WO2022114140A1 - Solid-state battery and method for manufacturing solid-state battery - Google Patents

Solid-state battery and method for manufacturing solid-state battery Download PDF

Info

Publication number
WO2022114140A1
WO2022114140A1 PCT/JP2021/043441 JP2021043441W WO2022114140A1 WO 2022114140 A1 WO2022114140 A1 WO 2022114140A1 JP 2021043441 W JP2021043441 W JP 2021043441W WO 2022114140 A1 WO2022114140 A1 WO 2022114140A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery element
solid
face
exterior body
battery
Prior art date
Application number
PCT/JP2021/043441
Other languages
French (fr)
Japanese (ja)
Inventor
充 吉岡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022114140A1 publication Critical patent/WO2022114140A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/11Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having a structure in the form of a chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/555Window-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid-state battery and a method for manufacturing a solid-state battery.
  • Secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
  • a secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
  • a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, an end face electrode provided on the end face of the battery element, and an end face electrode are exposed to the outside.
  • Examples thereof include an exterior body that covers the battery element as much as possible.
  • the inventors of the present application have noticed that there are further matters to be improved in the above-mentioned solid-state battery. Specifically, when the end face electrode is exposed to the outside, the end face electrode may come into contact with another solid-state battery, an electronic medium, or the like, which may cause a defect in the end face electrode.
  • a main object of the present invention is to provide a solid-state battery and a method for manufacturing the same, which can suitably avoid the defect of the end face electrode.
  • a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a battery element.
  • An end face electrode provided on the end face of the battery element and It comprises the battery element and an exterior body provided to accommodate the battery element with an end face electrode having the end face electrode.
  • a solid-state battery is provided in which the outer surface of the exterior body is positioned outside the battery element with respect to the entire contour region of the battery element with end face electrodes.
  • a step of forming a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer (Ii) A step of providing an end face electrode on the surface of the battery element, and (Iii) A step of forming an exterior body so as to cover the battery element and the battery element with an end face electrode having the end face electrode provided on the battery element is included in order.
  • the solid state is formed so that the outer surface of the exterior body is positioned outside the entire contour region of the battery element with end face electrodes when viewed from the battery element.
  • FIG. 1 is a plan view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing a solid-state battery according to an embodiment of the present invention as viewed from a direction different from that of FIG.
  • FIG. 5 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 6 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 1 is a plan view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a solid-
  • FIG. 7 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 8 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 9 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 10 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 11 is a plan view schematically showing an embodiment in which the solid-state batteries according to the embodiment of the present invention are in contact with each other.
  • FIG. 12 is a plan view schematically showing an embodiment in which the solid-state batteries according to the embodiment of the present invention are in contact with each other.
  • FIG. 12 is a plan view schematically showing an embodiment in which the solid-state batteries according to the embodiment of the present invention are in contact with each other.
  • FIG. 13 is a plan view schematically showing an aspect in which an external medium is in contact with the solid-state battery according to the embodiment of the present invention.
  • FIG. 14 is a plan view schematically showing a mode in which the conventional solid-state batteries are in contact with each other.
  • FIG. 15 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 16 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 17 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 18 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 19 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 20 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 21 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 22 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 23 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 24 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 20 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 21 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 22 is a perspective view schematically showing a solid
  • FIG. 25 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 26 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 27 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 28 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 26 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 27 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present
  • FIG. 29 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention.
  • FIG. 30 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming a battery element) according to an embodiment of the present invention.
  • FIG. 31 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming an end face electrode) according to an embodiment of the present invention.
  • FIG. 32 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming an exterior body) according to an embodiment of the present invention.
  • FIG. 33 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming an exterior body) according to an embodiment of the present invention.
  • solid-state battery refers to a battery whose constituent elements are composed of solids in a broad sense, and in a narrow sense, all the constituent elements (particularly all constituent elements) are composed of solids.
  • the solid-state battery of the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
  • the "solid-state battery” as used herein can include not only a secondary battery that can be repeatedly charged and discharged, but also a primary battery that can only be discharged.
  • the solid-state battery is a secondary battery.
  • the "secondary battery” is not overly bound by its name and may include, for example, a power storage device.
  • the "cross-sectional view” as used herein is a state when the solid-state battery is viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of the material layers constituting the solid-state battery.
  • the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the figure, respectively. Unless otherwise specified, the same sign or symbol shall indicate the same member / part or the same meaning. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction” and the opposite direction corresponds to the "upward direction”.
  • the solid-state battery has at least an electrode layer of a positive electrode / a negative electrode and a solid electrolyte.
  • the solid-state battery includes a battery element, an end face electrode, and an exterior body.
  • the battery element includes a battery building block consisting of a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed between them.
  • the end face electrode is an electrode provided so as to face the end face of the battery element.
  • the exterior body is a layer that covers the surface of the battery element so that the electrode layer and the end face electrode can be joined.
  • a positive electrode layer, a negative electrode layer, a solid electrolyte, and the like form a sintered layer.
  • the positive electrode layer, the negative electrode layer and the solid electrolyte are each integrally fired, and therefore the battery elements form an integrally sintered body.
  • the positive electrode layer is an electrode layer containing at least a positive electrode active material.
  • the positive electrode layer may further contain a solid electrolyte.
  • the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the positive electrode layer is composed of a sintered body that substantially contains only positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is an electrode layer containing at least a negative electrode active material.
  • the negative electrode layer may further contain a solid electrolyte.
  • the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is composed of a sintered body that substantially contains only negative electrode active material particles and solid electrolyte particles.
  • the positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are transferred to charge and discharge.
  • the positive electrode layer and the negative electrode layer are particularly preferably layers capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
  • Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include LiFePO 4 , LiMnPO 4 , and the like.
  • Examples of the lithium-containing layered oxide include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and the like.
  • Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , and the like.
  • the type of the lithium compound is not particularly limited, and may be, for example, a lithium transition metal composite oxide and a lithium transition metal phosphoric acid compound.
  • the lithium transition metal composite oxide is a general term for oxides containing lithium and one or more kinds of transition metal elements as constituent elements, and the lithium transition metal phosphoric acid compound is one or more kinds with lithium. It is a general term for phosphoric acid compounds containing the transition metal element of.
  • the type of the transition metal element is not particularly limited, and is, for example, cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), and the like.
  • the positive electrode active material capable of absorbing and releasing sodium ions includes a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and sodium having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • a sodium-containing phosphoric acid compound Na 3 V 2 (PO 4 ) 3 , NaCoFe 2 (PO 4 ) 3 , Na 2 Ni 2 Fe (PO 4 ) 3 , Na 3 Fe 2 (PO 4 ) 3 , Na. 2 FeP 2 O 7 , Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ), and at least one selected from the group consisting of NaFeO 2 as the sodium-containing layered oxide.
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, a conductive polymer, or the like.
  • the oxide may be, for example, titanium oxide, vanadium oxide, manganese dioxide, or the like.
  • the disulfide is, for example, titanium disulfide or molybdenum sulfide.
  • the chalcogenide may be, for example, niobium selenate or the like.
  • the conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene, polyacene and the like.
  • Examples of the negative electrode active material contained in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, lithium alloys, and pear cones. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a type structure, a lithium-containing phosphoric acid compound having an olivine type structure, a lithium-containing oxide having a spinel type structure, and the like can be mentioned. Examples of lithium alloys include Li-Al and the like.
  • lithium-containing phosphoric acid compound having a pear-con type structure examples include Li 3 V 2 (PO 4 ) 3 , LiTi 2 (PO 4 ) 3 , and the like.
  • LiCuPO 4 and the like examples of lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 .
  • the negative electrode active material capable of absorbing and releasing sodium ions is composed of a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from the group is mentioned.
  • the positive electrode layer and the negative electrode layer are made of the same material.
  • the positive electrode layer and / or the negative electrode layer may contain a conductive auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode layer and the negative electrode layer include at least one composed of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, and carbon.
  • carbon is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
  • the positive electrode layer and / or the negative electrode layer may contain a sintering aid.
  • a sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
  • the solid electrolyte is a material capable of conducting lithium ions.
  • the solid electrolyte that forms a battery constituent unit in a solid-state battery forms a layer in which lithium ions or sodium ions can be conducted between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and an oxide glass ceramics-based lithium ion conductor.
  • a lithium-containing phosphoric acid compound having a pear-con structure Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr. At least one of the choices).
  • lithium-containing phosphoric acid compound having a pear-con structure for example, Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like can be mentioned.
  • oxide having a perovskite structure La 0.55 Li 0.35 TiO 3 and the like can be mentioned.
  • oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • oxide glass ceramics-based lithium ion conductor for example, a phosphoric acid compound (LATP) containing lithium, aluminum and titanium as a constituent element, and a phosphoric acid compound (LAGP) containing lithium, aluminum and germanium as constituent elements are used. Can be done.
  • Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a nacicon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like.
  • sodium-containing phosphoric acid compound having a pearcon structure Na x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr. At least one selected).
  • the solid electrolyte may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • End face electrode Solid-state batteries are generally provided with end face electrodes. Specifically, an end face electrode is provided so as to face the end face of the battery element. Specifically, the end face electrode on the positive electrode side connected to the positive electrode layer and the end face electrode on the negative electrode side connected to the negative electrode layer are provided in the end face regions of the battery elements facing each other. More specifically, the end face electrode on the positive electrode layer side is configured to be able to be joined to the end portion of the positive electrode layer, specifically, the drawer portion formed at the end portion of the positive electrode layer. Further, the end face electrode on the negative electrode layer side is configured to be able to be joined to an end portion of the negative electrode layer, specifically, a drawer portion formed at the end portion of the negative electrode layer.
  • the end face electrode preferably contains glass or glass ceramics from the viewpoint of joining with the lead-out portion of the electrode layer. Further, the end face electrode preferably contains a material having a high conductivity.
  • the specific material of the end face electrode is not particularly limited, and examples thereof include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel. By using a metal material for the end face electrode material, it is possible to suppress the ingress of moisture from the end face electrode.
  • the thickness of the end face electrode is not particularly limited, and may be, for example, 0.01 ⁇ m or more and 1 mm or less, particularly 1 ⁇ m or more and 100 ⁇ m or less.
  • the exterior can generally be formed on the outermost side of the solid-state battery and is intended for electrical, physical and / or chemical protection.
  • the material constituting the exterior body it is preferable that the material has excellent insulation, durability and / or moisture resistance, and is environmentally safe.
  • the exterior body is a layer that covers the surface of the battery element so that the drawer portion of each electrode layer and each end face electrode can be joined.
  • the exterior body covers the surface of the battery element so that the drawer portion of the positive electrode layer and the end face electrode on the positive electrode side can be bonded, and covers the surface of the battery element so that the drawer portion of the negative electrode layer and the end face electrode on the negative electrode side can be bonded. ..
  • the exterior body may be composed of a resin-free insulating material.
  • the "resin-free insulating material” as used herein refers to an insulating inorganic material that does not contain resin and does not have ionic conductivity and electron conductivity.
  • the inorganic material having no ionic conductivity refers to a material having an ionic conductivity of 1 ⁇ 10 -7 S / cm or less. From the viewpoint of suppressing deterioration of the battery over a longer period of time, the ion conductivity is preferably 1 ⁇ 10-12 S / cm or less.
  • the ionic conductivity of an inorganic material having no ionic conductivity is usually 1 ⁇ 10 -18 S / cm or more.
  • An inorganic material having no electron conductivity refers to a material having an electron conductivity of 1 ⁇ 10 -7 S / cm or less. From the viewpoint of suppressing deterioration of the battery over a longer period of time, the electron conductivity is preferably 1 ⁇ 10-12 S / cm or less. The electron conductivity of an inorganic material having no electron conductivity is usually 1 ⁇ 10 -18 S / cm or more.
  • the exterior body Since the exterior body is made of such a resin-free insulating material, the exterior body has even more excellent moisture resistance, environmental resistance and durability. Specifically, the exterior body is less likely to adsorb, absorb and permeate water and gas (carbon dioxide) than the exterior body containing a resin (for example, a polymer compound), and has a high bonding strength with a battery element. Can be. As a result, the exterior body is less likely to crack and fall off due to expansion due to adsorption and absorption of water and gas (carbon dioxide), and is less likely to fall off due to vibration and impact, etc., as compared with the exterior body containing a polymer compound. It's hard to happen. That is, the exterior body can suitably function as a "water vapor permeation prevention layer" for preventing damage to the electrodes of the battery element inside the solid-state battery.
  • a resin for example, a polymer compound
  • Examples of the insulating material constituting the exterior body include those containing glass and ceramics.
  • the glass is at least selected from the group consisting of quartz glass (SiO 2 ), SiO 2 and B 2 O 3 , PbO, MgO, ZnO, Bi 2 O 3 , Na 2 O, and Al 2 O 3 .
  • Examples thereof include composite oxide-based glass in combination with one.
  • the ceramics include at least one selected from the group consisting of Al 2 O 3 (alumina), Zn Al 2 O 4 (garnite), and Mg 2 SiO 4 (forsterite).
  • the exterior body is composed of a sintered body containing insulating substance particles other than the above-mentioned resin.
  • the sintered body constituting the exterior body has pores between the insulating substance particles, it can suppress the adsorption, absorption and permeation of water and gas (carbon dioxide) in the thickness direction (for example, the stacking direction). Has the precision of.
  • the porosity of the exterior body may be, for example, 0.1% by volume or more and 20% by volume or less, particularly 1% by volume or more and 10% or less by volume.
  • the porosity a value measured by a weight porosity method, a calculated tomography method using a CT scan, an immersion method, or the like is used.
  • the oxygen permeability of the exterior body in the thickness direction can be, for example, 10 -1 cc / m 2 / day / atm or less, particularly 10 -3 cc / m 2 / day / atm or less.
  • the H 2 O permeability in the thickness direction of the exterior body can be, for example, 10-2 g / m 2 / day or less, particularly 10 -4 g / m 2 / day or less.
  • the H2O permeability uses the value measured at 25 ° C. by the carrier gas method, the compression method, and the Ca corrosion method.
  • the inventor of the present application has diligently studied a solution for avoiding a defect of the end face electrode when the end face electrode is provided in the battery element. As a result, the inventor of the present application has come up with a solid-state battery 1000 according to an embodiment of the present invention having the following characteristics (see FIGS. 1 to 4).
  • the solid-state battery 1000 includes a battery element 100, an end face electrode 200, and an exterior body 300.
  • the battery element 100 includes a positive electrode layer 10I, a negative electrode layer 10II, and a solid electrolyte layer 20 interposed between the positive electrode layer 10I and the negative electrode layer 10II.
  • the end face electrode 200 is provided on the end face 100 ⁇ of the battery element 100.
  • the exterior body 300 is provided so as to accommodate the battery element 400 with an end face electrode having the battery element 100 and the end face electrode 200.
  • the outer surface 300 ⁇ of the exterior body 300 is positioned outside the entire contour region 400 ⁇ of the battery element 400 with end face electrodes when viewed from the battery element 100. It is characterized by being.
  • the "outer surface of the exterior body” as used herein refers to a surface oriented to the outside of the exterior body.
  • the term “battery element with end face electrode” refers to a general term for a configuration having an end face electrode and a battery element.
  • the “whole contour region of the battery element with end face electrodes” refers to the entire contour of the battery element with end face electrodes.
  • the “whole contour region of the battery element with end face electrodes” refers to the entire contour forming surface of the battery element with end face electrodes.
  • the “non-contact surface of the battery element of the end face electrode” refers to a surface of the end face electrodes that does not come into contact with the battery element.
  • the “whole contour region of the non-contact surface of the battery element of the end face electrode” refers to the entire contour forming surface of the end face electrodes that does not come into contact with the battery element.
  • the outer surface 300 ⁇ of the exterior body 300 is positioned outside the entire contour region 400 ⁇ of the battery element 400 with end face electrodes when viewed from the battery element 100.
  • the entire contour region 400 ⁇ of the battery element 400 with end face electrodes is positioned inside the outer surface 300 ⁇ of the exterior body 300 when viewed from the exterior body 300.
  • the end face electrode 200' When the end face electrode 200'is exposed to the outside as in the conventional solid-state battery 1000' (see FIG. 14), a pair of end face electrodes 200'(positive electrode side end face electrode and negative electrode side end face electrode) facing each other are adopted. ) And the exterior body 300'can be positioned so as to be sandwiched between them. In this case, in the conventional solid-state battery 1000', the end face electrode 200'and the exterior body 300' form a flush surface with each other.
  • the entire contour region 400 ⁇ of the battery element 400 with end face electrodes is positioned inside the outer surface 300 ⁇ of the exterior body 300, and the exterior body 300 is caused by this. It may be provided so as to straddle the end face electrode 200 and the battery element 100 continuous with the end face electrode 200. Further, when focusing on the configuration of the battery element 400 with the end face electrode, the end face electrode 200 and the battery element 100 (not the exterior body) form a flush surface with each other.
  • the outer surface 300 ⁇ of the exterior body 300 is outside the entire contour region 201 ⁇ of the battery element non-contact surface 200 ⁇ of the end face electrode 200 when viewed from the battery element 100. Can be positioned in.
  • the entire contour region 201 ⁇ of the battery element non-contact surface 200 ⁇ of the end face electrode 200 which is a component of the battery element 400 with the end face electrode, is positioned inside the outer surface 300 ⁇ of the exterior body 300 when viewed from the exterior body 300. ..
  • the size of the main surface 300 ⁇ of the exterior body 300 in the plan view can be larger than the size of the contour forming surface 400 ⁇ of the battery element 400 with the end face electrode.
  • the exterior body 300 and the battery element 400 with end face electrodes can have a substantially rectangular shape in a plan view.
  • the vertical and horizontal size of the main surface 300 ⁇ of the exterior body 300 is the contour forming surface 400 ⁇ of the battery element 400 with end face electrodes. It can be larger than the vertical and horizontal sizes.
  • the end face electrode 200 has a first main surface 200 ⁇ (corresponding to a battery element contact surface) in contact with the battery element and a second main surface 200 ⁇ facing each other with the first main surface 200 ⁇ .
  • the exterior body 300 is arranged so as to protrude outward from the second main surface 200 ⁇ of the end face electrode 200 when viewed from the battery element 100.
  • the other solid-state battery or electronic medium is the exterior body 300 which is a component thereof. Although it can come into contact with the outer surface 300 ⁇ , it cannot come into direct contact with the end face electrode 200. This makes it possible to suitably avoid the occurrence of defects in the end face electrode 200. Therefore, poor electrical connection between the end face electrode 200 and the electronic medium and deterioration of the airtightness of the end face electrode 200 can be suppressed, and the solid-state battery 1000 can obtain desired battery characteristics.
  • the present invention preferably adopts the following aspects.
  • the exterior body 300A is provided so as to partially surround the end face electrode 200A of the battery element 400A with the end face electrode (see FIGS. 5 to 7).
  • the exterior body 300A may be provided so as to partially surround at least the end face electrode 200A.
  • the exterior body 300A that partially surrounds the end face electrode 200A may have a bent form in cross-sectional view and plan view.
  • the exterior body 300A has an end face electrode 200A as compared with the mode shown in FIGS. 1 to 4 (a mode in which two exterior bodies 300 facing each other sandwich the battery element 400 with an end face electrode). It can face the second main surface 200A ⁇ .
  • the corner portion 202A of the end face electrode 200A can be enclosed, and the battery element 400C with the end face electrode can be held down.
  • peeling of the end face electrode 200A from the battery element 100A can be suppressed.
  • the exterior body 300A itself has a bent form, a force that wraps around inward in which the battery element 400A with an end face electrode is located can act as compared with the form extending in one direction. The peeling of the 300A itself can also be suppressed.
  • the solid-state battery 1000A in order for the solid-state battery 1000A to be electrically connected to the electronic medium, it may be necessary that at least the end face electrode 200A is exposed to the outside so as to be connectable to the electronic medium.
  • the exposed region of the end face electrode 200A to the outside can be reduced.
  • the size of the exposed region is adjusted in advance so as to be smaller than the size of the electronic medium connected to the solid-state battery 1000A, contact of the electronic medium with the end face electrode 200A can be more preferably avoided. As a result, it becomes possible to more preferably avoid the occurrence of defects in the end face electrode 200A.
  • At least the exterior body 300B partially surrounding the end face electrode 200B is separated from and can face the second main surface 200B ⁇ of the end face electrode 200B (see FIGS. 8 to 10). ).
  • This aspect corresponds to a more preferable aspect as compared with the aspects shown in FIGS. 5 to 7 in addition to the aspects shown in FIGS. 1 to 4.
  • the end face electrode 200' when the end face electrode 200'is exposed to the outside, the end face electrode 200'may come into contact with another solid-state battery 1000' or the like, which may cause a defect in the end face electrode 200'(FIG. 14). reference).
  • the outer surface 300B ⁇ of the exterior body 300B is positioned outside the entire contour region 400B ⁇ of the battery element 400B with end face electrodes when viewed from the battery element 100B. Has been done. Thereby, as described above, even if the other solid-state battery 1000B or the electronic medium 2000 comes into contact with the solid-state battery 1000B, the direct contact between the other solid-state battery or the electronic medium 2000 and the end face electrode 200B can be avoided (). 11 to 13).
  • the exterior body 300B is separated from and can face the second main surface 200B ⁇ of the end face electrode 200B.
  • a gap W can be formed between the exterior body 300B surrounding the end face electrode 200B and the second main surface 200B ⁇ of the end face electrode 200B.
  • the solid-state battery 1000B expands and contracts the electrode layer 10B during charging and discharging, and the battery element 400B with an end face electrode can also expand and contract accordingly.
  • the gap W is formed between the exterior body 300B and the second main surface 200B ⁇ of the end face electrode 200B, it is possible to form a space that can receive the particularly expanded battery element 400B with the end face electrode. can. This makes it possible to avoid contact between the expanded battery element 400B with end face electrodes and the exterior body 300B.
  • an electronic medium or another solid-state battery or the like comes into contact with the exterior body 300B having a bent form, and with this contact, the end portion 301B of the exterior body 300B is attached to the battery element 400B with an end face electrode.
  • it may be oriented so that it enters more inward from a predetermined position toward the placement direction.
  • the gap W is formed between the exterior body 300B and the second main surface 200B ⁇ of the end face electrode 200B, it is possible to prevent the end portion 301B of the exterior body 300B from coming into contact with the end face electrode 200B. be able to. From the above, according to this aspect, it is possible to more preferably avoid the defect of the end face electrode 200B.
  • the exterior body 1000C is provided so as to partially surround the battery element 100C in addition to the end face electrode 200C of the battery element 400C with an end face electrode (see FIGS. 15 to 17).
  • the exterior body 1000C is provided so as to partially surround the battery element 100C in addition to the end face electrode 200C.
  • the exterior body 300C partially surrounds the end face electrode 200C, so that the exterior body 300C may have a bent form in cross-sectional view and plan view.
  • the exterior body 300C partially surrounds the battery element 100C, so that the exterior body 300C in the bent form allows the battery element 100C to the outside as compared with the embodiments shown in FIGS. 5 to 7.
  • the exposed area can be reduced. As a result, it is possible to suitably avoid defects on the surface of the battery element 100C.
  • the exterior body 300D that partially surrounds both the end face electrode 200D and the battery element 100D is separated from and opposed to the second main surface 200D ⁇ of the end face electrode 200D, and is capable of separating and facing the surface 100D ⁇ of the battery element. It is more preferable (see FIGS. 18 to 20).
  • This aspect corresponds to a more preferable aspect as compared with the aspects shown in FIGS. 15 to 17 above.
  • the exterior body 300D is separated and opposed to the second main surface 200D ⁇ of the end face electrode 200D.
  • it may be separated and opposed to the surface 100D ⁇ of the battery element.
  • a gap W can be formed not only between the exterior body 300D and the second main surface 200D ⁇ of the end face electrode 200D but also between the exterior body 300D and the surface 100D ⁇ of the battery element.
  • end face electrodes 200E, 200F, 200G of the battery elements 400E, 400F, 400G with end face electrodes is exposed to the outside (see FIGS. 21 to 23).
  • one embodiment of the present invention is characterized in that the outer surface of the exterior body is positioned outside the entire contour region of the battery element with end face electrodes when viewed from the battery element.
  • the entire contour region of the battery element with end face electrodes is positioned inside the outer surface of the exterior body when viewed from the exterior body, while the battery element may be exposed.
  • the shape of the partially exposed region of the end face electrode is not particularly limited, and is an exposed region extending in the horizontal direction as shown in FIG. 21 and an exposed region extending in the vertical direction as shown in FIGS. 22 and 23. Can be taken in the form of.
  • the shape and size of the end face electrode are not particularly limited, and various shapes can be adopted (see FIGS. 24 to 29).
  • end face electrodes 200a having the same planar shape and size as the end faces of the battery elements 100a can be provided on the end faces of the battery elements 100a facing each other.
  • end face electrodes 200b having the same plane shape as each end face of the battery elements 100b and larger than the plane size of one end face can be provided on the end faces of the battery elements 100b facing each other.
  • end face electrodes 200c which have the same planar shape as each end face of the battery elements 100c and are smaller than the plane size of one end face, can be provided on the end faces of the battery elements 100c facing each other.
  • end face electrodes 200d1 and 200d2 having the same planar shape as each end face of the battery element 100d but different from the plane size of the end face are provided on the end faces of the battery elements 100d extending in different directions, respectively. be able to. In this case, it is possible to increase the variation regarding the direction of the connection point between the end face electrodes 200d1 and 200d2 and the electronic medium.
  • the end face electrodes 200e1 and 200e2 can be provided on the same end face of the battery element 100e at predetermined intervals, respectively.
  • the size of the battery element 400e with end face electrodes can be made relatively smaller than that of the case where the end faces of the battery elements facing each other have end face electrodes, so that the size of the solid-state battery can be reduced as a whole.
  • the electronic medium can be arranged side by side with the solid-state battery so as to be connected to the end face electrode, and the height of the integrated body of the electronic medium and the solid-state battery can be reduced.
  • the end face electrodes 200f1 and 200f2 are provided at predetermined intervals so as to straddle the predetermined end face extending in one direction and the end face extending in a direction different from the predetermined end face of the battery element 100f. be able to.
  • the solid-state battery according to the embodiment of the present invention can be manufactured by using the green sheet method using a green sheet.
  • the solid-state battery according to the embodiment of the present invention can be finally manufactured after forming a predetermined laminated body by the green sheet method.
  • a predetermined laminated body may be formed by a screen printing method or the like.
  • Step of forming unfired laminate First, on each base material (for example, PET film), a paste for a solid electrolyte layer, a paste for a positive electrode material layer, a paste for a positive electrode current collector layer, a paste for a negative electrode material layer, a paste for a negative electrode current collector layer, and a paste for an insulating portion. , And the protective layer paste is applied.
  • base material for example, PET film
  • Each paste uses a predetermined constituent material of each layer appropriately selected from the group consisting of a positive electrode active material, a negative electrode active material, a conductive material, a solid electrolyte material, an insulating material, and a sintering aid, and an organic material as a solvent. It can be produced by wet mixing with a dissolved organic vehicle.
  • the paste for the positive electrode material layer includes, for example, a positive electrode active material, a conductive material, a solid electrolyte material, an organic material and a solvent.
  • the paste for the negative electrode material layer includes, for example, a negative electrode active material, a conductive material, a solid electrolyte material, an organic material and a solvent.
  • the paste for the positive electrode current collector layer / the paste for the negative electrode current collector layer at least one may be selected from the group consisting of, for example, silver, palladium, gold, platinum, aluminum, copper, and nickel.
  • the solid electrolyte layer paste includes, for example, solid electrolyte materials, sintering aids, organic materials and solvents.
  • Protective layer pastes include, for example, insulating material materials, organic materials and solvents. Insulating pastes include, for example, insulating material materials, organic materials and solvents.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use a medium may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • a paste for a predetermined solid electrolyte layer can be prepared by wet-mixing a predetermined solid electrolyte material, a sintering aid, and an organic vehicle in which an organic material is dissolved in a solvent.
  • the solid electrolyte material include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like.
  • the lithium-containing phosphoric acid compound having a pear-con structure Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr. At least one selected).
  • lithium-containing phosphoric acid compound having a pear-con structure for example, Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like can be mentioned.
  • oxide having a perovskite structure La 0.55 Li 0.35 TiO 3 and the like can be mentioned.
  • oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • Examples of the positive electrode active material contained in the paste for the positive electrode material layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. At least one is selected from the group consisting of lithium-containing oxides and the like.
  • the insulating substance material contained in the paste for the insulating portion may be composed of, for example, a glass material, a ceramic material, or the like.
  • the insulating substance material contained in the protective layer paste for example, it is preferable to use at least one selected from the group consisting of glass materials, ceramic materials, thermosetting resin materials, photocurable resin materials and the like.
  • the organic material contained in the paste is not particularly limited, but at least one polymer material selected from the group consisting of polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, polyvinyl alcohol resin and the like can be used. Can be used.
  • the solvent is not particularly limited as long as it can dissolve the organic material, and for example, toluene and / or ethanol can be used.
  • Examples of the negative electrode active material contained in the paste for the negative electrode material layer include an oxide containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, and graphite-lithium. It is selected from at least one group consisting of a compound, a lithium alloy, a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like.
  • the sintering aid may be at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, and silicon oxide.
  • the coated paste is dried on a hot plate heated to 30 to 50 ° C. to form a solid electrolyte layer sheet, a positive electrode layer sheet, and a negative electrode layer sheet having a predetermined thickness on a substrate (for example, PET film), respectively.
  • a substrate for example, PET film
  • a solid electrolyte sheet or an insulating sheet is provided in the side region of the electrode sheet by screen printing.
  • a solid electrolyte portion sheet or an insulating portion sheet is provided so as to surround the external electrode non-connecting portion excluding the portion of the side portion of the electrode sheet to which the external electrode is connected later.
  • thermocompression bonding at a predetermined pressure (for example, about 50 to about 100 MPa) and subsequent isotropic pressure pressing at a predetermined pressure (for example, about 150 to about 300 MPa). From the above, a predetermined laminated body can be formed.
  • a predetermined laminate in which the end of the portion to be the electrode layer is exposed is subjected to firing.
  • the firing is carried out by heating at, for example, 600 ° C. to 1000 ° C. in a nitrogen gas atmosphere.
  • the laminated body may be further subjected to an individualization step if necessary. As a result, a sintered laminate corresponding to the battery element 100 can be obtained (see FIG. 30).
  • the end face electrode 200 is attached to the side surface of the laminate (corresponding to the battery element 100, see FIG. 30) having the electrode layer with the end exposed (see FIG. 31). Specifically, the end face electrode 200 is attached to the side surface of the laminate (corresponding to the battery element 100) so as to cover the end of the exposed electrode layer.
  • the end face electrode 200 is provided so as to be electrically connectable to the positive electrode layer and the negative electrode layer, respectively. For example, it is preferable to form the end face electrode 200 by sputtering, the DIP method, or the like.
  • the end face electrode is preferably composed of at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel.
  • the exterior body 300 is formed so as to cover the battery element 100 and the battery element 400 with an end face electrode having the end face electrodes 200 provided on the battery element 100.
  • a sputter, a DIP method, or the like can be used for the formation of the exterior body 300 .
  • the exterior body 300 is formed so that the outer surface 300 ⁇ of the exterior body 300 is positioned outside the battery element 100 with respect to the entire contour region 400 ⁇ of the battery element 400 with end face electrodes. To carry out.
  • the forming mode of the exterior body 300 is not particularly limited.
  • the exterior body 300 (300X, 300Y) can be formed so as to sandwich at least one of the upper and lower main surfaces and the left and right main surfaces of the battery element 400 with end face electrodes.
  • the solid-state battery 1000 according to the embodiment of the present invention can be suitably manufactured (see FIG. 33).
  • the obtained solid-state battery 1000 has a feature that the outer surface 300 ⁇ of the exterior body 300 is positioned outside the entire contour region 400 ⁇ of the battery element 400 with end face electrodes when viewed from the battery element 100.
  • the entire contour region 400 ⁇ of the battery element 400 with end face electrodes is positioned inside the outer surface 300 ⁇ of the exterior body 300 when viewed from the exterior body 300.
  • the solid-state battery according to the embodiment of the present invention can be used in various fields where storage is expected. Although only an example, the solid-state battery according to the embodiment of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, smart watches, laptop computers, digital cameras, activities, etc.) in which mobile devices and the like are used.
  • the solid-state battery according to the embodiment of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, smart watches, laptop computers, digital cameras, activities, etc.) in which mobile devices and the like are used.
  • Mobile device fields such as scales, arm computers, and electronic paper), home / small industrial applications (eg, power tools, golf carts, home / nursing / industrial robot fields), large industrial applications (eg, forklifts, etc.) Elevators, Gulf Cranes), Transportation Systems (eg, Hybrid Vehicles, Electric Vehicles, Buses, Trains, Electric Assisted Bicycles, Electric motorcycles, etc.), Power Systems Applications (eg, Power Generation, Road Conditioners, Smart Grids) , General household installation type power storage system, etc.), medical use (medical equipment field such as earphone hearing aid), pharmaceutical use (dose management system, etc.), IoT field, space / deep sea use (for example, space exploration) It can be used in fields such as aircraft and submersible research vessels).
  • home / small industrial applications eg, power tools, golf carts, home / nursing / industrial robot fields
  • large industrial applications eg, forklifts, etc.
  • Elevators Gulf Cranes
  • Transportation Systems eg,

Abstract

One embodiment of the present invention provides a solid-state battery. This solid-state battery comprises: a battery element including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer; an end surface electrode provided on an end surface of the battery element; and an exterior body provided so as to accommodate an end surface electrode-attached battery element formed by having the battery element and the end surface electrode, wherein the outer surface of the exterior body is positioned more outside than the entire contour area of the end surface electrode-attached battery element as seen from the battery element.

Description

固体電池および固体電池の製造方法Manufacturing method of solid-state battery and solid-state battery
 本発明は、固体電池および固体電池の製造方法に関する。 The present invention relates to a solid-state battery and a method for manufacturing a solid-state battery.
 従前より充放電が繰り返し可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。 Secondary batteries that can be repeatedly charged and discharged have been used for various purposes. For example, a secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
 当該二次電池においてはイオンを移動させるための媒体として有機溶媒等の液体の電解質(電解液)が従来より使用されている。しかしながら、電解液を用いた二次電池においては、電解液の漏液等の問題がある。そのため、液体の電解質に代えて固体電解質を有して成る固体電池の開発が進められている。 In the secondary battery, a liquid electrolyte (electrolyte solution) such as an organic solvent has been conventionally used as a medium for moving ions. However, in the secondary battery using the electrolytic solution, there is a problem such as leakage of the electrolytic solution. Therefore, the development of a solid-state battery having a solid electrolyte instead of the liquid electrolyte is underway.
国際公開2016-204147号International Publication No. 2016-204147
 固体電池として、正極層、負極層、および正極層と負極層との間に介在する固体電解質層を備えた電池要素と、電池要素の端面に設けられた端面電極と、端面電極が外部に露出可能に電池要素を覆う外装体とを有して成るものが挙げられる。 As a solid battery, a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, an end face electrode provided on the end face of the battery element, and an end face electrode are exposed to the outside. Examples thereof include an exterior body that covers the battery element as much as possible.
 ここで、本願発明者らは、上記の固体電池において更に改善すべき事項があることに気付いた。具体的には、端面電極が外部に露出する形態が採られる場合、端面電極が他の固体電池、電子媒体等に接触し、それによって端面電極に欠損が生じる虞がある。 Here, the inventors of the present application have noticed that there are further matters to be improved in the above-mentioned solid-state battery. Specifically, when the end face electrode is exposed to the outside, the end face electrode may come into contact with another solid-state battery, an electronic medium, or the like, which may cause a defect in the end face electrode.
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、端面電極の欠損を好適に回避可能な固体電池およびその製造方法を提供することである。 The present invention was made in view of such circumstances. That is, a main object of the present invention is to provide a solid-state battery and a method for manufacturing the same, which can suitably avoid the defect of the end face electrode.
 上記目的を達成するために、本発明の一実施形態では、
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池要素と、
 前記電池要素の端面に設けられた端面電極と、
 前記電池要素および前記端面電極を有して成る端面電極付電池要素を収容するように設けられた外装体と
を備え、
 前記外装体の外表面が、前記端面電極付電池要素の全輪郭領域よりも前記電池要素から見て外側に位置づけられている、固体電池が供される。
In order to achieve the above object, in one embodiment of the present invention,
A battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a battery element.
An end face electrode provided on the end face of the battery element and
It comprises the battery element and an exterior body provided to accommodate the battery element with an end face electrode having the end face electrode.
A solid-state battery is provided in which the outer surface of the exterior body is positioned outside the battery element with respect to the entire contour region of the battery element with end face electrodes.
 上記目的を達成するために、本発明の一実施形態では、
 (i)正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池要素を形成する工程と、
 (ii)前記電池要素の表面に端面電極を設ける工程と、 
 (iii)前記電池要素および該電池要素に設けた前記端面電極を有して成る端面電極付電池要素を覆うように外装体を形成する工程と
を順に含み、
 前記(iii)の工程にて、前記外装体の外表面が前記端面電極付電池要素の全輪郭領域よりも前記電池要素から見て外側に位置づけられるように前記外装体の形成を実施する、固体電池の製造方法が供される。
In order to achieve the above object, in one embodiment of the present invention,
(I) A step of forming a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
(Ii) A step of providing an end face electrode on the surface of the battery element, and
(Iii) A step of forming an exterior body so as to cover the battery element and the battery element with an end face electrode having the end face electrode provided on the battery element is included in order.
In the step (iii), the solid state is formed so that the outer surface of the exterior body is positioned outside the entire contour region of the battery element with end face electrodes when viewed from the battery element. A method of manufacturing a battery is provided.
 本発明の一実施形態によれば、端面電極の欠損を好適に回避可能である。 According to one embodiment of the present invention, it is possible to suitably avoid the defect of the end face electrode.
図1は、本発明の一実施形態に係る固体電池を模式的に示す平面図である。FIG. 1 is a plan view schematically showing a solid-state battery according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。FIG. 2 is a sectional view schematically showing a solid-state battery according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る固体電池を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a solid-state battery according to an embodiment of the present invention. 図4は、図3とは別の方向から見た本発明の一実施形態に係る固体電池を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a solid-state battery according to an embodiment of the present invention as viewed from a direction different from that of FIG. 図5は、本発明の別の実施形態に係る固体電池を模式的に示す平面図である。FIG. 5 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention. 図6は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。FIG. 6 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention. 図7は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図8は、本発明の別の実施形態に係る固体電池を模式的に示す平面図である。FIG. 8 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention. 図9は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。FIG. 9 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention. 図10は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 10 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図11は、本発明の一実施形態に係る固体電池同士が接触している態様を模式的に示す平面図である。FIG. 11 is a plan view schematically showing an embodiment in which the solid-state batteries according to the embodiment of the present invention are in contact with each other. 図12は、本発明の一実施形態に係る固体電池同士が接触している態様を模式的に示す平面図である。FIG. 12 is a plan view schematically showing an embodiment in which the solid-state batteries according to the embodiment of the present invention are in contact with each other. 図13は、本発明の一実施形態に係る固体電池に外部媒体が接触している態様を模式的に示す平面図である。FIG. 13 is a plan view schematically showing an aspect in which an external medium is in contact with the solid-state battery according to the embodiment of the present invention. 図14は、従前の固体電池同士が接触している態様を模式的に示す平面図である。FIG. 14 is a plan view schematically showing a mode in which the conventional solid-state batteries are in contact with each other. 図15は、本発明の別の実施形態に係る固体電池を模式的に示す平面図である。FIG. 15 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention. 図16は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。FIG. 16 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention. 図17は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 17 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図18は、本発明の別の実施形態に係る固体電池を模式的に示す平面図である。FIG. 18 is a plan view schematically showing a solid-state battery according to another embodiment of the present invention. 図19は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。FIG. 19 is a sectional view schematically showing a solid-state battery according to another embodiment of the present invention. 図20は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 20 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図21は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 21 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図22は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 22 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図23は、本発明の別の実施形態に係る固体電池を模式的に示す斜視図である。FIG. 23 is a perspective view schematically showing a solid-state battery according to another embodiment of the present invention. 図24は、本発明の一実施形態に係る固体電池の構成要素である端面電極の採り得る態様を模式的に示す斜視図である。FIG. 24 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention. 図25は、本発明の一実施形態に係る固体電池の構成要素である端面電極の採り得る態様を模式的に示す斜視図である。FIG. 25 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention. 図26は、本発明の一実施形態に係る固体電池の構成要素である端面電極の採り得る態様を模式的に示す斜視図である。FIG. 26 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention. 図27は、本発明の一実施形態に係る固体電池の構成要素である端面電極の採り得る態様を模式的に示す斜視図である。FIG. 27 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention. 図28は、本発明の一実施形態に係る固体電池の構成要素である端面電極の採り得る態様を模式的に示す斜視図である。FIG. 28 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention. 図29は、本発明の一実施形態に係る固体電池の構成要素である端面電極の採り得る態様を模式的に示す斜視図である。FIG. 29 is a perspective view schematically showing a possible mode of an end face electrode which is a component of a solid-state battery according to an embodiment of the present invention. 図30は、本発明の一実施形態に係る固体電池の製造方法(電池要素の形成工程)を模式的に示す斜視図である。FIG. 30 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming a battery element) according to an embodiment of the present invention. 図31は、本発明の一実施形態に係る固体電池の製造方法(端面電極の形成工程)を模式的に示す斜視図である。FIG. 31 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming an end face electrode) according to an embodiment of the present invention. 図32は、本発明の一実施形態に係る固体電池の製造方法(外装体の形成工程)を模式的に示す斜視図である。FIG. 32 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming an exterior body) according to an embodiment of the present invention. 図33は、本発明の一実施形態に係る固体電池の製造方法(外装体の形成工程)を模式的に示す斜視図である。FIG. 33 is a perspective view schematically showing a method for manufacturing a solid-state battery (step of forming an exterior body) according to an embodiment of the present invention.
 本発明の一実施形態に係る固体電池について説明する前に、固体電池の基本的構成について説明しておく。本明細書でいう「固体電池」とは、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に全ての構成要素)が固体から構成されている全固体電池を指す。ある好適な態様では、本発明の固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。本明細書でいう「固体電池」は、充電および放電の繰り返しが可能な二次電池のみならず、放電のみが可能な一次電池をも包含し得る。本発明のある好適な態様では、固体電池は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。 Before explaining the solid-state battery according to the embodiment of the present invention, the basic configuration of the solid-state battery will be described. The term "solid-state battery" as used herein refers to a battery whose constituent elements are composed of solids in a broad sense, and in a narrow sense, all the constituent elements (particularly all constituent elements) are composed of solids. Refers to a solid-state battery. In one preferred embodiment, the solid-state battery of the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body. The "solid-state battery" as used herein can include not only a secondary battery that can be repeatedly charged and discharged, but also a primary battery that can only be discharged. In one preferred embodiment of the invention, the solid-state battery is a secondary battery. The "secondary battery" is not overly bound by its name and may include, for example, a power storage device.
 本明細書でいう「断面視」とは、固体電池を構成する材層の積層方向に基づく厚み方向に対して略垂直な方向から固体電池をみたときの状態のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 The "cross-sectional view" as used herein is a state when the solid-state battery is viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of the material layers constituting the solid-state battery. The "vertical direction" and "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the figure, respectively. Unless otherwise specified, the same sign or symbol shall indicate the same member / part or the same meaning. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction" and the opposite direction corresponds to the "upward direction".
 本明細書で言及する各種の数値範囲は、特段の説明が付されない限り、下限および上限の数値そのものを含むことを意図している。つまり、例えば1~10といった数値範囲を例にとれば、特段の説明の付記がない限り、下限値の“1”を含むと共に、上限値の“10”をも含むものとして解釈され得る。 The various numerical ranges referred to herein are intended to include the lower and upper limits themselves, unless otherwise stated. That is, taking a numerical range such as 1 to 10 as an example, it can be interpreted as including the lower limit value "1" and the upper limit value "10" unless otherwise specified.
[固体電池の構成]
 固体電池は、正極・負極の電極層と固体電解質とを少なくとも有して成る。具体的には固体電池は、電池要素と、端面電極と、外装体とを有して成る。電池要素は、正極層、負極層、およびそれらの間に介在する固体電解質から成る電池構成単位を含んだものである。端面電極は、電池要素の端面と対向するように設けられた電極である。外装体は、電極層と端面電極とが接合可能に電池要素の表面を覆う層である。
[Structure of solid-state battery]
The solid-state battery has at least an electrode layer of a positive electrode / a negative electrode and a solid electrolyte. Specifically, the solid-state battery includes a battery element, an end face electrode, and an exterior body. The battery element includes a battery building block consisting of a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed between them. The end face electrode is an electrode provided so as to face the end face of the battery element. The exterior body is a layer that covers the surface of the battery element so that the electrode layer and the end face electrode can be joined.
 固体電池は、それを構成する各層が焼成によって形成されるところ、正極層、負極層および固体電解質などが焼結層を成している。好ましくは、正極層、負極層および固体電解質は、それぞれが互いに一体焼成されており、それゆえ電池要素が一体焼結体を成している。 In a solid-state battery, where each layer constituting the battery is formed by firing, a positive electrode layer, a negative electrode layer, a solid electrolyte, and the like form a sintered layer. Preferably, the positive electrode layer, the negative electrode layer and the solid electrolyte are each integrally fired, and therefore the battery elements form an integrally sintered body.
(電極層)
 正極層は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質を含んで成っていてよい。例えば、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。好ましい1つの態様では、正極層が、正極活物質粒子および固体電解質粒子のみを実質的に含む焼結体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質を含んで成っていてよい。例えば、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。好ましい1つの態様では、負極層が、負極活物質粒子および固体電解質粒子のみを実質的に含む焼結体から構成されている。 
(Electrode layer)
The positive electrode layer is an electrode layer containing at least a positive electrode active material. The positive electrode layer may further contain a solid electrolyte. For example, the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles. In one preferred embodiment, the positive electrode layer is composed of a sintered body that substantially contains only positive electrode active material particles and solid electrolyte particles. On the other hand, the negative electrode layer is an electrode layer containing at least a negative electrode active material. The negative electrode layer may further contain a solid electrolyte. For example, the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles. In one preferred embodiment, the negative electrode layer is composed of a sintered body that substantially contains only negative electrode active material particles and solid electrolyte particles.
 正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質を介してリチウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。 The positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are transferred to charge and discharge. The positive electrode layer and the negative electrode layer are particularly preferably layers capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte to charge and discharge the battery.
(正極活物質)
 正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFePO、LiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、LiNi0.5Mn1.5等が挙げられる。リチウム化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物としてよい。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称であると共に、リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)などである。
(Positive electrode active material)
Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned. Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 . Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include LiFePO 4 , LiMnPO 4 , and the like. Examples of the lithium-containing layered oxide include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and the like. Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , and the like. The type of the lithium compound is not particularly limited, and may be, for example, a lithium transition metal composite oxide and a lithium transition metal phosphoric acid compound. The lithium transition metal composite oxide is a general term for oxides containing lithium and one or more kinds of transition metal elements as constituent elements, and the lithium transition metal phosphoric acid compound is one or more kinds with lithium. It is a general term for phosphoric acid compounds containing the transition metal element of. The type of the transition metal element is not particularly limited, and is, for example, cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), and the like.
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。例えば、ナトリウム含有リン酸化合物の場合、Na(PO、NaCoFe(PO、NaNiFe(PO、NaFe(PO、NaFeP、NaFe(PO(P)、およびナトリウム含有層状酸化物としてNaFeOから成る群から選択される少なくとも一種が挙げられる。 The positive electrode active material capable of absorbing and releasing sodium ions includes a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and sodium having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned. For example, in the case of a sodium-containing phosphoric acid compound, Na 3 V 2 (PO 4 ) 3 , NaCoFe 2 (PO 4 ) 3 , Na 2 Ni 2 Fe (PO 4 ) 3 , Na 3 Fe 2 (PO 4 ) 3 , Na. 2 FeP 2 O 7 , Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ), and at least one selected from the group consisting of NaFeO 2 as the sodium-containing layered oxide.
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等でもよい。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等でもよい。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレンまたはポリアセン等でもよい。 In addition, the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, a conductive polymer, or the like. The oxide may be, for example, titanium oxide, vanadium oxide, manganese dioxide, or the like. The disulfide is, for example, titanium disulfide or molybdenum sulfide. The chalcogenide may be, for example, niobium selenate or the like. The conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene, polyacene and the like.
(負極活物質)
 負極層に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO、LiTi(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiCuPO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material contained in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, lithium alloys, and pear cones. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a type structure, a lithium-containing phosphoric acid compound having an olivine type structure, a lithium-containing oxide having a spinel type structure, and the like can be mentioned. Examples of lithium alloys include Li-Al and the like. Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 , LiTi 2 (PO 4 ) 3 , and the like. As an example of the lithium-containing phosphoric acid compound having an olivine type structure, LiCuPO 4 and the like can be mentioned. Examples of lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 .
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 The negative electrode active material capable of absorbing and releasing sodium ions is composed of a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from the group is mentioned.
 なお、ある好適な態様の本発明の固体電池では、正極層と負極層とが同一材料から成っている。 In the solid-state battery of the present invention in a certain preferred embodiment, the positive electrode layer and the negative electrode layer are made of the same material.
 正極層および/または負極層は、導電助剤を含んでいてもよい。正極層および負極層に含まれる導電助剤として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。特に限定されるわけではないが、炭素は、正極活物質、負極活物質および固体電解質材などと反応し難く、固体電池の内部抵抗の低減に効果を奏するのでその点で好ましい。 The positive electrode layer and / or the negative electrode layer may contain a conductive auxiliary agent. Examples of the conductive auxiliary agent contained in the positive electrode layer and the negative electrode layer include at least one composed of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, and carbon. Although not particularly limited, carbon is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
 さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。 Further, the positive electrode layer and / or the negative electrode layer may contain a sintering aid. As the sintering aid, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
(固体電解質)
 固体電解質は、リチウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間においてリチウムイオンまたはナトリウムイオンが伝導可能な層を成している。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲において存在していてもよい。具体的な固体電解質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれる少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。酸化物ガラスセラミックス系リチウムイオン伝導体としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。
(Solid electrolyte)
The solid electrolyte is a material capable of conducting lithium ions. In particular, the solid electrolyte that forms a battery constituent unit in a solid-state battery forms a layer in which lithium ions or sodium ions can be conducted between the positive electrode layer and the negative electrode layer. The solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer. Specific examples of the solid electrolyte include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and an oxide glass ceramics-based lithium ion conductor. Can be mentioned. As the lithium-containing phosphoric acid compound having a pear-con structure, Li x My (PO 4 ) 3 (1 ≦ x ≦ 2, 1 ≦ y ≦ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr. At least one of the choices). As an example of the lithium-containing phosphoric acid compound having a pear-con structure, for example, Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like can be mentioned. As an example of an oxide having a perovskite structure, La 0.55 Li 0.35 TiO 3 and the like can be mentioned. Examples of oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like. As the oxide glass ceramics-based lithium ion conductor, for example, a phosphoric acid compound (LATP) containing lithium, aluminum and titanium as a constituent element, and a phosphoric acid compound (LAGP) containing lithium, aluminum and germanium as constituent elements are used. Can be done.
 なお、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。 Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a nacicon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like. As the sodium-containing phosphoric acid compound having a pearcon structure, Na x My (PO 4 ) 3 (1 ≦ x ≦ 2, 1 ≦ y ≦ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr. At least one selected).
 固体電解質は、焼結助剤を含んでいてもよい。固体電解質に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The solid electrolyte may contain a sintering aid. The sintering aid contained in the solid electrolyte may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
(端面電極)
 固体電池には、一般に端面電極が設けられている。具体的には、電池要素の端面と対向するように端面電極が設けられている。具体的には、正極層と接続された正極側の端面電極と、負極層と接続された負極側の端面電極とが、相互に対向する電池要素の端面領域にそれぞれ設けられている。より具体的には、正極層側の端面電極は、正極層の端部、具体的には正極層端部に形成された引出し部と接合可能に構成されている。又、負極層側の端面電極は、負極層の端部、具体的には負極層端部に形成された引出し部と接合可能に構成されている。
(End face electrode)
Solid-state batteries are generally provided with end face electrodes. Specifically, an end face electrode is provided so as to face the end face of the battery element. Specifically, the end face electrode on the positive electrode side connected to the positive electrode layer and the end face electrode on the negative electrode side connected to the negative electrode layer are provided in the end face regions of the battery elements facing each other. More specifically, the end face electrode on the positive electrode layer side is configured to be able to be joined to the end portion of the positive electrode layer, specifically, the drawer portion formed at the end portion of the positive electrode layer. Further, the end face electrode on the negative electrode layer side is configured to be able to be joined to an end portion of the negative electrode layer, specifically, a drawer portion formed at the end portion of the negative electrode layer.
 好ましい1つの態様では、端面電極は、電極層の引出し部と接合させる観点から、ガラスまたはガラスセラミックスを含んでなることが好ましい。又、端面電極は、導電率が大きい材料を含んで成ることが好ましい。端面電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。端面電極材に金属材を用いることで、端面電極からの水分の進入を抑制することができる。端面電極の厚みは、特に限定されず、例えば0.01μm以上1mm以下、特に1μm以上100μm以下であってよい。 In one preferred embodiment, the end face electrode preferably contains glass or glass ceramics from the viewpoint of joining with the lead-out portion of the electrode layer. Further, the end face electrode preferably contains a material having a high conductivity. The specific material of the end face electrode is not particularly limited, and examples thereof include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel. By using a metal material for the end face electrode material, it is possible to suppress the ingress of moisture from the end face electrode. The thickness of the end face electrode is not particularly limited, and may be, for example, 0.01 μm or more and 1 mm or less, particularly 1 μm or more and 100 μm or less.
(外装体)
 外装体は、一般に固体電池の最外側に形成され得るもので、電気的、物理的および/または化学的に保護するためのものである。外装体を構成する材料としては絶縁性、耐久性および/または耐湿性に優れ、環境的に安全であることが好ましい。
(Exterior body)
The exterior can generally be formed on the outermost side of the solid-state battery and is intended for electrical, physical and / or chemical protection. As the material constituting the exterior body, it is preferable that the material has excellent insulation, durability and / or moisture resistance, and is environmentally safe.
 外装体は、各電極層の引出し部と各端面電極とがそれぞれ接合可能に電池要素の表面を覆う層である。外装体は、正極層の引出し部と正極側の端面電極とが接合可能に電池要素の表面を覆うと共に、負極層の引出し部と負極側の端面電極とが接合可能に電池要素の表面を覆う。 The exterior body is a layer that covers the surface of the battery element so that the drawer portion of each electrode layer and each end face electrode can be joined. The exterior body covers the surface of the battery element so that the drawer portion of the positive electrode layer and the end face electrode on the positive electrode side can be bonded, and covers the surface of the battery element so that the drawer portion of the negative electrode layer and the end face electrode on the negative electrode side can be bonded. ..
 外装体は樹脂非含有絶縁性材から構成され得る。本明細書でいう「樹脂非含有絶縁性材」とは、樹脂を含まない絶縁性材であって、イオン伝導性および電子伝導性を有さない絶縁性無機材を指す。 The exterior body may be composed of a resin-free insulating material. The "resin-free insulating material" as used herein refers to an insulating inorganic material that does not contain resin and does not have ionic conductivity and electron conductivity.
 イオン伝導性を有さない無機材とは、イオン伝導性が1×10-7S/cm以下であるものを指す。より長期的に電池の劣化を抑制する観点から、イオン伝導性は1×10-12S/cm以下であることが好ましい。イオン伝導性を有さない無機材のイオン導電性は通常1×10-18S/cm以上である。 The inorganic material having no ionic conductivity refers to a material having an ionic conductivity of 1 × 10 -7 S / cm or less. From the viewpoint of suppressing deterioration of the battery over a longer period of time, the ion conductivity is preferably 1 × 10-12 S / cm or less. The ionic conductivity of an inorganic material having no ionic conductivity is usually 1 × 10 -18 S / cm or more.
 電子伝導性を有さない無機材とは、電子伝導性が1×10-7S/cm以下であるものを指す。より長期的に電池の劣化を抑制する観点から、電子伝導性は1×10-12S/cm以下であることが好ましい。電子伝導性を有さない無機材の電子導電性は通常1×10-18S/cm以上である。 An inorganic material having no electron conductivity refers to a material having an electron conductivity of 1 × 10 -7 S / cm or less. From the viewpoint of suppressing deterioration of the battery over a longer period of time, the electron conductivity is preferably 1 × 10-12 S / cm or less. The electron conductivity of an inorganic material having no electron conductivity is usually 1 × 10 -18 S / cm or more.
 外装体がこのような樹脂非含有絶縁性材から構成されるため、外装体はより一層、優れた耐湿性、耐環境性および耐久性を有する。詳しくは、外装体は、樹脂(例えば高分子化合物)を含む外装体と比較して、水分およびガス(二酸化炭素)を吸着、吸収および透過し難く、かつ電池要素との接合強度が高い外装体とすることができる。その結果として、外装体では、高分子化合物を含む外装体と比較して、水分およびガス(二酸化炭素)の吸着および吸収による膨張に基づく割れおよび脱落が起こり難く、かつ振動および衝撃などによる脱落が起こり難い。つまり、外装体は、固体電池内部の電池要素の電極を損傷させないための「水蒸気透過防止層」として好適に機能することができる。 Since the exterior body is made of such a resin-free insulating material, the exterior body has even more excellent moisture resistance, environmental resistance and durability. Specifically, the exterior body is less likely to adsorb, absorb and permeate water and gas (carbon dioxide) than the exterior body containing a resin (for example, a polymer compound), and has a high bonding strength with a battery element. Can be. As a result, the exterior body is less likely to crack and fall off due to expansion due to adsorption and absorption of water and gas (carbon dioxide), and is less likely to fall off due to vibration and impact, etc., as compared with the exterior body containing a polymer compound. It's hard to happen. That is, the exterior body can suitably function as a "water vapor permeation prevention layer" for preventing damage to the electrodes of the battery element inside the solid-state battery.
 外装体を構成する絶縁性材として、例えば、ガラスおよびセラミックスを含んで成るものが挙げられる。ガラスとしては、石英ガラス(SiO)や、SiOとB、PbO、MgO、ZnO、Bi、NaO、およびAlから構成される群から選択される少なくとも1つとを組み合わせた複合酸化物系ガラスが挙げられる。セラミックスとしては、Al(アルミナ)、ZnAl(ガーナイト)、およびMgSiO(フォルステライト)から成る群から選択される少なくとも1つ等が挙げられる。 Examples of the insulating material constituting the exterior body include those containing glass and ceramics. The glass is at least selected from the group consisting of quartz glass (SiO 2 ), SiO 2 and B 2 O 3 , PbO, MgO, ZnO, Bi 2 O 3 , Na 2 O, and Al 2 O 3 . Examples thereof include composite oxide-based glass in combination with one. Examples of the ceramics include at least one selected from the group consisting of Al 2 O 3 (alumina), Zn Al 2 O 4 (garnite), and Mg 2 SiO 4 (forsterite).
 外装体は上記した樹脂以外の絶縁性物質粒子を含む焼結体により構成されている。外装体を構成する焼結体は、絶縁性物質粒子間に気孔を有するものの、その厚み方向(例えば、積層方向)において、水分およびガス(二酸化炭素)の吸着、吸収および透過を抑制し得る程度の緻密性を有する。 The exterior body is composed of a sintered body containing insulating substance particles other than the above-mentioned resin. Although the sintered body constituting the exterior body has pores between the insulating substance particles, it can suppress the adsorption, absorption and permeation of water and gas (carbon dioxide) in the thickness direction (for example, the stacking direction). Has the precision of.
 外装体の気孔率は例えば、0.1体積%以上20体積%以下、特に1体積%以上10%体積以下であってよい。気孔率は重量気孔率法、CTスキャンを用いた計算トモグラフィー法、液浸法などによって測定された値を用いている。外装体の厚み方向の酸素透過性は例えば、10-1cc/m/day/気圧以下、特に10-3cc/m/day/気圧 以下であり得る。外装体の厚み方向のHO透過性は例えば、10-2g/m/day 以下、特に10-4g/m/day以下であり得る。HO透過性はキャリアガス法、着圧法、Ca腐食法により25℃で測定された値を用いている。  The porosity of the exterior body may be, for example, 0.1% by volume or more and 20% by volume or less, particularly 1% by volume or more and 10% or less by volume. As the porosity, a value measured by a weight porosity method, a calculated tomography method using a CT scan, an immersion method, or the like is used. The oxygen permeability of the exterior body in the thickness direction can be, for example, 10 -1 cc / m 2 / day / atm or less, particularly 10 -3 cc / m 2 / day / atm or less. The H 2 O permeability in the thickness direction of the exterior body can be, for example, 10-2 g / m 2 / day or less, particularly 10 -4 g / m 2 / day or less. The H2O permeability uses the value measured at 25 ° C. by the carrier gas method, the compression method, and the Ca corrosion method.
[本発明の特徴部分]
 以下、本発明の特徴部分について説明する。
[Characteristic Part of the Present Invention]
Hereinafter, the characteristic portions of the present invention will be described.
 本願発明者は、電池要素に端面電極が設けられている場合にて、当該端面電極の欠損を回避可能とするための解決策について鋭意検討した。その結果、本願発明者は、下記の特徴を有する本発明の一実施形態に係る固体電池1000を案出するに至った(図1~図4参照)。 The inventor of the present application has diligently studied a solution for avoiding a defect of the end face electrode when the end face electrode is provided in the battery element. As a result, the inventor of the present application has come up with a solid-state battery 1000 according to an embodiment of the present invention having the following characteristics (see FIGS. 1 to 4).
 図1~図4に示すように、本発明の一実施形態に係る固体電池1000は、電池要素100、端面電極200、および外装体300を備える。電池要素100は、正極層10I、負極層10II、および正極層10Iと負極層10IIとの間に介在する固体電解質層20を備えたものである。端面電極200は、電池要素100の端面100αに設けられたものである。外装体300は、電池要素100および端面電極200を有して成る端面電極付電池要素400を収容するように設けられたものである。 As shown in FIGS. 1 to 4, the solid-state battery 1000 according to the embodiment of the present invention includes a battery element 100, an end face electrode 200, and an exterior body 300. The battery element 100 includes a positive electrode layer 10I, a negative electrode layer 10II, and a solid electrolyte layer 20 interposed between the positive electrode layer 10I and the negative electrode layer 10II. The end face electrode 200 is provided on the end face 100α of the battery element 100. The exterior body 300 is provided so as to accommodate the battery element 400 with an end face electrode having the battery element 100 and the end face electrode 200.
 この前提下で、本発明の一実施形態に係る固体電池1000は、外装体300の外表面300αが端面電極付電池要素400の全輪郭領域400αよりも電池要素100から見て外側に位置づけられていることを特徴とする。 Under this premise, in the solid-state battery 1000 according to the embodiment of the present invention, the outer surface 300α of the exterior body 300 is positioned outside the entire contour region 400α of the battery element 400 with end face electrodes when viewed from the battery element 100. It is characterized by being.
 なお、本明細書でいう「外装体の外表面」とは外装体の外側に方向づけられた表面を指す。本明細書でいう「端面電極付電池要素」とは端面電極と電池要素とを有してなる構成体の総称を指す。本明細書でいう「端面電極付電池要素の全輪郭領域」とは、端面電極付電池要素の輪郭の全体を指す。本明細書でいう「端面電極付電池要素の全輪郭領域」とは、端面電極付電池要素の輪郭形成面の全体を指す。本明細書でいう「端面電極の電池要素非接触面」とは、端面電極のうちの電池要素と接触しない面を指す。本明細書でいう「端面電極の電池要素非接触面の全輪郭領域」とは、端面電極のうちの電池要素と接触しない輪郭形成面の全体を指す。 The "outer surface of the exterior body" as used herein refers to a surface oriented to the outside of the exterior body. As used herein, the term "battery element with end face electrode" refers to a general term for a configuration having an end face electrode and a battery element. As used herein, the "whole contour region of the battery element with end face electrodes" refers to the entire contour of the battery element with end face electrodes. As used herein, the "whole contour region of the battery element with end face electrodes" refers to the entire contour forming surface of the battery element with end face electrodes. As used herein, the "non-contact surface of the battery element of the end face electrode" refers to a surface of the end face electrodes that does not come into contact with the battery element. As used herein, the "whole contour region of the non-contact surface of the battery element of the end face electrode" refers to the entire contour forming surface of the end face electrodes that does not come into contact with the battery element.
 かかる特徴を前提として、一例として、図1~図4に示すように、相互に対向する2枚の外装体300が端面電極付電池要素400を挟み込むように設けられる態様を採ることができる。かかる特徴によれば、外装体300の外表面300αが端面電極付電池要素400の全輪郭領域400αよりも電池要素100から見て外側に位置づけられる。換言すれば、端面電極付電池要素400の全輪郭領域400αが、外装体300の外表面300αよりも外装体300から見て内側に位置づけられることとなる。 Assuming such a feature, as an example, as shown in FIGS. 1 to 4, it is possible to adopt an embodiment in which two exterior bodies 300 facing each other are provided so as to sandwich the battery element 400 with an end face electrode. According to such a feature, the outer surface 300α of the exterior body 300 is positioned outside the entire contour region 400α of the battery element 400 with end face electrodes when viewed from the battery element 100. In other words, the entire contour region 400α of the battery element 400 with end face electrodes is positioned inside the outer surface 300α of the exterior body 300 when viewed from the exterior body 300.
 従前の固体電池1000’のように端面電極200’が外部に露出する形態が採られる場合(図14参照)、相互に対向する1対の端面電極200’(正極側端面電極および負極側端面電極)との間に挟み込まれるように外装体300’が位置づけられ得る。この場合、従前の固体電池1000’では、端面電極200’と外装体300’とが相互に面一形態をなすこととなる。 When the end face electrode 200'is exposed to the outside as in the conventional solid-state battery 1000' (see FIG. 14), a pair of end face electrodes 200'(positive electrode side end face electrode and negative electrode side end face electrode) facing each other are adopted. ) And the exterior body 300'can be positioned so as to be sandwiched between them. In this case, in the conventional solid-state battery 1000', the end face electrode 200'and the exterior body 300' form a flush surface with each other.
 これに対して、本発明の一実施形態では、端面電極付電池要素400の全輪郭領域400αが外装体300の外表面300αよりも内側に位置づけられるため、これに起因して、外装体300は端面電極200と端面電極200に連続する電池要素100とに跨るように設けられ得る。更に、端面電極付電池要素400の構成に着目した場合、端面電極200と電池要素100(外装体ではなく)とが相互に面一形態をなすこととなる。 On the other hand, in one embodiment of the present invention, the entire contour region 400α of the battery element 400 with end face electrodes is positioned inside the outer surface 300α of the exterior body 300, and the exterior body 300 is caused by this. It may be provided so as to straddle the end face electrode 200 and the battery element 100 continuous with the end face electrode 200. Further, when focusing on the configuration of the battery element 400 with the end face electrode, the end face electrode 200 and the battery element 100 (not the exterior body) form a flush surface with each other.
 外装体300と端面電極200との間の配置関係に着目すると、外装体300の外表面300αが、端面電極200の電池要素非接触面200αの全輪郭領域201αよりも電池要素100から見て外側に位置づけられ得る。換言すれば、端面電極付電池要素400の構成要素である端面電極200の電池要素非接触面200αの全輪郭領域201αが外装体300の外表面300αよりも外装体300から見て内側に位置づけられる。 Focusing on the arrangement relationship between the exterior body 300 and the end face electrode 200, the outer surface 300α of the exterior body 300 is outside the entire contour region 201α of the battery element non-contact surface 200α of the end face electrode 200 when viewed from the battery element 100. Can be positioned in. In other words, the entire contour region 201α of the battery element non-contact surface 200α of the end face electrode 200, which is a component of the battery element 400 with the end face electrode, is positioned inside the outer surface 300α of the exterior body 300 when viewed from the exterior body 300. ..
 本発明の特徴を別の観点からみると、以下の事を述べることができる。具体的には、平面領域サイズの大きさの比較を行うと、平面視における外装体300の主面300βのサイズが端面電極付電池要素400の輪郭形成面400βのサイズよりも大きくなり得る。一例として、平面視にて外装体300および端面電極付電池要素400が略矩形形態を有することができる。この場合、外装体300が端面電極付電池要素400を収容するように配置されていることを前提として、外装体300の主面300βの縦横サイズが端面電極付電池要素400の輪郭形成面400βの縦横サイズよりも大きくなり得る。 Looking at the features of the present invention from another point of view, the following can be stated. Specifically, when the size of the plane region size is compared, the size of the main surface 300β of the exterior body 300 in the plan view can be larger than the size of the contour forming surface 400β of the battery element 400 with the end face electrode. As an example, the exterior body 300 and the battery element 400 with end face electrodes can have a substantially rectangular shape in a plan view. In this case, assuming that the exterior body 300 is arranged so as to accommodate the battery element 400 with end face electrodes, the vertical and horizontal size of the main surface 300β of the exterior body 300 is the contour forming surface 400β of the battery element 400 with end face electrodes. It can be larger than the vertical and horizontal sizes.
 本発明の特徴を更に別の観点からみると、以下の事を述べることもできる。具体的には、端面電極200は電池要素と接する第1の主面200β(電池要素接触面に相当)と第1の主面200βに相互に対向する第2の主面200γとを有して成るところ、外装体300が端面電極200の第2の主面200γよりも電池要素100から見て外側に突き出るように配置されている。 Looking at the features of the present invention from yet another point of view, the following can also be stated. Specifically, the end face electrode 200 has a first main surface 200β (corresponding to a battery element contact surface) in contact with the battery element and a second main surface 200γ facing each other with the first main surface 200β. As a result, the exterior body 300 is arranged so as to protrude outward from the second main surface 200γ of the end face electrode 200 when viewed from the battery element 100.
 以上の事からも、本発明の一実施形態によれば、他の固体電池又は電子媒体が固体電池1000に接触しても、他の固体電池又は電子媒体は、その構成要素である外装体300の外表面300αに接触し得るものの、端面電極200には直接接触し得ない。これにより、端面電極200の欠損発生を好適に回避することが可能となる。それ故、端面電極200と電子媒体との間の電気接続不良、端面電極200の気密性低下を抑制でき、固体電池1000により所望の電池特性を得ることができる。 From the above, according to one embodiment of the present invention, even if another solid-state battery or electronic medium comes into contact with the solid-state battery 1000, the other solid-state battery or electronic medium is the exterior body 300 which is a component thereof. Although it can come into contact with the outer surface 300α, it cannot come into direct contact with the end face electrode 200. This makes it possible to suitably avoid the occurrence of defects in the end face electrode 200. Therefore, poor electrical connection between the end face electrode 200 and the electronic medium and deterioration of the airtightness of the end face electrode 200 can be suppressed, and the solid-state battery 1000 can obtain desired battery characteristics.
 本発明は、下記態様を採ることが好ましい。 The present invention preferably adopts the following aspects.
 一態様では、外装体300Aが、少なくとも端面電極付電池要素400Aの端面電極200Aを部分的に取り囲むように設けられていることが好ましい(図5~図7参照)。 In one aspect, it is preferable that the exterior body 300A is provided so as to partially surround the end face electrode 200A of the battery element 400A with the end face electrode (see FIGS. 5 to 7).
 本態様は、上記図1~図4に示す態様と比べて好ましい態様に相当する。本態様では、上記図1~図4に示す態様における特徴に加え、外装体300Aが少なくとも端面電極200Aを部分的に取り囲むように設けられ得る。この場合、端面電極200Aを部分的に取り囲む外装体300Aが断面視および平面視で屈曲形態を有し得ることとなる。 This aspect corresponds to a preferred aspect as compared with the aspects shown in FIGS. 1 to 4 above. In this embodiment, in addition to the features in the embodiments shown in FIGS. 1 to 4, the exterior body 300A may be provided so as to partially surround at least the end face electrode 200A. In this case, the exterior body 300A that partially surrounds the end face electrode 200A may have a bent form in cross-sectional view and plan view.
 かかる屈曲形態により、図1~4に示す態様(相互に対向する2枚の外装体300が端面電極付電池要素400を挟み込むように設けられる態様)と比べて、外装体300Aは端面電極200Aの第2の主面200Aγと対向可能となる。これにより、端面電極200Aのコーナー部分202Aの囲い込みが可能となり、端面電極付電池要素400Cの押さえ込みが可能となる。その結果として、電池要素100Aからの端面電極200Aの剥離を抑制することができる。 Due to this bending mode, the exterior body 300A has an end face electrode 200A as compared with the mode shown in FIGS. 1 to 4 (a mode in which two exterior bodies 300 facing each other sandwich the battery element 400 with an end face electrode). It can face the second main surface 200Aγ. As a result, the corner portion 202A of the end face electrode 200A can be enclosed, and the battery element 400C with the end face electrode can be held down. As a result, peeling of the end face electrode 200A from the battery element 100A can be suppressed.
 これに加え、外装体300A自体が屈曲形態を有することで、一方向に延在する形態と比べて端面電極付電池要素400Aが位置する内側方向へとまわりこむ力が作用し得るため、外装体300A自体の剥離も抑制することができる。 In addition to this, since the exterior body 300A itself has a bent form, a force that wraps around inward in which the battery element 400A with an end face electrode is located can act as compared with the form extending in one direction. The peeling of the 300A itself can also be suppressed.
 更に、固体電池1000Aが電子媒体と電気接続するためには、少なくとも端面電極200Aが電子媒体と接続可能に外部に露出している必要があり得る。この点につき、本態様のように、外装体300Aが屈曲形態を有する場合、外部への端面電極200Aの露出領域を減じることができる。 Further, in order for the solid-state battery 1000A to be electrically connected to the electronic medium, it may be necessary that at least the end face electrode 200A is exposed to the outside so as to be connectable to the electronic medium. In this regard, when the exterior body 300A has a bent form as in this embodiment, the exposed region of the end face electrode 200A to the outside can be reduced.
 特に、当該露出領域のサイズを固体電池1000Aに接続する電子媒体のサイズよりも小さくなるように予め調整すれば、端面電極200Aに対する電子媒体の接触をより好適に回避できる。その結果として、端面電極200Aの欠損発生をより好適に回避することが可能となる。 In particular, if the size of the exposed region is adjusted in advance so as to be smaller than the size of the electronic medium connected to the solid-state battery 1000A, contact of the electronic medium with the end face electrode 200A can be more preferably avoided. As a result, it becomes possible to more preferably avoid the occurrence of defects in the end face electrode 200A.
 一態様では、少なくとも前記端面電極200Bを部分的に取り囲む外装体300Bが、端面電極200Bの第2の主面200Bγと離隔しかつ対向可能となっていることがより好ましい(図8~図10参照)。 In one aspect, it is more preferable that at least the exterior body 300B partially surrounding the end face electrode 200B is separated from and can face the second main surface 200Bγ of the end face electrode 200B (see FIGS. 8 to 10). ).
 本態様は、上記図1~図4に示す態様に加え図5~図7に示す態様と比べてより好ましい態様に相当する。 This aspect corresponds to a more preferable aspect as compared with the aspects shown in FIGS. 5 to 7 in addition to the aspects shown in FIGS. 1 to 4.
 まず、端面電極200’が外部に露出する形態が採られる場合、端面電極200’が他の固体電池1000’等に接触し、それによって端面電極200’に欠損が生じる虞があり得る(図14参照)。これに対して、上述のように、本発明の一実施形態によれば、外装体300Bの外表面300Bαが端面電極付電池要素400Bの全輪郭領域400Bαよりも電池要素100Bから見て外側に位置づけられている。これにより、上述のように、他の固体電池1000B又は電子媒体2000が固体電池1000Bに接触しても、他の固体電池又は電子媒体2000と端面電極200Bとの直接接触を回避することができる(図11~図13参照)。 First, when the end face electrode 200'is exposed to the outside, the end face electrode 200'may come into contact with another solid-state battery 1000' or the like, which may cause a defect in the end face electrode 200'(FIG. 14). reference). On the other hand, as described above, according to one embodiment of the present invention, the outer surface 300Bα of the exterior body 300B is positioned outside the entire contour region 400Bα of the battery element 400B with end face electrodes when viewed from the battery element 100B. Has been done. Thereby, as described above, even if the other solid-state battery 1000B or the electronic medium 2000 comes into contact with the solid-state battery 1000B, the direct contact between the other solid-state battery or the electronic medium 2000 and the end face electrode 200B can be avoided (). 11 to 13).
 これに加え、本態様では、外装体300Bが、端面電極200Bの第2の主面200Bγと離隔しかつ対向可能となっている。この場合、端面電極200Bを取り囲む外装体300Bと端面電極200Bの第2の主面200Bγとの間に間隙Wを形成することができる。固体電池1000Bは充放電時に電極層10Bの膨張収縮し、これに伴い端面電極付電池要素400Bも膨張収縮し得る。 In addition to this, in this embodiment, the exterior body 300B is separated from and can face the second main surface 200Bγ of the end face electrode 200B. In this case, a gap W can be formed between the exterior body 300B surrounding the end face electrode 200B and the second main surface 200Bγ of the end face electrode 200B. The solid-state battery 1000B expands and contracts the electrode layer 10B during charging and discharging, and the battery element 400B with an end face electrode can also expand and contract accordingly.
 この点につき、外装体300Bと端面電極200Bの第2の主面200Bγとの間に間隙Wが形成されているため、特に膨張した端面電極付電池要素400Bを受容可能なスペースを形成することができる。これにより、膨張した端面電極付電池要素400Bと外装体300Bとの接触を回避することができる。 In this regard, since the gap W is formed between the exterior body 300B and the second main surface 200Bγ of the end face electrode 200B, it is possible to form a space that can receive the particularly expanded battery element 400B with the end face electrode. can. This makes it possible to avoid contact between the expanded battery element 400B with end face electrodes and the exterior body 300B.
 又、図13に示すように、電子媒体又は他の固体電池等が屈曲形態を有する外装体300Bに接触し、この接触に伴い、当該外装体300Bの端部301Bが端面電極付電池要素400Bの配置方向へと向かって所定位置から内側により入り込むように方向づけられる場合があり得る。この場合においても、外装体300Bと端面電極200Bの第2の主面200Bγとの間に間隙Wが形成されているため、外装体300Bの端部301Bが端面電極200Bに接触することを回避することができる。以上の事からも、本態様によれば、端面電極200Bの欠損を更により好適に回避することができる。 Further, as shown in FIG. 13, an electronic medium or another solid-state battery or the like comes into contact with the exterior body 300B having a bent form, and with this contact, the end portion 301B of the exterior body 300B is attached to the battery element 400B with an end face electrode. In some cases, it may be oriented so that it enters more inward from a predetermined position toward the placement direction. Also in this case, since the gap W is formed between the exterior body 300B and the second main surface 200Bγ of the end face electrode 200B, it is possible to prevent the end portion 301B of the exterior body 300B from coming into contact with the end face electrode 200B. be able to. From the above, according to this aspect, it is possible to more preferably avoid the defect of the end face electrode 200B.
 一態様では、外装体1000Cが、端面電極付電池要素400Cの端面電極200Cに加え電池要素100Cも部分的に取り囲むように設けられていることがより好ましい(図15~図17参照)。 In one aspect, it is more preferable that the exterior body 1000C is provided so as to partially surround the battery element 100C in addition to the end face electrode 200C of the battery element 400C with an end face electrode (see FIGS. 15 to 17).
 本態様は、上記図5~図7に示す態様と比べてより好ましい態様に相当する。具体的には、外装体1000Cが端面電極200Cに加え電池要素100Cも部分的に取り囲むように設けられている。この場合、第1に、外装体300Cが端面電極200Cを部分的に取り囲むことで、断面視および平面視で外装体300Cが屈曲形態を有し得る。これにより、既述のように、電池要素100Cからの端面電極200Cの剥離抑制、外装体300C自体の剥離抑制、および外部への端面電極200Cの露出領域の低減を図ることができる。 This aspect corresponds to a more preferable aspect as compared with the aspects shown in FIGS. 5 to 7 above. Specifically, the exterior body 1000C is provided so as to partially surround the battery element 100C in addition to the end face electrode 200C. In this case, first, the exterior body 300C partially surrounds the end face electrode 200C, so that the exterior body 300C may have a bent form in cross-sectional view and plan view. As a result, as described above, it is possible to suppress the peeling of the end face electrode 200C from the battery element 100C, suppress the peeling of the exterior body 300C itself, and reduce the exposed region of the end face electrode 200C to the outside.
 これに加え、第2に、外装体300Cが電池要素100Cも部分的に取り囲むことで、図5~図7に示す態様と比べて、屈曲形態の外装体300Cにより、外部への電池要素100Cの露出領域を減じることができる。その結果として、電池要素100Cの表面の欠損を好適に回避することが可能となる。 In addition to this, secondly, the exterior body 300C partially surrounds the battery element 100C, so that the exterior body 300C in the bent form allows the battery element 100C to the outside as compared with the embodiments shown in FIGS. 5 to 7. The exposed area can be reduced. As a result, it is possible to suitably avoid defects on the surface of the battery element 100C.
 一態様では、端面電極200Dおよび電池要素100Dを共に部分的に取り囲む外装体300Dが、端面電極200Dの第2の主面200Dγと離隔対向し、かつ電池要素の表面100Dαと離隔対向可能していることがより好ましい(図18~図20参照)。 In one aspect, the exterior body 300D that partially surrounds both the end face electrode 200D and the battery element 100D is separated from and opposed to the second main surface 200Dγ of the end face electrode 200D, and is capable of separating and facing the surface 100Dα of the battery element. It is more preferable (see FIGS. 18 to 20).
 本態様は、上記図15~図17に示す態様と比べてより好ましい態様に相当する。具体的には、本態様では、外装体300Dが端面電極200Dおよび電池要素100Dを共に部分的に取り囲むという前提下で、当該外装体300Dが端面電極200Dの第2の主面200Dγと離隔対向することに加え、電池要素の表面100Dαとも離隔対向し得る。 This aspect corresponds to a more preferable aspect as compared with the aspects shown in FIGS. 15 to 17 above. Specifically, in this embodiment, on the premise that the exterior body 300D partially surrounds both the end face electrode 200D and the battery element 100D, the exterior body 300D is separated and opposed to the second main surface 200Dγ of the end face electrode 200D. In addition, it may be separated and opposed to the surface 100Dα of the battery element.
 この場合、外装体300Dと端面電極200Dの第2の主面200Dγとの間のみならず外装体300Dと電池要素の表面100Dαとの間にも間隙Wを形成することができる。これにより、外装体300Dが端面電極200Dのみならず電池要素100Dを共に部分的に取り囲む場合においても、全体として膨張し得る端面電極付電池要素400Dと外装体300Dとの接触を回避することができる。 In this case, a gap W can be formed not only between the exterior body 300D and the second main surface 200Dγ of the end face electrode 200D but also between the exterior body 300D and the surface 100Dα of the battery element. Thereby, even when the exterior body 300D partially surrounds not only the end face electrode 200D but also the battery element 100D, it is possible to avoid contact between the battery element 400D with the end face electrode and the exterior body 300D which can expand as a whole. ..
 更に、外装体300Dの端部301Dが端面電極200Dのみならず電池要素100Dにも接触することを回避することができる。以上の事からも、本態様によれば、端面電極200Dのみならず電池要素100Dの欠損もより好適に回避することができる。 Further, it is possible to prevent the end portion 301D of the exterior body 300D from coming into contact with not only the end face electrode 200D but also the battery element 100D. From the above, according to this aspect, it is possible to more preferably avoid the defect of not only the end face electrode 200D but also the battery element 100D.
 一態様では、端面電極付電池要素400E、400F、400Gの端面電極200E、200F、200Gのみが外部に露出していることがより好ましい(図21~23参照)。 In one aspect, it is more preferable that only the end face electrodes 200E, 200F, 200G of the battery elements 400E, 400F, 400G with end face electrodes are exposed to the outside (see FIGS. 21 to 23).
 一態様では、端面電極付電池要素400E、400F、400Gの端面電極200E、200F、200Gの一部のみが外部に露出していることがより好ましい(図21~23参照)。 In one aspect, it is more preferable that only a part of the end face electrodes 200E, 200F, 200G of the battery elements 400E, 400F, 400G with end face electrodes is exposed to the outside (see FIGS. 21 to 23).
 上述のように、本発明の一実施形態は、外装体の外表面が端面電極付電池要素の全輪郭領域よりも電池要素から見て外側に位置づけられていることを特徴とする。この場合、端面電極付電池要素の全輪郭領域は外装体の外表面よりも外装体から見て内側に位置づけられる一方、電池要素は露出する場合もあり得る。 As described above, one embodiment of the present invention is characterized in that the outer surface of the exterior body is positioned outside the entire contour region of the battery element with end face electrodes when viewed from the battery element. In this case, the entire contour region of the battery element with end face electrodes is positioned inside the outer surface of the exterior body when viewed from the exterior body, while the battery element may be exposed.
 この点につき、図21~図23に示すように、端面電極付電池要素400E、400F、400Gの端面電極200E、200F、200Gの一部のみが外部に露出していると、固体電池1000E~Fが電子媒体と電気接続するために必要な領域のみが露出することとなる。この事は、端面電極200E、200F、200Gの一部以外の領域(電池要素、端面電極の残りの領域)は外部に露出しないことを意味する。これにより、本態様によれば、端面電極のみならず電池要素の欠損も更により好適に回避することができる。 Regarding this point, as shown in FIGS. 21 to 23, when only a part of the end face electrodes 200E, 200F, 200G of the battery elements 400E, 400F, 400G with end face electrodes is exposed to the outside, the solid-state batteries 1000E to F Only the area required for electrical connection with the electronic medium will be exposed. This means that the region other than a part of the end face electrodes 200E, 200F, and 200G (battery element, the remaining region of the end face electrode) is not exposed to the outside. Thereby, according to this aspect, it is possible to more preferably avoid the defect of not only the end face electrode but also the battery element.
 端面電極の一部露出領域の形状は特に限定されるものではなく、図21に示すように横方向に延在する露出領域、図22および図23に示すように縦方向に延在する露出領域の形態を採ることができる。 The shape of the partially exposed region of the end face electrode is not particularly limited, and is an exposed region extending in the horizontal direction as shown in FIG. 21 and an exposed region extending in the vertical direction as shown in FIGS. 22 and 23. Can be taken in the form of.
 なお、本発明の一実施形態では、端面電極の形状、大きさは特に限定されるものではなく種々の形状を採ることができる(図24~図29参照)。 In one embodiment of the present invention, the shape and size of the end face electrode are not particularly limited, and various shapes can be adopted (see FIGS. 24 to 29).
 例えば、図24に示すように、相互に対向する電池要素100aの端面にそれぞれ、電池要素100aの各端面と同じ平面形状および大きさを有する端面電極200aを設けることができる。図25に示すように、相互に対向する電池要素100bの端面にそれぞれ、電池要素100bの各端面と同じ平面形状である一方端面の平面サイズよりも大きい端面電極200bを設けることができる。図26に示すように、相互に対向する電池要素100cの端面にそれぞれ、電池要素100cの各端面と同じ平面形状である一方端面の平面サイズよりも小さい端面電極200cを設けることができる。 For example, as shown in FIG. 24, end face electrodes 200a having the same planar shape and size as the end faces of the battery elements 100a can be provided on the end faces of the battery elements 100a facing each other. As shown in FIG. 25, end face electrodes 200b having the same plane shape as each end face of the battery elements 100b and larger than the plane size of one end face can be provided on the end faces of the battery elements 100b facing each other. As shown in FIG. 26, end face electrodes 200c, which have the same planar shape as each end face of the battery elements 100c and are smaller than the plane size of one end face, can be provided on the end faces of the battery elements 100c facing each other.
 図27に示すように、相互に異なる方向に延在する電池要素100dの端面にそれぞれ、電池要素100dの各端面と同じ平面形状である一方端面の平面サイズとは異なる端面電極200d1、200d2を設けることができる。この場合、端面電極200d1、200d2と電子媒体との接続ポイントの方向に関するバリエーションを増やすことができる。 As shown in FIG. 27, end face electrodes 200d1 and 200d2 having the same planar shape as each end face of the battery element 100d but different from the plane size of the end face are provided on the end faces of the battery elements 100d extending in different directions, respectively. be able to. In this case, it is possible to increase the variation regarding the direction of the connection point between the end face electrodes 200d1 and 200d2 and the electronic medium.
 図28に示すように、電池要素100eの同一端面にそれぞれ、所定の間隔をおいて端面電極200e1、200e2を設けることができる。この場合、相互に対向する電池要素の端面にそれぞれ端面電極場合と比べて、端面電極付電池要素400eのサイズを相対的に小さくできるため、全体として固体電池のサイズの低減化を図ることができる。又、電子媒体を端面電極と接続するように固体電池と横並びに配置でき、電子媒体と固体電池との一体化物の高さを減じることができる。 As shown in FIG. 28, the end face electrodes 200e1 and 200e2 can be provided on the same end face of the battery element 100e at predetermined intervals, respectively. In this case, the size of the battery element 400e with end face electrodes can be made relatively smaller than that of the case where the end faces of the battery elements facing each other have end face electrodes, so that the size of the solid-state battery can be reduced as a whole. .. Further, the electronic medium can be arranged side by side with the solid-state battery so as to be connected to the end face electrode, and the height of the integrated body of the electronic medium and the solid-state battery can be reduced.
 図29に示すように、電池要素100fの一方向に延在する所定端面および所定端面とは異なる方向に延在する端面とに跨るように、所定の間隔をおいて端面電極200f1、200f2を設けることができる。この場合、全体として固体電池のサイズの低減化および電子媒体と固体電池との一体化物の高さの低減化を図ることができると共に、端面電極200f1、200f2と電子媒体との接続ポイントの方向に関するバリエーションを増やすことができる。 As shown in FIG. 29, the end face electrodes 200f1 and 200f2 are provided at predetermined intervals so as to straddle the predetermined end face extending in one direction and the end face extending in a direction different from the predetermined end face of the battery element 100f. be able to. In this case, it is possible to reduce the size of the solid-state battery and the height of the integrated body of the electronic medium and the solid-state battery as a whole, and the direction of the connection point between the end face electrodes 200f1 and 200f2 and the electronic medium. You can increase the variation.
[固体電池の製造方法]
 以下、本発明の一実施形態に係る固体電池1000の製造方法について説明する(図30~図33参照)。
[Manufacturing method of solid-state battery]
Hereinafter, a method for manufacturing the solid-state battery 1000 according to the embodiment of the present invention will be described (see FIGS. 30 to 33).
 本発明の一実施形態に係る固体電池は、グリーンシートを用いるグリーンシート法を用いて製造することができる。一態様では、グリーンシート法により所定の積層体を形成した上で、最終的に本発明の一実施形態に係る固体電池を製造することができる。なお、以下では、当該態様を前提として説明するが、これに限定されることなく、スクリーン印刷法等により所定の積層体を形成してもよい。 The solid-state battery according to the embodiment of the present invention can be manufactured by using the green sheet method using a green sheet. In one aspect, the solid-state battery according to the embodiment of the present invention can be finally manufactured after forming a predetermined laminated body by the green sheet method. In the following, the description will be made on the premise of this aspect, but the present invention is not limited to this, and a predetermined laminated body may be formed by a screen printing method or the like.
(未焼成積層体の形成工程)
 まず、各基材(例えばPETフィルム)上に固体電解質層用ペースト、正極材層用ペースト、正極集電体層用ペースト、負極材層用ペースト、負極集電体層用ペースト、絶縁部用ペースト、および保護層用ペーストを塗工する。
(Step of forming unfired laminate)
First, on each base material (for example, PET film), a paste for a solid electrolyte layer, a paste for a positive electrode material layer, a paste for a positive electrode current collector layer, a paste for a negative electrode material layer, a paste for a negative electrode current collector layer, and a paste for an insulating portion. , And the protective layer paste is applied.
 各ペーストは、正極活物質、負極活物質、導電性材料、固体電解質材料、絶縁性物質、および焼結助剤から成る群から適宜選択される各層の所定の構成材料と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって作製することができる。正極材層用ペーストは、例えば、正極活物質、導電材料、固体電解質材料、有機材料および溶剤を含む。負極材層用ペーストは、例えば、負極活物質、導電材料、固体電解質材料、有機材料および溶剤を含む。正極集電体層用ペースト/負極集電体層用ペーストとしては、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、およびニッケルから成る群から少なくとも一種選択されてよい。固体電解質層用ペーストは、例えば、固体電解質材料、焼結助剤、有機材料および溶剤を含む。保護層用ペーストは、例えば、絶縁性物質材料、有機材料および溶剤を含む。絶縁部用ペーストは、例えば絶縁性物質材料、有機材料および溶剤を含む。 Each paste uses a predetermined constituent material of each layer appropriately selected from the group consisting of a positive electrode active material, a negative electrode active material, a conductive material, a solid electrolyte material, an insulating material, and a sintering aid, and an organic material as a solvent. It can be produced by wet mixing with a dissolved organic vehicle. The paste for the positive electrode material layer includes, for example, a positive electrode active material, a conductive material, a solid electrolyte material, an organic material and a solvent. The paste for the negative electrode material layer includes, for example, a negative electrode active material, a conductive material, a solid electrolyte material, an organic material and a solvent. As the paste for the positive electrode current collector layer / the paste for the negative electrode current collector layer, at least one may be selected from the group consisting of, for example, silver, palladium, gold, platinum, aluminum, copper, and nickel. The solid electrolyte layer paste includes, for example, solid electrolyte materials, sintering aids, organic materials and solvents. Protective layer pastes include, for example, insulating material materials, organic materials and solvents. Insulating pastes include, for example, insulating material materials, organic materials and solvents.
 湿式混合ではメディアを用いることができ、具体的には、ボールミル法またはビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法またはニーダー分散法等を用いることができる。 Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use a medium may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
 所定の固体電解質材料と焼結助剤と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって、所定の固体電解質層用ペーストを作製することができる。なお、既述のとおり、固体電解質材としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrからなる群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。 A paste for a predetermined solid electrolyte layer can be prepared by wet-mixing a predetermined solid electrolyte material, a sintering aid, and an organic vehicle in which an organic material is dissolved in a solvent. As described above, examples of the solid electrolyte material include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like. As the lithium-containing phosphoric acid compound having a pear-con structure, Li x My (PO 4 ) 3 (1 ≦ x ≦ 2, 1 ≦ y ≦ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr. At least one selected). As an example of the lithium-containing phosphoric acid compound having a pear-con structure, for example, Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like can be mentioned. As an example of an oxide having a perovskite structure, La 0.55 Li 0.35 TiO 3 and the like can be mentioned. Examples of oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
 正極材層用ペーストに含まれる正極活物質材としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から少なくとも一種を選択する。 Examples of the positive electrode active material contained in the paste for the positive electrode material layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. At least one is selected from the group consisting of lithium-containing oxides and the like.
 絶縁部用ペーストに含まれる絶縁性物質材料としては、例えば、ガラス材、セラミック材等から構成され得る。保護層用ペーストに含まれる絶縁性物質材料としては、例えば、ガラス材、セラミックス材、熱硬化性樹脂材、光硬化性樹脂材等から成る群から選択される少なくとも1種を用いることが好ましい。 The insulating substance material contained in the paste for the insulating portion may be composed of, for example, a glass material, a ceramic material, or the like. As the insulating substance material contained in the protective layer paste, for example, it is preferable to use at least one selected from the group consisting of glass materials, ceramic materials, thermosetting resin materials, photocurable resin materials and the like.
 ペーストに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂およびポリビニルアルコール樹脂などから成る群から選択される少なくとも1種の高分子材料を用いることができる。溶剤は上記有機材料を溶解可能な限り特に限定されず、例えば、トルエンおよび/またはエタノールなどを用いることができる。 The organic material contained in the paste is not particularly limited, but at least one polymer material selected from the group consisting of polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, polyvinyl alcohol resin and the like can be used. Can be used. The solvent is not particularly limited as long as it can dissolve the organic material, and for example, toluene and / or ethanol can be used.
 負極材層用ペーストに含まれる負極活物質材としては、例えば、Ti、Si、Sn、Cr、Fe、Nb、および、Moからなる群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から少なくとも一種から選択する。 Examples of the negative electrode active material contained in the paste for the negative electrode material layer include an oxide containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, and graphite-lithium. It is selected from at least one group consisting of a compound, a lithium alloy, a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like.
 焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、および酸化ケイ素からなる群から選択される少なくとも1種であり得る。 The sintering aid may be at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, and silicon oxide.
 塗工したペーストを、30~50℃に加熱したホットプレート上で乾燥させることで、基材(例えばPETフィルム)上に所定厚みを有する固体電解質層シート、正極層シート、および負極層シートをそれぞれ形成する。 The coated paste is dried on a hot plate heated to 30 to 50 ° C. to form a solid electrolyte layer sheet, a positive electrode layer sheet, and a negative electrode layer sheet having a predetermined thickness on a substrate (for example, PET film), respectively. Form.
 次に、各シートを基材から剥離する。剥離後、積層方向に沿って電池構成単位の各構成要素のシートを順に積層する。 Next, peel off each sheet from the base material. After peeling, the sheets of each component of the battery constituent unit are laminated in order along the stacking direction.
 当該積層の段階において、電極シートの側部領域にスクリーン印刷により固体電解質部シート又は絶縁部シートを設ける。具体的には、電極シートの側部のうち後刻に外部電極が接続される部分を除く外部電極非接続部分を取り囲むように固体電解質部シート又は絶縁部シートを設ける。 At the stage of laminating, a solid electrolyte sheet or an insulating sheet is provided in the side region of the electrode sheet by screen printing. Specifically, a solid electrolyte portion sheet or an insulating portion sheet is provided so as to surround the external electrode non-connecting portion excluding the portion of the side portion of the electrode sheet to which the external electrode is connected later.
 次いで、所定圧力(例えば約50~約100MPa)による熱圧着と、これに続く所定圧力(例えば約150~約300MPa)での等方圧プレスを実施することが好ましい。以上により、所定の積層体を形成することができる。 Next, it is preferable to perform thermocompression bonding at a predetermined pressure (for example, about 50 to about 100 MPa) and subsequent isotropic pressure pressing at a predetermined pressure (for example, about 150 to about 300 MPa). From the above, a predetermined laminated body can be formed.
(焼成工程)
 電極層となる部分の端部が露出した所定の積層体を焼成に付す。当該焼成は、窒素ガス雰囲気中で例えば600℃~1000℃で加熱することで実施する。積層体については、必要に応じて個片化工程を更に付してもよい。以上により、電池要素100に相当する焼結積層体を得ることができる(図30参照)。
(Baking process)
A predetermined laminate in which the end of the portion to be the electrode layer is exposed is subjected to firing. The firing is carried out by heating at, for example, 600 ° C. to 1000 ° C. in a nitrogen gas atmosphere. The laminated body may be further subjected to an individualization step if necessary. As a result, a sintered laminate corresponding to the battery element 100 can be obtained (see FIG. 30).
(端面電極の設置工程)
 次いで、端部が露出した電極層を備える積層体(電池要素100に相当、図30参照)の側面に端面電極200をつける(図31参照)。具体的には、露出した電極層の端部を覆うように積層体(電池要素100に相当)の側面に端面電極200をつける。端面電極200は正極層と負極層にそれぞれ電気的に接続可能に設ける。例えば、スパッタ、DIP法等により端面電極200を形成することが好ましい。特に限定されるものではないが、端面電極としては、銀、金、プラチナ、アルミニウム、銅、スズ、およびニッケルから選択される少なくとも一種から構成されることが好ましい。
(Installation process of end face electrodes)
Next, the end face electrode 200 is attached to the side surface of the laminate (corresponding to the battery element 100, see FIG. 30) having the electrode layer with the end exposed (see FIG. 31). Specifically, the end face electrode 200 is attached to the side surface of the laminate (corresponding to the battery element 100) so as to cover the end of the exposed electrode layer. The end face electrode 200 is provided so as to be electrically connectable to the positive electrode layer and the negative electrode layer, respectively. For example, it is preferable to form the end face electrode 200 by sputtering, the DIP method, or the like. Although not particularly limited, the end face electrode is preferably composed of at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel.
(外装体の形成工程)
 次に、電池要素100および電池要素100に設けた端面電極200を有して成る端面電極付電池要素400を覆うように外装体300を形成する。外装体300の形成については、スパッタ、DIP法等を用いることができる。この際、本発明の一実施形態では、外装体300の外表面300αが端面電極付電池要素400の全輪郭領域400αよりも電池要素100から見て外側に位置づけられるように、外装体300の形成を実施する。なお、外装体300の外表面300αが端面電極付電池要素400の全輪郭領域400αよりも電池要素100から見て外側に位置づけられるならば、外装体300の形成態様は特に限定されない。一例として、図32および図33に示すように、端面電極付電池要素400の上下主面および左右主面の少なくとも一方をそれぞれ挟み込みように外装体300(300X、300Y)を形成することができる。
(Exterior body forming process)
Next, the exterior body 300 is formed so as to cover the battery element 100 and the battery element 400 with an end face electrode having the end face electrodes 200 provided on the battery element 100. For the formation of the exterior body 300, a sputter, a DIP method, or the like can be used. At this time, in one embodiment of the present invention, the exterior body 300 is formed so that the outer surface 300α of the exterior body 300 is positioned outside the battery element 100 with respect to the entire contour region 400α of the battery element 400 with end face electrodes. To carry out. As long as the outer surface 300α of the exterior body 300 is positioned outside the entire contour region 400α of the battery element 400 with end face electrodes when viewed from the battery element 100, the forming mode of the exterior body 300 is not particularly limited. As an example, as shown in FIGS. 32 and 33, the exterior body 300 (300X, 300Y) can be formed so as to sandwich at least one of the upper and lower main surfaces and the left and right main surfaces of the battery element 400 with end face electrodes.
 以上により、本発明の一実施形態に係る固体電池1000を好適に製造することができる(図33参照)。 From the above, the solid-state battery 1000 according to the embodiment of the present invention can be suitably manufactured (see FIG. 33).
 得られた固体電池1000は、上述のように外装体300の外表面300αが端面電極付電池要素400の全輪郭領域400αよりも電池要素100から見て外側に位置づけられるという特徴を有する。換言すれば、端面電極付電池要素400の全輪郭領域400αが、外装体300の外表面300αよりも外装体300から見て内側に位置づけられることとなる。 As described above, the obtained solid-state battery 1000 has a feature that the outer surface 300α of the exterior body 300 is positioned outside the entire contour region 400α of the battery element 400 with end face electrodes when viewed from the battery element 100. In other words, the entire contour region 400α of the battery element 400 with end face electrodes is positioned inside the outer surface 300α of the exterior body 300 when viewed from the exterior body 300.
 以上の事から、他の固体電池又は電子媒体が固体電池1000に接触しても、他の固体電池又は電子媒体は端面電極200には直接接触し得ない。これにより、本発明の一実施形態では、端面電極200の欠損発生を好適に回避することが可能となる。 From the above, even if another solid-state battery or electronic medium comes into contact with the solid-state battery 1000, the other solid-state battery or electronic medium cannot come into direct contact with the end face electrode 200. Thereby, in one embodiment of the present invention, it is possible to suitably avoid the occurrence of a defect in the end face electrode 200.
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely exemplifies a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.
 本発明の一実施形態に係る固体電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る固体電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The solid-state battery according to the embodiment of the present invention can be used in various fields where storage is expected. Although only an example, the solid-state battery according to the embodiment of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, smart watches, laptop computers, digital cameras, activities, etc.) in which mobile devices and the like are used. Mobile device fields such as scales, arm computers, and electronic paper), home / small industrial applications (eg, power tools, golf carts, home / nursing / industrial robot fields), large industrial applications (eg, forklifts, etc.) Elevators, Gulf Cranes), Transportation Systems (eg, Hybrid Vehicles, Electric Vehicles, Buses, Trains, Electric Assisted Bicycles, Electric Motorcycles, etc.), Power Systems Applications (eg, Power Generation, Road Conditioners, Smart Grids) , General household installation type power storage system, etc.), medical use (medical equipment field such as earphone hearing aid), pharmaceutical use (dose management system, etc.), IoT field, space / deep sea use (for example, space exploration) It can be used in fields such as aircraft and submersible research vessels).
 1000、1000A、1000B、1000C、1000D、1000E、1000F、1000G 固体電池
 400、400A、400B、400C、400D、400E、400F、400G 端面電極付電池要素
 400α 端面電極付電池要素の全輪郭領域
 400β 端面電極付電池要素400の輪郭形成面
 300、300A、300B、300C、300D、300E、300F、300G 外装体
 301B 屈曲形態を有する外装体の端部
 300α 外装体の外表面
 300β 外装体の主面
 
 200、200A、200B、200C、200D、200E、200F、200G 端面電極
 200α 端面電極の電池要素非接触面
 201α 端面電極の電池要素非接触面の全輪郭領域
 200β 端面電極の第1の主面(電池要素接触面に相当)
 200γ 端面電極の第2の主面
 100、100A、100B、100C、100D、100E、100F、100G 電池要素
 100α 電池要素の端面
 20、20A、20B、20C、20D   固体電解質層
 10、10A、10B、10C、10D   電極層
 10I  正極層 
 10II 負極層
1000, 1000A, 1000B, 1000C, 1000D, 1000E, 1000F, 1000G Solid- state battery 400, 400A, 400B, 400C, 400D, 400E, 400F, 400G Battery element with end face electrode 400α Full contour area of battery element with end face electrode 400β End face electrode Contouring surface of battery element 400 300, 300A, 300B, 300C, 300D, 300E, 300F, 300G Exterior body 301B Edge of exterior body having a bent form 300α Outer surface of exterior body 300β Main surface of exterior body
200, 200A, 200B, 200C, 200D, 200E, 200F, 200G End face electrode 200α Battery element non-contact surface of end face electrode 201α Battery element of end face electrode Full contour area of non-contact surface 200β First main surface of end face electrode (battery) Equivalent to the element contact surface)
Second main surface of 200γ end face electrode 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G Battery element 100α End face of battery element 20, 20A, 20B, 20C, 20D Solid electrolyte layer 10, 10A, 10B, 10C 10D Electrode layer 10I Positive electrode layer
10II Negative electrode layer

Claims (17)

  1.  正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池要素と、
     前記電池要素の端面に設けられた端面電極と、 
     前記電池要素および前記端面電極を有して成る端面電極付電池要素を収容するように設けられた外装体と
    を備え、
     前記外装体の外表面が、前記端面電極付電池要素の全輪郭領域よりも前記電池要素から見て外側に位置づけられている、固体電池。
    A battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a battery element.
    An end face electrode provided on the end face of the battery element and
    It comprises the battery element and an exterior body provided to accommodate the battery element with an end face electrode having the end face electrode.
    A solid-state battery in which the outer surface of the exterior body is positioned outside the entire contour region of the battery element with end face electrodes when viewed from the battery element.
  2.  前記端面電極付電池要素の前記全輪郭領域が、前記外装体の前記外表面よりも前記外装体から見て内側に位置づけられている、請求項1に記載の固体電池。 The solid-state battery according to claim 1, wherein the entire contour region of the battery element with end face electrodes is positioned inside the outer surface of the exterior body when viewed from the exterior body.
  3.  前記外装体の前記外表面が、前記端面電極の電池要素非接触面の全輪郭領域よりも前記電池要素から見て外側に位置づけられている、請求項1又は2に記載の固体電池。 The solid-state battery according to claim 1 or 2, wherein the outer surface of the exterior body is positioned outside the entire contour region of the non-contact surface of the battery element of the end face electrode when viewed from the battery element.
  4.  平面視における前記外装体の主面のサイズが前記端面電極付電池要素の輪郭形成面のサイズよりも大きい、請求項1~3のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 3, wherein the size of the main surface of the exterior body in a plan view is larger than the size of the contour forming surface of the battery element with end face electrodes.
  5.  平面視にて前記外装体および前記端面電極付電池要素が略矩形形態をなし、
     前記外装体の主面の縦横サイズが前記端面電極付電池要素の前記輪郭形成面の縦横サイズよりも大きい、請求項4に記載の固体電池。
    In a plan view, the exterior body and the battery element with end face electrodes form a substantially rectangular shape.
    The solid-state battery according to claim 4, wherein the vertical and horizontal size of the main surface of the exterior body is larger than the vertical and horizontal size of the contour forming surface of the battery element with end face electrodes.
  6.  前記端面電極が前記電池要素と接する第1の主面と該第1の主面に相互に対向する第2の主面とを有して成り、
     前記外装体の端部が端面電極の前記第2の主面よりも前記電池要素から見て外側に突き出るように配置されている、請求項1~5のいずれかに記載の固体電池。
    The end face electrode has a first main surface in contact with the battery element and a second main surface facing the first main surface.
    The solid-state battery according to any one of claims 1 to 5, wherein the end portion of the exterior body is arranged so as to protrude outward from the second main surface of the end face electrode when viewed from the battery element.
  7.  相互に対向する2枚の外装体が端面電極付電池要素を挟み込むように設けられる、請求項1~6のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 6, wherein two exterior bodies facing each other are provided so as to sandwich a battery element with an end face electrode.
  8.  前記外装体が、少なくとも前記端面電極付電池要素の前記端面電極を部分的に取り囲むように設けられている、請求項1~7のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 7, wherein the exterior body is provided so as to partially surround the end face electrode of the battery element with the end face electrode.
  9.  前記外装体が、前記端面電極付電池要素の前記端面電極に加え前記電池要素も部分的に取り囲むように設けられている、請求項8に記載の固体電池。 The solid-state battery according to claim 8, wherein the exterior body is provided so as to partially surround the battery element in addition to the end face electrode of the battery element with the end face electrode.
  10.  少なくとも前記端面電極を部分的に取り囲む前記外装体が、前記端面電極の前記第2の主面と対向可能となっている、請求項6に従属する請求項8に記載の固体電池。 The solid-state battery according to claim 6, wherein at least the exterior body partially surrounding the end face electrode is capable of facing the second main surface of the end face electrode.
  11.  前記外装体が前記端面電極の前記第2の主面と離隔しかつ対向可能となっている、請求項10に記載の固体電池。 The solid-state battery according to claim 10, wherein the exterior body is separated from and can face the second main surface of the end face electrode.
  12.  前記外装体が、前記端面電極と該端面電極に連続する前記電池要素とに跨るように設けられている、請求項1~11のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 11, wherein the exterior body is provided so as to straddle the end face electrode and the battery element continuous with the end face electrode.
  13.  前記端面電極付電池要素の前記端面電極と前記電池要素とが相互に面一形態をなしている、請求項1~12のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 12, wherein the end face electrode of the battery element with an end face electrode and the battery element form a flush surface with each other.
  14.  少なくとも前記端面電極付電池要素の前記端面電極が外部に露出している、請求項1~13のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 13, wherein at least the end face electrode of the battery element with the end face electrode is exposed to the outside.
  15.  前記端面電極付電池要素の前記端面電極の一部のみが外部に露出している、請求項1~13のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 13, wherein only a part of the end face electrode of the battery element with end face electrode is exposed to the outside.
  16.  前記正極層および前記負極層がリチウムイオンを吸蔵放出可能な層となっている、請求項1~15のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 15, wherein the positive electrode layer and the negative electrode layer are layers capable of storing and releasing lithium ions.
  17. (i)正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池要素を形成する工程と、
    (ii)前記電池要素の表面に端面電極を設ける工程と、 
    (iii)前記電池要素および該電池要素に設けた前記端面電極を有して成る端面電極付電池要素を覆うように外装体を形成する工程と
    を順に含み、
     前記(iii)の工程にて、前記外装体の外表面が前記端面電極付電池要素の全輪郭領域よりも前記電池要素から見て外側に位置づけられるように前記外装体の形成を実施する、固体電池の製造方法。
    (I) A step of forming a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
    (Ii) A step of providing an end face electrode on the surface of the battery element, and
    (Iii) A step of forming an exterior body so as to cover the battery element and the battery element with an end face electrode having the end face electrode provided on the battery element is included in order.
    In the step (iii), the solid state is formed so that the outer surface of the exterior body is positioned outside the entire contour region of the battery element with end face electrodes when viewed from the battery element. How to make a battery.
PCT/JP2021/043441 2020-11-27 2021-11-26 Solid-state battery and method for manufacturing solid-state battery WO2022114140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-197487 2020-11-27
JP2020197487 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022114140A1 true WO2022114140A1 (en) 2022-06-02

Family

ID=81755674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043441 WO2022114140A1 (en) 2020-11-27 2021-11-26 Solid-state battery and method for manufacturing solid-state battery

Country Status (1)

Country Link
WO (1) WO2022114140A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same
JP2015220099A (en) * 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery
WO2018123319A1 (en) * 2016-12-29 2018-07-05 株式会社 村田製作所 All-solid battery, electronic device, electronic card, wearable device, and electric vehicle
WO2018163514A1 (en) * 2017-03-10 2018-09-13 株式会社村田製作所 All-solid state battery and manufacturing method therefor, and electronic device and electronic card
WO2019164006A1 (en) * 2018-02-26 2019-08-29 株式会社村田製作所 All-solid-state battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same
JP2015220099A (en) * 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery
WO2018123319A1 (en) * 2016-12-29 2018-07-05 株式会社 村田製作所 All-solid battery, electronic device, electronic card, wearable device, and electric vehicle
WO2018163514A1 (en) * 2017-03-10 2018-09-13 株式会社村田製作所 All-solid state battery and manufacturing method therefor, and electronic device and electronic card
WO2019164006A1 (en) * 2018-02-26 2019-08-29 株式会社村田製作所 All-solid-state battery

Similar Documents

Publication Publication Date Title
WO2020195382A1 (en) Solid-state battery
JP7047934B2 (en) Solid state battery
US20210249696A1 (en) Solid-state battery
US20210203008A1 (en) Solid-state battery and solid-state battery group
US20210296736A1 (en) Solid state battery
WO2020203620A1 (en) Solid-state battery
US20220209338A1 (en) Solid state battery
US20230299339A1 (en) Solid-state battery and method of manufacturing solid-state battery
JP2021150055A (en) Solid state battery
US20220238913A1 (en) Solid state battery
US20220285682A1 (en) Solid-state battery
US20210265667A1 (en) Solid state battery
WO2021256398A1 (en) Solid-state battery
WO2022114140A1 (en) Solid-state battery and method for manufacturing solid-state battery
JPWO2020070989A1 (en) Solid state battery
US20220352548A1 (en) Solid state battery
WO2022080404A1 (en) Solid-state battery
WO2024009963A1 (en) Solid-state battery
JP7259938B2 (en) solid state battery
WO2021206099A1 (en) Solid-state battery
WO2021256519A1 (en) Solid-state battery
US20230163434A1 (en) Solid state battery
WO2024014260A1 (en) Solid-state battery and electronic device
WO2023127247A1 (en) Solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP