WO2022111677A1 - 载波信号的处理方法、通信装置及通信*** - Google Patents

载波信号的处理方法、通信装置及通信*** Download PDF

Info

Publication number
WO2022111677A1
WO2022111677A1 PCT/CN2021/133889 CN2021133889W WO2022111677A1 WO 2022111677 A1 WO2022111677 A1 WO 2022111677A1 CN 2021133889 W CN2021133889 W CN 2021133889W WO 2022111677 A1 WO2022111677 A1 WO 2022111677A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
carrier signal
carrier
clipping
unit
Prior art date
Application number
PCT/CN2021/133889
Other languages
English (en)
French (fr)
Inventor
龚政委
潘永朝
官仕国
林捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110351677.XA external-priority patent/CN114584446A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237018941A priority Critical patent/KR20230098857A/ko
Priority to EP21897177.8A priority patent/EP4231599A4/en
Publication of WO2022111677A1 publication Critical patent/WO2022111677A1/zh
Priority to US18/321,786 priority patent/US20230291628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/206Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a carrier signal processing method, a communication device, and a communication system.
  • the carrier signal to be sent is generally processed by a baseband module, a digital-to-analog/analog-to-digital conversion module, and a radio frequency module, and then sent out by an antenna unit.
  • performance indicators of different dimensions are usually introduced to characterize the relevant performance of the signal, such as safety performance indicators, demodulation performance indicators, power amplifier performance indicators, clipping performance indicators, and the degree of nonlinear distortion. indicators, etc.
  • safety performance indicators demodulation performance indicators
  • power amplifier performance indicators power amplifier performance indicators
  • clipping performance indicators clipping performance indicators
  • the power amplifier (PA) unit in the radio frequency module is responsible for the power amplification of the signal, and the performance of the power amplification is very sensitive to the amplitude variation of the signal.
  • the performance of power amplification is related to the peak-to-average power ratio (PAPR) of the signal, which is the ratio of the peak power of the signal to the average power.
  • PAPR peak-to-average power ratio
  • the instantaneous peak value of a signal with too large PAPR exceeds the peak withstand capability of the power amplifier unit, which may cause the power amplifier unit to burn out.
  • a possible way to deal with it is to clip the transmitted signal through the clipping technology to reduce the PAPR value of the signal within a certain range to ensure the safety of the power amplifier unit.
  • clipping techniques can introduce nonlinear distortion to the signal.
  • the signal error vector magnitude can be used to characterize the degree of nonlinear distortion.
  • the index of EVM corresponds to the modulation order (MO) of the signal.
  • MO modulation order
  • the upper limit of EVM of quadrature phase shift keying (QPSK) is 15%
  • 16 quadrature amplitude modulation (QAM) ) has an EVM cap of 11%
  • 256QAM has an EVM cap of 3.5%.
  • the clipping technology has a great impact on the communication performance.
  • the present application provides a carrier signal processing method, a communication device, and a communication system for improving communication performance degradation caused by clipping multiple carrier signals.
  • an embodiment of the present application provides a method for processing a carrier signal, the method is applied to a baseband unit or a part (such as a chip, a processor, etc.) in the baseband unit, and the method includes: according to at least two carrier signals Determine the clipping factors corresponding to the at least two carrier signals in the first time unit according to the scheduling information corresponding to each other in the first time unit; send the at least two carrier signals and the at least two carrier signals to the radio frequency unit
  • the clipping factors corresponding to the carrier signals in the first time unit respectively, and the clipping factors corresponding to the at least two carrier signals in the first time unit are used for clipping the combined signal of the at least two carrier signals deal with.
  • the clipping factors corresponding to the multiple carrier signals in the first time unit are determined according to the granularity of the time unit, and the corresponding clipping factors of the multiple carrier signals in the first time unit are sent to the radio frequency unit, so that the radio frequency unit
  • the clipping can be completed based on the granularity of the time unit, the clipping performance can be guaranteed, and the communication performance degradation caused by the clipping of multiple carrier signals can be improved.
  • the baseband unit sends to the radio frequency unit the clipping factors corresponding to the plurality of carrier signals in the first time unit, which can reduce the load of the transmission interface.
  • the baseband unit may send the scheduling information corresponding to the at least two carrier signals in the first time unit to the radio frequency unit, or may not send it to the radio frequency unit. In the case of not sending to the radio frequency unit, the load of the transmission interface can be further reduced.
  • the clipping factors corresponding to the at least two carrier signals in the first time unit are determined according to the scheduling information corresponding to the at least two carrier signals in the first time unit, respectively, Including: determining a reference carrier signal in the at least two carrier signals; according to the scheduling information corresponding to each carrier signal in the at least two carrier signals in the first time unit and the reference carrier signal in the The corresponding scheduling information in the first time unit is used to determine the clipping factor corresponding to each carrier signal.
  • the clipping factor corresponding to each carrier signal in the first time unit can be accurately determined according to the scheduling information of each carrier signal, which is beneficial to ensure the performance of clipping, and then Guarantees the communication performance after clipping the multi-carrier signal.
  • the impact of different carrier bandwidths and/or powers on clipping performance eg, on EVM metrics, is considered.
  • an embodiment of the present application provides a method for processing a carrier signal, the method is applied to a radio frequency unit or a part (such as a chip, a processor, etc.) in the radio frequency unit, the method includes: receiving at least a signal from a baseband unit The two carrier signals and the clipping factors corresponding to the at least two carrier signals in the first time unit respectively, and the clipping factors corresponding to the at least two carrier signals in the first time unit respectively correspond to the at least two Scheduling information corresponding to the respective carrier signals in the first time unit; according to the clipping factors respectively corresponding to the at least two carrier signals in the first time unit, the combined signal of the at least two carrier signals is Clipping is performed.
  • the clipping factors corresponding to the multiple carrier signals in the first time unit are determined according to the granularity of the time unit, and the corresponding clipping factors of the multiple carrier signals in the first time unit are sent to the radio frequency unit, so that the radio frequency unit
  • the clipping can be completed based on the granularity of the time unit, the clipping performance can be guaranteed, and the communication performance degradation caused by the clipping of multiple carrier signals can be improved.
  • the baseband unit sends to the radio frequency unit the clipping factors corresponding to the plurality of carrier signals in the first time unit, which can reduce the load of the transmission interface.
  • the baseband unit may send the scheduling information corresponding to the at least two carrier signals in the first time unit to the radio frequency unit, or may not send it to the radio frequency unit. In the case of not sending to the radio frequency unit, the load of the transmission interface can be further reduced.
  • the reliability of the clipping factor transmitted by the interface is judged based on the distributed architecture, which can ensure the reliability of clipping, thereby improving the communication performance degradation caused by the clipping of multi-carrier signals.
  • the clipping processing of the combined signal of the at least two carrier signals is canceled, and/or the transmission of the at least two carrier signals is canceled.
  • the combined signal of the carrier signals if the transmission of the clipping factor is unreliable, the clipping processing of the combined signal of the at least two carrier signals is canceled, and/or the transmission of the at least two carrier signals is canceled.
  • the first time unit is a time slot, a subframe or an OFDM symbol.
  • the scheduling information includes one or more of power, modulation order, and bandwidth.
  • factors in the scheduling information such as power, modulation order, and bandwidth, can be referred to when determining the clipping factor, which is beneficial to ensure the accuracy of the clipping factor, thereby ensuring the reliability of clipping, thereby improving the performance of multi-carrier Communication performance degradation due to signal clipping.
  • the relationship between the clipping factor and the parameter in the scheduling information is a function or a table. Based on the above solution, according to the function or table, the clipping factor corresponding to the carrier signal can be determined according to the parameter of the scheduling information corresponding to the carrier signal.
  • an embodiment of the present application provides a method for processing a carrier signal.
  • the method is applied to a baseband unit or to a part (such as a chip, a processor, etc.) in the baseband unit.
  • the method includes: according to at least two carrier signals The scheduling information corresponding respectively in the first time unit and the second clipping factor corresponding to the at least two carrier signals in the second time unit respectively, it is determined that the at least two carrier signals correspond respectively in the first time unit
  • the first clipping factor of , the first time unit is included in the second time unit; according to the first clipping factors corresponding to the at least two carrier signals in the first time unit, respectively
  • Each carrier signal of the two carrier signals is individually clipped; the clipped at least two carrier signals are sent to the radio frequency unit; wherein, the second clipping factor is used for the clipped at least two The combined signal of the two carrier signals is clipped.
  • the baseband unit performs a single clipping process on each carrier signal based on the first clipping factor corresponding to each carrier signal in the first time unit, and then sends the clipped carrier signal to the first time unit.
  • the radio frequency unit performs secondary clipping processing on the combined signal of the clipped carrier signal based on the second clipping factor to obtain a secondary clipped carrier signal.
  • the method is a two-stage clipping processing scheme based on the combination of the real-time clipping of the baseband unit and the semi-static clipping of the radio frequency unit, which can approach or exceed the real-time clipping performance of the radio frequency unit and improve the clipping of multiple carrier signals. The resulting communication performance is degraded.
  • the two-level clipping scheme is not sensitive to the reliability change of the transmission of the intermediate interface, so it is more flexible to use.
  • the scheduling information corresponding to the at least two carrier signals in the first time unit and the second clipping factor respectively corresponding to the at least two carrier signals in the second time unit determining the first clipping factors corresponding to the at least two carrier signals respectively in the first time unit, including: determining a reference carrier signal in the at least two carrier signals; The scheduling information corresponding to each carrier signal in the first time unit, the scheduling information corresponding to the reference carrier signal in the first time unit, and the at least two carrier signals corresponding to the second time unit respectively The second clipping factor is determined, and the first clipping factor corresponding to each carrier signal is determined.
  • the clipping factor corresponding to each carrier signal in the first time unit can be accurately determined according to the scheduling information of each carrier signal, which is beneficial to ensure the performance of clipping, and then Guarantees the communication performance after clipping the multi-carrier signal.
  • second clipping factors corresponding respectively to the at least two carrier signals from the radio frequency unit in the second time unit are received.
  • the radio frequency unit determines the second clipping factor, which reduces the computational overhead of the baseband unit.
  • a second clipping factor corresponding to each carrier signal in the second time unit is determined.
  • the baseband unit determines the second clipping factor, which reduces the computational overhead of the radio frequency unit.
  • the determining the second clipping factor corresponding to each carrier signal in the second time unit includes: according to the at least two carrier signals in each carrier signal in the a plurality of third clipping factors corresponding to the third time unit, determine the second clipping factor corresponding to each carrier signal in the second time unit, the third time unit is earlier than the third time unit in timing Two time units.
  • the determining the second clipping factor corresponding to each carrier signal in the second time unit includes: according to the at least two carrier signals in each carrier signal in the A plurality of first clipping factors corresponding to a second time unit, and a second clipping factor corresponding to each carrier signal in the second time unit is determined, and the second time unit includes a plurality of first time units unit.
  • the second clipping factor is determined based on statistical values or extreme values of multiple clipping factors.
  • the average or maximum value of multiple first clipping factors corresponding to each carrier signal in the first time unit is determined as the second clipping factor corresponding to the carrier signal in the second time unit.
  • the average or maximum value of multiple third clipping factors corresponding to each carrier signal in the third time unit is determined as the second clipping factor corresponding to the carrier signal in the second time unit.
  • a second clipping factor corresponding to the at least two carrier signals in a second time unit is sent to the radio frequency unit.
  • an embodiment of the present application provides a method for processing a carrier signal, the method is applied to a radio frequency unit or a part (such as a chip, a processor, etc.) in the radio frequency unit, the method includes: receiving clipping from a baseband unit The processed at least two carrier signals, the at least two carrier signals after the clipping process are individually clipped by using the first clipping factors corresponding to the at least two carrier signals in the first time unit respectively The carrier signal, the first clipping factor is based on the scheduling information corresponding to the at least two carrier signals in the first time unit and the first clipping factor corresponding to the at least two carrier signals in the second time unit.
  • the first time unit is included in the second time unit; according to the second clipping factors corresponding to the at least two carrier signals in the second time unit, the The clipped combined signal of the at least two carrier signals is subjected to clipping processing.
  • the baseband unit performs a single clipping process on each carrier signal based on the first clipping factor corresponding to each carrier signal in the first time unit, and then sends the clipped carrier signal to the first time unit.
  • the radio frequency unit performs secondary clipping processing on the combined signal of the clipped carrier signal based on the second clipping factor to obtain a secondary clipped carrier signal.
  • the method is a two-stage clipping processing scheme based on the combination of the real-time clipping of the baseband unit and the semi-static clipping of the radio frequency unit, which can approach or exceed the real-time clipping performance of the radio frequency unit, thereby improving the clipping of multiple carrier signals. Communication performance degradation caused by waves.
  • the two-level clipping scheme is not sensitive to the reliability change of the transmission of the intermediate interface, so it is more flexible to use.
  • a second clipping factor corresponding to each carrier signal in the second time unit is determined.
  • the radio frequency unit determines the second clipping factor, which reduces the computational overhead of the baseband unit.
  • the determining the second clipping factor corresponding to each carrier signal in the second time unit includes: placing each carrier signal in the at least two carrier signals in a The average or maximum value of multiple third clipping factors corresponding to the third time unit is determined as the second clipping factor corresponding to each carrier signal in the second time unit, and the third time The unit is chronologically earlier than the second unit of time.
  • the first time corresponding to the at least two carrier signals in the second time unit is sent to the baseband unit. Two clipping factors.
  • the determining the second clipping factor corresponding to each carrier signal in the second time unit includes: according to the at least two carrier signals in each carrier signal in the A plurality of first clipping factors corresponding to a second time unit, and a second clipping factor corresponding to each carrier signal in the second time unit is determined, and the second time unit includes a plurality of first time units unit.
  • the scheduling information corresponding to the second time unit sent by the baseband unit is received.
  • the scheduling information corresponding to the second time unit is pre-sent or sent in advance.
  • the second clipping factor is determined based on statistical values or extreme values of multiple clipping factors.
  • the average or maximum value of multiple first clipping factors corresponding to each carrier signal in the first time unit is determined as the second clipping factor corresponding to the carrier signal in the second time unit.
  • second clipping factors corresponding respectively to the at least two carrier signals from the baseband unit in the second time unit are received.
  • the baseband unit determines the second clipping factor, which reduces the computational overhead of the radio frequency unit.
  • the first time unit is a time slot, a subframe or an OFDM symbol.
  • the scheduling information includes at least one of power, modulation order, and bandwidth.
  • factors in the scheduling information such as power, modulation order, and bandwidth, can be referred to when determining the clipping factor, which is beneficial to ensure the accuracy of the clipping factor, thereby ensuring the reliability of clipping, thereby improving the performance of multi-carrier Communication performance degradation due to signal clipping.
  • the relationship between the first clipping factor and the parameter in the scheduling information is a function or a table. Based on the above solution, according to the function or table, the clipping factor corresponding to the carrier signal can be determined according to the parameter of the scheduling information corresponding to the carrier signal.
  • an embodiment of the present application provides a method for processing carrier signals, including: determining peak-valley information of at least two carrier signals in the time domain, where the peak-valley information includes peak information and/or trough information; the peak and valley information of the at least two carrier signals in the time domain, determine the offset of the at least two carrier signals in the time domain; according to the offset of the at least two carrier signals in the time domain, determine The adjusted at least two carrier signals; the adjusted at least two carrier signals are sent to the radio frequency unit.
  • the baseband unit can reduce the PAPR based on the relative shift of the multiple carrier signals in the time domain, thereby improving the communication performance degradation caused by clipping the multiple carrier signals. And when the solution is combined with clipping processing, the clipping pressure can be reduced, and the compromise between the safety of the power amplifier unit and the system EVM index can be better achieved.
  • determining the adjusted at least two carrier signals includes reducing peak superposition and/or trough superposition of the at least two carrier signals.
  • any two of the adjusted at least two carrier signals do not have peak superposition and/or trough superposition, or reduce peak superposition and/or trough superposition.
  • the determining the offset of the at least two carrier signals in the time domain according to the peak and valley information of the at least two carrier signals in the time domain includes: determining the A reference carrier signal in the at least two carrier signals; according to the peak and valley information of the reference carrier signal, determine the offset of the non-reference carrier signal in the at least two carrier signals relative to the reference carrier signal in the time domain quantity.
  • an embodiment of the present application provides a communication device, where the device may be a baseband unit or a chip used for the baseband unit.
  • the device has the function of implementing each implementation method of the first aspect, the third aspect or the fifth aspect. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, where the device may be a radio frequency unit or a chip used for the radio frequency unit.
  • the device has the function of implementing each implementation method of the second aspect or the fourth aspect. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, including a processor and a memory; the memory is used to store computer-executed instructions, and when the device is running, the processor executes the computer-executed instructions stored in the memory, so that the The apparatus executes the implementation methods of the above-mentioned first to fifth aspects.
  • an embodiment of the present application provides a communication apparatus, including a unit or means for performing each step of each implementation method of the above-mentioned first aspect to the fifth aspect.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the implementation methods of the first to fifth aspects above.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a processor, which is connected to a memory and used to call a program stored in the memory to execute the implementation methods of the first to fifth aspects above.
  • the memory may be located within the device or external to the device.
  • the processor includes one or more.
  • embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, each of the first to fifth aspects above The implementation method is executed.
  • embodiments of the present application further provide a computer program product, where the computer product includes a computer program, and when the computer program runs, the implementation methods of the above-mentioned first to fifth aspects are executed.
  • an embodiment of the present application further provides a chip system, including: a processor configured to execute the implementation methods of the above-mentioned first to fifth aspects.
  • an embodiment of the present application further provides a communication system, including a baseband unit for implementing any implementation method of the first aspect and/or a radio frequency unit for implementing any implementation method of the second aspect.
  • an embodiment of the present application further provides a communication system, including a baseband unit for implementing any implementation method of the third aspect and/or a radio frequency unit for implementing any implementation method of the fourth aspect.
  • an embodiment of the present application further provides a communication system, including a baseband unit for executing any implementation method of the fifth aspect and/or a radio frequency for receiving the adjusted at least two carrier signals from the baseband unit unit.
  • Fig. 1 is a distributed architecture in which the baseband unit and the radio frequency unit are separated;
  • FIG. 2 is a schematic diagram of a method for processing a carrier signal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a sequence operation provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another method for processing a carrier signal provided by an embodiment of the present application.
  • 5 is a schematic diagram of the relationship between the second time unit and the third time unit
  • FIG. 6 is a schematic diagram of another sequence operation provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another method for processing a carrier signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another communication apparatus provided by an embodiment of the present application.
  • the meaning of "at least two” means two or more.
  • “at least two” may also be expressed as “a plurality”, which have the same meaning, which are described here uniformly, and will not be repeated later. .
  • a carrier wave (carrier signal or carrier) is a physical concept that is a radio wave of a specific frequency.
  • a carrier wave is an electric wave generated by an oscillator and transmitted on a communication channel, and is modulated to transmit voice or other information.
  • the carrier is often used for information transmission, and the digital signal is modulated (frequency-converted) to a high-frequency carrier (because the higher the frequency, the longer the transmission distance), and then transmitted and received in the air.
  • Carrier signal baseband signal, radio frequency signal
  • the carrier signal can be understood as a signal corresponding to a system bandwidth, for example, a signal corresponding to a 5MHz/10MHz/20MHz bandwidth.
  • a signal composed of multiple adjacent 5MHz/10MHz/20MHz is a multi-carrier signal.
  • the frequency point spanned by the first 10MHz bandwidth carrier signal is [-5, 5]
  • the adjacent second 20MHz bandwidth carrier signal spans the frequency point [5, 25].
  • a baseband signal refers to a signal processed by a baseband unit (BBU).
  • BBU baseband unit
  • the baseband signal is generally a digital signal. If the baseband signal needs to be propagated through radio waves, it must be modulated to, for example, 700MHz or 2100MHz. This modulation process is generally implemented by radio frequency devices, which is to move the baseband signal corresponding to a single carrier or multiple carriers to a center frequency of 700MHz or 2100MHz.
  • a radio frequency signal refers to a signal processed by a radio unit (radio unit, RU).
  • RF signals are generally analog signals.
  • the carrier signal is the representation of the signal in the frequency domain dimension
  • the hardware processing entity used by the baseband signal to represent the carrier signal is the baseband unit
  • the radio frequency signal is used to represent the hardware processing of the carrier signal.
  • the entity is the radio frequency unit.
  • the baseband signal and the radio frequency signal can be mutually converted by some devices such as analog/digital conversion.
  • multiple carrier signals are also referred to as multi-channel carrier signals, multi-carrier signals, at least two carrier signals, or signals corresponding to multiple carriers respectively, which refer to the use of modulation technology in multi-channel communication to achieve multiplexing.
  • the carrier signal used includes two or more carrier signals.
  • a time unit refers to a unit corresponding to a time unit.
  • the time unit refers to a time unit or a scheduling unit in the time domain and/or frequency domain for information transmission, for example, the time unit (such as the first time unit, the second time unit, the third time unit, the fourth time unit etc.) can be a slot, a subframe, or an orthogonal frequency division multiplexing (OFDM) symbol, or a slot, or a radio frame, a micro-time A slot (mini slot or sub slot), multiple aggregated time slots, multiple aggregated subframes, symbols, etc., may also refer to a transmission time interval (transmission time interval, TTI), which is not limited in this application.
  • TTI transmission time interval
  • one or more time units of one time unit may contain an integer number of time units of another time unit in the time domain, or the length of one or more time units of one time unit in the time domain is equal to an integer number of another time unit Unit length of time unit and, for example, an integer number of symbols in a minislot/slot/subframe/radio frame, an integer number of minislots in a slot/subframe/radio frame, a subframe/radio frame
  • the frame includes an integer number of time slots
  • a radio frame includes an integer number of subframes, etc.
  • time units may be differentiated, marked or counted by indexing, marking or other means.
  • the scheduling information is information used to schedule carrier signals.
  • the scheduling information includes one or more of power, modulation order, or bandwidth.
  • the power may be the transmit power (or transmit power) of the carrier signal
  • the modulation order may be, for example, QPSK, 16QAM or 256QAM, etc.
  • the bandwidth may be the bandwidth occupied by the carrier signal.
  • the scheduling information in this embodiment of the present application is not limited to power, bandwidth or modulation order, and may also be other information used for scheduling carrier signals in practical applications.
  • one carrier signal corresponds to one scheduling information in one time unit.
  • scheduling information corresponding to a carrier signal in a time unit refers to scheduling information for scheduling the carrier signal in the time unit.
  • the scheduling information corresponding to the multiple carrier signals in one time unit can also be expressed as: the scheduling information corresponding to the multiple carrier signals in the time unit, that is, the scheduling information corresponding to each carrier signal Corresponds to a scheduling message.
  • the scheduling information can be used to calculate the clipping factor of the carrier signal.
  • the clipping factor corresponding to each carrier signal can be calculated according to the power corresponding to the multiple carrier signals respectively.
  • the clipping factor corresponding to each carrier signal may be calculated according to the power and/or bandwidth corresponding to the plurality of carrier signals respectively.
  • the transmitted signal needs to be clipped by the clipping technology to reduce the PAPR value of the signal within a certain range. , to ensure the safety of the power amplifier unit. That is, the signal needs to be clipped before the power amplifier.
  • clipping means that, for a signal whose amplitude fluctuates in the time domain or frequency domain, the amplitude is limited for the part whose fluctuation amplitude exceeds a certain threshold value, which is similar to the action of reducing the "peak part” of the fluctuating signal. Reducing the "peak” part of the signal is similar to adding a "clip” signal to the signal in the "peak” area, which can be defined as clipping noise in essence. Among them, the factor of clipping noise is called “clipping factor”.
  • the clipping factor can be understood as the ratio of the clipping noise distributed among different carriers. Compared with the basic carrier (or reference carrier) whose ratio is 1, the value of other carriers can be greater than, equal to or less than 1.
  • the clipping factor of carrier A is greater than 1, indicating that carrier A bears more clipping noise than the basic carrier;
  • the clipping factor of carrier B is equal to 1, indicating that carrier B bears less clipping noise than the basic carrier; carrier C bears less clipping noise;
  • the clipping factor is 1, indicating that carrier C suffers the same clipping noise as the base carrier. It is easy to understand that the clipping factor may also be referred to as a clipping parameter, a clipping coefficient or a clipping ratio, and the like.
  • individual clipping is performed for each carrier signal, which means that the clipping object is a signal corresponding to a single carrier.
  • clipping is performed on a combined signal of multiple carrier signals, which means that the object of clipping is a mixed signal of signals corresponding to multiple carriers respectively.
  • a baseband unit can support multiple radio frequency units.
  • the baseband unit + radio frequency unit multi-channel solution can well solve the indoor coverage of large venues.
  • Optical fiber transmission can be used between the baseband unit and the radio frequency unit, and the radio frequency unit is then connected to the antenna through coaxial cables and power dividers (couplers), that is, the trunk uses optical fibers, and the branch uses coaxial cables.
  • the baseband unit is mainly used to complete the baseband processing functions of the Uu interface (including but not limited to: coding, multiplexing, modulation or spread spectrum, etc.), Iub of the radio network controller (RNC) Interface functions, signaling processing, local and remote operation and maintenance functions, and base station system working status monitoring and alarm information reporting functions, etc.
  • RNC radio network controller
  • a radio unit (radio unit, RU) is mainly used to convert a digital carrier signal into a radio frequency signal, and transmit the radio frequency signal through an antenna.
  • the radio frequency unit includes, but is not limited to, an intermediate frequency module, a transceiver module, a power amplifier module or a filter module.
  • the IF module is used for modulation and demodulation of optical transmission, digital up-conversion, analog/digital conversion, etc.
  • the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal, and then transmits the radio frequency signal through the antenna port through the power amplifier module and the filter module.
  • the radio frequency unit may be a remote radio unit (radio remote unit, RRU) or an adaptive antenna unit (active antenna unit, AAU).
  • the radio frequency unit may or may not be remote.
  • the radio frequency unit and the baseband unit may be integrated into the same physical entity, such as a base station, without the radio frequency unit being remotely located.
  • radio frequency modules With the development of the integration of radio frequency modules in communication systems, a single radio frequency module will be used to process multiple carrier signals with different center frequencies at the same time. Further, the new features introduced by multi-carrier signals will bring more challenges to the clipping processing technology.
  • the scheduling information may include power or bandwidth, etc. Due to the different scheduling information of the carriers, the clipping performance may be affected. Different transmit powers may not match the clipping noise power introduced by the clipping of the radio frequency module. For another example, if the total bandwidth of signals corresponding to different carriers is different, the corresponding signal PAPRs may be different.
  • the embodiment of the present application introduces a method for optimizing clipping according to the multi-dimensional characteristics of a multi-carrier signal, which is used to improve the communication performance degradation caused by clipping the multi-carrier signal.
  • the embodiment of the present application introduces a method for determining the clipping factor corresponding to the multi-carrier signal according to the parameters in the scheduling information. The method includes the following steps:
  • Step A According to scheduling information corresponding to the multi-carrier signal (at least two carrier signals), the scheduling information includes one or more of power or bandwidth, etc., determine the clipping factors corresponding to the at least two carrier signals respectively.
  • the influence of the difference of the scheduling information corresponding to the carrier signal on the clipping performance is considered.
  • the effect of this difference on the clipping performance may be that the difference in the transmit power of the corresponding signals of different carrier signals causes the clipping noise power introduced by clipping to be mismatched with the signal transmit power of the respective carriers, resulting in different EVMs.
  • the difference in the bandwidth of the signals corresponding to the different carrier signals leads to the deterioration of the demodulation performance of the signals, or the like.
  • association relationship between the clipping factor corresponding to the carrier signal and one or more kinds of scheduling information corresponding to the carrier signal, and the association relationship may be a function or a table.
  • the scheduling information includes one or more of power, modulation order, or bandwidth.
  • Step B Apply clipping factors corresponding to the at least two carrier signals respectively to the at least two carrier signals.
  • a possible implementation is to apply the clipping factor to the multi-carrier signal. It is easy to understand that, in this implementation manner, it may be implemented by a unit or module having a clipping processing function (eg, the first module).
  • the first module performs step B after performing the above step A, that is, the determination of the clipping factor and the application of the clipping factor to the carrier signal may be performed by the first module.
  • the above-mentioned application of the clipping factor to the multi-carrier signal can be understood as that step A and step B are implemented in one module or unit.
  • the first module is a remote radio unit or a baseband unit.
  • the clipping factor is transmitted to a unit or module (such as a second module) that has a function of clipping processing.
  • the second module is a radio frequency unit, and the radio frequency unit then uses the clipping factor.
  • a wave factor is applied to the multi-carrier signal.
  • the first clipping factor is applied to the at least two carrier signals; the second clipping factor is transmitted to the unit or module with the function of clipping processing, and then the The unit or module of the clipping processing function performs clipping processing on the at least two carrier signals according to the second clipping factor.
  • the first clipping factor is determined according to the second clipping factor and scheduling information corresponding to the carrier signal. It can be understood that while the single-carrier signal is independently clipped by the first clipping factor, the determination of the first clipping factor can also consider the second clipping factor of the multi-carrier combined signal on the radio frequency side to further realize the multi-carrier signal. , Joint optimization of multi-level clipping. For an exemplary implementation, reference may be made to the relevant description of step 401 .
  • the transmission reliability verification of the interface can also be performed. , used to reduce the impact of transmit interface reliability on clipping performance.
  • An exemplary implementation can refer to the related description of FIG. 3 .
  • the clipping performance is optimized by considering the scheduling information corresponding to the multiple carrier signals.
  • the power and/or bandwidth of the carrier signal is different, which affects the clipping performance, and improves the communication performance degradation caused by clipping multiple carriers.
  • the baseband unit determines the clipping factors corresponding to the at least two carrier signals in the first time unit according to the scheduling information corresponding to the at least two carrier signals in the first time unit, and then uses The baseband unit performs clipping processing on the combined signal of the at least two carrier signals according to the clipping factors corresponding to the at least two carrier signals respectively in the first time unit. That is, the baseband unit determines the clipping factor, and the baseband unit performs clipping processing based on the determined clipping factor.
  • the radio frequency unit determines the clipping factors corresponding to the at least two carrier signals in the first time unit according to the scheduling information corresponding to the at least two carrier signals in the first time unit, and then uses The radio frequency unit performs clipping processing on the combined signal of the at least two carrier signals according to the clipping factors respectively corresponding to the at least two carrier signals in the first time unit. That is, the radio frequency unit determines the clipping factor, and the radio frequency unit performs clipping processing based on the determined clipping factor.
  • the baseband unit determines the clipping factors corresponding to the at least two carrier signals in the first time unit according to the scheduling information corresponding to the at least two carrier signals in the first time unit, and then uses The baseband unit sends the clipping factors corresponding to the at least two carrier signals in the first time unit to the radio frequency unit, and the radio frequency unit determines the corresponding clipping factors in the first time unit according to the at least two carrier signals respectively.
  • the combined signal of the at least two carrier signals is subjected to clipping processing. That is, the baseband unit determines the clipping factor, then sends the clipping factor to the radio frequency unit, and the radio frequency unit performs clipping processing based on the received clipping factor.
  • the baseband unit determines the first clipping factors corresponding to the at least two carrier signals in the first time unit according to the scheduling information corresponding to the at least two carrier signals in the first time unit respectively, Then, the baseband unit performs individual clipping processing on the at least two carrier signals according to the respective first clipping factors corresponding to the at least two carrier signals in the first time unit. Then the baseband unit sends the clipped at least two carrier signals to the radio frequency unit, and the radio frequency unit sends the at least two carrier signals to the at least two carrier signals according to the second clipping factors corresponding to the at least two carrier signals in the second time unit respectively. The combined signal is clipped.
  • the second time unit includes one or more first time units.
  • the first-level clipping processing is performed by the baseband unit
  • the second-level clipping processing is performed by the radio frequency unit.
  • the second clipping factors corresponding to the at least two carrier signals in the second time unit may be determined by the baseband unit, or may be determined by the radio frequency unit.
  • the baseband unit when determining the first clipping factors corresponding to the at least two carrier signals in the first time unit, the baseband unit also refers to the second clipping factors corresponding to the at least two carrier signals in the second time unit. factor.
  • the embodiments of the present application are not limited to the above four specific implementation methods. In practical applications, there may also be other implementation methods, such as the first clipping factor corresponding to the first time unit by the radio frequency unit according to the plurality of carrier signals in the first time unit.
  • the multiple carrier signals are individually clipped (ie, first-level clipping), and then the clipped combined signal of the multiple carrier signals is clipped (ie, second-level clipping).
  • the architecture includes a baseband unit and a radio frequency unit.
  • the baseband unit can send multiple carrier signals from an intermediate interface (such as a common public radio interface (CPRI), or an enhanced common public radio interface (e-CPRI), etc.) to the radio frequency unit for processing. Combined clipping.
  • the baseband unit first clips the multiple carrier signals individually, and then sends the clipped multiple carrier signals to the radio frequency unit through CPRI or e-CPRI for combining and clipping. It is easy to understand that the fact that the baseband unit individually clips the multiple carrier signals can also be understood as that each baseband subunit independently clips the signal corresponding to the single carrier.
  • the baseband unit and the radio frequency unit may not be separated from each other, but integrated into the same physical device.
  • the method for implementing the carrier signal processing method of the embodiment of the present application by the radio frequency unit and the baseband unit is used as an example for description.
  • other devices having the functions of the radio frequency unit and the baseband unit in the embodiments of the present application can also implement the carrier signal processing methods in the embodiments of the present application, which are not limited in the embodiments of the present application.
  • FIG. 2 a schematic diagram of a method for processing a carrier signal provided by an embodiment of the present application is shown.
  • This method is an implementation process of carrier processing corresponding to the third implementation method above.
  • the baseband unit generates different carrier signals based on the time unit scheduling, and the baseband unit determines the clipping factors corresponding to the multiple carrier signals in the time unit according to the multi-dimensional characteristics of the scheduling information, and transmits the clipping factors to the radio frequency.
  • the radio frequency unit performs clipping processing on the multi-carrier signal according to the clipping factor.
  • the method includes the following steps:
  • Step 201 The baseband unit determines clipping factors corresponding to the plurality of carrier signals in the first time unit according to the scheduling information corresponding to the plurality of carrier signals in the first time unit.
  • each carrier signal corresponds to one piece of scheduling information in the first time unit.
  • the scheduling information includes one or more of power, modulation order, and bandwidth. It is easy to understand that the scheduling information may also be other information for scheduling or modulating the carrier signal.
  • the clipping factor is determined according to the power and/or the bandwidth in the scheduling information, which reduces the influence on the clipping performance due to the different power and/or bandwidth of different carrier signals.
  • the clipping factor is related to the scheduling information, for example, the relationship between the clipping factor and the parameters in the scheduling information is a function, a table, or the like.
  • the clipping factor corresponding to the carrier signal can be determined according to the parameter of the scheduling information corresponding to the carrier signal.
  • the function here can be a function of any form, such as a hash function, a ratio function, and the like.
  • the table here can be a table in any form, such as a database table and the like.
  • the function is a ratio function, that is, according to one or more parameters (such as power, modulation order, bandwidth) of the scheduling information corresponding to a carrier signal in the first time unit, and a preconfigured or predefined reference carrier signal
  • the ratio between one or more parameters of the corresponding scheduling information in the first time unit is determined as the clipping factor corresponding to the carrier signal in the first time unit.
  • the function is a hash function, that is, one or more parameters of the scheduling information corresponding to a carrier signal in the first time unit are substituted into a pre-configured or predefined hash function to obtain the carrier signal in the first time unit.
  • the corresponding clipping factor in the time unit is a ratio function, that is, according to one or more parameters (such as power, modulation order, bandwidth) of the scheduling information corresponding to a carrier signal in the first time unit, and a preconfigured or predefined reference carrier signal The ratio between one or more parameters of the corresponding scheduling information in the first time unit is determined as the clipping factor corresponding to the carrier
  • the relationship between the clipping factor and the parameter in the scheduling information is a table.
  • Tables 1 to 3 below are different examples.
  • the power corresponding to the carrier signal The clipping factor corresponding to the carrier signal P1 F1 P2 F2 P3 F3 ... ...
  • the jth carrier signal is a reference carrier signal.
  • the first carrier signal may be pre-agreed, pre-configured or dynamically configured as the reference carrier signal, that is, the value of j here is 1; or the carrier signal with the highest power may be pre-agreed or pre-configured as the reference carrier signal, or That is, the value of j here is the number of the carrier signal with the highest power. That is to say, the selection of the reference carrier signal has various implementation manners, and the reference carrier signal may be one of the above-mentioned multiple carrier signals, or may be a predefined carrier signal, which is not limited in this embodiment of the present application.
  • the reference carrier signal when the reference carrier signal is dynamically configured, the reference carrier signal may also be dynamically exchanged between different network elements. For example, the index or identification of the carrier signal is dynamically exchanged, or other means capable of identifying the reference carrier signal.
  • the reference carrier signal in this embodiment of the present application may also be referred to as a basic carrier signal.
  • Step 202 The baseband unit sends the corresponding clipping factors of the plurality of carrier signals in the first time unit to the radio frequency unit.
  • the radio frequency unit receives the clipping factors corresponding to the plurality of carrier signals in the first time unit respectively.
  • the baseband unit sends clipping factors corresponding to the multiple carrier signals in the first time unit to the radio frequency unit through an intermediate interface (such as CPRI or e-CPRI, etc.) between the baseband unit and the radio frequency unit. , so that the radio frequency unit can receive the clipping factors corresponding to the plurality of carrier signals in the first time unit respectively.
  • an intermediate interface such as CPRI or e-CPRI, etc.
  • the baseband unit and the radio frequency unit can pre-agreed that the clipping factor corresponding to the jth carrier signal is 1, so the baseband unit can send the signal to the radio frequency unit.
  • the other n-1 clipping factors except the clipping factor corresponding to the jth carrier signal are sent, and the clipping factor corresponding to the jth carrier signal that has been agreed in advance is not sent.
  • the formula for determining the clipping factor of the carrier signal can be flexibly selected according to different performance requirements. For example, trigger conditions can be preconfigured, and when the performance meets a certain threshold, the clipping factor is calculated according to a preselected formula.
  • Step 203 the baseband unit sends the multiple carrier signals to the radio frequency unit.
  • the radio frequency unit receives the plurality of carrier signals.
  • timing restriction between the above steps 202 and 203 There is no timing restriction between the above steps 202 and 203 .
  • the two can be sent together, or they can be sent in different messages, but the order in which they are sent is not limited.
  • Step 204 the radio frequency unit performs clipping processing on the combined signal of the plurality of carrier signals according to the clipping factors corresponding to the plurality of carrier signals in the first time unit.
  • the radio frequency unit performs clipping processing on the combined signal of the multi-carrier signals corresponding to the first time unit based on the clipping factor.
  • the radio frequency unit performs clipping processing on the combined signal of the at least two carrier signals, for example, clipping clipping or Keneral clipping may be used.
  • the radio frequency unit applies the clipping factor 1 to the carrier signal 1 in the combined signal of the three carrier signals, and applies the clipping factor 2 to the carrier signal 2 in the combined signal of the three carrier signals,
  • the clipping factor 3 is applied to the carrier signal 3 in the combined signal of the three carrier signals, so as to realize clipping processing, and obtain a combined signal after clipping.
  • the combined signal can be understood as a representation in the time domain and becomes a signal.
  • a reasonable signal can be separated into a signal of multiple carriers, where multiple carriers can be understood as having different center carrier frequencies.
  • the clipping factors corresponding to the multiple carrier signals in the first time unit are determined according to the granularity of the time unit, and the corresponding clipping factors of the multiple carrier signals in the first time unit are sent to the radio frequency unit, so that the radio frequency unit
  • the clipping can be completed based on the granularity of the time unit, the clipping performance can be guaranteed, and the communication performance degradation caused by the clipping of multiple carrier signals can be improved.
  • the baseband unit and the radio frequency unit exchange information in an interface manner, the baseband unit sends to the radio frequency unit the clipping factors corresponding to the multiple carrier signals in the first time unit, which can reduce the load of the transmission interface.
  • the information transfer between the baseband unit and the radio frequency unit can be realized based on a certain transmission interface, and the realization of such a transmission interface can be optical fiber, but optical fiber transmission also has a certain error probability, and based on the error probability Interface transmission will affect the reliability of information transmission between the baseband unit and the radio frequency unit.
  • the radio frequency unit may further judge the transmission reliability of the clipping factor, and in the case that the transmission of the clipping factor is determined to be reliable, the radio frequency unit executes the above step 204.
  • the method for determining the transmission reliability of the clipping factor by the radio frequency unit may be, for example, a cyclic redundancy check (cyclic redundancy check, CRC) method.
  • CRC cyclic redundancy check
  • the baseband unit may cancel sending the combined signal of the multiple carrier signals.
  • the operation of clipping the combined signal of the plurality of carrier signals may not be performed, thereby reducing overhead.
  • the baseband unit determines the clipping factors corresponding to the plurality of carrier signals in the first time unit, and sends the corresponding clipping factors of the plurality of carrier signals in the first time unit to the radio frequency unit.
  • the radio frequency unit receives the clipping factors corresponding to the plurality of carrier signals in the first time unit, and judges the transmission reliability of the clipping factors.
  • the radio frequency unit performs clipping processing on the combined signal of the multiple carrier signals and sends it, or cancels sending the combined signal of the multiple carrier signals according to the judgment result of the transmission reliability.
  • FIG. 4 it is a schematic diagram of a method for processing a carrier signal according to an embodiment of the present application.
  • This method is an implementation process of carrier processing corresponding to the fourth implementation method above.
  • the baseband unit generates different carrier signals based on time unit scheduling, and the baseband unit determines the first clipping factors corresponding to the multiple carrier signals in the first time unit according to the multi-dimensional characteristics of the scheduling information, and based on the multiple carrier signals
  • the signal corresponds to the first clipping factor in the first time unit, and the multiple carrier signals are individually clipped (also called first-level clipping), and then the clipped multiple carrier signals are sent to the radio frequency.
  • the radio frequency unit further performs clipping (also referred to as secondary clipping) on the combined signal of the multiple carrier signals based on the second clipping factors corresponding to the multiple carrier signals in the second time unit.
  • the method includes the following steps:
  • Step 401 The baseband unit determines first clipping factors corresponding to the plurality of carrier signals in the first time unit according to the scheduling information respectively corresponding to the plurality of carrier signals in the first time unit.
  • the scheduling information respectively corresponding to the multiple carrier signals in the first time unit may be understood as a set of scheduling information of the multi-carrier signals in the first time unit.
  • the first clipping factor is related to the scheduling information, for example, the relationship between the first clipping factor and the parameters in the scheduling information is a function, a table, or the like.
  • the first clipping factor corresponding to the carrier signal can be determined according to the parameter of the scheduling information corresponding to the carrier signal.
  • the function here can be a function of any form, such as a hash function, a ratio function, and the like.
  • the table here can be a table in any form, such as a database table and the like.
  • the relationship between the first clipping factor and the parameter in the scheduling information is a function as an example.
  • the function is a ratio function, that is, according to one or more parameters (such as power, modulation order, bandwidth) of the scheduling information corresponding to a carrier signal in the first time unit, and a preconfigured or predefined reference carrier signal The ratio between one or more parameters of the corresponding scheduling information in the first time unit is determined as the first clipping factor corresponding to the carrier signal in the first time unit.
  • the function is a hash function, that is, one or more parameters of the scheduling information corresponding to a carrier signal in the first time unit are substituted into a pre-configured or predefined hash function to obtain the carrier signal in the first time unit. The corresponding first clipping factor in the time unit.
  • the baseband unit may adopt the method in the above-mentioned embodiment corresponding to FIG. 2 to determine the first clipping factors corresponding to the plurality of carrier signals in the first time unit respectively.
  • the baseband unit may adopt the method in the above-mentioned embodiment corresponding to FIG. 2 to determine the first clipping factors corresponding to the plurality of carrier signals in the first time unit respectively.
  • the baseband unit may determine the first clipping factor according to the second clipping factor.
  • the baseband unit receives the second clipping factor sent by the radio frequency unit, where the second clipping factor is used to clip the carrier signal in the second time unit.
  • the interaction of clipping factors is adopted, and the coupling of multi-level clipping factors is considered when the clipping factor is determined, so that the preprocessing of clipping (such as single-carrier clipping) and the combined signal of multiple carrier signals Coupling between clips further improves clipping performance.
  • the baseband unit may also use scheduling information corresponding to the plurality of carrier signals in the first time unit and second clipping factors corresponding to the plurality of carrier signals in the second time unit. , and determine the respective first clipping factors corresponding to the multiple carrier signals in the first time unit.
  • the second time unit includes one or more first time units.
  • the method for determining the first clipping factor is described below with reference to a specific example. It should be noted that this example itself does not constitute a limitation on the method for confirming the first clipping factor. This example illustrates the ratio function as an example.
  • the kth carrier signal is a reference carrier signal.
  • the first carrier signal may be pre-agreed or pre-configured as the reference carrier signal, that is, the value of k here is 1; or the carrier signal with the highest power may be pre-agreed or pre-configured as the reference carrier signal, that is, the The value of k is the number of the carrier signal with the highest power.
  • formula (3-1) Taking formula (3-1) as an example below, the formula (3-1) will be described with a specific example. And in the following example, the first carrier signal is used as the reference carrier signal, that is, k in the formula (3-1) takes a value of 1.
  • the second time unit is 1s
  • the first time unit is 1ms
  • the second time unit includes 1000 first time units.
  • the clipping factor corresponding to carrier signal 1 is:
  • the clipping factor corresponding to carrier signal 2 is:
  • the clipping factor corresponding to carrier signal 3 is:
  • the clipping factor corresponding to carrier signal 4 is:
  • the clipping factor corresponding to carrier signal 1 is:
  • the clipping factor corresponding to carrier signal 2 is:
  • the clipping factor corresponding to carrier signal 3 is:
  • the clipping factor corresponding to carrier signal 4 is:
  • the clipping factor corresponding to carrier signal 1 is:
  • the clipping factor corresponding to carrier signal 2 is:
  • the clipping factor corresponding to carrier signal 3 is:
  • the clipping factor corresponding to carrier signal 4 is:
  • the second clipping factors corresponding to the plurality of carrier signals in the second time unit may be determined by the radio frequency unit, and sent to the baseband unit before the above step 401 .
  • the second clipping factor of the radio frequency unit may be determined by the scheduling information set of the multi-carrier signal. maximum value) determines the second clipping factor.
  • the scheduling information set of the multi-carrier signal may be the scheduling information set in the second time unit, or may be the scheduling information set in the time period before the second time unit, for example, it may be the carrier signal in the third time unit.
  • the radio frequency unit acquires the pre-sent scheduling information set corresponding to the second time unit, the second time unit includes multiple first time units, and the radio frequency unit determines the multiple first time units according to the scheduling information corresponding to the multiple first time units.
  • the statistical value or extreme value of the clipping factor corresponding to the first time unit is used as the second clipping factor corresponding to the carrier signal in the second time unit.
  • the radio frequency unit may determine, according to a plurality of third clipping factors corresponding to each carrier signal in the third time unit, the second clipping factor corresponding to the carrier signal in the second time unit.
  • the third time unit is earlier than the second time unit in time sequence.
  • the radio frequency unit determines the average value of multiple third clipping factors corresponding to each carrier signal in the third time unit as the second clipping factor corresponding to the carrier signal in the second time unit.
  • the radio frequency unit determines the maximum value among multiple third clipping factors corresponding to each carrier signal in the third time unit as the second clipping factor corresponding to the carrier signal in the second time unit.
  • FIG. 5 it is a schematic diagram of the relationship between the second time unit and the third time unit.
  • the second time unit is 1s
  • the third time unit is 1s before the second time unit.
  • the third time unit includes a fourth time unit
  • the fourth time unit is 1 ms, that is, the third time unit includes 1000 fourth time units.
  • Each of the n carrier signals corresponds to 1000 third clipping factors in the third time unit. For example, it is determined that the second clipping factor corresponding to the first carrier signal in the second time unit is equal to the average value of 1000 third clipping factors corresponding to the first carrier signal in the third time unit.
  • the second clipping factor corresponding to the second carrier signal in the second time unit is equal to the average value of 1000 third clipping factors corresponding to the second carrier signal in the third time unit, and so on. For another example, determine that the second clipping factor corresponding to the first carrier signal in the second time unit is equal to the maximum value of 1000 third clipping factors corresponding to the first carrier signal in the third time unit, and determine The second clipping factor corresponding to the second carrier signal in the second time unit is equal to the maximum value of 1000 third clipping factors corresponding to the second carrier signal in the third time unit, and so on.
  • the second clipping factors corresponding to the above-mentioned multiple carrier signals in the second time unit may also be determined by the baseband unit, and sent to the radio frequency unit before the above step 404.
  • the baseband unit may determine a second clipping factor corresponding to each carrier signal in the second time unit according to a plurality of third clipping factors corresponding to each carrier signal in the third time unit.
  • the third time unit is earlier than the second time unit in time sequence.
  • the baseband unit determines the average value of multiple third clipping factors corresponding to each carrier signal in the third time unit as the second clipping factor corresponding to the carrier signal in the second time unit.
  • the baseband unit determines the maximum value among multiple third clipping factors corresponding to each carrier signal in the third time unit as the second clipping factor corresponding to the carrier signal in the second time unit.
  • Step 402 the baseband unit performs individual clipping processing on the plurality of carrier signals according to the first clipping factors corresponding to the plurality of carrier signals in the first time unit respectively.
  • first clipping factors corresponding to different carrier signals in the first time unit may be the same or different.
  • the baseband unit performs clipping processing on each carrier signal individually according to the first clipping factor corresponding to each carrier signal in the first time unit. For example, if there are n carrier signals, the first carrier signal will be clipped according to the first clipping factor corresponding to the first carrier signal, and the first carrier signal will be clipped according to the first clipping factor corresponding to the second carrier signal. The 2 carrier signals are clipped, and so on.
  • the baseband signals of each carrier in the multi-carrier may be generated in different baseband subunits, and the individual clipping processing for each carrier signal can be understood as each baseband subunit performs independent clipping processing on the signal corresponding to the single carrier. .
  • each baseband subunit clips the signal corresponding to a single carrier independently
  • the determination of its clipping factor can consider the scheduling information of other carriers in multiple carriers to ensure the joint optimization of the clipping factor to a certain extent; then consider the radio frequency side.
  • the determination of the clipping factor can also consider the clipping factor of the multi-carrier combined signal on the radio frequency side. Further realize the joint optimization of multi-carrier and multi-level clipping.
  • the first-level clipping of the baseband unit is to independently clip a single carrier in multiple carrier signals, which can be applied to clipping the combined signal of multiple carriers on the baseband side. Scenarios where waves can cause large delays.
  • the baseband unit may also perform clipping processing on the combined signal of multiple carrier signals.
  • the method for determining the clipping factor corresponding to the combined signal and applying the clipping factor can refer to the specific implementation, and can refer to the relevant descriptions in steps 201 and 202. The difference is that the baseband unit applies the clipping factor to perform clipping processing. .
  • Step 403 The baseband unit sends the clipped multiple carrier signals to the radio frequency unit.
  • the radio frequency unit receives the clipped multiple carrier signals.
  • Step 404 the radio frequency unit performs clipping processing on the combined signal of the multiple carrier signals after clipping processing according to the second clipping factors corresponding to the multiple carrier signals in the second time unit respectively.
  • the second clipping factor is used to perform clipping processing on the combined signal of the multiple carrier signals after clipping processing in step 402 .
  • the specific implementation method for the radio frequency unit to perform clipping processing on the combined signal of the multiple carrier signals after clipping may refer to the foregoing description, which will not be repeated here.
  • the baseband unit first determines the first clipping factors corresponding to the plurality of carrier signals in the first time unit, and based on the first clipping factors corresponding to the plurality of carrier signals in the first time unit, respectively Each carrier signal performs a single clipping process, and then sends the clipped carrier signal to the radio frequency unit, and the radio frequency unit performs a second clipping on the combined signal of the clipped carrier signal based on the second clipping factor. After processing, the carrier signal after the second clipping is obtained.
  • the multi-level clipping scheme may not depend on the reliability guarantee requirement of the transmission of the intermediate interface between the baseband unit and the radio frequency unit, so it is more flexible to use. It is easy to understand that it is not limited that the multi-level clipping scheme does not use the transmission reliability verification of the interface.
  • the multi-level clipping scheme is subjected to the transmission reliability verification of the interface.
  • the video unit determines the second clipping factors corresponding to the plurality of carrier signals in the second time unit, and sends the second clipping factors corresponding to the plurality of carrier signals in the second time unit to the baseband unit.
  • the baseband unit determines the plurality of carrier signals according to the received second clipping factors corresponding to the plurality of carrier signals in the second time unit and the scheduling information corresponding to the plurality of carrier signals in the first time unit. The corresponding first clipping factors in the first time unit respectively.
  • the baseband unit performs first clipping processing (also called first-level clipping processing) on the carrier signal according to the first clipping factor corresponding to each carrier signal in the first time unit, and then clips the carrier signal for the first time.
  • the processed multiple carrier signals are sent to the radio frequency unit.
  • the radio frequency unit receives the multiple carrier signals after clipping processing, and then according to the second clipping factors corresponding to the multiple carrier signals in the second time unit, respectively, on the multiple carrier signals after the clipping processing
  • the combined signal undergoes a second clipping process (also known as secondary clipping).
  • the radio frequency unit determines the second clipping factors corresponding to the plurality of carrier signals in the second time unit, and the second clipping factor corresponding to the plurality of carrier signals in the second time unit is determined.
  • the clipping factor is sent to the baseband unit.
  • the baseband unit may also determine the second clipping factors corresponding to the plurality of carrier signals in the second time unit, and then determine the second clipping factors corresponding to the plurality of carrier signals in the second time unit. Two clipping factors are sent to the RF unit.
  • the baseband unit and the radio frequency unit may also determine the second clipping factors corresponding to the multiple carrier signals in the second time unit respectively, and the second clipping factors determined by the two are the same.
  • the baseband unit and the radio frequency unit respectively determine the second clipping factor according to the same method for determining the clipping factor, so that the second clipping factor determined by the two is the same.
  • the method may be: according to each carrier A plurality of third clipping factors corresponding to the signal in the third time unit are determined, and second clipping factors corresponding to the carrier signal in the second time unit are determined.
  • the third time unit is earlier than the second time unit in time sequence.
  • the baseband unit and the radio frequency unit respectively determine the average value of a plurality of third clipping factors corresponding to each carrier signal in the third time unit as the second clipping factor corresponding to the carrier signal in the second time unit. wave factor.
  • the baseband unit and the radio frequency unit respectively determine the maximum value among a plurality of third clipping factors corresponding to each carrier signal in the third time unit as the second corresponding to the carrier signal in the second time unit. clipping factor.
  • the baseband unit determines a clipping factor, and the baseband unit performs clipping processing based on the clipping factor.
  • the radio frequency unit determines a clipping factor, and the radio frequency unit performs clipping processing based on the clipping factor.
  • the baseband unit determines the clipping factor, and the radio frequency unit performs clipping processing based on the clipping factor.
  • the clipping process may be implemented through the first implementation method or the third implementation method.
  • the clipping processing can be implemented by the above-mentioned second implementation method.
  • the above-mentioned first implementation method or the third implementation method can also be used to implement the clipping processing.
  • the baseband unit may also preprocess the multiple carrier signals before clipping. It should be noted that the following embodiment corresponding to FIG. 7 may be implemented independently, or may be combined with any of the aforementioned processing methods for carrier signals (such as the first implementation method, the second implementation method, and the third implementation method described above). , the fourth implementation method or other implementation methods) combined with the embodiment.
  • FIG. 7 it is a schematic diagram of another method for processing a carrier signal provided by an embodiment of the present application. It should be noted that the method in this embodiment may be executed by a baseband unit, or may be jointly executed by multiple baseband subunits in the baseband unit.
  • the method includes the following steps:
  • Step 701 the baseband unit determines the peak and valley information of multiple carrier signals in the time domain.
  • the peak and valley information of a carrier signal in the time domain is used to indicate the peak information and/or the trough information of the carrier signal in the time domain. That is, the peak and valley information includes peak information and/or valley information.
  • the baseband unit determines, among all the sample information of the carrier signal in the time domain, the information of the sample point sequence whose amplitude exceeds a certain threshold, including the sample point number and phase information.
  • the sample sequence if the phase of the sample is positive, the sample is a peak sample, and the peak information of the carrier signal in the time domain may include the information of the peak sample.
  • the valley information of the carrier signal in the time domain may include the information of the valley value sample point.
  • each carrier can be processed by an independent baseband subunit.
  • the above-mentioned baseband unit determines the peak and valley information of multiple carrier signals in the time domain. It can be understood that each baseband subunit The unit determines the peak and valley information of the time domain signal corresponding to the carrier.
  • the baseband unit shares the peak-to-valley information of the time-domain signal of the carrier corresponding to the multiple subunits to ensure that the first baseband subunit in the baseband unit obtains the time-domain signal of the carrier corresponding to the second baseband subunit in the baseband unit. peak and valley information.
  • Step 702 the baseband unit determines the offsets of the multiple carrier signals in the time domain according to the peak and valley information of the multiple carrier signals in the time domain.
  • each carrier signal in the time domain can be processed by an independent baseband subunit, and the determination of the offset of multiple carrier signals in the time domain by the baseband unit can be understood as that each baseband subunit. Determine the offset of the corresponding carrier signal in the time domain.
  • a carrier signal is selected from multiple carrier signals as a reference carrier signal, and the baseband subunit corresponding to the reference carrier signal can share the peak and valley information of the reference carrier signal with other baseband subunits, so that other baseband subunits can share the peak and valley information of the reference carrier signal.
  • the unit may determine the offset of its corresponding carrier signal (also referred to as a non-reference carrier signal) relative to the reference carrier signal in the time domain according to the peak and valley information of the reference carrier signal.
  • the offset in the time domain refers to introducing an additional time delay (ie offset) on the non-reference carrier signal relative to the reference carrier signal, and performing a time domain cyclic shift on the non-reference carrier signal . Based on this method, there is no superposition of peaks and/or troughs between the non-reference carrier signal and the reference carrier signal, or the superposition of peaks and/or troughs is reduced, thereby ensuring the safety of carrier signal transmission.
  • baseband subunits there are 5 baseband subunits, which are respectively represented as: baseband subunit 1 (corresponding to carrier signal 1), baseband subunit 2 (corresponding to carrier signal 2), baseband subunit 3 (corresponding to carrier signal 3), baseband subunit 4 (corresponding to carrier signal 4), baseband subunit 5 (corresponding to carrier signal 5).
  • baseband subunit 1 corresponding to carrier signal 1
  • baseband subunit 2 corresponding to carrier signal 2
  • baseband subunit 3 corresponding to carrier signal 3
  • baseband subunit 4 corresponding to carrier signal 4
  • baseband subunit 5 corresponding to carrier signal 5
  • carrier signal 1 is selected as a reference carrier signal
  • carrier signal 2 to carrier signal 5 are non-reference carrier signals.
  • the baseband subunit 1 shares the peak and valley information of the carrier signal 1 to the baseband subunit 2 to the baseband subunit 5, then the baseband subunit 2 can determine the carrier signal according to the peak and valley information of the carrier signal 1 and the peak and valley information of the carrier signal 2.
  • the offset relative to the carrier signal 1, the baseband subunit 3 can determine the offset of the carrier signal 3 relative to the carrier signal 1 according to the peak and valley information of the carrier signal 1 and the peak and valley information of the carrier signal 3, and the baseband subunit 4. According to the peak and valley information of the carrier signal 1 and the peak and valley information of the carrier signal 4, the offset of the carrier signal 4 relative to the carrier signal 1 can be determined, and the baseband subunit 5 can be based on the peak and valley information of the carrier signal 1 and the carrier signal 5. The peak and valley information of the carrier signal 5 determines the offset of the carrier signal 5 relative to the carrier signal 1 .
  • This method can reduce the peak and valley superposition between carrier signals to a certain extent, and at the same time minimize the information exchange between baseband sub-units, and can ensure the transmission of carrier signals without increasing the overhead of information exchange between baseband sub-units. security.
  • the method for determining the time-domain offset may be based on a predefined rule, for example, by looking up a table or by calculating a function.
  • Each baseband subunit sends the carrier signal to the radio frequency module according to the offset of the carrier signal in the time domain.
  • carrier signal 1 when there is no offset, carrier signal 1 is represented in the time domain as: x(0), x(1), . . . , x(N-1), The carrier signal 2 is represented in the time domain as: y(0), y(1), ..., y(N-1), where n is the sampling index value, that is, the nth sampling value, and N is the number of samples.
  • the carrier signal 1 as the reference carrier signal, if the offset is 1, the carrier signal 2 is cyclically shifted in the time domain to become: y(n-1), y(0), y(1), ... , y(n-2).
  • the offset is m
  • the carrier signal 2 is cyclically shifted in the time domain and becomes: y(n-m), ..., y(n-1), y(0), y(1), ..., y(n-m-1).
  • Step 703 The baseband unit determines the adjusted multiple carrier signals according to the offsets of the multiple carrier signals in the time domain.
  • each adjusted carrier signal can be processed by an independent baseband subunit, and the determination of the plurality of adjusted carrier signals by the baseband unit can be understood as that each baseband subunit determines the adjusted carrier signal.
  • determining the adjusted at least two carrier signals includes reducing peak superposition and/or trough superposition of the at least two carrier signals. It can be understood as realizing the relative shift of the time-domain signals between multiple carriers and reducing the PAPR.
  • the superposition of wave peaks among the plurality of carrier signals after adjustment is reduced or reduced compared to the superposition of wave peaks among the plurality of carrier signals before the adjustment.
  • the superposition of wave valleys among the plurality of carrier signals after adjustment is reduced or reduced compared with the superposition of wave valleys among the plurality of carrier signals before the adjustment.
  • wave crest superposition can be understood as wave crest alignment, or wave crest overlapping
  • wave trough superposition can be understood as wave trough alignment or wave trough overlapping.
  • Step 704 the baseband unit sends the adjusted multiple carrier signals to the radio frequency unit.
  • each adjusted carrier signal can be sent by an independent baseband sub-unit.
  • the above-mentioned baseband unit sends the adjusted multiple carrier signals to the radio frequency unit. It can be understood that each baseband sub-unit sends the adjusted signal to the radio frequency unit. of a carrier signal.
  • the baseband unit can reduce the PAPR based on the relative shift of the multiple carrier signals in the time domain, so that the PAPR of the combined signal of the multiple carrier signals can be reduced.
  • the baseband unit can reduce the PAPR, and No nonlinear distortion is introduced, reducing clipping pressure.
  • the carrier signal can be pre-processed before clipping, thereby further improving the problem of communication performance degradation caused by clipping multiple carrier signals.
  • FIG. 8 it is a schematic diagram of a communication apparatus according to an embodiment of the present application.
  • the apparatus is used to implement various steps performed by the corresponding baseband unit or radio frequency unit in the foregoing embodiments.
  • the apparatus 800 includes a transceiver unit 810 and a processing unit 820 .
  • the communication device is a baseband unit or a chip for a baseband unit, then:
  • the processing unit 820 is configured to determine the clipping factors corresponding to the at least two carrier signals in the first time unit according to the scheduling information respectively corresponding to the at least two carrier signals in the first time unit; the transceiver unit 810 is configured to use In order to send the at least two carrier signals and the clipping factors corresponding to the at least two carrier signals in the first time unit to the radio frequency unit, the clipping factors corresponding to the at least two carrier signals in the first time unit respectively The wave factor is used for clipping processing of the combined signal of the at least two carrier signals.
  • the processing unit 820 is specifically configured to determine a reference carrier signal in the at least two carrier signals; The corresponding scheduling information in a time unit and the scheduling information corresponding to the reference carrier signal in the first time unit determine the clipping factor corresponding to each carrier signal.
  • the first time unit is a time slot, a subframe or an OFDM symbol.
  • the scheduling information includes one or more of power, modulation order, and bandwidth.
  • F i represents the corresponding clipping factor of the i-th carrier signal in the at least two carrier signals in the first time unit
  • EVM i represents the i-th carrier signal in the first time unit
  • EVM j represents the error vector magnitude EVM threshold corresponding to the modulation order of the jth carrier signal in the first time unit
  • the jth carrier signal is the reference carrier signal;
  • F i represents the corresponding clipping factor of the i-th carrier signal in the at least two carrier signals in the first time unit
  • P i represents the i-th carrier signal in the first time unit
  • EVM i represents the error vector magnitude corresponding to the modulation order of the i -th carrier signal in the first time unit
  • EVM j represents the error vector magnitude EVM threshold corresponding to the modulation order of the jth carrier signal in the first time unit
  • the jth carrier signal is a reference carrier signal
  • the communication device is a radio frequency unit or a chip for a radio frequency unit, then:
  • a transceiver unit 810 configured to receive at least two carrier signals from the baseband unit and clipping factors corresponding to the at least two carrier signals in the first time unit, where the at least two carrier signals are in the first time unit
  • the clipping factors corresponding respectively correspond to the scheduling information respectively corresponding to the at least two carrier signals in the first time unit;
  • the processing unit 820 is configured to respectively correspond to the at least two carrier signals in the first time unit according to the at least two carrier signals
  • the corresponding clipping factor is used to perform clipping processing on the combined signal of the at least two carrier signals.
  • the processing unit 820 is further configured to, according to the clipping factors corresponding to the at least two carrier signals respectively in the first time unit, perform a synthesis of the at least two carrier signals Before performing clipping processing on the channel signal, it is determined that the transmission of the clipping factor is reliable.
  • the first time unit is a time slot, a subframe or an OFDM symbol.
  • the scheduling information includes one or more of power, modulation order, and bandwidth.
  • F i represents the corresponding clipping factor of the i-th carrier signal in the at least two carrier signals in the first time unit
  • EVM i represents the i-th carrier signal in the first time unit
  • EVM j represents the error vector magnitude EVM threshold corresponding to the modulation order of the jth carrier signal in the first time unit
  • the jth carrier signal is the reference carrier signal;
  • F i represents the corresponding clipping factor of the i-th carrier signal in the at least two carrier signals in the first time unit
  • P i represents the i-th carrier signal in the first time unit
  • EVM i represents the error vector magnitude corresponding to the modulation order of the i -th carrier signal in the first time unit
  • EVM j represents the error vector magnitude EVM threshold corresponding to the modulation order of the jth carrier signal in the first time unit
  • the jth carrier signal is a reference carrier signal
  • the communication device is a baseband unit or a chip for a baseband unit, then:
  • the processing unit 820 is configured to determine the at least a first clipping factor corresponding to two carrier signals in a first time unit, and the first time unit is included in the second time unit; corresponding to the at least two carrier signals in the first time unit, respectively
  • the first clipping factor of respectively performs clipping processing on each carrier signal of the at least two carrier signals
  • the transceiver unit 810 is configured to send the clipped at least two carrier signals to the radio frequency unit; wherein,
  • the second clipping factor is used to perform clipping processing on the combined signal of the clipped at least two carrier signals.
  • the processing unit 820 is configured to, according to the scheduling information corresponding to the at least two carrier signals in the first time unit and the at least two carrier signals corresponding respectively in the second time unit
  • the second clipping factor is determined, and the first clipping factor corresponding to the at least two carrier signals in the first time unit is determined, which specifically includes: determining a reference carrier signal in the at least two carrier signals; using according to the scheduling information corresponding to each of the at least two carrier signals in the first time unit, the scheduling information corresponding to the reference carrier signal in the first time unit, and the at least one
  • the second clipping factor corresponding to the two carrier signals respectively in the second time unit is determined, and the first clipping factor corresponding to each carrier signal is determined.
  • the transceiver unit 810 is further configured to receive a second clipping factor corresponding to the at least two carrier signals from the radio frequency unit in a second time unit.
  • the processing unit 820 is further configured to determine a second clipping factor corresponding to each carrier signal in the second time unit.
  • the processing unit 820 configured to determine the second clipping factor corresponding to each carrier signal within the second time unit, specifically includes: A plurality of third clipping factors corresponding to each carrier signal in the third time unit among the carrier signals, determine the second clipping factor corresponding to each carrier signal in the second time unit, and the third The third time unit is chronologically earlier than the second time unit.
  • the transceiver unit 810 is further configured to send the second clipping factors corresponding to the at least two carrier signals in the second time unit to the radio frequency unit.
  • the first time unit is a time slot, a subframe or an OFDM symbol.
  • the scheduling information includes at least one of power, modulation order, and bandwidth.
  • the second time unit includes m first time units, and the number of the at least two carrier signals is n;
  • the second time unit includes m first time units, and the number of the at least two carrier signals is n;
  • the first clipping factor corresponding to the i-th carrier signal in the at least two carrier signals in the j-th first time unit in the second time unit represents the second clipping factor corresponding to the i-th carrier signal in the second time unit
  • represents the EVM threshold corresponding to the modulation order of the i-th carrier signal in the j-th first time unit in the second time unit Indicates the EVM threshold corresponding to the modulation order of the kth carrier signal in the jth first time unit in the second time unit
  • the second time unit includes m first time units, and the number of the at least two carrier signals is n;
  • the first clipping factor corresponding to the i-th carrier signal in the at least two carrier signals in the j-th first time unit in the second time unit represents the second clipping factor corresponding to the i-th carrier signal in the second time unit
  • the kth carrier signal is a reference carrier signal
  • the communication device is a radio frequency unit or a chip for a radio frequency unit, then:
  • the transceiver unit 810 is configured to receive at least two carrier signals after clipping processing from the baseband unit, where the at least two carrier signals after clipping processing are respectively corresponding to the first time unit using the at least two carrier signals
  • the carrier signal after the first clipping factor is individually clipped Determined by the second clipping factor corresponding to the carrier signal in the second time unit, the first time unit is included in the second time unit;
  • the processing unit 820 is configured to The clipping processing is performed on the combined signal of the at least two carrier signals after the clipping processing according to the corresponding second clipping factors in the second time unit.
  • the processing unit 820 is further configured to determine a second clipping factor corresponding to each carrier signal in the second time unit.
  • the processing unit 820 configured to determine the second clipping factor corresponding to each carrier signal in the second time unit, specifically includes: being configured to convert the at least two The average or maximum value of a plurality of third clipping factors corresponding to each carrier signal in the third time unit in the carrier signals is determined as the second corresponding value of each carrier signal in the second time unit
  • the clipping factor, the third time unit is temporally earlier than the second time unit.
  • the transceiver unit 810 is further configured to send the at least two carrier signals to the baseband unit before receiving the clipped at least two carrier signals from the baseband unit The corresponding second clipping factors in the two time units respectively.
  • the transceiver unit 810 is further configured to receive a second clipping factor corresponding to the at least two carrier signals from the baseband unit in a second time unit.
  • the first time unit is a time slot, a subframe or an OFDM symbol.
  • the scheduling information includes at least one of power, modulation order, and bandwidth.
  • the second time unit includes m first time units, and the number of the at least two carrier signals is n;
  • the second time unit includes m first time units, and the number of the at least two carrier signals is n;
  • the first clipping factor corresponding to the i-th carrier signal in the at least two carrier signals in the j-th first time unit in the second time unit represents the second clipping factor corresponding to the i-th carrier signal in the second time unit
  • represents the EVM threshold corresponding to the modulation order of the i-th carrier signal in the j-th first time unit in the second time unit Indicates the EVM threshold corresponding to the modulation order of the kth carrier signal in the jth first time unit in the second time unit
  • the second time unit includes m first time units, and the number of the at least two carrier signals is n;
  • the first clipping factor corresponding to the i-th carrier signal in the at least two carrier signals in the j-th first time unit in the second time unit represents the second clipping factor corresponding to the i-th carrier signal in the second time unit
  • the kth carrier signal is a reference carrier signal
  • the communication device is a baseband unit or a chip for a baseband unit, then:
  • the processing unit 820 is configured to determine peak-valley information of at least two carrier signals in the time domain, where the peak-valley information includes peak information and/or trough information; according to the peak-to-valley information of the at least two carrier signals in the time domain information, determine the offset of the at least two carrier signals in the time domain; determine the adjusted at least two carrier signals according to the offset of the at least two carrier signals in the time domain; the transceiver unit 810, It is used for sending the adjusted at least two carrier signals to the radio frequency unit.
  • any two of the adjusted at least two carrier signals do not have peak superposition and/or trough superposition or have reduced peak and/or trough superposition.
  • the processing unit 820 is configured to determine the offset of the at least two carrier signals in the time domain according to the peak and valley information of the at least two carrier signals in the time domain , which specifically includes: for determining a reference carrier signal in the at least two carrier signals; for determining a non-reference carrier signal in the at least two carrier signals relative to the reference carrier signal according to the peak and valley information of the reference carrier signal The offset of the reference carrier signal in the time domain.
  • the above communication device 800 may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above units may interact or be coupled with the storage unit to implement corresponding methods or Function.
  • the processing unit 820 may read data or instructions in the storage unit, so that the communication apparatus implements the methods in the above embodiments.
  • each unit in the device can be implemented in the form of software calling through the processing element; also all can be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing element, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the device to be implemented, and can also be stored in the memory in the form of a program, which can be called by a certain processing element of the device and execute the unit's processing. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above apparatuses may be one or more integrated circuits configured to implement the above methods, eg, one or more application specific integrated circuits (ASICs), or, one or more Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • a unit in the apparatus can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can invoke programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above transceiver unit 810 is an interface circuit of the device, used to receive signals from or send signals to other devices.
  • the transceiver unit 810 is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit to send signals to other chips or devices.
  • the communication apparatus includes: a processor 910 and an interface 930 , and optionally, the communication apparatus further includes a memory 920 .
  • the interface 930 is used to implement communication with other devices.
  • the method performed by the baseband unit or the radio frequency unit in the above embodiments may be implemented by the processor 910 calling a program stored in a memory (which may be the memory 920 in the baseband unit or the radio frequency unit, or an external memory). That is, the baseband unit or the radio frequency unit may include a processor 910, and the processor 910 executes the method performed by the baseband unit or the radio frequency unit in the above method embodiments by calling the program in the memory.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the baseband unit or radio frequency unit may be implemented by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessor DSPs, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementations may be combined.
  • the functions/implementation process of the transceiver unit 810 and the processing unit 820 in FIG. 8 may be implemented by the processor 910 in the communication apparatus 900 shown in FIG. 9 calling computer executable instructions stored in the memory 920 .
  • the function/implementation process of the processing unit 820 in FIG. 8 can be implemented by the processor 910 in the communication device 900 shown in FIG. 9 calling the computer-executed instructions stored in the memory 920, and the function of the transceiver unit 810 in FIG. 8
  • the implementation process can be implemented through the interface 930 in the communication device 900 shown in FIG. 9 .
  • At least one item (single, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • “Plurality" means two or more, and other quantifiers are similar.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • an embodiment of the present application provides a communication device, and the device may be a baseband unit or a chip for the baseband unit.
  • the device has the function of realizing the baseband unit in any of the above-mentioned embodiments. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, and the device may be a radio frequency unit or a chip used for the radio frequency unit.
  • the device has the function of implementing the radio frequency unit in any of the above embodiments. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device including a processor and a memory; the memory is used to store computer-executed instructions, and when the device is running, the processor executes the computer-executed instructions stored in the memory , so that the apparatus performs the method performed by the baseband unit in any of the above embodiments.
  • an embodiment of the present application provides a communication device including a processor and a memory; the memory is used to store computer-executed instructions, and when the device is running, the processor executes the computer-executed instructions stored in the memory , so that the apparatus executes the method executed by the radio frequency unit in any of the foregoing embodiments.
  • an embodiment of the present application provides a communication apparatus, including a unit or means for performing each step of the method performed by the baseband unit in any of the foregoing embodiments.
  • an embodiment of the present application provides a communication apparatus, including a unit or means for performing each step of the method performed by the radio frequency unit in any of the foregoing embodiments.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the operation performed by the baseband unit in any of the foregoing embodiments.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the radio frequency unit in any of the foregoing embodiments.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a processor, which is connected to a memory and used to call a program stored in the memory to execute the execution by the baseband unit in any of the foregoing embodiments.
  • the memory may be located within the device or external to the device.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a processor, which is connected to a memory and used to call a program stored in the memory to execute the radio frequency unit in any of the foregoing embodiments.
  • the memory may be located within the device or external to the device.
  • the processor includes one or more.
  • an embodiment of the present application further provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the method in any of the foregoing embodiments can be implement.
  • an embodiment of the present application further provides a computer program product, where the computer product includes a computer program, and when the computer program runs, the method in any of the foregoing embodiments is executed.
  • an embodiment of the present application further provides a chip system, including: a processor configured to execute the method executed by the baseband unit in any of the foregoing embodiments.
  • an embodiment of the present application further provides a chip system, including: a processor configured to execute the method executed by the radio frequency unit in any of the foregoing embodiments.
  • an embodiment of the present application further provides a communication system, including the baseband unit in the method in any of the foregoing embodiments and/or the radio frequency unit in the method in any of the foregoing embodiments.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • Software units can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or this.
  • RAM Random Access Memory
  • ROM read-only memory
  • EPROM memory read-only memory
  • EEPROM memory electrically erasable programmable read-only memory
  • registers hard disk, removable disk, CD-ROM or this.
  • a storage medium may be coupled to the processor such that the processor may read information from, and store information in, the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium may be provided in the ASIC.
  • the above-described functions described herein may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, the functions may be stored on, or transmitted over, a computer-readable medium in the form of one or more instructions or code.
  • Computer-readable media includes computer storage media and communication media that facilitate the transfer of a computer program from one place to another. Storage media can be any available media that a general-purpose or special-purpose computer can access.
  • Such computer-readable media may include, but are not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that can be used to carry or store instructions or data structures and Other media in the form of program code that can be read by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly defined as a computer-readable medium, for example, if software is transmitted from a website site, server or other remote source over a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless, and microwave are also included in the definition of computer-readable media.
  • DSL digital subscriber line
  • the discs and magnetic discs include compact discs, laser discs, optical discs, digital versatile discs (English: Digital Versatile Disc, DVD for short), floppy discs and Blu-ray discs. Disks usually reproduce data magnetically, while Discs usually use lasers to optically reproduce data. Combinations of the above can also be included in computer readable media.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Transmitters (AREA)

Abstract

本申请实施例提供载波信号的处理方法、通信装置及通信***。该方法包括:根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定至少两个载波信号在第一时间单元内分别对应的削波因子;向射频单元发送至少两个载波信号以及至少两个载波信号在第一时间单元内分别对应的削波因子,该至少两个载波信号在第一时间单元内分别对应的削波因子用于至少两个载波信号的合路信号的削波处理。该方案,实时地匹配削波因子与多个载波信号在第一时间单元内分别对应的调度信息,可提升削波的性能,使射频单元可基于实时收到的削波因子对载波信号进行削波处理,可用于改善对多载波信号削波导致的通信性能下降。

Description

载波信号的处理方法、通信装置及通信***
相关申请的交叉引用
本申请要求在2020年11月30日提交中国专利局、申请号为202011380681.0、申请名称为“载波信号的处理方法、通信装置及通信***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年03月31日提交中国专利局、申请号为202110351677.X、申请名称为“载波信号的处理方法、通信装置及通信***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及载波信号的处理方法、通信装置及通信***。
背景技术
无线通信***中,所需发送的载波信号一般经过基带模块、数模/模数转换模块及射频模块等处理后再由天线单元发送出去。在信号处理过程中,通常会引入不同维度的性能指标用于表征信号的相关性能,例如,安全性能指标,解调性能指标,功放性能指标,削波性能指标和用于表征非线性失真的程度的指标等。在***设计过程中,一般需要综合考虑到多个性能指标以保证通信质量。
射频模块中的功放(power amplifier,PA)单元负责信号的功率放大,且功率放大的性能对信号的幅度变化非常敏感。一般地,功率放大的性能和信号的峰均比(peak-to-average power ratio,PAPR)有关,峰均比是信号峰值功率与平均功率的比值。PAPR过大的信号的瞬时峰值超过功放单元的峰值承受能力,可能会引起功放单元烧毁。一种可能的应对方式是通过削波技术对所发送的信号进行削波,将信号的PAPR值降低在一定范围内,确保功放单元的安全性。然而,削波技术会对信号引入非线性失真。一般地,可以使用信号误差矢量幅度(error vector magnitude,EVM)来表征非线性失真的程度。EVM的指标与信号的调制阶数(modulation order,MO)对应,例如正交相移键控(quadrature phase shift keying,QPSK)的EVM上限为15%,16正交幅度调制(quadrature amplitude modulation,QAM)的EVM上限为11%,256QAM的EVM上限为3.5%。EVM越大,失真越大,进而影响通信性能。
在多个载波信号的场景下,削波技术对通信性能的影响较大。
发明内容
本申请提供载波信号的处理方法、通信装置及通信***,用于改善对多个载波信号削波导致的通信性能下降。
第一方面,本申请实施例提供一种载波信号的处理方法,该方法应用于基带单元或应用于基带单元内的部分(如芯片、处理器等),该方法包括:根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定所述至少两个载波信号在第一时间单元内分别对应的削波因子;向射频单元发送所述至少两个载波信号以及所述至少两个载波信号在第一 时间单元内分别对应的削波因子,所述至少两个载波信号在第一时间单元内分别对应的削波因子用于所述至少两个载波信号的合路信号的削波处理。
基于该方案,按照时间单元粒度确定多个载波信号在第一时间单元内分别对应的削波因子并向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子,使得射频单元可以基于时间单元粒度完成削波,可以保障削波的性能,从而可以改善多个载波信号削波导致的通信性能下降。并且,基带单元向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子,可以降低传输接口的负载。
其中,基带单元可以将所述至少两个载波信号在第一时间单元内分别对应的调度信息发送给射频单元,也可以不发送给射频单元。在不发送给射频单元的情况下,可以进一步降低传输接口的负载。
在一种可能的实现方法中,所述根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定所述至少两个载波信号在第一时间单元内分别对应的削波因子,包括:确定所述至少两个载波信号中的参考载波信号;根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息和所述参考载波信号在所述第一时间单元内对应的调度信息,确定所述每个载波信号对应的削波因子。
基于上述方案,考虑了各个载波信号的调度信息的差异,根据各个载波信号的调度信息可以准确确定各个载波信号在第一时间单元内分别对应的削波因子,有利于保障削波的性能,进而保障对多载波信号削波后的通信性能。在一些可选的实现方式中,考虑了不同载波带宽和/或功率对削波性能的影响,例如,对EVM指标的影响。
第二方面,本申请实施例提供一种载波信号的处理方法,该方法应用于射频单元或应用于射频单元内的部分(如芯片、处理器等),该方法包括:接收来自基带单元的至少两个载波信号以及所述至少两个载波信号在第一时间单元内分别对应的削波因子,所述至少两个载波信号在第一时间单元内分别对应的削波因子对应于所述至少两个载波信号在所述第一时间单元内分别对应的调度信息;根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理。
基于该方案,按照时间单元粒度确定多个载波信号在第一时间单元内分别对应的削波因子并向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子,使得射频单元可以基于时间单元粒度完成削波,可以保障削波的性能,从而可以改善多个载波信号削波导致的通信性能下降。并且,基带单元向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子,可以降低传输接口的负载。
其中,基带单元可以将所述至少两个载波信号在第一时间单元内分别对应的调度信息发送给射频单元,也可以不发送给射频单元。在不发送给射频单元的情况下,可以进一步降低传输接口的负载。
在一种可能的实现方法中,所述根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理之前,确定所述削波因子的传输是可靠的。
上述方案,基于分布式架构对接口传输的削波因子的可靠性进行判断,可以确保削波的可靠性,从而可以改善多载波信号削波导致的通信性能下降。
在一种可能的实现方法中,若所述削波因子的传输是不可靠的,则取消对所述至少两个载波信号的合路信号的削波处理,和/或取消发送所述至少两个载波信号的合路信号。
基于上述第一方面的任意实现方法或第二方面的任意实现方法:
在一种可能的实现方法中,所述第一时间单元为时隙、子帧或者正交频分复用符号。
在一种可能的实现方法中,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
基于上述方案,在确定削波因子时可以参考调度信息中的因素,如功率、调制阶数、带宽,有利于保障削波因子的准确性,进而确保削波的可靠性,从而改善对多载波信号削波导致的通信性能下降。
在一种可能的实现方法中,削波因子与调度信息中的参数的关联关系是函数或表格。基于上述方案,根据该函数或表格,可以根据载波信号对应的调度信息的参数确定出该载波信号对应的削波因子。
在一种可能的实现方法中,削波因子与调度信息中的参数的关联关系可以是:F i=P j/P i
Figure PCTCN2021133889-appb-000001
Figure PCTCN2021133889-appb-000002
Figure PCTCN2021133889-appb-000003
其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限;BW i表示所述第i个载波信号在所述第一时间单元内的带宽,BW j表示所述第j个载波信号在所述第一时间单元内的带宽,
Figure PCTCN2021133889-appb-000004
表示所述第i个载波信号在所述第一时间单元内对应的削波修正因子,所述
Figure PCTCN2021133889-appb-000005
与所述第i个载波信号在所述第一时间单元内的带宽有关,
Figure PCTCN2021133889-appb-000006
表示所述第j个载波信号在所述第一时间单元内对应的削波修正因子,所述
Figure PCTCN2021133889-appb-000007
与所述第j个载波信号在所述第一时间单元内的带宽有关,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
第三方面,本申请实施例提供一种载波信号的处理方法,该方法应用于基带单元或应用于基带单元内的部分(如芯片、处理器等),该方法包括:根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,所述第一时间单元包含于所述第二时间单元;根据所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,分别对所述至少两个载波信号的每个载波信号进行单独削波处理;向射频单元发送削波处理后的至少两个载波信号;其中,所述第二削波因子用于对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
上述方案,先由基带单元基于各个载波信号在第一时间单元内分别对应的第一削波因子分别对每个载波信号进行单独的一次削波处理,然后将一次削波后的载波信号发送给射 频单元,射频单元基于第二削波因子对削波后的载波信号的合路信号进行二次削波处理,得到二次削波后的载波信号。该方法是基于基带单元的实时削波与射频单元的半静态削波相结合的两级削波处理方案,可以逼近或超过射频单元的实时削波的性能,改善了对多个载波信号削波导致的通信性能下降。并且,该两级削波方案,对中间接口的传输的可靠性变化不敏感,因此使用更为灵活。
在一种可能的实现方法中,所述根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,包括:确定所述至少两个载波信号中的参考载波信号;根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息、所述参考载波信号在所述第一时间单元内对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述每个载波信号对应的第一削波因子。
基于上述方案,考虑了各个载波信号的调度信息的差异,根据各个载波信号的调度信息可以准确确定各个载波信号在第一时间单元内分别对应的削波因子,有利于保障削波的性能,进而保障对多载波信号削波后的通信性能。
在一种可能的实现方法中,接收来自所述射频单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
基于该方案,由射频单元确定第二削波因子,减轻了基带单元的计算开销。
在一种可能的实现方法中,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子。
基于该方案,由基带单元确定第二削波因子,减轻了射频单元的计算开销。
在一种可能的实现方法中,所述确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,包括:根据所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于第二时间单元。
在一种可能的实现方法中,所述确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,包括:根据所述至少两个载波信号中每个载波信号在第二时间单元内对应的多个第一削波因子,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第二时间单元包括多个第一时间单元。
可选的,基于多个削波因子的统计值或极值确定第二削波因子。可选的,将每个载波信号在第一时间单元内对应的多个第一削波因子的平均值或最大值,确定为该载波信号在第二时间单元内对应的第二削波因子。
可选的,将每个载波信号在第三时间单元内对应的多个第三削波因子的平均值或最大值,确定为该载波信号在第二时间单元内对应的第二削波因子。在一种可能的实现方法中,向所述射频单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
第四方面,本申请实施例提供一种载波信号的处理方法,该方法应用于射频单元或应用于射频单元内的部分(如芯片、处理器等),该方法包括:接收来自基带单元削波处理后的至少两个载波信号,所述削波处理后至少两个载波信号是使用所述至少两个载波信号在第一时间单元内分别对应的第一削波因子进行单独削波处理后的载波信号,所述第一削波因子是根据所述至少两个载波信号在所述第一时间单元内分别对应的调度信息和所述 至少两个载波信号在第二时间单元内分别对应的第二削波因子确定的,所述第一时间单元包含于所述第二时间单元;根据所述至少两个载波信号在所述第二时间单元内分别对应的第二削波因子,对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
上述方案,先由基带单元基于各个载波信号在第一时间单元内分别对应的第一削波因子分别对每个载波信号进行单独的一次削波处理,然后将一次削波后的载波信号发送给射频单元,射频单元基于第二削波因子对削波后的载波信号的合路信号进行二次削波处理,得到二次削波后的载波信号。该方法是基于基带单元的实时削波与射频单元的半静态削波相结合的两级削波处理方案,可以逼近或超过射频单元的实时削波的性能,从而可以改善对多个载波信号削波导致的通信性能下降。并且,该两级削波方案,对中间接口的传输的可靠性变化不敏感,因此使用更为灵活。
在一种可能的实现方法中,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子。
基于该方案,由射频单元确定第二削波因子,减轻了基带单元的计算开销。
在一种可能的实现方法中,所述确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,包括:将所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子的平均值或最大值,确定为所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于所述第二时间单元。
在一种可能的实现方法中,所述接收来自基带单元削波处理后的至少两个载波信号之前,向所述基带单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
在一种可能的实现方法中,所述确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,包括:根据所述至少两个载波信号中每个载波信号在第二时间单元内对应的多个第一削波因子,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第二时间单元包括多个第一时间单元。
可选的,接收基带单元发送的第二时间单元对应的调度信息。可选的,该第二时间单元对应的调度信息是预发送的或提前发送的。
可选的,基于多个削波因子的统计值或极值确定第二削波因子。可选的,将每个载波信号在第一时间单元内对应的多个第一削波因子的平均值或最大值,确定为该载波信号在第二时间单元内对应的第二削波因子。
在一种可能的实现方法中,接收来自所述基带单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
基于该方案,由基带单元确定第二削波因子,减轻了射频单元的计算开销。
基于上述第三方面的任意实现方法或第四方面的任意实现方法:
在一种可能的实现方法中,所述第一时间单元为时隙、子帧或者正交频分复用符号。
在一种可能的实现方法中,所述调度信息包括功率、调制阶数、带宽中的至少一种。
基于上述方案,在确定削波因子时可以参考调度信息中的因素,如功率、调制阶数、带宽,有利于保障削波因子的准确性,进而确保削波的可靠性,从而改善对多载波信号削波导致的通信性能下降。
在一种可能的实现方法中,第一削波因子与调度信息中的参数的关联关系是函数或表格。基于上述方案,根据该函数或表格,可以根据载波信号对应的调度信息的参数确定出 该载波信号对应的削波因子。
在一种可能的实现方法中,第一削波因子与调度信息中的参数的关联关系可以是:
Figure PCTCN2021133889-appb-000008
其中,
Figure PCTCN2021133889-appb-000009
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000010
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000011
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000012
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000013
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
Figure PCTCN2021133889-appb-000014
表示所述第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
第五方面,本申请实施例提供一种载波信号的处理方法,包括:确定至少两个载波信号在时域上的峰谷信息,所述峰谷信息包括波峰信息和/或波谷信息;根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量;根据所述至少两个载波信号在时域上的偏移量,确定调整后的至少两个载波信号;向射频单元发送调整后的至少两个载波信号。
上述方案,基带单元可以基于多个载波信号在时域上的相对移位,实现降低PAPR,从而改善了对多个载波信号削波导致的通信性能下降。并且当该方案结合削波处理,可以减轻削波压力,更好的实现功放单元安全性以及***EVM指标之间的折中。
在一种可能的实现方法中,确定调整后的至少两个载波信号包括减少所述至少两个载波信号的波峰叠加和/或波谷叠加。
在一种可能的实现方法中,所述调整后的至少两个载波信号中的任意两个载波信号不存在波峰叠加和/或波谷叠加,或者减少波峰叠加和/或波谷叠加。
在一种可能的实现方法中,所述根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量,包括:确定所述至少两个载波信号中的参考载波信号;根据所述参考载波信号的峰谷信息,确定所述至少两个载波信号中的非参考载波信号相对于所述参考载波信号在时域上的偏移量。
第六方面,本申请实施例提供一种通信装置,该装置可以是基带单元,还可以是用于基带单元的芯片。该装置具有实现上述第一方面、第三方面或第五方面的各实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请实施例提供一种通信装置,该装置可以是射频单元,还可以是用于射频单元的芯片。该装置具有实现上述第二方面或第四方面的各实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个 与上述功能相对应的模块。
第八方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面至第五方面的各实现方法。
第九方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面至第五方面的各实现方法的各个步骤的单元或手段(means)。
第十方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面至第五方面的各实现方法。该处理器包括一个或多个。
第十一方面,本申请实施例提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面至第五方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第十二方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得上述第一方面至第五方面的各实现方法被执行。
第十三方面,本申请实施例还提供一种计算机程序产品,该计算机产品包括计算机程序,当计算机程序运行时,使得上述第一方面至第五方面的各实现方法被执行。
第十四方面,本申请实施例还提供一种芯片***,包括:处理器,用于执行上述第一方面至第五方面的各实现方法。
第十五方面,本申请实施例还提供一种通信***,包括用于执行上述第一方面的任意实现方法的基带单元和/或用于执行上述第二方面的任意实现方法的射频单元。
第十六方面,本申请实施例还提供一种通信***,包括用于执行上述第三方面的任意实现方法的基带单元和/或用于执行上述第四方面的任意实现方法的射频单元。
第十七方面,本申请实施例还提供一种通信***,包括用于执行上述第五方面的任意实现方法的基带单元和/或用于从基带单元接收调整后的至少两个载波信号的射频单元。
附图说明
图1为基带单元和射频单元分离的分布式架构;
图2为本申请实施例提供的一种载波信号的处理方法示意图;
图3为本申请实施例提供的一种时序操作示意图;
图4为本申请实施例提供的又一种载波信号的处理方法示意图;
图5为第二时间单元与第三时间单元之间的关系示意图;
图6为本申请实施例提供的又一种时序操作示意图;
图7为本申请实施例提供的又一种载波信号的处理方法示意图;
图8为本申请实施例提供的一种通信装置示意图;
图9为本申请实施例提供的又一种通信装置示意图。
具体实施方式
本申请实施例中,“至少两个”的含义是两个或两个以上,以下也可以将“至少两个”表 述为“多个”,其具有相同含义,这里统一说明,后面不再赘述。
以下对本申请实施例中的术语和概念作出介绍。
一、载波
载波(carrier wave,carrier signal或carrier)是一个物理概念,是一个特定频率的无线电波。
在通信技术上,载波是由振荡器产生并在通讯信道上传输的电波,被调制后用来传送语音或其它信息。在无线通道上,常常使用载波进行信息传递,将数字信号调制(变频)到一个高频载波上(因为频率越高,传输距离越长),然后在空中进行发射和接收。
二、载波信号、基带信号、射频信号
载波信号可以理解为对应于一个***带宽的信号,比如一个5MHz/10MHz/20MHz带宽对应的信号。多个相邻的5MHz/10MHz/20MHz构成的信号就是多载波信号。比如第一个10MHz带宽的载波信号跨越的频点是[-5,5],相邻第二个20MHz带宽的载波信号跨越的频点是[5,25]。
基带信号,指的是由基带单元(baseband unit,BBU)处理的信号。基带信号一般为数字信号。基带信号如果需要通过电波传播,那么还要调制到例如700MHz或2100MHz,这个调制流程一般由射频器件实现,就是将单个载波或多个载波对应的基带信号搬移到中心频点为700MHz或2100MHz。
射频信号,指的是由射频单元(radio unit,RU)处理的信号。射频信号一般为模拟信号。
载波信号、基带信号与射频信号之间的关系是:载波信号是信号在频域维度的表征;基带信号用于表征载波信号的硬件处理实体是基带单元;射频信号用于表征载波信号的硬件处理实体是射频单元。基带信号与射频信号之间可以通过模/数转换等一些器件进行相互转换。
本申请实施例中,多个载波信号也称为多路载波信号、多载波信号、至少两个载波信号或多个载波分别对应的信号,指的是多路通信中使用调制技术实现多路复用的载波信号,包括两路或两路以上的载波信号。
三、时间单元
本申请实施例中,示例性的,时间单元是指一种时间单位对应的一个单元。该时间单位是指用于进行信息传输的时域和/或频域内的时间单位或者调度单位,例如该时间单元(如第一时间单元、第二时间单元、第三时间单元、第四时间单元等)可以是时隙(slot)、子帧(subframe)或者正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是指时隙(slot),还可是指无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,还可以是指传输时间间隔(transmission time interval,TTI),本申请不做限定。其中,一种时间单位的一个或多个时间单元时域内可以包含整数个另一种时间单位的时间单元,或者一种时间单位的一个或多个时间单元时域内长度等于整数个另一种时间单位的时间单元长度和,例如,一个微时隙/时隙/子帧/无线帧内包含整数个符号,一个时隙/子帧/无线帧内包含整数个微时隙,一个子帧/无线帧内包含整数个时隙,一个无线帧包含整数个子帧等,也可以存在其余包含举例,本申请不做限定。
在本申请中,时间单元可以通过索引、标识或其他途径,对不同时间单元进行区分、标记或计数。
四、调度信息
本申请实施例中,调度信息为用于调度载波信号的信息,示例性的,调度信息包括功率、调制阶数或带宽中的一个或多个。这里的功率可以是载波信号的发射功率(或发送功率),调制阶数比如可以是QPSK、16QAM或256QAM等,带宽可以是载波信号占用的带宽。需要说明的是,本申请实施例中的调度信息不限于功率、带宽或调制阶数,在实际应用中还可以是其它用于调度载波信号的信息。
本申请实施例中,一个载波信号在一个时间单元内对应一个调度信息。示例性的,一个载波信号在一个时间单元内对应的调度信息,指的是用于调度该时间单元内的该载波信号的调度信息。对于多个载波信号的情况,多个载波信号在一个时间单元内分别对应的调度信息,也可以表述为:该时间单元内的多个载波信号分别对应的调度信息,也即由每个载波信号对应一个调度信息。
调度信息可用于计算载波信号的削波因子。比如可以根据多个载波信号分别对应的功率,计算每个载波信号分别对应的削波因子。再比如可以根据多个载波信号分别对应的功率和/或带宽,计算每个载波信号分别对应的削波因子。
五、削波、削波噪声、削波因子
由于PAPR过大的信号的瞬时峰值超过功放单元的峰值承受能力,会引起功放单元烧毁,因此实际***中需要通过削波技术对所发送信号进行削波,将信号的PAPR值降低在一定范围内,确保功放单元的安全性。也即,在功放之前需要对信号进行削波处理。
示例性的,削波是指针对一个在时域或频域幅度波动的信号,针对波动幅度超过某个门限值的部分进行幅度限制,类似于将波动信号的“峰值部分”进行消减动作。实现信号的“峰值”部分消减类似于对“峰值”区域的信号增加一部分“消峰”信号,本质上这部分“消峰”信号可定义为削波噪声。其中,削波噪声的因子称为“削波因子”。
削波因子可以理解为不同载波间分配承受削波噪声的比例,相比于基本载波(或者称为参考载波)的比例为1,其他载波的值可以是大于,等于或小于1。示例性的,载波A的削波因子大于1,说明载波A比基本载波承受的削波噪声多;载波B的削波因子等1,说明载波B比基本载波承受的削波噪声少;载波C的削波因子为1,说明载波C与基本载波承受相同的削波噪声。容易理解的,削波因子也可以称为削波参数,削波系数或削波比例等。
比如,针对每个载波信号进行单独削波,指的是削波对象为单个载波对应的信号。再比如,针对多个载波信号的合路信号进行削波,指的是削波对象为多个载波分别对应的信号的混合信号。
需要说明的是,削波因子使用是否合理,会影响信号的EVM指标和PAPR指标,并最终影响功放的安全性。
六、射频单元、基带单元
一个基带单元可以支持多个射频单元。采用基带单元+射频单元多通道方案,可以很好地解决大型场馆的室内覆盖。
基带单元与射频单元之间可以采用光纤传输,射频单元再通过同轴电缆及功分器(耦合器)等连接至天线,即主干采用光纤,支路采用同轴电缆。
基带单元(baseband unit,BBU),主要用于完成Uu接口的基带处理功能(包括但不限于:编码、复用、调制或扩频等)、无线网络控制器(radio network controller,RNC)的 Iub接口功能、信令处理、本地和远程操作维护功能,以及基站***的工作状态监控和告警信息上报功能,等等。
射频单元(radio unit,RU),主要用于将数字载波信号转换成射频信号,并将射频信号通过天线发射出去。示例性地,射频单元中包括但不限于:中频模块、收发信机模块、功放模块或滤波模块。中频模块用于光传输的调制解调、数字上下变频、模/数转换等。收发信机模块完成中频信号到射频信号的变换,再经过功放模块和滤波模块,将射频信号通过天线口发射出去。其中,射频单元可以是远端射频单元(radio remote unit,RRU)或自适应天线单元(active antenna unit,AAU)。
本申请实施例中,射频单元可以拉远,也可以不拉远。
在一种实现方法中,在射频单元不拉远的情况下,射频单元和基带单元可以集成于同一个物理实体,如基站中。
随着通信***的射频模块的集成度发展,单个射频模块会用于同时处理多个中心频点不同的载波信号。进一步地,多载波信号引入的新特征又会给削波处理技术带来更多的挑战。
考虑到不同载波信号可能对应于不同的调度信息,例如该调度信息可以包括功率或带宽等,因载波的调度信息的不同,可能会对削波性能产生影响,例如,因不同载波信号对应的信号发送功率不同,可能会出现与射频模块的削波引入的削波噪声功率不匹配,再例如,不同载波对应信号的总带宽不同,其对应的信号PAPR可能不同。本申请实施例介绍如何根据多载波信号的多维特征进行削波优化的方法,用于改善因对多载波进行削波产生的通信性能下降。
上述介绍到,考虑到不同载波可能对应于不同的调度信息,一般需要基于多载波信号的多维特征进行削波优化,例如根据多载波信号对应的功率、调制阶数或带宽等中的一种或多种确定削波因子,本申请实施例介绍一种如何根据调度信息中的参数确定多载波信号对应的削波因子的方法。该方法包括以下步骤:
步骤A:根据多载波信号(至少两个载波信号)对应的调度信息,该调度信息包括功率或带宽等中的一种或多种,确定该至少两个载波信号分别对应的削波因子。
也就是在确定载波信号对应的削波因子,即在确定载波信号承受削波噪声的比例时,考虑到载波信号对应的调度信息的差异性对削波性能的影响。示例性的,这种差异性对削波性能的影响可以是不同载波信号对应信号的发送功率的差异导致削波引入的削波噪声功率和各自载波的信号发送功率不匹配,引起EVM不同。或者可以是不同载波信号对应信号的带宽的差异导致信号的解调性能恶化等。
可以理解为,载波信号对应的削波因子与该载波信号对应的调度信息中的一种或多种存在关联关系,该关联关系可以是函数或者表格。
在一种可能的实现方式中,该调度信息包括功率、调制阶数或带宽等中的一种或多种。
步骤B:将该至少两个载波信号分别对应的削波因子应用到该至少两个载波信号上。
一种可能的实现方式为,将该削波因子应用到该多载波信号上。容易理解的,该实现方式下,可以是由具有削波处理功能的单元或模块(如第一模块)实现的。一种可能的方式中,第一模块执行上述步骤A后执行步骤B,也就是削波因子的确定和将削波因子应用在载波信号上可以是第一模块执行的。上述将削波因子应用到该多载波信号上可以理解为, 步骤A和步骤B是在一个模块或单元实现的。可选的,第一模块为射频拉远单元或基带单元。
另一种可能的实现方式中,将该削波因子传输到具有进行削波处理功能的单元或模块上(如第二模块),例如,第二模块为射频单元,再由射频单元将该削波因子应用到该多载波信号上。
一种可能的实现方式中,将第一削波因子应用到该至少两个载波信号上;将第二削波因子传输到具有进行削波处理功能的单元或模块上,再由有该具有进行削波处理功能的单元或模块根据第二削波因子对该至少两个载波信号进行削波处理。示例性的,第一削波因子是根据第二削波因子和载波信号对应的调度信息确定的。可以理解为采用第一削波因子对单载波的信号进行独立削波的同时,第一削波因子的确定还可以考虑射频侧对多载波合路信号的第二削波因子,进一步实现多载波、多级削波的联合优化。示例性的实现方式可以参考步骤401的相关描述。
可选的,当需要将削波因子传输到具有进行削波处理功能的单元或模块时,即需要通过接口在两个网元或模块间进行信息交互时,还可以进行接口的传输可靠性验证,用于减少传输接口可靠性对削波性能的影响。示例性的实现方式可以参考图3的相关描述。
通过该方法,在确定多个载波信号对应的削波因子时考虑多个载波信号对应的调度信息优化削波性能,例如根据调度信息中的功率和/或带宽确定削波因子,减少了因不同载波信号的功率和/或带宽不同,对削波性能的影响,改善了因对多载波进行削波产生的通信性能下降。针对上述步骤A和步骤B,下面介绍几种具体的实现方法。
在第一种实现方法中,由基带单元根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定至少两个载波信号在第一时间单元内分别对应的削波因子,然后由基带单元根据该至少两个载波信号在第一时间单元内分别对应的削波因子,对该至少两个载波信号的合路信号进行削波处理。也即由基带单元确定削波因子,并由基带单元基于确定的削波因子,进行削波处理。
在第二种实现方法中,由射频单元根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定至少两个载波信号在第一时间单元内分别对应的削波因子,然后由射频单元根据该至少两个载波信号在第一时间单元内分别对应的削波因子对该至少两个载波信号的合路信号进行削波处理。也即由射频单元确定削波因子,并由射频单元基于确定的削波因子,进行削波处理。
在第三种实现方法中,由基带单元根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定至少两个载波信号在第一时间单元内分别对应的削波因子,然后由基带单元将至少两个载波信号在第一时间单元内分别对应的削波因子发送给射频单元,并由射频单元根据该至少两个载波信号在第一时间单元内分别对应的削波因子,对该至少两个载波信号的合路信号进行削波处理。也即由基带单元确定削波因子,然后将削波因子发送给射频单元,并由射频单元基于收到的削波因子进行削波处理。
在第四种实现方法中,由基带单元根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定至少两个载波信号在第一时间单元内分别对应的第一削波因子,然后由基带单元根据该至少两个载波信号在第一时间单元内分别对应的第一削波因子对该至少两个载波信号分别进行单独削波处理。然后基带单元将削波处理后的至少两个载波信号发送给射频单元,由射频单元根据该至少两个载波信号在第二时间单元内分别对应的第二削 波因子对该至少两个载波信号的合路信号进行削波处理。其中,第二时间单元包含一个或多个第一时间单元。也即由基带单元进行一级削波处理,由射频单元进行二级削波处理。其中,至少两个载波信号在第二时间单元内分别对应的第二削波因子可以是由基带单元确定的,也可以是由射频单元确定的。可选的,基带单元在确定至少两个载波信号在第一时间单元内分别对应的第一削波因子时,还参考了至少两个载波信号在第二时间单元内分别对应的第二削波因子。
当然,本申请实施例不限于上述四种具体实现方法,在实际应用中,还可以有其它实现方法,比如由射频单元根据多个载波信号在第一时间单元内分别对应的第一削波因子对该多个载波信号分别进行单独削波处理(即一级削波),然后再对削波处理后的多个载波信号的合路信号进行削波处理(即二级削波)。
如图1所示,为本申请实施例所适用的一种架构。该架构包括基带单元和射频单元。
基带单元可以将多个载波信号由中间接口(例如通用公共无线接口(common public radio interface,CPRI),或增强通用公共无线接口(enhanced common public radio interface,e-CPRI)等)发送至射频单元进行合路削波。或者,基带单元先对多个载波信号分别进行单独削波,然后将削波后的多个载波信号通过CPRI或e-CPRI等发送至射频单元进行合路削波。容易理解的,基带单元对多个载波信号分别进行单独削波也可以理解为,各个基带子单元对对应单载波的信号进行独立削波。
当然,在实际应用中,基带单元与射频单元之间也可以不相互分离,而是集成于同一个物理设备中。
需要说明的是,本申请实施例中,以射频单元和基带单元实现本申请实施例的载波信号的处理方法为例进行说明。随着通信技术的演进,后续具有本申请实施例射频单元和基带单元的功能的其它设备也可以实现本申请实施例的载波信号的处理方法,对此,本申请实施例不作限定。
下面以上述第三种实现方法和第四种实现方法为例,对载波信号的处理过程进行说明。
如图2所示,为本申请实施例提供的一种载波信号的处理方法示意图。
该方法是上述第三种实现方法对应的载波处理的实现过程。该方法由基带单元基于时间单元调度生成不同的载波信号,并由基带单元根据调度信息的多维特征确定多个载波信号在时间单元内分别对应的削波因子,并将该削波因子传输至射频单元,由射频单元根据削波因子对多载波信号进行削波处理。
该方法包括以下步骤:
步骤201,基带单元根据多个载波信号在第一时间单元内分别对应的调度信息,确定该多个载波信号在第一时间单元内分别对应的削波因子。
其中,每个载波信号在该第一时间单元内对应一个调度信息。调度信息包括功率、调制阶数、带宽中的一个或多个。容易理解的,调度信息也可以为其他用于调度或调制载波信号的信息。例如根据调度信息中的功率和/或带宽确定削波因子,减少了因不同载波信号的功率和/或带宽不同,对削波性能的影响。
也即,削波因子是与调度信息是有关系的,比如,削波因子与调度信息中的参数的关 联关系是函数、表格等。基于上述方案,根据该函数或表格,可以根据载波信号对应的调度信息的参数确定出该载波信号对应的削波因子。这里的函数可以是任意形式的函数,比如可以是哈希函数、比值函数等。这里的表格可以是任意形式的表格,比如可以是数据库表等。
以削波因子与调度信息中的参数的关联关系是函数为例。比如该函数是比值函数,也即根据一个载波信号在第一时间单元内对应的调度信息的一个或多个参数(如功率、调制阶数、带宽),与预配置或预定义的参考载波信号在第一时间单元内对应的调度信息的一个或多个参数之间的比值,确定为该载波信号在第一时间单元内对应的削波因子。再比如该函数是哈希函数,也即将一个载波信号在第一时间单元内对应的调度信息的一个或多个参数代入到预配置或预定义的哈希函数中,得到该载波信号在第一时间单元内对应的削波因子。
以削波因子与调度信息中的参数的关联关系是表格为例。以下表1至表3为不同的示例。
表1
载波信号对应的功率 载波信号对应的削波因子
P1 F1
P2 F2
P3 F3
…… ……
表2
Figure PCTCN2021133889-appb-000015
表3
Figure PCTCN2021133889-appb-000016
下面结合一个具体示例,来说明削波因子的确定方法。需要说明的是,该示例本身不构成对削波因子的确认方法的限定。该示例是以比值函数为例进行说明的。
作为一种实现方法,假定有n个载波信号,用i表示第i个载波信号,i=1,2,……,n。使用F i表示第i个载波信号在第一时间单元内对应的削波因子,P i表示第i个载波信号在第一时间单元内的功率,P j表示第j个载波信号在第一时间单元内的功率,EVM i表示第i个载波信号在第一时间单元内的调制阶数对应的EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,BW i表示第i个载波信号在第一时间单元内的带宽,
Figure PCTCN2021133889-appb-000017
表示第i个载波信号在第一时间单元内对应的削波修正因子,
Figure PCTCN2021133889-appb-000018
与BW i相关,一般地,BW i越大,
Figure PCTCN2021133889-appb-000019
越小。BW j表示第j个载波信号在第一时间单元内的带宽,
Figure PCTCN2021133889-appb-000020
表示第j个载波信号在第一时间单元内对应的削波修正因子。其中,削波修正因子与载波信号的带宽有关。
其中,所述第j个载波信号为参考载波信号。示例性地,可以预先约定、预先配置或动态配置第1个载波信号为参考载波信号,也即这里的j取值为1;或者预先约定或预先配置功率最大的载波信号为参考载波信号,也即这里的j取值为功率最大的载波信号的编号。也就是说,参考载波信号的选取具有多种实现方式,参考载波信号可以是上述多个载波信号中的一个,也可以是预定义的载波信号,本申请实施例并不限定。容易理解的,当参考载波信号是动态配置时,可能还包括不同网元间动态交互该参考载波信号。例如,动态交互该载波信号的索引或标识,或其他能够标识该参考载波信号的方式。本申请实施例中的参考载波信号也可称为基本载波信号。
示例性地,F i=f{(P i)}=P j/P i,i=1,2,……,n,(公式1-1)
示例性地,
Figure PCTCN2021133889-appb-000021
示例性地,
Figure PCTCN2021133889-appb-000022
Figure PCTCN2021133889-appb-000023
示例性地,
Figure PCTCN2021133889-appb-000024
示例性地,
Figure PCTCN2021133889-appb-000025
示例性地,
Figure PCTCN2021133889-appb-000026
示例性地,
Figure PCTCN2021133889-appb-000027
特别地,F j=1。
需要说明的是,上述公式仅作为示例,不构成对本申请实施例确定第i个载波信号在第一时间单元内对应的削波因子的限定。
比如,上述公式(1-2)、(1-3)、(1-4)、(1-5)中的
Figure PCTCN2021133889-appb-000028
以及
Figure PCTCN2021133889-appb-000029
中的平方,也可以修改为3次方、4次方等。
步骤202,基带单元向射频单元发送该多个载波信号在第一时间单元内分别对应的削波因子。相应地,射频单元收到该多个载波信号在第一时间单元内分别对应的削波因子。
示例性的,基带单元是通过基带单元与射频单元之间的中间接口(例如CPRI或e-CPRI等),将该多个载波信号在第一时间单元内分别对应的削波因子发送至射频单元,从而射频单元可以收到该多个载波信号在第一时间单元内分别对应的削波因子。
作为一种实现方法,若该多个载波信号在第一时间单元内分别对应的削波因子按照上述公式(1-1)至(1-6)中的任一公式计算,当选取第j个载波信号为参考载波信号时,由于第j个载波信号对应的削波因子是1,基带单元与射频单元可以预先约定第j个载波信号对应的削波因子是1,因此基带单元可以向射频单元发送除第j个载波信号对应的削波因子之外的其它n-1个削波因子,而不发送预先已约定的第j个载波信号对应的削波因子。
作为一种实现方法,载波信号的削波因子确定的公式可以根据不同的性能要求灵活选择。例如,可以预配置触发条件,当性能满足某个阈值时,则按照预先选定的公式计算削波因子。
步骤203,基带单元向射频单元发送该多个载波信号。相应地,射频单元收到该多个载波信号。
上述步骤202与步骤203之间没有时序限制。例如,例如两者可以一起发送,也可以在不同的消息中发送,但不限定二者发送的先后顺序。
步骤204,射频单元根据该多个载波信号在第一时间单元内分别对应的削波因子,对该多个载波信号的合路信号进行削波处理。
即,射频单元基于削波因子对第一时间单元对应的多载波信号的合路信号进行削波处理。射频单元对该至少两个载波信号的合路信号进行削波处理的方法,比如可以采用限幅削波或克涅拉尔(Keneral)削波。
例如,共有3个载波信号,分别为载波信号1,载波信号2,载波信号3。该3个载波信号分别对应的削波因子为削波因子1,削波因子2,削波因子3。射频单元将该削波因子1应用到该3个载波信号的合路信号中的载波信号1上,将该削波因子2应用到该3个载波信号的合路信号中的载波信号2上,将该削波因子3应用到该3个载波信号的合路信号中的载波信号3上,以实现削波处理,得到削波后的合路信号。
示例性的,合路信号可以理解为时域的表征,变为一个信号。通过频域转换,可以将合理信号分离出多个载波的信号,其中多个载波可以理解为具有不同中心载频。
基于该方案,按照时间单元粒度确定多个载波信号在第一时间单元内分别对应的削波因子并向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子,使得射频单元可以基于时间单元粒度完成削波,可以保障削波的性能,从而可以改善多个载波信号削波导致的通信性能下降。并且,当基带单元与射频单元是以接口的方式进行信息交互时, 基带单元向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子,可以降低传输接口的负载。
容易理解的,基带单元与射频单元之间的信息传递可以是基于某种传输接口来实现,而实现这类的传输接口可以是光纤,但光纤传输也有一定的错误概率,而基于具有错误概率的接口传输,会影响基带单元与射频单元之间的信息传递的可靠性。
示例性的,在上述步骤203之后,射频单元还可以对削波因子的传输可靠性进行判断,在确定削波因子的传输可靠的情况下,射频单元执行上述步骤204。
示例性的,在确定削波因子的传输不可靠的情况下,取消该时间单元内对该至少两个载波信号的合路信号的削波处理,以及取消发送该时间单元对应的至少两个载波信号的合路信号。容易理解的,上述进行接口可靠性判断是可选的步骤,另外,并不仅限于进行削波因子的可靠性验证,包括对通过该接口进行传输的信息进行可靠性验证,例如,削波因子,调度信息等。
可选的,射频单元判断削波因子的传输可靠性的方法,比如可以采用循环冗余校验(cyclic redundancy check,CRC)的方法。对接口传输的削波因子的可靠性进行判断,可以确保削波的可靠性,保障功放单元的安全性,进而改善多个载波信号削波导致的通信性能下降问题。例如,在基带单元和射频单元之间需要通过中间接口进行传输的场景下,基带单元与射频单元的中间接口传输可能存在误码。因此,可进一步改善多个载波信号削波导致的通信性能下降问题。可选的,在射频单元确定削波因子的传输不可靠的情况下,基带单元可以取消发送该多个载波信号的合路信号。在取消发送该多个载波信号的合路信号的情况下,可以不执行对该多个载波信号的合路信号进行削波处理的操作,从而可以减少开销。
参考图3,为相应的时序操作示意图。在t1时刻,基带单元确定多个载波信号在第一时间单元内分别对应的削波因子,并向射频单元发送多个载波信号在第一时间单元内分别对应的削波因子。在t2时刻,射频单元收到多个载波信号在第一时间单元内分别对应的削波因子,并判断削波因子的传输可靠性。在t3时刻,射频单元根据传输可靠性的判断结果,对多个载波信号的合路信号进行削波处理后进行发送,或者是取消发送多个载波信号的合路信号。
如图4所示,为本申请实施例提供的一种载波信号的处理方法示意图。该方法是上述第四种实现方法对应的载波处理的实现过程。该方法由基带单元基于时间单元调度生成不同的载波信号,并由基带单元根据调度信息的多维特征确定多个载波信号在第一时间单元内分别对应的第一削波因子,以及基于多个载波信号在第一时间单元内分别对应的第一削波因子,对多个载波信号分别进行单独削波(也称为一级削波),然后将削波处理后的多个载波信号发送至射频单元,由射频单元进一步基于多个载波信号在第二时间单元内分别对应的第二削波因子,对多个载波信号的合路信号进行削波(也称为二级削波)。
该方法包括以下步骤:
步骤401,基带单元根据该多个载波信号在第一时间单元分别对应的调度信息,确定该多个载波信号在第一时间单元内分别对应的第一削波因子。
多个载波信号在第一时间单元分别对应的调度信息可以理解为,第一时间单元内多载波信号的调度信息集合。
也即,第一削波因子是与调度信息是有关系的,比如,第一削波因子与调度信息中的参数的关联关系是函数、表格等。基于上述方案,根据该函数或表格,可以根据载波信号对应的调度信息的参数确定出该载波信号对应的第一削波因子。这里的函数可以是任意形式的函数,比如可以是哈希函数、比值函数等。这里的表格可以是任意形式的表格,比如可以是数据库表等。
以第一削波因子与调度信息中的参数的关联关系是函数为例。比如该函数是比值函数,也即根据一个载波信号在第一时间单元内对应的调度信息的一个或多个参数(如功率、调制阶数、带宽),与预配置或预定义的参考载波信号在第一时间单元内对应的调度信息的一个或多个参数之间的比值,确定为该载波信号在第一时间单元内对应的第一削波因子。再比如该函数是哈希函数,也即将一个载波信号在第一时间单元内对应的调度信息的一个或多个参数代入到预配置或预定义的哈希函数中,得到该载波信号在第一时间单元内对应的第一削波因子。
作为一种可能的实现方法,基带单元可以采用上述图2对应实施例中的方法,来确定多个载波信号在第一时间单元内分别对应的第一削波因子。具体实现过程可以参考前述描述,这里不再赘述。
作为一种可能的实现方式,基带单元可以根据第二削波因子确定第一削波因子。示例性的,基带单元接收射频单元发送的第二削波因子,该第二削波因子用于在第二时间单元对载波信号进行削波。采用了削波因子交互的方式,在削波因子确定时,考虑了多级削波因子的耦合,使得削波的预处理(例如单载波削波)和对多个载波信号的合路信号的削波之间耦合,进一步提升削波性能。
作为一种可能的实现方法,基带单元也可以根据该多个载波信号在第一时间单元内分别对应的调度信息,以及该多个载波信号在第二时间单元内分别对应的第二削波因子,确定该多个载波信号在第一时间单元内分别对应的第一削波因子。其中,第二时间单元包含一个或多个第一时间单元。
下面结合一个具体示例,来说明第一削波因子的确定方法。需要说明的是,该示例本身不构成对第一削波因子的确认方法的限定。该示例是以比值函数为例进行说明的。
作为一种实现方法,假定有n个载波信号,用i表示n个载波信号中的第i个载波信号,i=1,2,……,n。第二时间单元划分为m个第一时间单元,用j表示m个第一时间单元中的第j个时间单元,j=1,2,……,m。需要说明的是,第二时间单元包含的多个第一时间单元可以相同,也可以不同。
使用
Figure PCTCN2021133889-appb-000030
表示第i个载波信号在第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000031
表示第i个载波信号在第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000032
表示第i个载波信号在第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000033
表示第k个载波信号在第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000034
表示第i个载波信号在第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
Figure PCTCN2021133889-appb-000035
表示第k个载波信号在第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限。需要说明的是,该
Figure PCTCN2021133889-appb-000036
已 经体现了带宽因素,这是因为由于带宽的慢变特性,假设在第二时间单元内的不同载波信号对应的带宽都是相同的。
其中,所述第k个载波信号为参考载波信号。示例性地,可以预先约定或预先配置第1个载波信号为参考载波信号,也即这里的k取值为1;或者预先约定或预先配置功率最大的载波信号为参考载波信号,也即这里的k取值为功率最大的载波信号的编号。
示例性地,
Figure PCTCN2021133889-appb-000037
Figure PCTCN2021133889-appb-000038
示例性地,
Figure PCTCN2021133889-appb-000039
Figure PCTCN2021133889-appb-000040
示例性地,
Figure PCTCN2021133889-appb-000041
Figure PCTCN2021133889-appb-000042
特别地,
Figure PCTCN2021133889-appb-000043
下面以公式(3-1)为例,结合一个具体示例对该公式(3-1)进行说明。并且以下示例中,以第1个载波信号作为参考载波信号,也即公式(3-1)中的k取值为1。
假设有4个载波信号,第二时间单元为1s,第一时间单元为1ms,则第二时间单元包含1000个第一时间单元。
在第1ms:
载波信号1对应的削波因子为:
Figure PCTCN2021133889-appb-000044
载波信号2对应的削波因子为:
Figure PCTCN2021133889-appb-000045
载波信号3对应的削波因子为:
Figure PCTCN2021133889-appb-000046
载波信号4对应的削波因子为:
Figure PCTCN2021133889-appb-000047
在第2ms:
载波信号1对应的削波因子为:
Figure PCTCN2021133889-appb-000048
载波信号2对应的削波因子为:
Figure PCTCN2021133889-appb-000049
载波信号3对应的削波因子为:
Figure PCTCN2021133889-appb-000050
载波信号4对应的削波因子为:
Figure PCTCN2021133889-appb-000051
……
在第t ms:
载波信号1对应的削波因子为:
Figure PCTCN2021133889-appb-000052
载波信号2对应的削波因子为:
Figure PCTCN2021133889-appb-000053
载波信号3对应的削波因子为:
Figure PCTCN2021133889-appb-000054
载波信号4对应的削波因子为:
Figure PCTCN2021133889-appb-000055
……
作为一种实现方法,上述多个载波信号在第二时间单元内分别对应的第二削波因子可以是由射频单元确定的,并在上述步骤401之前发送给基带单元。
射频单元的第二削波因子可以由多载波信号的调度信息集合确定例如,由根据多载波信号的多组调度信息集合确定的削波因子统计值(如平值均),或极值(如最大值)确定该第二削波因子。
容易理解的,上述多载波信号的调度信息集合可以是第二时间单元内的调度信息集合,也可以是第二时间单元之前的时间段内的调度信息集合,例如,可以是载波信号在第三时间单元内的调度信息集合,其中,第三时间单元在时序上早于第二时间单元。
示例性的,射频单元获取预发送的第二时间单元对应的调度信息集合,第二时间单元内包括多个第一时间单元,射频单元根据多个第一时间单元对应的调度信息确定该多个第一时间单元对应的削波因子的统计值或极值作为该载波信号在第二时间单元内对应的第二削波因子。
示例性地,射频单元可以根据每个载波信号在第三时间单元内对应的多个第三削波因子,确定该载波信号在第二时间单元内对应的第二削波因子。其中,第三时间单元在时序上早于第二时间单元。比如,射频单元将每个载波信号在第三时间单元内对应的多个第三削波因子的平均值,确定为该载波信号在第二时间单元内对应的第二削波因子。再比如,射频单元将每个载波信号在第三时间单元内对应的多个第三削波因子中的最大值,确定为该载波信号在第二时间单元内对应的第二削波因子。
下面结合一个具体示例进行说明。参考图5,为第二时间单元与第三时间单元之间的关系示意图。第二时间单元为1s,第三时间单元为第二时间单元之前的1s。第三时间单元包含第四时间单元,第四时间单元为1ms,也即第三时间单元包含1000个第四时间单元。n个载波信号中的每个载波信号在第三时间单元内均对应1000个第三削波因子。比如,确定该第1个载波信号在第二时间单元内对应的第二削波因子等于该第1个载波信号在第三时间单元内对应的1000个第三削波因子的平均值,确定该第2个载波信号在第二时间单元内对应的第二削波因子等于该第2个载波信号在第三时间单元内对应的1000个第三削波因子的平均值,以此类推。再比如,确定该第1个载波信号在第二时间单元内对应的第二削波因子等于该第1个载波信号在第三时间单元内对应的1000个第三削波因子的最大值,确定该第2个载波信号在第二时间单元内对应的第二削波因子等于该第2个载波信号在第三时间单元内对应的1000个第三削波因子的最大值,以此类推。
作为另一种实现方法,上述多个载波信号在第二时间单元内分别对应的第二削波因子 也可以是由基带单元确定的,并在上述步骤404之前发送给射频单元。示例性地,基带单元可以根据每个载波信号在第三时间单元内对应的多个第三削波因子,确定该载波信号在第二时间单元内对应的第二削波因子。其中,第三时间单元在时序上早于第二时间单元。比如,基带单元将每个载波信号在第三时间单元内对应的多个第三削波因子的平均值,确定为该载波信号在第二时间单元内对应的第二削波因子。再比如,基带单元将每个载波信号在第三时间单元内对应的多个第三削波因子中的最大值,确定为该载波信号在第二时间单元内对应的第二削波因子。
步骤402,基带单元根据该多个载波信号在第一时间单元内分别对应的第一削波因子,对该多个载波信号分别进行单独削波处理。
需要说明的是,不同载波信号在第一时间单元内分别对应的第一削波因子,可以相同,也可以不相同。
具体的,基带单元根据每个载波信号在第一时间单元内分别对应的第一削波因子,对每个载波信号单独进行削波处理。例如,有n个载波信号,则根据第1个载波信号对应的第一削波因子对该第1个载波信号进行削波处理,根据第2个载波信号对应的第一削波因子对该第2个载波信号进行削波处理,以此类推。
示例性的,多载波中各个载波的基带信号可以是在不同的基带子单元产生,对每个载波信号单独进行削波处理可以理解为各个基带子单元对对应单载波的信号进行独立削波处理。
各个基带子单元对对应单载波的信号进行独立削波的同时,其削波因子的确定可以考虑多个载波中其它载波的调度信息,确保一定程度上削波因子的联合优化;再考虑射频侧对多载波合路信号的削波影响,各个基带子单元对对应单载波的信号进行独立削波的同时,其削波因子的确定还可以考虑射频侧对多载波合路信号的削波因子,进一步实现多载波、多级削波的联合优化。
容易理解的,上述步骤401和步骤402中介绍了基带单元一级削波中是对多个载波信号中的单个载波进行独立削波,可以适用于在基带侧对多载波的合路信号进行削波会引起较大的时延的场景。
一种可能的实现中,基带单元也可以是对多个载波信号的合路信号进行削波处理。确定合路信号对应的削波因子的及应用该削波因子的方法可以参考具体实现可以参考步骤201和步骤202中的相关描述,所不同的是由基带单元应用该削波因子进行削波处理。
步骤403,基带单元向射频单元发送削波处理后的多个载波信号。相应地,射频单元收到削波处理后的多个载波信号。
步骤404,射频单元根据该多个载波信号在第二时间单元内分别对应的第二削波因子,对削波处理后的多个载波信号的合路信号进行削波处理。
也即,第二削波因子用于对步骤402中削波处理后的多个载波信号的合路信号进行削波处理。
其中,射频单元对削波后的多个载波信号的合路信号进行削波处理的具体实现方法,可以参考前述描述,这里不再赘述。
上述方案,先由基带单元确定多个载波信号在第一时间单元内分别对应的第一削波因子,并基于多个载波信号在第一时间单元内分别对应的第一削波因子,分别对每个载波信 号进行单独的一次削波处理,然后将一次削波后的载波信号发送给射频单元,射频单元基于第二削波因子对削波后的载波信号的合路信号进行二次削波处理,得到二次削波后的载波信号。通过采用削波因子交互的方式,在削波因子确定时,不仅考虑多个载波信号的调度信息,也考虑了多级削波因子的耦合,使得削波的预处理(例如单载波削波)和对多个载波信号的合路信号的削波之间耦合,进一步提升削波性能。并且,该多级削波方案,可以不依赖于基带单元与射频单元之间的中间接口的传输的可靠性保障要求,因此使用更为灵活。容易理解的,并不限定该多级削波方案不采用接口的传输可靠性验证,如对该多级削波方案进行接口的传输可靠性验证,具体实现可参考方法300中关于接口的传输可靠性验证的相关描述。
参考图6,为相应的时序操作示意图。在t1时刻,视频单元确定多个载波信号在第二时间单元内分别对应的第二削波因子,并向基带单元发送多个载波信号在第二时间单元内分别对应的第二削波因子。在t2时刻,基带单元根据收到的多个载波信号在第二时间单元内分别对应的第二削波因子以及多个载波信号在第一时间单元内分别对应的调度信息,确定多个载波信号在第一时间单元内分别对应的第一削波因子。在t3时刻,基带单元根据每个载波信号在第一时间单元内对应的第一削波因子对该载波信号进行第一次削波处理(也称为一级削波处理),然后将削波处理后的多个载波信号发送至射频单元。在t4时刻,射频单元收到削波处理后的多个载波信号,然后根据多个载波信号在第二时间单元内分别对应的第二削波因子,对削波处理后的多个载波信号的合路信号进行第二次削波处理(也称为二级削波处理)。
需要说明的是,上述示例中,是由射频单元确定多个载波信号在第二时间单元内分别对应的第二削波因子,并将多个载波信号在第二时间单元内分别对应的第二削波因子发送至基带单元。在另一种实现方法中,也可以是由基带单元确定多个载波信号在第二时间单元内分别对应的第二削波因子,然后将多个载波信号在第二时间单元内分别对应的第二削波因子发送给射频单元。当然,还可以是由基带单元和射频单元分别自行确定多个载波信号在第二时间单元内分别对应的第二削波因子,并且二者所确定的第二削波因子是相同的。例如,基带单元和射频单元分别根据相同的确定削波因子的方法,确定第二削波因子,从而二者所确定的第二削波因子是相同的,该方法比如可以是:根据每个载波信号在第三时间单元内对应的多个第三削波因子,确定该载波信号在第二时间单元内对应的第二削波因子。其中,第三时间单元在时序上早于第二时间单元。示例性地,基带单元和射频单元分别将每个载波信号在第三时间单元内对应的多个第三削波因子的平均值,确定为该载波信号在第二时间单元内对应的第二削波因子。示例性地,基带单元和射频单元分别将每个载波信号在第三时间单元内对应的多个第三削波因子中的最大值,确定为该载波信号在第二时间单元内对应的第二削波因子。
以上对前述描述的第三种实现方法和第四种实现方法进行了详细描述。针对上述第一种实现方法和第二种实现方法,其具体实现过程与上述第三种实现方法类似,区别在于:削波因子和/或削波处理的执行主体不同。针对上述第一种实现方法,基带单元确定削波因子,基带单元基于削波因子进行削波处理。针对上述第二种实现方法,射频单元确定削波因子,射频单元基于削波因子进行削波处理。针对上述第三种实现方法,基带单元确定削波因子,射频单元基于削波因子进行削波处理。
示例性地,当射频单元的算力受限时,则可以通过上述第一种实现方法或第三种实现方法实现削波处理。当射频单元的算力充足时,则可以通过上述第二种实现方法实现削波处理,当然也可以采用上述第一种实现方法或第三种实现方法实现削波处理。
为进一步改善对多个载波信号削波导致的通信性能下降的问题,还可以在削波之前,由基带单元对多个载波信号进行预处理。需要说明的是,以下图7对应的实施例,可以单独实施,也可以与前述任意的载波信号的处理方法(比如前述描述的第一种实现方法、第二种实现方法、第三种实现方法、第四种实现方法或其它实现方法)相结合实施例。
如图7所示,为本申请实施例提供的又一种载波信号的处理方法示意图。需要说明的是,该实施例的方法可以由基带单元执行,也可以是由该基带单元内的多个基带子单元联合执行。
该方法包括以下步骤:
步骤701,基带单元确定多个载波信号在时域上的峰谷信息。
其中,一个载波信号在时域上的峰谷信息用于指示该载波信号在时域上的波峰信息和/或波谷信息。也即,峰谷信息包括波峰信息和/或波谷信息。
比如,针对一个载波信号,基带单元确定该载波信号在时域上的所有采样信息中,幅值超过某个门限的样点序列的信息,包括样点编号以及相位信息。样点序列中如果样点的相位为正,则该样点为峰值样点,则该载波信号在时域上的波峰信息可以包含该峰值样点的信息。样点序列中如果样点的相位为负,该样点为谷值样点,则该载波信号在时域上的波谷信息可以包含该谷值样点的信息。
容易理解的,每个载波对应的基带信号(对应一个载波信号)可以由独立的基带子单元进行处理,上述基带单元确定多个载波信号在时域上的峰谷信息可以理解为,各个基带子单元确定对应载波的时域信号的峰谷信息。示例性的,基带单元将多个子单元对应载波的时域信号的峰谷信息进行共享,确保基带单元中的第一基带子单元获取该基带单元中的第二基带子单元对应载波的时域信号的峰谷信息。
步骤702,基带单元根据多个载波信号在时域上的峰谷信息,确定该多个载波信号在时域上的偏移量。
容易理解的,每个载波信号在时域上的偏移量可以由独立的基带子单元进行处理,上述基带单元确定多个载波信号在时域上的偏移量可以理解为,各个基带子单元确定对应载波信号在时域上的偏移量。
作为一种实现方法,从多个载波信号中选择一个载波信号作为参考载波信号,该参考载波信号对应的基带子单元可以向其它基带子单元分享该参考载波信号的峰谷信息,从而其它基带子单元可以根据参考载波信号的峰谷信息,确定自身对应的载波信号(也称为非参考载波信号)相对于参考载波信号在时域上的偏移量。其中,时域上的偏移量是指相对于参考载波信号,在非参考载波信号上引入一个额外的时延量(即偏移量),并对该非参考载波信号进行时域循环移位。基于该方法,使得非参考载波信号与参考载波信号之间不存在波峰叠加和/或波谷叠加,或者是减少波峰叠加和/或波谷叠加,从而保障载波信号发送的安全性。
比如,存在5个基带子单元,分别表示为:基带子单元1(对应载波信号1),基带子 单元2(对应载波信号2),基带子单元3(对应载波信号3),基带子单元4(对应载波信号4),基带子单元5(对应载波信号5)。假设选择载波信号1为参考载波信号,则载波信号2至载波信号5为非参考载波信号。基带子单元1将载波信号1的峰谷信息分享给基带子单元2至基带子单元5,则基带子单元2可以根据载波信号1的峰谷信息与载波信号2的峰谷信息,确定载波信号2相对于载波信号1的偏移量,基带子单元3可以根据载波信号1的峰谷信息与载波信号3的峰谷信息,确定载波信号3相对于载波信号1的偏移量,基带子单元4可以根据载波信号1的峰谷信息与载波信号4的峰谷信息,确定载波信号4相对于载波信号1的偏移量,基带子单元5可以根据载波信号1的峰谷信息与载波信号5的峰谷信息,确定载波信号5相对于载波信号1的偏移量。该方法可在一定程度上减少载波信号之间的峰谷叠加,同时尽量减少基带子单元之间的信息交互,可以在不增加基带子单之间信息交互的开销的基础上,保障载波信号发送的安全性。
其中,确定时域偏移量的方法可以是基于预定义的规则,例如通过查表或者是通过函数计算等方式。各个基带子单元根据载波信号在时域上的偏移量,向射频模块发送载波信号。
示例性地,以载波信号1和载波信号2为例,在没有偏移时,载波信号1在时域上表征为:x(0),x(1),…,x(N-1),载波信号2在时域上表征为:y(0),y(1),…,y(N-1),其中n为采样索引值,即为第n个采样值,N为采样数量。将载波信号1作为参考载波信号,如果偏移量为1,则载波信号2在时域上通过循环移位,变为:y(n-1),y(0),y(1),…,y(n-2)。类似地,如果偏移量为m,则载波信号2在时域上通过循环移位,变为:y(n-m),…,y(n-1),y(0),y(1),…,y(n-m-1)。
步骤703,基带单元根据该多个载波信号在时域上的偏移量,确定调整后的多个载波信号。
容易理解的,每个调整后的载波信号可以由独立的基带子单元进行处理,上述基带单元确定调整后的多个载波信号可以理解为,各个基带子单元确定调整后的载波信号。
其中,对上述多个载波信号中的一个或多个载波信号在时域上进行偏移量调整之后,得到调整后的多个载波信号。在一种可能的实现方法中,确定调整后的至少两个载波信号包括减少至少两个载波信号的波峰叠加和/或波谷叠加。可以理解为实现多个载波间的时域信号的相对移位,降低PAPR。
作为一种实现方法,调整后的多个载波信号之间波峰叠加,相较于调整前该多个载波信号之间的波峰叠加,有所减少或降低。
作为一种实现方法,调整后的多个载波信号之间波谷叠加,相较于调整前该多个载波信号之间的波谷叠加,有所减少或降低。
其中波峰叠加可以理解为波峰对齐,或波峰重叠,类似的,波谷叠加可以理解为波谷对齐或波谷重叠。
步骤704,基带单元向射频单元发送调整后的多个载波信号。
容易理解的,每个调整后的载波信号可以由独立的基带子单元进行发送,上述基带单元向射频单元发送调整后的多个载波信号可以理解为,各个基带子单元分别向射频单元发送调整后的一个载波信号。
上述方案,基带单元可以基于多个载波信号在时域上的相对移位,实现降低PAPR,从而可以降低多个载波信号的合路信号的PAPR,通过这种方案可以由基带单元降低PAPR, 且不引入非线性失真,从而降低削波的压力。并且当该方案结合前述任意的载波信号的处理方法,可以实现在削波之前进行载波信号的预处理,从而可以进一步改善对多个载波信号削波导致的通信性能下降的问题。
参考图8,为本申请实施例提供的一种通信装置的示意图。该装置用于实现上述实施例中对应基带单元或射频单元所执行的各个步骤,如图8所示,该装置800包括收发单元810和处理单元820。
在第一个实施例中,该通信装置为基带单元或为用于基带单元的芯片,则:
处理单元820,用于根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定所述至少两个载波信号在第一时间单元内分别对应的削波因子;收发单元810,用于向射频单元发送所述至少两个载波信号以及所述至少两个载波信号在第一时间单元内分别对应的削波因子,所述至少两个载波信号在第一时间单元内分别对应的削波因子用于所述至少两个载波信号的合路信号的削波处理。
在一种可能的实现方法中,所述处理单元820,具体用于确定所述至少两个载波信号中的参考载波信号;根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息和所述参考载波信号在所述第一时间单元内对应的调度信息,确定所述每个载波信号对应的削波因子。
在一种可能的实现方法中,所述第一时间单元为时隙、子帧或者正交频分复用符号。
在一种可能的实现方法中,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
在一种可能的实现方法中,F i=P j/P i;其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
在一种可能的实现方法中,
Figure PCTCN2021133889-appb-000056
其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
在一种可能的实现方法中,
Figure PCTCN2021133889-appb-000057
其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅 度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
在第二个实施例中,该通信装置为射频单元或为用于射频单元的芯片,则:
收发单元810,用于接收来自基带单元的至少两个载波信号以及所述至少两个载波信号在第一时间单元内分别对应的削波因子,所述至少两个载波信号在第一时间单元内分别对应的削波因子对应于所述至少两个载波信号在所述第一时间单元内分别对应的调度信息;处理单元820,用于根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理。
在一种可能的实现方法中,所述处理单元820,还用于在根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理之前,确定所述削波因子的传输是可靠的。
在一种可能的实现方法中,所述第一时间单元为时隙、子帧或者正交频分复用符号。
在一种可能的实现方法中,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
在一种可能的实现方法中,F i=P j/P i;其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
在一种可能的实现方法中,
Figure PCTCN2021133889-appb-000058
其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
在一种可能的实现方法中,
Figure PCTCN2021133889-appb-000059
其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
在第三个实施例中,该通信装置为基带单元或为用于基带单元的芯片,则:
处理单元820,用于根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,所述第一时间单元包含于所述第二时间单元;根据所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,分别对所述至少两个载波信号的每个载波信号进行单独削波处理;收发单元810,用于向射频单元发送削波处理后的至少两个载波信号;其中,所述第二削波因子用于对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
在一种可能的实现方法中,所述处理单元820,用于根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,具体包括:用于确定所述至少两个载波信号中的参考载波信号;用于根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内分别对应的调度信息、所述参考载波信号在所述第一时间单元内对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述每个载波信号对应的第一削波因子。
在一种可能的实现方法中,所述收发单元810,还用于接收来自所述射频单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
在一种可能的实现方法中,所述处理单元820,还用于确定所述每个载波信号在所述第二时间单元内对应的第二削波因子。
在一种可能的实现方法中,所述处理单元820,用于确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,具体包括:用于根据所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于第二时间单元。
在一种可能的实现方法中,所述收发单元810,还用于向所述射频单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
在一种可能的实现方法中,所述第一时间单元为时隙、子帧或者正交频分复用符号。
在一种可能的实现方法中,所述调度信息包括功率、调制阶数、带宽中的至少一种。
在一种可能的实现方法中,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
Figure PCTCN2021133889-appb-000060
其中,
Figure PCTCN2021133889-appb-000061
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000062
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000063
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000064
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
在一种可能的实现方法中,所述第二时间单元包含m个所述第一时间单元,所述至少 两个载波信号的数量为n;
Figure PCTCN2021133889-appb-000065
其中,
Figure PCTCN2021133889-appb-000066
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000067
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000068
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
Figure PCTCN2021133889-appb-000069
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
在一种可能的实现方法中,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
Figure PCTCN2021133889-appb-000070
其中,
Figure PCTCN2021133889-appb-000071
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000072
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000073
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000074
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000075
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
Figure PCTCN2021133889-appb-000076
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
在第四个实施例中,该通信装置为射频单元或为用于射频单元的芯片,则:
收发单元810,用于接收来自基带单元削波处理后的至少两个载波信号,所述削波处理后至少两个载波信号是使用所述至少两个载波信号在第一时间单元内分别对应的第一削波因子进行单独削波处理后的载波信号,所述第一削波因子是根据所述至少两个载波信号在所述第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子确定的,所述第一时间单元包含于所述第二时间单元;处理单元820,用于根据所述至少两个载波信号在所述第二时间单元内分别对应的第二削波因子,对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
在一种可能的实现方法中,所述处理单元820,还用于确定所述每个载波信号在所述第二时间单元内对应的第二削波因子。
在一种可能的实现方法中,所述处理单元820,用于确定所述每个载波信号在所述第 二时间单元内对应的第二削波因子,具体包括:用于将所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子的平均值或最大值,确定为所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于第二时间单元。
在一种可能的实现方法中,所述收发单元810,还用于在接收来自基带单元削波处理后的至少两个载波信号之前,向所述基带单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
在一种可能的实现方法中,所述收发单元810,还用于接收来自所述基带单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
在一种可能的实现方法中,所述第一时间单元为时隙、子帧或者正交频分复用符号。
在一种可能的实现方法中,所述调度信息包括功率、调制阶数、带宽中的至少一种。
在一种可能的实现方法中,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
Figure PCTCN2021133889-appb-000077
其中,
Figure PCTCN2021133889-appb-000078
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000079
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000080
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000081
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
在一种可能的实现方法中,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
Figure PCTCN2021133889-appb-000082
其中,
Figure PCTCN2021133889-appb-000083
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000084
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000085
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
Figure PCTCN2021133889-appb-000086
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
在一种可能的实现方法中,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
Figure PCTCN2021133889-appb-000087
其中,
Figure PCTCN2021133889-appb-000088
表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,
Figure PCTCN2021133889-appb-000089
表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
Figure PCTCN2021133889-appb-000090
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000091
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
Figure PCTCN2021133889-appb-000092
表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
Figure PCTCN2021133889-appb-000093
表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
在第五个实施例中,该通信装置为基带单元或为用于基带单元的芯片,则:
处理单元820,用于确定至少两个载波信号在时域上的峰谷信息,所述峰谷信息包括波峰信息和/或波谷信息;根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量;根据所述至少两个载波信号在时域上的偏移量,确定调整后的至少两个载波信号;收发单元810,用于向射频单元发送调整后的至少两个载波信号。
在一种可能的实现方法中,所述调整后的至少两个载波信号中的任意两个载波信号不存在波峰叠加和/或波谷叠加或者是减少了波峰叠加和/或波谷叠加。
在一种可能的实现方法中,所述处理单元820,用于根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量,具体包括:用于确定所述至少两个载波信号中的参考载波信号;用于根据所述参考载波信号的峰谷信息,确定所述至少两个载波信号中的非参考载波信号相对于所述参考载波信号在时域上的偏移量。
可选的,上述通信装置800还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元820可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集 成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate arraygate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
以上收发单元810是一种该装置的接口电路,用于从其它装置接收信号或向其它装置发送信号。例如,当该装置以芯片的方式实现时,该收发单元810是该芯片用于从其它芯片或装置接收信号的接口电路、或向其它芯片或装置发送信号的接口电路。
参考图9,为本申请实施例提供的一种通信装置示意图,用于实现以上实施例中基带单元或射频单元的操作。如图9所示,该通信装置包括:处理器910和接口930,可选的,该通信装置还包括存储器920。接口930用于实现与其他设备进行通信。
以上实施例中基带单元或射频单元执行的方法可以通过处理器910调用存储器(可以是基带单元或射频单元中的存储器920,也可以是外部存储器)中存储的程序来实现。即,基带单元或射频单元可以包括处理器910,该处理器910通过调用存储器中的程序,以执行以上方法实施例中基带单元或射频单元执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。基带单元或射频单元可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
具体的,图8中的收发单元810和处理单元820的功能/实现过程可以通过图9所示的通信装置900中的处理器910调用存储器920中存储的计算机可执行指令来实现。或者,图8中的处理单元820的功能/实现过程可以通过图9所示的通信装置900中的处理器910调用存储器920中存储的计算机执行指令来实现,图8中的收发单元810的功能/实现过程可以通过图9中所示的通信装置900中的接口930来实现。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在一种实现方法中,本申请实施例提供一种通信装置,该装置可以是基带单元,还可 以是用于基带单元的芯片。该装置具有实现上述任意实施例中的基带单元的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种实现方法中,本申请实施例提供一种通信装置,该装置可以是射频单元,还可以是用于射频单元的芯片。该装置具有实现上述任意实施例中的射频单元的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种实现方法中,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行上述任意实施例中的基带单元所执行的方法。
在一种实现方法中,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行上述任意实施例中的射频单元所执行的方法。
在一种实现方法中,本申请实施例提供一种通信装置,包括用于执行上述任意实施例中由基带单元所执行的方法的各个步骤的单元或手段。
在一种实现方法中,本申请实施例提供一种通信装置,包括用于执行上述任意实施例中由射频单元所执行的方法的各个步骤的单元或手段。
在一种实现方法中,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述任意实施例中由基带单元所执行的方法。该处理器包括一个或多个。
在一种实现方法中,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述任意实施例中由射频单元所执行的方法。该处理器包括一个或多个。
在一种实现方法中,本申请实施例提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述任意实施例中由基带单元所执行的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
在一种实现方法中,本申请实施例提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述任意实施例中由射频单元所执行的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
在一种实现方法中,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得上述任意实施例中的方法被执行。
在一种实现方法中,本申请实施例还提供一种计算机程序产品,该计算机产品包括计算机程序,当计算机程序运行时,使得上述任意实施例中的方法被执行。
在一种实现方法中,本申请实施例还提供一种芯片***,包括:处理器,用于执行上述任意实施例中由基带单元所执行的方法。
在一种实现方法中,本申请实施例还提供一种芯片***,包括:处理器,用于执行上述任意实施例中由射频单元所执行的方法。
在一种实现方法中,本申请实施例还提供一种通信***,包括上述任意实施例方法中的基带单元和/或上述任意实施例方法中的射频单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个或多个示例性的设计中,本申请所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤 电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(英文:Digital Versatile Disc,简称:DVD)、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (83)

  1. 一种载波信号的处理方法,其特征在于,包括:
    根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定所述至少两个载波信号在所述第一时间单元内分别对应的削波因子;
    向射频单元发送所述至少两个载波信号以及所述至少两个载波信号在所述第一时间单元内分别对应的削波因子,所述至少两个载波信号在所述第一时间单元内分别对应的削波因子用于所述至少两个载波信号的合路信号的削波处理。
  2. 如权利要求1所述的方法,其特征在于,所述根据至少两个载波信号在所述第一时间单元内分别对应的调度信息,确定所述至少两个载波信号在所述第一时间单元内分别对应的削波因子,包括:
    确定所述至少两个载波信号中的参考载波信号;
    根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息和所述参考载波信号在所述第一时间单元内对应的调度信息,确定所述每个载波信号对应的削波因子。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  4. 如权利要求1至3任一所述的方法,其特征在于,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
  5. 如权利要求1至4任一所述的方法,其特征在于,
    F i=P j/P i
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
  6. 如权利要求1至4任一所述的方法,其特征在于,
    Figure PCTCN2021133889-appb-100001
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  7. 如权利要求1至4任一所述的方法,其特征在于,
    Figure PCTCN2021133889-appb-100002
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应 的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  8. 一种载波信号的处理方法,其特征在于,包括:
    接收来自基带单元的至少两个载波信号以及所述至少两个载波信号在第一时间单元内分别对应的削波因子,所述至少两个载波信号在第一时间单元内分别对应的削波因子对应于所述至少两个载波信号在所述第一时间单元内分别对应的调度信息;
    根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理。
  9. 如权利要求8所述的方法,其特征在于,所述根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理之前,还包括:
    确定所述削波因子的传输是可靠的。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  11. 如权利要求8至10任一所述的方法,其特征在于,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
  12. 如权利要求8至11任一所述的方法,其特征在于,
    F i=P j/P i
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
  13. 如权利要求8至11任一所述的方法,其特征在于,
    Figure PCTCN2021133889-appb-100003
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示第j个载波信号在所述第一时间单元内的调制阶数对应的EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  14. 如权利要求8至11任一所述的方法,其特征在于,
    Figure PCTCN2021133889-appb-100004
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  15. 一种载波信号的处理方法,其特征在于,包括:
    根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在所述第一时间单元内分别对应的第一削波因子,所述第一时间单元包含于所述第二时间单元;
    根据所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,分别对所述至少两个载波信号的每个载波信号进行单独削波处理;
    向射频单元发送所述削波处理后的至少两个载波信号;
    其中,所述第二削波因子用于对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
  16. 如权利要求15所述的方法,其特征在于,所述根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,包括:
    确定所述至少两个载波信号中的参考载波信号;
    根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息、所述参考载波信号在所述第一时间单元内对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述每个载波信号对应的第一削波因子。
  17. 如权利要求15或16所述的方法,其特征在于,还包括:
    接收来自所述射频单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  18. 如权利要求15或16所述的方法,其特征在于,还包括:
    确定所述每个载波信号在所述第二时间单元内对应的所述第二削波因子。
  19. 如权利要求18所述的方法,其特征在于,所述确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,包括:
    根据所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于第二时间单元。
  20. 如权利要求18或19所述的方法,其特征在于,还包括:
    向所述射频单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  21. 如权利要求15至20任一所述的方法,其特征在于,所述第一时间单元为时隙、子 帧或者正交频分复用符号。
  22. 如权利要求15至21任一所述的方法,其特征在于,所述调度信息包括功率、调制阶数、带宽中的至少一种。
  23. 如权利要求15至22任一所述的方法,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100005
    其中,
    Figure PCTCN2021133889-appb-100006
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100007
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100008
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  24. 如权利要求15至22任一所述的方法,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100009
    其中,
    Figure PCTCN2021133889-appb-100010
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100011
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100012
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  25. 如权利要求15至22任一所述的方法,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100013
    其中,
    Figure PCTCN2021133889-appb-100014
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100015
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100016
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100017
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元 内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100018
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  26. 一种载波信号的处理方法,其特征在于,包括:
    接收来自基带单元削波处理后的至少两个载波信号,所述削波处理后的至少两个载波信号是使用所述至少两个载波信号在第一时间单元内分别对应的第一削波因子进行单独削波处理后的载波信号,所述第一削波因子是根据所述至少两个载波信号在所述第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子确定的,所述第一时间单元包含于所述第二时间单元;
    根据所述至少两个载波信号在所述第二时间单元内分别对应的第二削波因子,对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
  27. 如权利要求26所述的方法,其特征在于,还包括:
    确定所述每个载波信号在所述第二时间单元内对应的第二削波因子。
  28. 如权利要求27所述的方法,其特征在于,所述确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,包括:
    将所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子的平均值或最大值,确定为所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于所述第二时间单元。
  29. 如权利要求27或28所述的方法,其特征在于,所述接收来自基带单元削波处理后的至少两个载波信号之前,还包括:
    向所述基带单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  30. 如权利要求26所述的方法,其特征在于,还包括:
    接收来自所述基带单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  31. 如权利要求26至30中任一所述的方法,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  32. 如权利要求26至31任一所述的方法,其特征在于,所述调度信息包括功率、调制阶数、带宽中的至少一种。
  33. 如权利要求26至32任一所述的方法,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100019
    其中,
    Figure PCTCN2021133889-appb-100020
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100021
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100022
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单 元内的功率,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  34. 如权利要求26至32任一所述的方法,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100023
    其中,
    Figure PCTCN2021133889-appb-100024
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100025
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100026
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  35. 如权利要求26至32任一所述的方法,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100027
    其中,
    Figure PCTCN2021133889-appb-100028
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100029
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100030
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100031
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100032
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  36. 一种载波信号的处理方法,其特征在于,包括:
    确定至少两个载波信号在时域上的峰谷信息,所述峰谷信息包括波峰信息和/或波谷信息;
    根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量;
    根据所述至少两个载波信号在时域上的偏移量,确定调整后的至少两个载波信号;
    向射频单元发送调整后的至少两个载波信号。
  37. 如权利要求36所述的方法,其特征在于,所述调整后的至少两个载波信号中的任意两个载波信号不存在波峰叠加和/或波谷叠加。
  38. 如权利要求36或37所述的方法,其特征在于,所述根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量,包括:
    确定所述至少两个载波信号中的参考载波信号;
    根据所述参考载波信号的峰谷信息,确定所述至少两个载波信号中的非参考载波信号相对于所述参考载波信号在时域上的偏移量。
  39. 一种通信装置,其特征在于,包括:
    处理单元,用于根据至少两个载波信号在第一时间单元内分别对应的调度信息,确定所述至少两个载波信号在所述第一时间单元内分别对应的削波因子;
    收发单元,用于向射频单元发送所述至少两个载波信号以及所述至少两个载波信号在所述第一时间单元内分别对应的削波因子,所述至少两个载波信号在所述第一时间单元内分别对应的削波因子用于所述至少两个载波信号的合路信号的削波处理。
  40. 如权利要求39所述的装置,其特征在于,所述处理单元,具体用于:
    确定所述至少两个载波信号中的参考载波信号;
    根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息和所述参考载波信号在所述第一时间单元内对应的调度信息,确定所述每个载波信号对应的削波因子。
  41. 如权利要求39或40所述的装置,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  42. 如权利要求39至41任一所述的装置,其特征在于,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
  43. 如权利要求39至42任一所述的装置,其特征在于,
    F i=P j/P i
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
  44. 如权利要求39至42任一所述的装置,其特征在于,
    Figure PCTCN2021133889-appb-100033
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  45. 如权利要求39至42任一所述的装置,其特征在于,
    Figure PCTCN2021133889-appb-100034
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  46. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自基带单元的至少两个载波信号以及所述至少两个载波信号在第一时间单元内分别对应的削波因子,所述至少两个载波信号在第一时间单元内分别对应的削波因子对应于所述至少两个载波信号在所述第一时间单元内分别对应的调度信息;
    处理单元,用于根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理。
  47. 如权利要求46所述的装置,其特征在于,所述处理单元,还用于在根据所述至少两个载波信号在第一时间单元内分别对应的削波因子,对所述至少两个载波信号的合路信号进行削波处理之前,确定所述削波因子的传输是可靠的。
  48. 如权利要求46或47所述的装置,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  49. 如权利要求46至48任一所述的装置,其特征在于,所述调度信息包括功率、调制阶数、带宽中的一个或多个。
  50. 如权利要求46至49任一所述的装置,其特征在于,
    F i=P j/P i
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,所述第j个载波信号为参考载波信号,所述至少两个载波信号的数量为n,且i=1,2,……,n。
  51. 如权利要求46至49任一所述的装置,其特征在于,
    Figure PCTCN2021133889-appb-100035
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示第j个载波信号在所述第一时间单元内的调制阶数对应的EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  52. 如权利要求46至49任一所述的装置,其特征在于,
    Figure PCTCN2021133889-appb-100036
    其中,F i表示所述至少两个载波信号中的第i个载波信号在所述第一时间单元内对应的削波因子,P i表示所述第i个载波信号在所述第一时间单元内的功率,P j表示第j个载波信号在所述第一时间单元内的功率,EVM i表示所述第i个载波信号在所述第一时间单元内的调制阶数对应的误差矢量幅度EVM门限,EVM j表示所述第j个载波信号在所述第一时间单元内的调制阶数对应的EVM门限,所述第j个载波信号为参考载波信号;所述至少两个载波信号的数量为n,且i=1,2,……,n。
  53. 一种通信装置,其特征在于,包括:
    处理单元,用于根据至少两个载波信号在第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述至少两个载波信号在所述第一时间单元内分别对应的第一削波因子,所述第一时间单元包含于所述第二时间单元;以及根据所述至少两个载波信号在第一时间单元内分别对应的第一削波因子,分别对所述至少两个载波信号的每个载波信号进行单独削波处理;
    收发单元,用于向射频单元发送所述削波处理后的至少两个载波信号;
    其中,所述第二削波因子用于对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
  54. 如权利要求53所述的装置,其特征在于,所述处理单元,具体用于:
    确定所述至少两个载波信号中的参考载波信号;
    根据所述至少两个载波信号中的每个载波信号在所述第一时间单元内对应的调度信息、所述参考载波信号在所述第一时间单元内对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子,确定所述每个载波信号对应的第一削波因子。
  55. 如权利要求53或54所述的装置,其特征在于,所述收发单元,还用于接收来自所述射频单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  56. 如权利要求53或54所述的装置,其特征在于,所述处理单元,还用于确定所述每个载波信号在所述第二时间单元内对应的所述第二削波因子。
  57. 如权利要求56所述的装置,其特征在于,所述处理单元,具体用于根据所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子,确定所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于第二时间单元。
  58. 如权利要求56或57所述的装置,其特征在于,所述收发单元,还用于向所述射频单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  59. 如权利要求53至58任一所述的装置,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  60. 如权利要求53至59任一所述的装置,其特征在于,所述调度信息包括功率、调制阶数、带宽中的至少一种。
  61. 如权利要求53至60任一所述的装置,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100037
    其中,
    Figure PCTCN2021133889-appb-100038
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100039
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100040
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  62. 如权利要求53至60任一所述的装置,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100041
    其中,
    Figure PCTCN2021133889-appb-100042
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100043
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100044
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  63. 如权利要求53至60任一所述的装置,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100045
    其中,
    Figure PCTCN2021133889-appb-100046
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100047
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100048
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100049
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100050
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  64. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自基带单元削波处理后的至少两个载波信号,所述削波处理后的至少两个载波信号是使用所述至少两个载波信号在第一时间单元内分别对应的第一削波因子进行单独削波处理后的载波信号,所述第一削波因子是根据所述至少两个载波信号在所述第一时间单元内分别对应的调度信息和所述至少两个载波信号在第二时间单元内分别对应的第二削波因子确定的,所述第一时间单元包含于所述第二时间单元;
    处理单元,用于根据所述至少两个载波信号在所述第二时间单元内分别对应的第二削波因子,对所述削波处理后的至少两个载波信号的合路信号进行削波处理。
  65. 如权利要求64所述的装置,其特征在于,所述处理单元,还用于确定所述每个载波信号在所述第二时间单元内对应的第二削波因子。
  66. 如权利要求65所述的装置,其特征在于,所述处理单元,具体用于将所述至少两个载波信号中每个载波信号在第三时间单元内对应的多个第三削波因子的平均值或最大值,确定为所述每个载波信号在所述第二时间单元内对应的第二削波因子,所述第三时间单元在时序上早于所述第二时间单元。
  67. 如权利要求65或66所述的装置,其特征在于,所述收发单元,还用于在接收来自基带单元削波处理后的至少两个载波信号之前,向所述基带单元发送所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  68. 如权利要求64所述的装置,其特征在于,所述收发单元,还用于接收来自所述基带单元的所述至少两个载波信号在第二时间单元内分别对应的第二削波因子。
  69. 如权利要求64至68中任一所述的装置,其特征在于,所述第一时间单元为时隙、子帧或者正交频分复用符号。
  70. 如权利要求64至69任一所述的装置,其特征在于,所述调度信息包括功率、调制阶数、带宽中的至少一种。
  71. 如权利要求64至70任一所述的装置,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100051
    其中,
    Figure PCTCN2021133889-appb-100052
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100053
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100054
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  72. 如权利要求64至70任一所述的装置,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100055
    其中,
    Figure PCTCN2021133889-appb-100056
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第 j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100057
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100058
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  73. 如权利要求64至70任一所述的装置,其特征在于,所述第二时间单元包含m个所述第一时间单元,所述至少两个载波信号的数量为n;
    Figure PCTCN2021133889-appb-100059
    其中,
    Figure PCTCN2021133889-appb-100060
    表示所述至少两个载波信号中的第i个载波信号在所述第二时间单元中的第j个第一时间单元内对应的第一削波因子,F i 2表示所述第i个载波信号在所述第二时间单元内对应的第二削波因子,
    Figure PCTCN2021133889-appb-100061
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100062
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的功率,
    Figure PCTCN2021133889-appb-100063
    表示所述第i个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,
    Figure PCTCN2021133889-appb-100064
    表示第k个载波信号在所述第二时间单元中的第j个第一时间单元内的调制阶数对应的EVM门限,所述第k个载波信号为参考载波信号,且i=1,2,……,n,j=1,2,……,m。
  74. 一种通信装置,其特征在于,包括:
    处理单元,用于确定至少两个载波信号在时域上的峰谷信息,所述峰谷信息包括波峰信息和/或波谷信息;根据所述至少两个载波信号在时域上的峰谷信息,确定所述至少两个载波信号在时域上的偏移量;以及,根据所述至少两个载波信号在时域上的偏移量,确定调整后的至少两个载波信号;
    收发单元,用于向射频单元发送调整后的至少两个载波信号。
  75. 如权利要求74所述的装置,其特征在于,所述调整后的至少两个载波信号中的任意两个载波信号不存在波峰叠加和/或波谷叠加。
  76. 如权利要求74或75所述的装置,其特征在于,所述处理单元,具体用于:
    确定所述至少两个载波信号中的参考载波信号;
    根据所述参考载波信号的峰谷信息,确定所述至少两个载波信号中的非参考载波信号相对于所述参考载波信号在时域上的偏移量。
  77. 一种通信装置,其特征在于,包括:
    处理器,所述存储器和处理器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以实现权利要求1至7、15至25、36至38中任一项所述的方法。
  78. 一种通信装置,其特征在于,包括:
    处理器,所述存储器和处理器耦合,所述存储器用于存储程序指令,所述处理器用于 执行所述程序指令,以实现权利要求8至14、26至35中任一项所述的方法。
  79. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,实现上述权利要求1至38中任一项所述的方法。
  80. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,实现如权利要求1至38中任一项所述的方法。
  81. 一种通信***,其特征在于,包括用于执行上述权利要求1至7中任一项所述方法的基带单元,和/或,用于执行上述权利要求8至14中任一项所述方法的射频单元。
  82. 一种通信***,其特征在于,包括用于执行上述权利要求15至25中任一项所述方法的基带单元,和/或,用于执行上述权利要求26至35中任一项所述方法的射频单元。
  83. 一种通信***,其特征在于,包括用于执行上述权利要求36至38中任一项所述方法的基带单元,和/或,用于从所述基带单元接收调整后的至少两个载波信号的射频单元。
PCT/CN2021/133889 2020-11-30 2021-11-29 载波信号的处理方法、通信装置及通信*** WO2022111677A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237018941A KR20230098857A (ko) 2020-11-30 2021-11-29 반송파 신호 처리 방법, 통신 장치 및 통신 시스템
EP21897177.8A EP4231599A4 (en) 2020-11-30 2021-11-29 CARRIER SIGNAL PROCESSING METHOD, COMMUNICATIONS DEVICE AND COMMUNICATIONS SYSTEM
US18/321,786 US20230291628A1 (en) 2020-11-30 2023-05-23 Carrier signal processing method, communication apparatus, and communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011380681.0 2020-11-30
CN202011380681 2020-11-30
CN202110351677.X 2021-03-31
CN202110351677.XA CN114584446A (zh) 2020-11-30 2021-03-31 载波信号的处理方法、通信装置及通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/321,786 Continuation US20230291628A1 (en) 2020-11-30 2023-05-23 Carrier signal processing method, communication apparatus, and communication system

Publications (1)

Publication Number Publication Date
WO2022111677A1 true WO2022111677A1 (zh) 2022-06-02

Family

ID=81753998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133889 WO2022111677A1 (zh) 2020-11-30 2021-11-29 载波信号的处理方法、通信装置及通信***

Country Status (4)

Country Link
US (1) US20230291628A1 (zh)
EP (1) EP4231599A4 (zh)
KR (1) KR20230098857A (zh)
WO (1) WO2022111677A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312655A (zh) * 2013-05-28 2013-09-18 京信通信技术(广州)有限公司 一种多载波相位优化方法及装置
US20140269984A1 (en) * 2013-03-13 2014-09-18 Futurewei Technologies, Inc. Methods and systems for crest factor reduction in multi-carrier multi-channel architectures
WO2017101082A1 (zh) * 2015-12-17 2017-06-22 华为技术有限公司 一种削波方法及装置
WO2018058410A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 削波方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076008B (zh) * 2007-07-17 2010-06-09 华为技术有限公司 信号的削波处理方法和设备
EP2485447A1 (en) * 2011-02-07 2012-08-08 Alcatel Lucent Method to clip a digital signal
US9236899B2 (en) * 2013-06-05 2016-01-12 Telefonaktiebolaget L M Ericsson (Publ) Crest factor reduction of inter-band carrier aggregated signals
EP3162014B1 (en) * 2014-06-30 2018-05-09 Telefonaktiebolaget LM Ericsson (publ) Crest factor reduction of carrier aggregated signals
CN111107030B (zh) * 2018-10-25 2022-07-12 北京新岸线移动多媒体技术有限公司 一种适用于大带宽***的降低信号峰均比的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269984A1 (en) * 2013-03-13 2014-09-18 Futurewei Technologies, Inc. Methods and systems for crest factor reduction in multi-carrier multi-channel architectures
CN103312655A (zh) * 2013-05-28 2013-09-18 京信通信技术(广州)有限公司 一种多载波相位优化方法及装置
WO2017101082A1 (zh) * 2015-12-17 2017-06-22 华为技术有限公司 一种削波方法及装置
WO2018058410A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 削波方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231599A4
ZTE CORPORATION: "Overview on TX requirement for 7-24GHz", 3GPP DRAFT; R4-1903990_OVERVIEW ON BS TX REQUIREMENT ON 7-24GHZ, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Xi’an, China; 20190408 - 20190412, 1 April 2019 (2019-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051714355 *

Also Published As

Publication number Publication date
EP4231599A4 (en) 2024-05-15
KR20230098857A (ko) 2023-07-04
EP4231599A1 (en) 2023-08-23
US20230291628A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US9264925B2 (en) Systems and methods for LTE interference detection
WO2017092697A1 (zh) 通信***中处理通信信号的方法和装置
WO2018127132A1 (zh) 一种信号配置方法、装置及存储介质
US20150289201A1 (en) Method and apparatus for an improved mechanism for selecting an access point
WO2018127157A1 (zh) 一种上行信号发送方法、接收方法、终端及基站
US9313775B2 (en) Wireless transmission apparatus, wireless reception apparatus, wireless communication system, and control program and integrated circuit of wireless transmission apparatus
CN102223215A (zh) Ack/nack的传输方法、接收方法及其装置
US20080089437A1 (en) Method and apparatus for reducing peak-to-average power ratio of a signal
CN109995692A (zh) 发送数据的方法及装置
WO2021208673A1 (zh) 空间参数确定方法及装置
KR102288180B1 (ko) 데이터 전송 방법, 장치 및 통신 시스템
WO2018196618A1 (zh) 一种通信方法及装置
US20240064790A1 (en) Device and method for associating resource information with channel metric information in wireless networks
WO2018191968A1 (zh) 信号质量控制方法及基站
WO2019079936A1 (zh) 一种选择波形的方法及设备
WO2021189213A1 (zh) 一种控制信息的发送、接收方法及装置
US20220337461A1 (en) Reference Signal Determining Method and Apparatus
CN106936749A (zh) 传输高效短训练域序列的方法、装置和设备
WO2017114038A1 (zh) 信号处理方法及装置、传输节点、存储介质
WO2022111677A1 (zh) 载波信号的处理方法、通信装置及通信***
BR102014008468A2 (pt) método; aparelho; e programa de computador incorporado em um meio legível por computador
US20220173949A1 (en) Terminal and transmission method
CN114726492B (zh) 解调参考信号的峰均比修正方法、终端及存储介质
CN114584446A (zh) 载波信号的处理方法、通信装置及通信***
WO2020143649A1 (zh) 基于序列的信号处理方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021897177

Country of ref document: EP

Effective date: 20230519

ENP Entry into the national phase

Ref document number: 20237018941

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE