제조된 폴리이미드 필름의 MD 방향으로의 주름을 확인하였다.
(4) 유리전이온도 측정
유리전이온도(Tg)는 DMA를 이용하여 각 필름의 손실 탄성률과 저장 탄성률을 구하고, 이들의 탄젠트 그래프에서 변곡점을 유리전이온도로 측정하였다.
(5) 탄성율 측정
ASTM D882 규정에 의거하여 폴리이미드 필름의 탄성율을 측정하였다
실시예 1 및 2의 치수 변화 측정 결과 그래프를 각각 도 1a, 도 1b에 나타내었다. 또한, 비교예 1 내지 3의 치수 변화 측정 결과 그래프를 각각 도 2a, 도 2b 및 도 2c에 나타내었다.
도 1에 나타낸 바와 같이 실시예 1 및 2의 식(1)에 의한 계산값은 음수에 해당하였다. 또한, 도 2에 나타낸 바와 같이 비교예 1 내지 3의 식(1)에 의한 계산값은 양수에 해당하였다.
코팅 후 필름 평탄성 측정 결과, 식(1)에 의한 계산값이 음수인 실시예 1 및 2의 폴리이미드 필름은 식(1)에 의한 계산값이 양수인 비교예 1 내지 3의 폴리이미드 필름에 비하여 필름의 평탄성이 매우 우수하였다(주름의 생성량이 전혀 없거나 거의 없었다).
본 발명인 폴리이미드 필름 및 폴리이미드 필름의 제조방법의 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 당업자가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시 예일 뿐, 전술한 실시 예에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.
본 발명은 특정 치수 변화 범위를 가지는 폴리이미드 필름을 제공함으로써, 금속박 적층 후에도 평탄성이 우수한 폴리이미드 필름을 제공한다.
이러한 폴리이미드 필름은 우수한 평탄성의 폴리이미드 필름이 요구되는 다양한 분야, 예를 들어, 메탈라이징법에 의해 제조되는 연성 금속박 적층판 또는 이러한 연성 금속박 적층판을 포함하는 전자 부품에 적용이 가능하다.

Claims (11)

  1. 25℃에서 400℃의 승온 과정에 이어서 400℃에서 25℃의 냉각 과정을 거치는 열기계 분석기(TMA)에 의한 치수 변화 측정에서, 하기 식(1)을 만족시키는,
    폴리이미드 필름.
    식(1)
    TD 방향 치수 측정값(냉각, 50℃)-TD 방향 치수 측정값(승온, 50℃) < 0 μm
    상기 식 1에서
    TD 방향 치수 측정값(냉각, 50℃)은 냉각 과정 중 50℃에서 측정된 TD 방향의 치수 측정값이고.
    TD 방향 치수 측정값(승온, 50℃)은 승온 과정 중 50℃에서 측정된 TD 방향의 치수 측정값이다.
  2. 제1항에 있어서,
    MD 방향의 열팽창계수가 2~6.5 ppm/℃이고, TD 방향의 열팽창계수가 1~6 ppm/℃인,
    폴리이미드 필름.
  3. 제2항에 있어서,
    상기 MD 방향의 열팽창계수에서 상기 TD 방향의 열팽창계수를 뺀 값이 0 이상 2.5 ppm/℃ 이하인,
    폴리이미드 필름.
  4. 제1항에 있어서,
    탄성율이 5 GPa 이상 11 GPa 이하이며,
    유리전이온도가 360℃ 이상, 400℃ 이하인,
    폴리이미드 필름.
  5. 제1항에 있어서,
    피로멜리틱 디안하이드라이드(PMDA), 옥시디프탈릭 디안하이드라이드(ODPA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA), 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로판 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(BTDA), 비스(3,4-디카르복시페닐)메탄 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로판 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로판 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드 및 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드로 이루어진 군에서 선택되는 1 종 이상의 이무수물산 성분과,
    파라페닐렌디아민(PPD), 메타페닐렌디아민, 3,3'-디메틸벤지딘, 2,2'-디메틸벤지딘, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(DABA), 4,4'-디아미노디페닐에테르(ODA), 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐메탄(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메탄, 3,3'-디카르복시-4,4'-디아미노디페닐메탄, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메탄, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐메탄, 2,2-비스(3-아미노페닐)프로판, 2,2-비스(4-아미노페닐)프로판, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드, 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠(TPE-R), 1,4-비스(3-아미노페녹시)벤젠(TPE-Q) 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메탄, 비스〔3-(4-아미노페녹시)페닐〕메탄, 비스〔4-(3-아미노페녹시)페닐〕메탄, 비스〔4-(4-아미노페녹시)페닐〕메탄, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로판, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로판, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로판, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로판(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판 및 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판으로 이루어진 군에서 선택되는 1 종 이상의 디아민 성분을 이미드화하여 반응하여 얻어지는,
    폴리이미드 필름.
  6. 제1항에 있어서,
    3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 및 피로멜리틱디안하이드라이드(PMDA) 중 어느 하나 이상을 포함하는 이무수물산 성분과,
    파라페닐렌 디아민(PPD) 및 4,4'-디아미노디페닐에테르(ODA) 중 어느 하나 이상을 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어지는,
    폴리이미드 필름.
  7. 제6항에 있어서,
    상기 이무수물산 성분의 총함량 100 몰%를 기준으로, 상기 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이며, 상기 피로멜리틱디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이고,
    상기 디아민 성분의 총함량 100몰%를 기준으로, 상기 파라페닐렌 디아민의 함량이 80 몰% 이상 90 몰% 이하이고, 상기 4,4'-디아미노디페닐에테르의 함량이 10 몰% 이상 20 몰% 이하인,
    폴리이미드 필름.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 폴리이미드 필름을 제조하는 방법으로서,
    이무수물산 성분과 디아민 성분으로부터 얻어지는 폴리아믹산 용액을 제공하는 공정;
    상기 폴리아믹산 용액을 지지체 상에 유연 도포하고, 가열하여 폴리아믹산 용액의 자기 지지성 필름을 제조하는 공정; 및
    상기 자기 지지성 필름을 이미드화하고 연신하여 폴리이미드 필름을 제조하는 공정;을 포함하는,
    폴리이미드 필름의 제조 방법.
  9. 제1항 내지 제7항 중 어느 한 항에 따른 폴리이미드 필름과 전기 전도성의 금속박을 포함하는,
    연성 금속박 적층판.
  10. 제9항에 있어서,
    상기 금속박이 코팅, 스퍼터링 또는 증착에 의해 형성되는,
    연성 금속박 적층판.
  11. 제10항에 따른 연성 금속박 적층판을 포함하는,
    전자 부품.
PCT/KR2021/095108 2020-11-24 2021-11-22 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법 WO2022114938A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/037,675 US20240026098A1 (en) 2020-11-24 2021-11-22 Polyimide film having high dimensional stability and manufacturing method therefor
JP2023528935A JP2023552081A (ja) 2020-11-24 2021-11-22 高い寸法安定性を有するポリイミドフィルム及びその製造方法
CN202180072878.4A CN116406395A (zh) 2020-11-24 2021-11-22 具有高尺寸稳定性的聚酰亚胺膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0159335 2020-11-24
KR1020200159335A KR102445910B1 (ko) 2020-11-24 2020-11-24 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2022114938A1 true WO2022114938A1 (ko) 2022-06-02

Family

ID=81755936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/095108 WO2022114938A1 (ko) 2020-11-24 2021-11-22 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법

Country Status (6)

Country Link
US (1) US20240026098A1 (ko)
JP (1) JP2023552081A (ko)
KR (1) KR102445910B1 (ko)
CN (1) CN116406395A (ko)
TW (1) TW202229410A (ko)
WO (1) WO2022114938A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215840A (ja) * 2009-03-18 2010-09-30 Teijin Ltd ポリイミド及びポリイミドフィルム
KR20150001662A (ko) * 2013-06-26 2015-01-06 듀폰 도레이 컴파니, 리미티드 폴리이미드 필름
KR20150011323A (ko) * 2013-07-22 2015-01-30 듀폰 도레이 컴파니, 리미티드 폴리이미드 필름
KR20200030268A (ko) * 2018-09-12 2020-03-20 에스케이씨코오롱피아이 주식회사 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
KR20200055879A (ko) * 2018-11-14 2020-05-22 주식회사 동진쎄미켐 폴리이미드계 필름, 폴리이미드계 조성물 및 이를 이용한 필름 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375276B1 (ko) 2013-03-27 2014-03-19 주식회사 이녹스 슬립성이 우수한 열가소성 폴리이미드 접착 필름을 이용한 적층판 제조 방법
CN106661273B (zh) 2014-06-30 2020-05-12 可隆工业株式会社 表面改性复合二氧化硅粒子及包含该表面改性复合二氧化硅粒子的聚酰亚胺薄膜
JP6765272B2 (ja) 2016-09-30 2020-10-07 東レ・デュポン株式会社 ポリイミドフィルム
JP7077064B2 (ja) * 2018-03-02 2022-05-30 東レ・デュポン株式会社 ポリイミドフィルム
KR102162628B1 (ko) * 2019-07-17 2020-10-07 피아이첨단소재 주식회사 연성금속박적층판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215840A (ja) * 2009-03-18 2010-09-30 Teijin Ltd ポリイミド及びポリイミドフィルム
KR20150001662A (ko) * 2013-06-26 2015-01-06 듀폰 도레이 컴파니, 리미티드 폴리이미드 필름
KR20150011323A (ko) * 2013-07-22 2015-01-30 듀폰 도레이 컴파니, 리미티드 폴리이미드 필름
KR20200030268A (ko) * 2018-09-12 2020-03-20 에스케이씨코오롱피아이 주식회사 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
KR20200055879A (ko) * 2018-11-14 2020-05-22 주식회사 동진쎄미켐 폴리이미드계 필름, 폴리이미드계 조성물 및 이를 이용한 필름 제조 방법

Also Published As

Publication number Publication date
KR20220071797A (ko) 2022-05-31
CN116406395A (zh) 2023-07-07
US20240026098A1 (en) 2024-01-25
TW202229410A (zh) 2022-08-01
JP2023552081A (ja) 2023-12-14
KR102445910B1 (ko) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2020096363A1 (ko) 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020054912A1 (ko) 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2019132184A1 (ko) 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판
WO2021096245A2 (ko) 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2020017697A1 (ko) 불소-함유 실란 첨가제 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2021091014A1 (ko) 유전특성이 개선된 폴리이미드 필름 및 그 제조방법
WO2020080598A1 (ko) 표면 품질이 개선된 고후도 폴리이미드 필름 및 이의 제조방법
WO2020091147A1 (ko) 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
WO2020040356A1 (ko) 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2021091013A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2022114938A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2022098042A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2023191434A1 (ko) 폴리이미드 필름 및 그 제조방법
WO2019132185A1 (ko) 불소계 수지를 포함하는 블랙 폴리이미드 필름 및 이의 제조방법
WO2022107969A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2020141708A1 (ko) 폴리아믹산 조성물, 및 이의 제조 방법
WO2024117800A1 (ko) 폴리이미드 필름 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528935

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18037675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898763

Country of ref document: EP

Kind code of ref document: A1