WO2022111679A1 - 一种背光模组及显示屏 - Google Patents

一种背光模组及显示屏 Download PDF

Info

Publication number
WO2022111679A1
WO2022111679A1 PCT/CN2021/133915 CN2021133915W WO2022111679A1 WO 2022111679 A1 WO2022111679 A1 WO 2022111679A1 CN 2021133915 W CN2021133915 W CN 2021133915W WO 2022111679 A1 WO2022111679 A1 WO 2022111679A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
light source
backlight module
reflective film
Prior art date
Application number
PCT/CN2021/133915
Other languages
English (en)
French (fr)
Inventor
欧阳世宏
张译文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023532468A priority Critical patent/JP2023552154A/ja
Priority to EP21897179.4A priority patent/EP4231088A4/en
Priority to KR1020237020113A priority patent/KR20230101916A/ko
Publication of WO2022111679A1 publication Critical patent/WO2022111679A1/zh
Priority to US18/324,522 priority patent/US11914247B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present application relates to the technical field of display devices, and in particular, to a backlight module and a display screen.
  • the liquid crystal material itself does not emit light, and it must rely on a passive light source, which requires the light source to illuminate the liquid crystal panel from the back to control the output of the light to form an image.
  • the mainstream liquid crystal backlight technology on the market uses light-emitting diodes as light sources, and the mainstream methods include edge-type backlight modules and direct-type backlight modules.
  • the side-illuminated backlight module places the light source on the side of the module, and the light enters from the side and passes through the light guide plate.
  • the edge-type backlight module has the advantage of being thin and light, but all light sources need to be turned on all the time to ensure uniform light output, and the light source cannot be adjusted according to the brightness of the image area.
  • the direct type backlight module places the light source directly on the lower side of the panel, the light source array is evenly arranged, and the light directly enters the display panel from the bottom of the display panel to form uniform illumination on the display panel.
  • the light source of the backlight module is located directly under the display panel, the brightness of different light sources can be controlled according to the brightness of the displayed image.
  • due to the wide diffusion range of the light source when a single area on the display panel is lit A large-scale halo will be formed, which will cause obvious halo when displaying bright objects with a black background, reducing the local display contrast effect.
  • the present application provides a backlight module and a display screen, which improve the light emitting effect of the backlight module to provide the display effect of the display screen.
  • a backlight module is provided.
  • the backlight module is applied in a display device and used to provide light to the display device.
  • the backlight module includes a substrate and a light source assembly.
  • the substrate has a plurality of light-emitting regions, and the plurality of light-emitting regions are arranged in an array.
  • the number of the light source components is multiple, and the multiple light source components are arranged in the multiple light emitting areas in a one-to-one correspondence.
  • each light source assembly includes a plurality of light source elements arranged in an array, and each light source element includes a light emitting unit and a reflective film for splitting the light emitted by the light emitting unit.
  • the reflective film When the reflective film is installed, the following conditions are met: along the direction from the center to the edge of the light-emitting area where the light source element is located, the proportion of the light-splitting film toward the center of the light-emitting area gradually increases. In order to make the light emitted by the light source assembly have a good light mixing effect in the light emitting area, the light emitting effect of the backlight module is improved. In addition, the light is split through the reflective film, which is convenient for the miniaturization of the backlight module.
  • the reflective film is located on the light-emitting side of the corresponding light-emitting unit, the reflective film faces the top light-emitting surface of the light-emitting unit, and is used for splitting the light from the top of the light-emitting unit .
  • the light emitted from the top of the light-emitting unit is mixed by the reflective film.
  • the reflective film is a tapered surface; the tapered tip of the reflective film faces the top light-emitting surface of the corresponding light-emitting unit; and in the direction away from the center of the light-emitting area, the reflective film
  • the distance between the straight line perpendicular to the light-emitting unit where the cone tip of the film is located and the centerline of the corresponding light-emitting unit gradually increases, and the centerline of the light-emitting unit refers to passing through the light-emitting unit along the thickness direction of the substrate. the center of the line.
  • the light is split using a cone-shaped face.
  • the conical surface is a conical surface, a triangular pyramid surface, a quadrangular pyramid surface and other different conical surfaces. Different conical surfaces can be selected for beam splitting.
  • the distance between the straight line where the cone tip of the reflective film is located and runs through the substrate along the thickness direction of the substrate and the center line of the light-emitting region is the first distance
  • the distance between the center line of the light-emitting unit corresponding to the reflective film and the center line of the light-emitting area is a second distance
  • the first distance is greater than the second distance
  • the light-emitting area is
  • the center line refers to a straight line passing through the center of the light-emitting region in the thickness direction of the substrate.
  • connection line between the projection of the cone tip of the reflective film in the first plane and the projection of the center of the light-emitting area in the first plane is the first connection line;
  • the center line of the light-emitting unit corresponding to the reflective film intersects the first connection line, and the first plane is parallel to the surface of the substrate. The effect of splitting has been improved.
  • the reflective film is provided with a plurality of light-passing holes. The effect of light splitting is improved by the set light apertures.
  • the plurality of light-passing holes are uniformly arranged in the reflective film. Improve the light splitting effect.
  • the reflective film is adhesively connected to the top light-emitting surface of the light-emitting unit through transparent glue. The relative fixation of the reflective film and the light-emitting unit is realized.
  • each light source element further includes a flat layer covering the reflective film. It is convenient for the processing of light source parts.
  • the flat layer is a transparent structure
  • the reflective film is a plating layer disposed on the flat layer.
  • the flat layer is reflective white glue
  • the reflective film is the surface of the reflective white glue facing the corresponding light-emitting unit.
  • the backlight module further includes a diffuser film and a prismatic brightness enhancement film; the diffuser film and the prismatic brightness enhancement film are laminated; the diffuser film is opposite to the prismatic brightness enhancement film closer to the plurality of light source assemblies.
  • the light mixing effect of the backlight module is further improved.
  • each light-emitting area corresponds to a display area of the display screen one-to-one.
  • the display effect of the display device is improved.
  • a display screen in a second aspect, includes the backlight module described in any one of the above and a liquid crystal layer stacked with the backlight module.
  • the reflective film for light splitting By adopting the reflective film for light splitting, and along the direction from the center to the edge of the light emitting area where the light source element is located, the proportion of the reflective film splitting light toward the center of the light emitting area gradually increases.
  • the light emitting effect of the backlight module is improved.
  • the light is split through the reflective film, which is convenient for the miniaturization of the backlight module.
  • 1 is a schematic structural diagram of a display device
  • FIG. 2 is a schematic structural diagram of a display surface of a display device
  • FIG. 3 is a schematic structural diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an LED light source array provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a light source device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the cooperation between the cone tip of the reflective film of the light source device and the center line of the light source device according to the embodiment of the present application;
  • FIG. 7 is a schematic diagram of the cooperation between the center point of the light source element, the cone tip of the reflective film and the center point of the light emitting area provided by the embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a light source device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another light source device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another light source device according to an embodiment of the present application.
  • the backlight module is used in a display device to provide the display device with light for display.
  • the display device includes a backlight module 1 , a polarizing plate 2 , a driving control circuit 3 , a display layer 4 , a color filter plate 5 and the like.
  • the backlight module 1 provides a uniform white light surface light source for the display device
  • the polarizing plate 2 adjusts the polarization state of the light emitted by the backlight module to a specific linear polarization state
  • the driving control circuit 3 controls the voltage signal to control the liquid crystal in the display layer 4.
  • the deflection of the material molecules changes the polarization direction of the incident light
  • the color filter plate 5 changes the light color of the pixel point.
  • FIG. 2 shows a schematic structural diagram of a display surface of a display device.
  • the display layer 10 can be divided into different display areas according to the displayed images.
  • each pixel is used as a display area 11 , or a display area 11 is formed by a plurality of pixels.
  • the array arrangement of the plurality of display areas 11 is illustrated, but it should be understood that the example in FIG. 2 is only a specific example of division of the display area 11 , and the display area can be divided into different areas according to the displayed image. .
  • different display areas 11 require different light rays.
  • the embodiment of the present application provides a backlight module to provide a contrast effect of the image area of the display device . It will be described in detail below with reference to the specific drawings and embodiments.
  • FIG. 3 shows a schematic structural diagram of a backlight module provided by an embodiment of the present application.
  • the backlight module provided by the embodiment of the present application is a direct type backlight module, which includes a substrate 20, an LED (Light Emitting Diode, light emitting diode) light source array 30, a diffusion film 40, a prism brightness enhancement film 50 and other components.
  • the diffusion film 40 is closer to the light source array 30 than the prism brightness enhancement film 50 .
  • the substrate 20 is used to carry the LED light source array 30 and supply power to the LED light source array 30 .
  • the LED light source array 30 is used to provide light to the display layer 10 so as to make it emit light for display.
  • the diffusion film 40 further realizes the uniformity of light and improves the light mixing effect.
  • the prismatic brightness enhancement film 50 enhances the forward brightness of light (the forward direction refers to the direction in which the backlight module points to the display layer 10 ), so as to provide the display layer 10 with a uniform white surface light source.
  • the diffusion film 40 and the prismatic brightness enhancement film 50 are optional film layers, and the backlight module provided by the embodiment of the present application can selectively set the diffusion film 40 or the prismatic enhancement film according to the needs of light mixing.
  • Bright film 50 can selectively set the diffusion film 40 or the prismatic enhancement film according to the needs of light mixing.
  • Bright film 50 can selectively set the diffusion film 40 or the prismatic enhancement film according to the needs of light mixing.
  • Bright film 50 can be selected for the backlight module as required, which will not be listed one by one in the embodiments of the present application.
  • FIG. 4 shows a schematic structural diagram of an LED light source array.
  • the backlight module is also divided into regions.
  • the substrate 20 can be divided into a plurality of light-emitting regions 21, and the plurality of light-emitting regions 21 are arranged in an array in one-to-one correspondence with the display regions of the display screen, so as to provide each display region with correspondingly required light.
  • each light source assembly includes a plurality of light source elements 31, and in the embodiment of the present application, the plurality of light source elements 31 are arranged in an array manner. The following takes one of the light source assemblies as an example for description.
  • the light source assembly includes a plurality of light source elements 31 arranged in an array.
  • the light emitting direction of the light source element 31 is adjusted according to the position of the light source element 31 .
  • the light source 31 located at the edge of the light-emitting area 21 emits light to the inside of the light-emitting area 21 .
  • the direction shown by the straight line is the light-emitting direction corresponding to the light source element 31 .
  • the number of straight lines represents the amount of light emitted.
  • the light source element 31 in the middle position emits light around, and the light source element 31 located at the edge of the light emitting area 21 emits light along the edge of the light emitting area 21 and toward the interior of the light emitting area 21 .
  • the light source elements 31 located at the edge of the light emitting area 21 reduce or do not emit light toward the adjacent light emitting area 21 , so as to reduce the light crosstalk between the two light emitting areas 21 .
  • FIG. 5 shows a schematic structural diagram of a light source device.
  • Each light source device includes a light emitting unit 311 and a corresponding reflective film 313 .
  • the light-emitting unit 311 is a flip-chip LED lamp bead, and the two bonding pads 312 of the flip-chip LED lamp bead are respectively located at the bottom of the LED lamp bead and connected to the circuit layer of the substrate.
  • the bonding pad 312 does not occupy the top light-emitting surface of the light-emitting unit 311 , thereby increasing the light-emitting area of the light-emitting unit 311 .
  • the light-emitting unit 311 provided in this embodiment of the present application may also adopt other types of light-emitting structures, which are not specifically limited in this application.
  • the reflective film 313 is used for splitting the light emitted by the light-emitting unit 311. Combined with the above-mentioned structure of the light-emitting unit 311, when the reflective film 313 is provided, the reflective film 313 faces the top light-emitting surface of the light-emitting unit 311, and is used for the light-emitting surface of the light-emitting unit 311. The top light is split. When the light-emitting unit 311 is split, the reflective film 313 has a surface inclined relative to the top light-emitting surface of the light-emitting unit 311 , so that the light emitted from the top can be reflected by the reflective film 313 in a desired direction. As shown by the straight arrow in FIG.
  • the light emitted from the top light-emitting surface is reflected by the reflective film 313 and then reflected to the surroundings.
  • the light emitted by the point light source is diffused through the lens. It can be seen that the lens in the prior art requires a larger thickness to ensure the divergence effect, while in the present application The light emitted by the light source is reflected by the reflective film to achieve the effect of light divergence, which can greatly reduce the thickness of the light source.
  • the reflective film 313 is a tapered surface
  • the cone tip of the reflective film 313 faces the top light-emitting surface of the corresponding light-emitting unit 311, and the light emitted by the top light-emitting surface can be reflected by the tapered surface and then emitted.
  • the conical surface is a conical surface, a triangular pyramid surface, a quadrangular pyramid surface and other different conical surfaces.
  • Different shapes of the reflective film 313 can be selected according to requirements during specific setting, which is not specifically limited in the embodiments of the present application.
  • the light source components located at the center of the light-emitting area emit light evenly around the light-emitting area
  • the light source components located at the edges emit light into the light-emitting area.
  • the direction in which the reflected light is emitted is controlled by adjusting the shape of the reflective film 313 .
  • the proportion of the reflective film 313 to split light toward the center of the light-emitting area gradually increases.
  • the light source components farther away from the center of the light emitting area may have a larger amount of light scattered toward the center of the light emitting area, and a smaller amount of light scattered toward other areas.
  • the center line of the light emitting unit 311 refers to a straight line passing through the center of the light emitting unit in the thickness direction of the substrate.
  • the center line of the light-emitting unit 311 is also the center line of the light source device.
  • the center line of the light-emitting region refers to a straight line passing through the center of the light-emitting region in the thickness direction of the substrate.
  • d and D are defined, where d is the first distance between a straight line running through the substrate along the thickness direction of the substrate where the cone tip of the reflective film is located and the center line of the light-emitting region .
  • D is the second distance between the center line of the light-emitting unit corresponding to the reflective film and the center line of the light-emitting area.
  • the five light source elements shown in FIG. 6 are a row of light source elements in the middle of a light-emitting area 21 shown in FIG. 4 .
  • the five light source elements are named as the first light source element 32 , the second light source element 33 , the third light source element 34 , the fourth light source element 35 and the fifth light source element 36 respectively.
  • the first light source element 32 is located at the center point of the light emitting area, and along the direction away from the center point of the light emitting area, the second light source element 33 and the third light source element 34 are arranged on one side of the first light source element 32, and the fourth light source element 35 and The fifth light source element 36 is arranged on the other side of the first light source element 32 .
  • the distance between the second light source element 33 and the fourth light source element 35 from the center point of the light emitting area is D1
  • the distance between the third light source element 34 and the fifth light source element 36 from the center point of the light emitting area is D2, wherein D2>D1.
  • the above distance from the light source element to the center point of the light emitting area refers to the minimum distance from the center line of the light source element to the center point of the light emitting area.
  • the cone tip of the first light source part 32 is located on the center line L1 of the first light source part 32, and the center line L1 passes through the center point of the light emitting area.
  • the distance from the substrate is d1
  • the straight line running through the substrate along the thickness direction of the substrate where the cone tip O2 of the third light source element 34 is located and the center line L3 of the third light source element 34 (the center line L3 is also along the The distance in the thickness direction of the substrate through the substrate) is d2.
  • the first distance D3 when arranging the light-emitting unit and the reflective film of each light source element, the first distance D3 must be greater than the second distance D1 (taking the second light source element 33 as an example, the first distance is D3, and the second distance is D3). for D1).
  • the first distance D3 is the distance between the straight line running through the substrate along the thickness direction of the substrate and the center line of the light-emitting area where the cone tip of the reflective film is located;
  • the straight line that runs through the corresponding light-emitting unit along the thickness direction of the substrate where the cone tip is located divides the reflected light into different directions.
  • the light emitted by the light emitting unit is reflected toward the center of the light emitting area.
  • a part of the cone surface located at the tip of the cone away from the center of the light-emitting area can reflect the light emitted by the light-emitting unit to a position away from the center of the light-emitting area.
  • the light source elements far away from the center point of the light emitting area will be more Light is reflected to the center in the glowing area.
  • the straight line with the cone tip passing through the corresponding light-emitting unit along the thickness direction of the substrate is located at the edge of the light source component, so that the The emitted light is emitted toward the central area of the light-emitting area, minimizing the light emitted to the adjacent light-emitting area.
  • point O3 is the center point of the light-emitting area
  • point O4 represents the center line of each light source element 31
  • point O5 is the cone tip of the reflective film of each light source element 31 . It can be seen from the top view in FIG. 7 that the points O3, O4 and O5 are located on the same straight line.
  • the connecting line between the projection of the cone tip of the reflective film on the first plane and the projection of the center of the light-emitting area on the first plane is the first connecting line
  • the center line of the light-emitting unit corresponding to the reflective film is the same as the The first connecting line intersects; it is worth noting that the first plane refers to a plane parallel to the upper surface or lower surface of the substrate, the upper surface of the substrate refers to the surface provided with the light source component, and the lower surface of the substrate is connected to the substrate.
  • the upper surfaces of the bases face away from each other. As can be seen from FIG.
  • the projection of the cone tip O5 of the reflective film on the first plane is similar to that of the first plane.
  • the distance from the projection of the center point O3 of the light emitting area on the first plane is farther, so that the light emitting area of the light source element 31 faces the edge of the light emitting area or Towards the light-emitting area, it avoids the light from spreading into the adjacent light-emitting area.
  • the backlight modules provided by the embodiments of the present application are arranged in the light-emitting area according to design requirements by using light sources with different light-emitting directions:
  • the light source element emits light into the light-emitting area, which not only realizes uniform light mixing but also suppresses the crosstalk of light between the light-emitting areas.
  • FIG. 8 shows a schematic structural diagram of a light source device 31 provided in an embodiment of the present application.
  • the light source element 31 includes a light emitting unit 311 and a reflective film 313 .
  • the reflective film 313 is connected to the light-emitting unit 311 , the reflective film 313 is bonded and connected to the top light-emitting surface of the light-emitting unit 311 through the first optical adhesive layer 314 .
  • the first optical adhesive layer 314 is a transparent adhesive layer, so as to ensure that the light from the top light-emitting surface of the light-emitting unit 311 can pass through the first optical adhesive layer.
  • the light source element 31 further includes a flat layer 315 covering the reflective film 313, so that the top of the light source element 31 forms a flat plane, which is convenient for passing through the grabbing device after the production is completed. grab.
  • the flat layer 315 can be a second optical adhesive layer
  • the reflective film 313 can be a coating layer coated between the first optical adhesive layer and the second optical adhesive layer.
  • the coating may be a coating with high reflection effect, such as an aluminum coating or a silver coating.
  • the LED process is firstly fabricated on the sapphire substrate to form the light-emitting unit, and then the transparent glue 314 is formed on the light-emitting unit 311 .
  • a microstructure is fabricated on the transparent glue 314, and the shape of the microstructure corresponds to the shape of the reflective film 313, such as a cone.
  • reflective metal Al or Ag
  • a flat layer is made, and the outermost surface of the flat layer is smoothed, so as to facilitate the grabbing device to grab the light source parts.
  • FIG. 9 illustrates a schematic structural diagram of another light source device 31 .
  • the light source device 31 includes a light emitting unit 311 , a first optical adhesive layer 314 and a flat layer 315 .
  • the first optical adhesive layer 314 is formed to be connected to the top light-emitting surface of the light-emitting unit 311 .
  • Tapered holes corresponding to the formation of the reflective film are formed on the first optical adhesive layer 314 .
  • the flat layer 315 fills the tapered holes.
  • the flat layer 315 is made of reflective white glue, and the reflective white glue can reflect light. Therefore, the surface of the flat layer 315 in contact with the first optical adhesive layer 314 can be used as a reflective film, thereby simplifying the structure of the light source 31 , and the above reflective film can be formed when the flat layer 315 is formed.
  • FIG. 10 is a modification based on the light source device shown in FIG. 8 or FIG. 9 .
  • a light-transmitting hole 3131 is added on the basis of the reflective film 313 shown in FIG. 8 or FIG. 9 .
  • the reflective film 313 is a coating layer coated on the first optical adhesive layer 314 and the flat layer 315 is a second optical adhesive layer
  • the light-transmitting hole 3131 can be a hole opened on the coating layer.
  • the reflective film 313 is one side of the reflective white glue
  • the light-transmitting hole 3131 is a through-hole pierced through the flat layer 315.
  • the light-transmitting hole 3131 is also a light-splitting method of the reflective film 313 . The light can be split in different directions through the reflective film 313 .
  • the plurality of light-transmitting holes 3131 may be uniformly arranged on the reflective film 313 , or may be arranged on the reflective film 313 according to other arrangements according to the needs of light mixing.
  • the embodiment of the present application further provides a display screen, the display screen includes any one of the above-mentioned backlight module and a liquid crystal layer stacked with the backlight module.
  • the reflective film is used for light splitting, and along the direction from the center to the edge of the light-emitting area where the light source is located, the proportion of the light-splitting film toward the center of the light-emitting area gradually increases.
  • the light emitting effect of the backlight module is improved.
  • the light is split through the reflective film, which is convenient for the miniaturization of the backlight module.
  • the embodiment of the present application further provides a display device, the display device includes any one of the above-mentioned backlight module and a liquid crystal layer stacked with the backlight module.
  • the reflective film is used for light splitting, and along the direction from the center to the edge of the light-emitting area where the light source is located, the proportion of the light-splitting film toward the center of the light-emitting area gradually increases.
  • the light emitting effect of the backlight module is improved.
  • the light is split through the reflective film, which is convenient for the miniaturization of the backlight module.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Led Device Packages (AREA)

Abstract

一种背光模组(1)及显示屏,背光模组(1)应用于显示装置中,并用于给显示装置提供光线。背光模组(1)包括衬底(20)以及光源组件。衬底(20)具有多个发光区域(21),多个发光区域(21)阵列排列。光源组件的个数为多个,多个光源组件一一对应设置在多个发光区域(21)。其中,每个光源组件包括阵列排列的多个光源件(31),每个光源件(31)包括发光单元(311)以及用于对发光单元(311)发射的光线进行分光的反射膜(313)。反射膜(313)在设置时,满足以下条件:沿光源件(31)所在发光区域(21)的中心到边缘的方向,反射膜(313)向发光区域(21)的中心方向分光的比例逐渐增大,以使得光源组件发射的光线在发光区域(21)内具有良好的混光效果,改善了背光模组(1)的发光效果。另外通过反射膜(313)进行分光,便于背光模组(1)的小型化。

Description

一种背光模组及显示屏
相关申请的交叉引用
本申请要求在2020年11月30日提交中国专利局、申请号为202011384672.9、申请名称为“一种背光模组及显示屏”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到显示装置技术领域,尤其涉及到一种背光模组及显示屏。
背景技术
液晶显示器工作时,液晶材料本身不发光,必须依靠被动光源,需要光源从背面照射液晶面板,控制出光的输出形成图像。目前市场上主流的液晶背光技术是采用发光二极管作为光源,主流方式由侧入式背光模组和直下式背光模组结构。
侧入式背光模组将光源置于模组侧面,光线从侧面入射后经过导光板,通过导光板对光线进行散射破换点并逐步将光线均匀耦合出射,形成面光源。侧入式背光模组具有轻薄的优势,但所有光源需要一直开启以保证均匀出光,无法根据图像区域亮暗调整光源发光。
直下式背光模组将光源直接置于面板下侧,光源阵列均匀排布,光线从显示面板的下方直接入射到显示面板,形成对显示面板的均匀照射。另外,由于背光模组的光源直接位于显示面板的下方,因此可以根据显示图像的亮暗程度控制不同光源的亮暗程度,但是由于光源的扩散范围较广,显示面板上的单个区域点亮时会形成大范围光晕,这种光晕会导致在显示黑背景高亮物体时出现明显光晕,降低了局部的显示对比度效果。
而随着人们生活质量的提高,对液晶显示器的显示要求也越来越高,而现有的两种背光模组均无法实现良好的图像区域显示对比效果。
发明内容
本申请提供了一种背光模组及显示屏,提高背光模组的出光效果,以提供显示屏的显示效果。
第一方面,提供了一种背光模组,该背光模组应用于显示装置中,并用于给显示装置提供光线。背光模组包括衬底以及光源组件。衬底具有多个发光区域,多个发光区域阵列排列。光源组件的个数为多个,多个光源组件一一对应设置在多个发光区域。其中,每个光源组件包括阵列排列的多个光源件,每个光源件包括发光单元以及用于对发光单元发射的光线进行分光的反射膜。反射膜在设置时,满足以下条件:沿所述光源件所在发光区域的中心到边缘的方向,所述反射膜向所述发光区域的中心方向分光的比例逐渐增大。以使得光源组件发射的光线在发光区域内具有良好的混光效果,改善了背光模组的发光效果。另外通过反射膜进行分光,便于背光模组的小型化。
在一个具体的可实施方案中,所述反射膜位于对应的所述发光单元的出光侧,所述反射膜朝向所述发光单元的顶部出光面,并用于对所述发光单元的顶部出光进行分光。通过 反射膜对发光单元的顶部发出的光线进行混光。
在一个具体的可实施方案中,所述反射膜为锥形面;所述反射膜的锥尖朝向对应的发光单元的顶部出光面;且沿远离所述发光区域的中心的方向,所述反射膜的锥尖所在的垂直于所述发光单元的直线与对应的发光单元的中心线的距离逐渐增大,所述发光单元的中心线是指沿所述衬底的厚度方向贯穿所述发光单元的中心的直线。采用锥形面对光线进行分光。
在一个具体的可实施方案中,所述锥形面为圆锥形面、三棱锥面、四棱锥面等不同的锥形面。可选择不同的锥形面进行分光。
在一个具体的可实施方案中,所述反射膜的锥尖所在的沿所述衬底的厚度方向贯穿所述衬底的直线与所述发光区域的中心线之间的距离为第一距离,所述反射膜对应的所述发光单元的中心线与所述发光区域的中心线之间的距离为第二距离,则所述第一距离大于所述第二距离;其中,所述发光区域的中心线是指沿所述衬底的厚度方向贯穿所述发光区域的中心的直线。通过设置锥形面的形状改善对发光单元的分光比例。
在一个具体的可实施方案中,所述反射膜的锥尖在第一平面内的投影与所述发光区域的中心在所述第一平面内的投影之间的连接线为第一连接线;所述反射膜对应的发光单元的中心线与所述第一连接线相交,所述第一平面平行于所述衬底的表面。改善了分光的效果。
在一个具体的可实施方案中,所述反射膜上设置有多个通光孔。通过设置的通光孔改善分光的效果。
在一个具体的可实施方案中,所述多个通光孔均匀排布在所述反射膜。改善分光效果。
在一个具体的可实施方案中,所述反射膜通过透明胶与所述发光单元的顶部出光面粘接连接。实现反射膜与发光单元的相对固定。
在一个具体的可实施方案中,每个光源件还包括覆盖所述反射膜的平坦层。方便光源件加工。
在一个具体的可实施方案中,所述平坦层为透明结构,所述反射膜为设置在所述平坦层上的镀层。
在一个具体的可实施方案中,所述平坦层为反光白胶,所述反射膜为所述反光白胶朝向对应的发光单元的表面。
在一个具体的可实施方案中,所述背光模组还包括扩散膜和棱镜增亮膜;所述扩散膜和所述棱镜增亮膜层叠设置;所述扩散膜相对于所述棱镜增亮膜更靠近所述多个光源组件。进一步的提高背光模组的混光效果。
在一个具体的可实施方案中,每个发光区域与显示屏的显示区域一一对应。提高了显示装置的显示效果。
第二方面,提供了一种显示屏,该显示屏包括上述任一项所述的背光模组以及与所述背光模组层叠设置的液晶层。通过采用反射膜进行分光,且沿所述光源件所在发光区域的中心到边缘的方向,所述反射膜向所述发光区域的中心方向分光的比例逐渐增大。以使得光源组件发射的光线在发光区域内具有良好的混光效果,改善了背光模组的发光效果。另外通过反射膜进行分光,便于背光模组的小型化。
附图说明
图1为显示装置的结构示意图;
图2为显示装置的显示面的结构示意图;
图3为本申请实施例提供的背光模组的结构示意图;
图4为本申请实施例提供的LED光源阵列的结构示意图;
图5为本申请实施例提供的光源件的结构示意图;
图6为本申请实施例提供的光源件的反射膜的锥尖与光源件的中心线配合示意图;
图7为本申请实施例提供的光源件的中心点、反射膜的锥尖与发光区域的中心点的配合示意图;
图8为本申请实施例提供的一种光源件的结构示意图;
图9为本申请实施例提供的另一种光源件的结构示意图;
图10为本申请实施例提供的另一种光源件的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步描述。
为方便理解本申请实施例提供的背光模组,首先说明本申请背光模组的应用场景。背光模组应用于显示装置中,用于给显示装置提供显示用的光线。如图1中所示,显示装置包含背光模组1、偏光板2、驱动控制电路3、显示层4、彩色滤光板5等。其中,背光模组1为显示装置提供均匀白光面光源,偏光板2将背光模组发出的光线的偏振状态调整为特定线性偏振态,驱动控制电路3控制电压信号以控制显示层4中的液晶材料分子偏转改变入射光线偏振方向,彩色滤光板5改变像素点光线颜色。
参考图2,图2示出了显示装置的显示面的结构示意图。显示层10进行显示时,显示层10根据显示的图像可划分为不同的显示区域,示例性的,以每个像素为一个显示区域11,或者以多个像素组成一个显示区域11。在图2中示例出了多个显示区域11阵列排列的方式,但应理解,图2示例的仅仅为一种具体的显示区域11的划分示例,显示区域可根据显示的图像进行不同区域的划分。在显示图像时,不同显示区域11的光线需要不同,而为改善显示装置在显示画面时的图像区域显示对比,提高显示装置的显示效果,就需要不同显示区域穿过的光线尽量减少干扰。而现有技术中提供的直下式背光模组和侧入式背光模组均无法提供良好的光线,为此本申请实施例提供了一种背光模组,以提供显示装置的图像区域的对比效果。下面结合具体的附图以及实施例对其进行详细说明。
参考图3,图3示出了本申请实施例提供的背光模组的结构示意图。本申请实施例提供的背光模组为直下式背光模组,其包括衬底20、LED(Light Emitting Diode,发光二极管)光源阵列30、扩散膜40、棱镜增亮膜50等组件。其中,扩散膜40相对于棱镜增亮膜50更靠近所述光源阵列30。
衬底20用于承载LED光源阵列30,并给LED光源阵列30供电。LED光源阵列30用于给显示层10提供光亮,以使其发光显示。扩散膜40进一步实现光线的均匀化,改善混光效果。棱镜增亮膜50提升光线的正向亮度(正向指代的是背光模组指向显示层10的方向),以给显示层10提供均匀白光面光源。
应理解在本申请实施例中,扩散膜40、棱镜增亮膜50为可选择的膜层,本申请实施 例提供的背光模组可根据混光的需要选择性的设置扩散膜40或棱镜增亮膜50。当然,除上述扩散膜40或棱镜增亮膜50外,背光模组还可根据需要选择其他常规的层结构,在本申请实施例中不再一一列举。
参考图4,图4示出了LED光源阵列的结构示意图。根据图2中所示的显示层的不同区域的划分,对背光模组也进行区域划分。衬底20可划分为多个发光区域21,多个发光区域21阵列排列与显示屏的显示区域一一对应,以给每个显示区域对应提供所需的光线。
在衬底20划分为多个发光区域21时,对应的LED光源阵列也进行划分,LED光源阵列被划分为多个光源组件,多个光源组件一一对应设置在多个发光区域21内。每个光源组件中包含有多个光源件31,在本申请实施例中,多个光源件31采用阵列方式排列。下面以其中的一个光源组件为例进行说明。
光源组件包括阵列排列的多个光源件31,为改善混光的效果,在本申请实施例中根据光源件31的位置调整其发光方向,具体调整方案为:位于发光区域21中心的光源件31向四周发光,位于发光区域21边缘的光源件31向发光区域21内侧发光。
参考图4中所示的光源件31周围的直线,直线所示的方向为光源件31对应的发光方向。直线的多少,代表了发光量的多少。由图4中可看出,位于中间位置的光源件31向四周发射光线,位于发光区域21边沿的光源件31沿发光区域21的边沿以及朝向发光区域21内部发射光线。且位于发光区域21边沿的光源件31减少或者没有朝向相邻的发光区域21发射光线,以减少两个发光区域21之间的光线串扰。
参考图5,图5示出了一个光源件的结构示意图。每个光源件包括发光单元311及对应的反射膜313。其中,发光单元311为倒装的LED灯珠,倒装的LED灯珠的两个焊盘312分别位于LED灯珠的底部,并与衬底的电路层连接。在采用倒装的LED灯珠时,焊盘312不会占用发光单元311的顶部出光面,提高了发光单元311的发光面积。当然本申请实施例提供的发光单元311还可采用其他类型的发光结构,在本申请不做具体限定。
反射膜313用于对发光单元311发射的光线进行分光,结合上述的发光单元311的结构,在设置反射膜313时,反射膜313朝向发光单元311的顶部出光面,并用于对发光单元311的顶部出光进行分光。在对发光单元311进行分光时,反射膜313具有与发光单元311的顶部出光面相对倾斜的面,以使得顶部发射出的光线可经反射膜313反射后朝向所需的方向反射。如图5中所示的直线箭头,顶部出光面发出的光线经反射膜313反射后向周围反射。相比现有技术中直下式背光模组的光源件通过透镜进行将点光源发射的光线进行发散可看出,现有技术中的透镜需要较大的厚度尺寸才能保证发散效果,而在本申请中通过反射膜将光源件发出的光线反射以达到光线发散的效果,可极大的降低光源件的厚度。
示例性的,反射膜313为锥形面,反射膜313的锥尖朝向对应的发光单元311的顶部出光面,顶部出光面发射的光线可经锥形面反射后发射出去。
在一个可选的方案中,锥形面为圆锥形面、三棱锥面、四棱锥面等不同的锥形面。在具体设置时可根据需要选择不同的形状的反射膜313,在本申请实施例中不做具体限定。
为使得位于发光区域中心位置的光源件向四周均匀发光,位于边沿的光源件向发光区域内发光。在设置每个光源件的反射膜313时,通过调整反射膜313的形状控制反射光线发射的方向。示例性的,沿光源件所在发光区域的中心到边缘的方向,反射膜313向发光区域的中心方向分光的比例逐渐增大。以使得越远离发光区域中心的光源件向发光区域中心的分光量越大,向其他区域的分光量越小。
为方便描述反射膜313的反射效果,定义了发光单元311的中心线以及发光区域的中心线。发光单元311的中心线指沿衬底的厚度方向贯穿发光单元的中心的直线。发光单元311的中心线也为光源件的中心线。发光区域的中心线是指沿衬底的厚度方向贯穿发光区域的中心的直线。
为方便描述反射膜,定义了d和D,其中,d为反射膜的锥尖所在的沿所述衬底的厚度方向贯穿所述衬底的直线与发光区域的中心线之间的第一距离。D为反射膜对应的发光单元的中心线与发光区域的中心线之间的第二距离。在设置反射膜时,沿远离发光区域的中心的方向,反射膜的锥尖与对应的发光单元的中心线的距离逐渐增大,即d的距离随着D的距离改变。下面以图6所示的五个光源件为例进行说明反射膜与光源件位置的对应关系。
图6所示的五个光源件为图4中所示的一个发光区域21中间一行光源件。为方便描述,将五个光源件分别命名为第一光源件32、第二光源件33、第三光源件34、第四光源件35及第五光源件36。第一光源件32位于发光区域的中心点,沿远离发光区域的中心点的方向,第二光源件33及第三光源件34排列在第一光源件32的一侧,第四光源件35及第五光源件36排列在第一光源件32的另一侧。其中,第二光源件33及第四光源件35距离发光区域中心点的距离为D1,第三光源件34及第五光源件36距离发光区域中心点的距离为D2;其中,D2>D1。上述光源件到发光区域中心点的距离指代的是光源件的中心线到发光区域中心点的最小距离。
以第二光源件33和第三光源件34为例。第一光源件32的锥尖位于第一光源件32的中心线L1,中心线L1穿过发光区域的中心点。第二光源件33的锥尖O1所在的沿衬底的厚度方向贯穿所述衬底的直线与第二光源件33的中心线L2(中心线L2也是沿所述衬底的厚度方向贯穿所述衬底的)的距离为d1,第三光源件34的锥尖O2所在的沿衬底的厚度方向贯穿所述衬底的直线与第三光源件34的中心线L3(中心线L3也是沿所述衬底的厚度方向贯穿所述衬底的)的距离为d2。且d1<d2。由此可看出,反射膜的锥尖所在的沿衬底的厚度方向贯穿所述衬底的直线与对应的光源件的中心线之间的距离随着光源件距离发光区域的中心点距离的增大而逐渐增大。
继续参考图6,在设置每个光源件的发光单元及反射膜时,需满足第一距离D3大于第二距离D1(以第二光源件33为例,第一距离即为D3,第二距离为D1)。第一距离D3为反射膜的锥尖所在的沿所述衬底的厚度方向贯穿所述衬底的直线与发光区域的中心线之间的距离;第二距离D1为反射膜对应的发光单元的中心线与发光区域的中心线之间的距离。由图6中可看出,D3=D1+d2。
结合图5所示的结构,锥尖所在的沿所述衬底的厚度方向贯穿对应发光单元的直线将反射的光线划分为不同的方向,位于锥尖靠近发光区域中心点的一部分锥面可将发光单元发射的光线反射到朝向发光区域的中心位置。而位于锥尖远离发光区域中心点的一部分锥面可将发光单元发射的光线反射到背离发光区域的中心位置。因此,在申请实施例中采用上述随着光源件与发光区域中心点的距离逐渐增加,对应的第一距离逐渐增大的设置方案时,可使得远离发光区域中心点的光源件将更多的光线反射到发光区域中的中心。另外,位于发光区域边沿的光源件(第三光源件34和第五光源件36)的反射膜,锥尖沿所述衬底的厚度方向贯穿对应发光单元的直线位于光源件的边沿,从而使得发射的光线朝向发光区域中心区域发射,最大限度的降低了向相邻的发光区域发射的光线。
一并参考图7中的发光区域中的光源件31分光量与光源件31所在位置的关系,光源件31在分光时,分光效果以发光区域的中心点为中心,呈发散状设置。在图7中,O3点为发光区域中心点,O4点代表每个光源件31的中心线,O5点为每个光源件31的反射膜的锥尖。由图7中的俯视图可看出,O3点、O4点及O5点位于同一直线。在立体结构中,反射膜的锥尖在第一平面内的投影与发光区域的中心在第一平面内的投影之间的连接线为第一连接线,反射膜对应的发光单元的中心线与第一连接线相交;值得注意的是,第一平面是指平行于衬底的上表面或下表面的平面,衬底的上表面是指设有光源组件的表面,衬底的下表面与衬底的上表面相背离。由图7中可看出,同一行或者同一列或者呈斜线排成一行的光源件31中,沿远离发光区域中心点O3的方向,反射膜锥尖O5在所述第一平面的投影相比对应的光源件31的中心线(O4点)来说,与发光区域中心点O3在所述第一平面的投影之间的距离更远,从而使得光源件31发光区域朝向发光区域的边沿或者朝向发光区域内,避免了光线发散到相邻的发光区域中。
由上述描述可看出,本申请实施例提供的背光模组,通过采用不同发光方向光源件在发光区域内根据设计需求进行排布:发光区域中心的光源件向四周发光,使发光区域边缘的光源件向发光区域内部发光,既实现了均匀混光又抑制发光区域之间光线相互串扰。
参考图8,图8示出了本申请实施例提供的一种光源件31的结构示意图。光源件31包括发光单元311及反射膜313。发光单元311的结构可参考图5中的相关描述。在反射膜313与发光单元311连接时,反射膜313通过第一光学胶层314与发光单元311的顶部出光面粘接连接。示例性的,第一光学胶层314为透明胶层,以保证发光单元311的顶部出光面的光线可穿过第一光学胶层。
作为一个可选的方案,为方便光源件31的生产,光源件31还包括覆盖反射膜313的平坦层315,从而使得光源件31的顶部形成一个平整的平面,方便生产完整后通过抓取设备抓取。
在采用上述结构时,平坦层315可为第二光学胶层,反射膜313可为涂覆在第一光学胶层与第二光学胶层之间的镀层。示例性的,镀层可为铝镀层或者银镀层等具有高反射效果的涂层。
在具体制备时,首先在蓝宝石衬底上制作完LED工艺,形成发光单元,之后再发光单元311上形成透明胶314。在透明胶314上制作微结构,该微结构的形状对应反射膜313的形状,如圆锥形。制备好微结构后,在微结构的表面上整面蒸镀反射金属(Al或Ag)从而形成反射膜313。之后再制作平坦层,并抹平平坦层的最外表面,以利于抓取设备抓取光源件。
参考图9,图9示例出了另一种光源件31的结构示意图。光源件31包括发光单元311、第一光学胶层314以及平坦层315。其中,第一光学胶层314形成与发光单元311的顶部出光面连接。第一光学胶层314上形成与反射膜形成对应的锥形孔。平坦层315填充在锥形孔内。其中,平坦层315采用反光白胶,反光白胶可反射光线。因此,平坦层315与第一光学胶层314接触的面即可作为反射膜,从而简化了光源件31的结构,在制备形成平坦层315时即可形成上述的反射膜。
图10为基于图8或图9所示的光源件的一种变形。在图8或图9所示的反射膜313基础上增加了通光孔3131。在反射膜313为涂覆在第一光学胶层314的镀层、平坦层315采用第二光学胶层时,通光孔3131可为在镀层上开的孔。在反射膜313为反光白胶的一 个面时,通光孔3131为穿设在平坦层315的通孔。发光单元311发射的光线在照射到反射膜313时,可有部分光线穿过通光孔3131后设置,部分光线通过反射膜313反射。由上述描述可看出,通光孔3131也为反射膜313的一种分光方式。通过反射膜313可将光沿不同方向进行分光。
作为一个可选的方案,多个通光孔3131可均匀排布在反射膜313,或者根据混光的需要按照其他排布方式设置在反射膜313上。
本申请实施例还提供了一种显示屏,该显示屏包括上述任一项的背光模组以及与背光模组层叠设置的液晶层。通过采用反射膜进行分光,且沿光源件所在发光区域的中心到边缘的方向,反射膜向发光区域的中心方向分光的比例逐渐增大。以使得光源组件发射的光线在发光区域内具有良好的混光效果,改善了背光模组的发光效果。另外通过反射膜进行分光,便于背光模组的小型化。
本申请实施例还提供了一种显示装置,该显示装置包括上述任一项的背光模组以及与背光模组层叠设置的液晶层。通过采用反射膜进行分光,且沿光源件所在发光区域的中心到边缘的方向,反射膜向发光区域的中心方向分光的比例逐渐增大。以使得光源组件发射的光线在发光区域内具有良好的混光效果,改善了背光模组的发光效果。另外通过反射膜进行分光,便于背光模组的小型化。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种背光模组,其特征在于,包括衬底以及多个光源组件;其中,
    所述衬底具有阵列排列的多个发光区域;所述多个光源组件一一对应设置在所述多个发光区域;
    每个光源组件包括阵列排列的多个光源件,每个光源件包括发光单元以及用于对所述发光单元发射的光线进行分光的反射膜;沿所述光源件所在发光区域的中心到边缘的方向,所述反射膜向所述发光区域的中心方向分光的比例逐渐增大。
  2. 如权利要求1所述的背光模组,其特征在于,所述反射膜位于对应的所述发光单元的出光侧,所述反射膜朝向所述发光单元的顶部出光面,并用于对所述发光单元的顶部出光进行分光。
  3. 如权利要求2所述的背光模组,其特征在于,所述反射膜为锥形面;所述反射膜的锥尖朝向对应的发光单元的顶部出光面;且沿远离所述发光区域的中心的方向,所述反射膜的锥尖所在的沿所述衬底的厚度方向贯穿所述衬底的直线与对应的发光单元的中心线的距离逐渐增大,所述发光单元的中心线是指沿所述衬底的厚度方向贯穿所述发光单元的中心的直线。
  4. 如权利要求3所述的背光模组,其特征在于,所述反射膜的锥尖所在的沿所述衬底的厚度方向贯穿所述衬底的直线与所述发光区域的中心线之间的距离为第一距离,所述反射膜对应的所述发光单元的中心线与所述发光区域的中心线之间的距离为第二距离,则所述第一距离大于所述第二距离;其中,所述发光区域的中心线是指沿所述衬底的厚度方向贯穿所述发光区域的中心的直线。
  5. 如权利要求3或4所述的背光模组,其特征在于,所述反射膜的锥尖在第一平面内的投影与所述发光区域的中心在所述第一平面内的投影之间的连接线为第一连接线;所述反射膜对应的发光单元的中心线与所述第一连接线相交,所述第一平面平行于所述衬底的表面。
  6. 如权利要求1~5任一项所述的背光模组,其特征在于,所述反射膜上设置有多个通光孔。
  7. 如权利要求6所述的背光模组,其特征在于,所述多个通光孔均匀排布在所述反射膜。
  8. 如权利要求1~7任一项所述的背光模组,其特征在于,所述反射膜通过透明胶与所述发光单元的顶部出光面粘接连接。
  9. 如权利要求1~8任一项所述的背光模组,其特征在于,每个光源件还包括覆盖所述反射膜的平坦层。
  10. 如权利要求1~10任一项所述的背光模组,其特征在于,所述背光模组还包括扩散膜和棱镜增亮膜;所述扩散膜和所述棱镜增亮膜层叠设置;所述扩散膜相对于所述棱镜增亮膜更靠近所述多个光源组件。
  11. 如权利要求1~10任一项所述的背光模组,其特征在于,每个发光区域与显示屏的显示层显示区域一一对应。
  12. 一种显示屏,其特征在于,包括如权利要求1~10任一项所述的背光模组以及与所述背光模组层叠设置的液晶层。
PCT/CN2021/133915 2020-11-30 2021-11-29 一种背光模组及显示屏 WO2022111679A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023532468A JP2023552154A (ja) 2020-11-30 2021-11-29 バックライトモジュール及びディスプレイ画面
EP21897179.4A EP4231088A4 (en) 2020-11-30 2021-11-29 BACKLIGHT MODULE AND DISPLAY SCREEN
KR1020237020113A KR20230101916A (ko) 2020-11-30 2021-11-29 백라이트 모듈 및 디스플레이 스크린
US18/324,522 US11914247B2 (en) 2020-11-30 2023-05-26 Backlight module and display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011384672.9A CN114578614A (zh) 2020-11-30 2020-11-30 一种背光模组及显示屏
CN202011384672.9 2020-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,522 Continuation US11914247B2 (en) 2020-11-30 2023-05-26 Backlight module and display screen

Publications (1)

Publication Number Publication Date
WO2022111679A1 true WO2022111679A1 (zh) 2022-06-02

Family

ID=81754004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133915 WO2022111679A1 (zh) 2020-11-30 2021-11-29 一种背光模组及显示屏

Country Status (6)

Country Link
US (1) US11914247B2 (zh)
EP (1) EP4231088A4 (zh)
JP (1) JP2023552154A (zh)
KR (1) KR20230101916A (zh)
CN (1) CN114578614A (zh)
WO (1) WO2022111679A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967238A (zh) * 2022-07-26 2022-08-30 惠科股份有限公司 显示装置和背光模组及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115407561A (zh) * 2022-09-22 2022-11-29 上海天马微电子有限公司 分光膜、背光模组及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018122A1 (en) * 2004-07-23 2006-01-26 Negley Gerald H Reflective optical elements for semiconductor light emitting devices
CN101150159A (zh) * 2006-09-22 2008-03-26 鸿富锦精密工业(深圳)有限公司 发光二极管及其透镜体
CN101349397A (zh) * 2007-07-20 2009-01-21 深圳大学 一种背光***及其微结构反射片
CN101839445A (zh) * 2009-03-20 2010-09-22 上海向隆电子科技有限公司 背光模块中导光板的区段导光结构
CN201593724U (zh) * 2009-12-05 2010-09-29 金芃 Led背光源的采用带有凹部的直下式导光板的发光元件
CN201599653U (zh) * 2009-12-07 2010-10-06 金芃 Led背光源的采用带有反光物体阵列的直下式导光板的发光元件
JP2010251785A (ja) * 2005-02-03 2010-11-04 Samsung Electro-Mechanics Co Ltd 側面放出型発光ダイオードパッケージ
CN109445180A (zh) * 2018-10-31 2019-03-08 厦门天马微电子有限公司 一种背光模组及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163399B1 (ko) * 2005-12-26 2012-07-12 엘지디스플레이 주식회사 백라이트유닛 및 이를 구비한 액정표시장치
KR101255280B1 (ko) * 2008-02-22 2013-04-15 엘지디스플레이 주식회사 백라이트 유닛
US8297786B2 (en) * 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
CN104712957A (zh) * 2013-12-16 2015-06-17 富泰华精密电子(郑州)有限公司 直下式背光模组
JP6315179B2 (ja) * 2014-03-17 2018-04-25 Tianma Japan株式会社 面発光装置及び液晶表示装置
KR20190087069A (ko) * 2018-01-16 2019-07-24 서울바이오시스 주식회사 발광 소자 장치 및 이를 포함하는 백라이트 유닛
JP7177331B2 (ja) * 2018-06-29 2022-11-24 日亜化学工業株式会社 発光装置
CN110646983A (zh) * 2019-10-09 2020-01-03 深圳市隆利科技股份有限公司 面光源的背光装置及显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018122A1 (en) * 2004-07-23 2006-01-26 Negley Gerald H Reflective optical elements for semiconductor light emitting devices
JP2010251785A (ja) * 2005-02-03 2010-11-04 Samsung Electro-Mechanics Co Ltd 側面放出型発光ダイオードパッケージ
CN101150159A (zh) * 2006-09-22 2008-03-26 鸿富锦精密工业(深圳)有限公司 发光二极管及其透镜体
CN101349397A (zh) * 2007-07-20 2009-01-21 深圳大学 一种背光***及其微结构反射片
CN101839445A (zh) * 2009-03-20 2010-09-22 上海向隆电子科技有限公司 背光模块中导光板的区段导光结构
CN201593724U (zh) * 2009-12-05 2010-09-29 金芃 Led背光源的采用带有凹部的直下式导光板的发光元件
CN201599653U (zh) * 2009-12-07 2010-10-06 金芃 Led背光源的采用带有反光物体阵列的直下式导光板的发光元件
CN109445180A (zh) * 2018-10-31 2019-03-08 厦门天马微电子有限公司 一种背光模组及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231088A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967238A (zh) * 2022-07-26 2022-08-30 惠科股份有限公司 显示装置和背光模组及其控制方法
CN114967238B (zh) * 2022-07-26 2023-01-03 惠科股份有限公司 显示装置和背光模组及其控制方法
US11774800B1 (en) 2022-07-26 2023-10-03 HKC Corporation Limited Display device, backlight module and control method

Also Published As

Publication number Publication date
KR20230101916A (ko) 2023-07-06
US20230305332A1 (en) 2023-09-28
JP2023552154A (ja) 2023-12-14
EP4231088A4 (en) 2024-04-17
CN114578614A (zh) 2022-06-03
US11914247B2 (en) 2024-02-27
EP4231088A1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
CN106773315B (zh) 背光模组及液晶显示器
US7543965B2 (en) Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
KR100626479B1 (ko) 표시 장치 및 전자 기기
JP5085864B2 (ja) バックライトシステム及びそれを採用した液晶表示装置
CN106842701B (zh) 一种背光模组和液晶显示器
WO2022111679A1 (zh) 一种背光模组及显示屏
US20060077692A1 (en) Backlight unit and liquid crystal display apparatus employing the same
CN109143687B (zh) 背光模组、液晶显示模组以及电子设备
US8049838B2 (en) Direct light type backlight unit and color filterless liquid crystal display apparatus employing the same
WO2018214618A1 (zh) 背光模组及液晶显示装置
US8419258B2 (en) Light guide plate, and backlight unit
JP2020194740A (ja) 照明装置及び液晶表示装置
US20220113591A1 (en) Diffusion plate and backlight module
CN109557719B (zh) 一种具有半反半透导光板的直下式零od背光结构
KR20160051292A (ko) 렌즈, 렌즈를 포함하는 발광 장치, 및 발광 장치를 포함하는 백 라이트 유닛
WO2020087651A1 (zh) 背光模组及显示装置
JP2010123551A (ja) 面状光源及び液晶表示装置
TW200532316A (en) Backlight module of direct type point light source and liquid crystal display device using the same
WO2022032738A1 (zh) 背光模组及显示装置
US10732457B2 (en) Backlight module and display device having transparent substrate with a plurality of light source disposed thereon
CN113189814A (zh) 一种显示装置
WO2023123632A1 (zh) 背光模组及显示器
WO2018199011A1 (ja) バックライト
US10018778B2 (en) Liquid crystal display device
CN112987394A (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202347036502

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021897179

Country of ref document: EP

Effective date: 20230517

WWE Wipo information: entry into national phase

Ref document number: 2023532468

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237020113

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE