WO2021189213A1 - 一种控制信息的发送、接收方法及装置 - Google Patents

一种控制信息的发送、接收方法及装置 Download PDF

Info

Publication number
WO2021189213A1
WO2021189213A1 PCT/CN2020/080747 CN2020080747W WO2021189213A1 WO 2021189213 A1 WO2021189213 A1 WO 2021189213A1 CN 2020080747 W CN2020080747 W CN 2020080747W WO 2021189213 A1 WO2021189213 A1 WO 2021189213A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
coreset
sub
domain resources
time
Prior art date
Application number
PCT/CN2020/080747
Other languages
English (en)
French (fr)
Inventor
袁世通
刘凤威
马千里
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/080747 priority Critical patent/WO2021189213A1/zh
Publication of WO2021189213A1 publication Critical patent/WO2021189213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for sending and receiving control information.
  • the working frequency band of the communication system is above 6GHz , such as 28GHz, 39GHz, 60GHz, 73GHz and other frequency bands, so the new generation of wireless communication network has the remarkable characteristics of high-frequency communication system, so that it is easy to achieve higher throughput.
  • the signal attenuation in free space becomes larger, in order to ensure the coverage of the mobile communication system, especially in the high frequency band, such as 52.6GHz and above, it may be necessary to introduce the downlink communication technology to enhance coverage in the base station to solve the signal attenuation in free space. Too large and cause the problem of limited coverage.
  • the time-frequency resource configuration schemes that carry the physical downlink control channel (PDCCH) are all based on multi-carrier waveforms.
  • OFDM orthogonal frequency division multiplexing
  • the phases of each sub-carrier are the same or close, the superimposed signal will suffer the same initial
  • the modulation of the phase signal produces a larger instantaneous power peak, which further brings a higher peak to average power ratio (PAPR).
  • PAPR peak to average power ratio
  • the present application provides a method and device for sending and receiving control information, which are used to solve the problem in the prior art that PDCCH transmission under high-frequency signals cannot achieve coverage enhancement.
  • this application provides a method for sending control information.
  • An access network device sends first indication information to a terminal device; the first indication information is used to indicate at least one control-resource set allocated to the terminal device. , CORESET) Whether to perform transformation precoding; after the access network device performs transformation precoding on at least one CORESET, it sends control information to the terminal device on the at least one CORESET.
  • the access network device sends the first indication information to instruct the terminal device to use single-carrier modulation methods such as transform precoding when receiving control information, thereby improving the signal coverage capability of the access network device to send downlink control information.
  • the first indication information further includes: CORESET information of at least one CORESET; the CORESET information is used to indicate time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the terminal equipment is configured with the time-frequency resources of the physical control channel resource blocks in the modulation mode of a single carrier through the access network equipment, and further, the access network equipment can set the time-frequency resources of the physical control channel resource blocks corresponding to the single carrier.
  • Sending control information in turn, can realize the sending of control information in a single-carrier modulation mode, which improves the signal coverage capability of the terminal device to receive downlink control information.
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, and an end frequency point.
  • the physical control channel resource block is determined by dividing the frequency domain range, so that the frequency domain resource division method is adapted to the single carrier modulation method.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is included in CORESET One of at least one physical control channel resource block; the CORESET information further includes: indication information for indicating N first sub-frequency domain resources of the first physical control channel resource block; where N is a positive integer.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping and/or bundling mapping.
  • the first indication information further includes: search space information corresponding to CORESET; the second physical control channel resource block includes K second sub-frequency domain resources; the second physical control channel resource block includes at least CORESET One of a physical control channel resource block; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources are aggregated Sub-frequency domain resources; K1 is less than or equal to K; N1 is less than or equal to N; the search space information includes: information used to indicate that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domain resources Instructions.
  • the CORESET information includes: CORESET time-domain resource indication information; the indication information includes: the time-domain resource of one time-domain symbol includes multiple sub-time-domain resources, or the time-domain resource of one time-domain symbol is A time domain resource.
  • the time domain resource is divided into multiple sub-time domain resources, and the flexibility of the time domain resource configuration of the control information is improved on the time domain resources.
  • the time domain resources of CORESET include at least one of the following: one or more sub-time domain resources in one time domain symbol; one or more sub-time domain resources in multiple time domain symbols; or, one The time domain resource of the time domain symbol.
  • the time domain resources configured for the terminal device can be of multiple types, which improves the flexibility of time domain resource configuration of control information and improves the utilization rate of resources.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources, one or more sub-time-domain resources among multiple time-domain symbols, or time-domain resources of one or more time-domain symbols.
  • the access network equipment can allocate time domain resource sets for the terminal equipment in advance, and the access network equipment can send control information for the terminal equipment on the time domain resources of the time domain resource set, so as to reduce the signaling of the access network equipment. Consumption.
  • the access network device sends second indication information to the terminal device; the second indication information is used to indicate the second time domain resource in the time domain resource set; the second time domain resource is the CORESET allocated to the terminal device Time domain resources.
  • the access network device can flexibly configure time domain resources for the terminal device by dynamically sending the second indication information when needed, so that the terminal device can receive control information on the time domain resource indicated by the second indication information .
  • sub-time domain resources are used to carry at least one of the following: Demodulation Reference Signal (DMRS), physical control channel resource blocks; or, time domain resources of time domain symbols are used to carry the following At least one item: DMRS, physical control channel resource block.
  • DMRS Demodulation Reference Signal
  • physical control channel resource blocks or, time domain resources of time domain symbols are used to carry the following At least one item: DMRS, physical control channel resource block.
  • the access network device is configured to configure the reference signal in the time domain direction to adapt to the single-carrier modulation mode.
  • the access network device is configured to configure the reference signal in the time domain direction to adapt to the single-carrier modulation mode.
  • the first time domain resource includes aggregated sub-time domain resources or time domain resources; wherein the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources and The time domain resources belong to search spaces of different periods; or, the aggregated time domain resources belong to search spaces of different periods.
  • the first indication information further includes: P transmission configuration index (TCI) indication information associated with the first CORESET sent to the terminal device, where P is a positive integer; CORESET is one of at least one CORESET; the TCI identifier is used to indicate the port associated with the CORESET; wherein, there is a quasi-common relationship between the reference signal of the corresponding port indicated by the TCI identifier and the physical control channel resource block transmitted on the first CORESET through the port Address attribute QCL.
  • TCI transmission configuration index
  • the access network device sends control information to the terminal device on the P1 ports corresponding to the P1 first TCI identifier, where the first TCI identifier and the port have a one-to-one correspondence; the first TCI The identifier is one of the P TCI identifiers associated with the first CORESET; wherein, P1 is less than or equal to P, and P1 is a positive integer.
  • the CORESET configured for the terminal device is associated with multiple TCI identifiers, and each TCI identifier corresponds to one antenna port, so that the access network device can send control information on multiple antenna ports, realize the spatial diversity of control information, and improve the order.
  • transform precoding is Discrete Fourier Transform and Orthogonal Frequency Division Multiplexing (DFT-S-OFDM).
  • an embodiment of the present application provides a communication device (hereinafter referred to as the device) having a function of implementing the steps performed by the access network device in the method example of the first aspect described above.
  • the device can be located in the access network equipment, or can be a chip of the access network equipment.
  • the above-mentioned functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit. These units can perform the corresponding steps or functions performed by the access network device in the method example of the first aspect above, including the transceiving unit and the processing unit.
  • the transceiver unit is used to send first indication information to the terminal device; the first indication information is used to indicate whether at least one CORESET allocated to the terminal device is transformed precoding; the processing unit is used to perform transformation precoding on at least one CORESET After that, the control information is sent to the terminal device on at least one CORESET through the transceiver unit.
  • the first indication information further includes: CORESET information of at least one CORESET; the CORESET information is used to indicate time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, or an end frequency point.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is included in CORESET One of at least one physical control channel resource block; the CORESET information further includes: indication information for indicating N first sub-frequency domain resources of the first physical control channel resource block; where N is a positive integer.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping and/or bundling mapping.
  • the first indication information further includes: search space information corresponding to CORESET; the second physical control channel resource block includes K second sub-frequency domain resources; the second physical control channel resource block includes at least CORESET One of a physical control channel resource block; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources are aggregated Sub-frequency domain resources; K1 is less than or equal to K; N1 is less than or equal to N; the search space information includes: information used to indicate that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domain resources Instructions.
  • the CORESET information includes: CORESET time-domain resource indication information; the indication information includes: the time-domain resource of one time-domain symbol includes multiple sub-time-domain resources, or the time-domain resource of one time-domain symbol is A time domain resource.
  • the time-domain resources of CORESET include at least one of the following: one or more sub-time-domain resources in one time-domain symbol, one or more sub-time-domain resources in multiple time-domain symbols, or one or Time domain resources with multiple time domain symbols.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources, one or more sub-time-domain resources among multiple time-domain symbols, or time-domain resources of one or more time-domain symbols.
  • the transceiver unit is used to send second indication information to the terminal device; the second indication information is used to indicate the second time domain resource in the time domain resource set; the second time domain resource is allocated to the terminal device Time domain resources of CORESET.
  • the sub-time domain resources are used to carry at least one of the following: DMRS, a physical control channel resource block; or, the time domain resources of time domain symbols are used to carry at least one of the following: DMRS, a physical control channel resource Piece.
  • the first time domain resource includes aggregated sub-time domain resources or time domain resources; wherein the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources and The time domain resources belong to search spaces of different periods; or, the aggregated time domain resources belong to search spaces of different periods.
  • the first indication information further includes: indication information of P TCI identifiers associated with the first CORESET sent to the terminal device, where P is a positive integer; the first CORESET is one of at least one CORESET; The TCI identifier is used to indicate the port associated with the CORESET; where the reference signal of the corresponding port indicated by the TCI identifier and the physical control channel resource block transmitted on the first CORESET through the port have a quasi co-location attribute QCL.
  • the transceiver unit is further configured to send control information to the terminal device on the P1 port corresponding to the P1 first TCI identifier, where the first TCI identifier has a one-to-one correspondence with the port;
  • a TCI identifier is one of the P TCI identifiers associated with the first CORESET; wherein, P1 is less than or equal to P, and P1 is a positive integer.
  • transform precoding is Discrete Fourier Transform and Orthogonal Frequency Division Multiplexing (DFT-S-OFDM).
  • the present application provides a method for receiving control information, where a terminal device receives first indication information sent by an access network device; the first indication information is used to indicate whether at least one CORESET allocated to the terminal device performs transformation precoding; The terminal device receives the control information from the access network device after performing transformation precoding on at least one CORESET according to the first indication information.
  • the terminal device determines the single-carrier adjustment mode of the control information through the first instruction information, and further, the terminal device performs transformation precoding on at least one CORESET according to the first instruction information, and then receives data from the access network.
  • the control information of the device improves the signal coverage capability of the terminal device to receive downlink control information.
  • the first indication information further includes: CORESET information of at least one CORESET; the CORESET information is used to indicate time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the terminal equipment can receive the control information under the single-carrier modulation mode by determining the time-frequency resource of the physical control channel resource block under the single-carrier modulation mode, which improves the signal coverage ability of the terminal equipment to receive downlink control information. .
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, or an end frequency point.
  • the physical control channel resource block is determined by dividing the frequency domain range, so that the frequency domain resource division method is adapted to the single-carrier modulation mode, which can realize the reception on the physical control channel resource block under the single-carrier modulation mode
  • the control information improves the signal coverage capability of the terminal equipment to receive downlink control information.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is included in CORESET One of at least one physical control channel resource block; the CORESET information further includes: indication information for indicating N first sub-frequency domain resources of the first physical control channel resource block; where N is a positive integer.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping and/or bundling mapping.
  • the first indication information further includes: search space information corresponding to CORESET; the second physical control channel resource block includes K second sub-frequency domain resources; the second physical control channel resource block includes at least CORESET One of a physical control channel resource block; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources are aggregated Sub-frequency domain resources; K1 is less than or equal to K; N1 is less than or equal to N; the search space information includes: information used to indicate that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domain resources Indication information; according to the search space information, the terminal device jointly decodes the K1 second sub-frequency domain resources and the N1 first sub-frequency domain resources to receive control information from the access network device.
  • terminal devices can decode control information on the aggregated sub-frequency domain resources at the same time, which can improve the reliability of control information transmission and increase the success rate of terminal devices in decoding control information .
  • the CORESET information includes: CORESET time-domain resource indication information; the indication information includes: the time-domain resource of one time-domain symbol includes multiple sub-time-domain resources, or the time-domain resource of one time-domain symbol is One time domain resource; the terminal device blindly detects the control information from the access network device through the search space corresponding to multiple sub-time domain resources; and/or the terminal device passes the blind detection search space corresponding to the time domain resource of 1 time domain symbol Control information from the access network equipment.
  • the time domain resource is divided into multiple sub-time domain resources, and the flexibility of the time domain resource configuration of the control information is improved on the time domain resources.
  • the time domain resources of CORESET include at least one of the following: one or more sub-time domain resources in one time domain symbol, one or more sub-time domain resources in multiple time domain symbols, or one time domain Symbol's time domain resource.
  • the time domain resources configured for the terminal device can be of multiple types, which improves the flexibility of time domain resource configuration of control information and improves the utilization rate of resources.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources, one or more sub-time-domain resources among multiple time-domain symbols, or time-domain resources of one or more time-domain symbols.
  • the terminal device receives the control information from the access network device on the time domain resource set of CORESET.
  • the terminal device can receive the time domain resource set allocated by the access network device, and further, the terminal device can receive control information on the time domain resource of the time domain resource set, so as to avoid being unable to receive specific time domain resource indication information
  • the control information cannot be received, which can also reduce the signaling consumption of the access network equipment.
  • the terminal device receives the second indication information from the access network device; the second indication information is used to indicate the first time domain resource in the time domain resource set; the first time domain resource is the CORESET allocated by the terminal device The time domain resource; the terminal device receives the control information from the access network device on the first time domain resource.
  • the terminal device can receive the control information on the time domain resource indicated by the second indication information, thereby saving the complexity of blind detection of the terminal device.
  • the sub-time domain resources are used to carry at least one of the following: DMRS, a physical control channel resource block; or, the time domain resources of time domain symbols are used to carry at least one of the following: DMRS, a physical control channel resource Piece.
  • the terminal device can receive the reference signal in the time domain direction to adapt to the single-carrier modulation mode.
  • the reference signal by receiving the reference signal on the time domain symbol or on the sub-time domain resource, flexible reference signal reception is realized, and unnecessary resources are avoided by the reference signal, so as to improve the utilization rate of time domain resources.
  • the first time domain resource includes aggregated sub-time domain resources and/or time domain resources; wherein, the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources The resource and the time domain resource belong to different periods of search space, or the aggregated time domain resources belong to different search spaces; further, the terminal device compares the aggregated sub-time domain information according to the search space information corresponding to the first time domain resource.
  • Resources and/or time domain resources are jointly decoded to receive control information from the access network equipment.
  • the terminal device can receive control information on aggregated sub-time-domain resources or time-domain resources of different periods, and decode them at the same time, thereby improving the reliability of control information transmission and increasing the success rate of the terminal device in decoding the control information.
  • the first indication information further includes: indication information of P TCI identifiers associated with the first CORESET sent to the terminal device, where P is a positive integer; the first CORESET is one of at least one CORESET; The TCI identifier is used to indicate the port associated with the CORESET; among them, there is a quasi co-located (QCL) between the reference signal of the corresponding port indicated by the TCI identifier and the physical control channel resource block transmitted on the first CORESET through the port Attributes.
  • QCL quasi co-located
  • the terminal device associates multiple TCI identities according to CORESET, and determines the port corresponding to the TCI identity, so that the terminal device can receive control information on the corresponding port, and realize the spatial diversity of the control information.
  • the terminal device receives the control information sent from the access network device on the P1 port corresponding to the P1 first TCI identifier; the first TCI identifier is one of the P TCI identifiers associated with the first CORESET ; Among them, P1 is less than or equal to P, and P1 is a positive integer.
  • the terminal device determines the P1 port corresponding to the P1 TCI identifier according to the P1 TCI identifiers associated with CORESET, and then receives the control information on the corresponding P1 ports to realize the spatial diversity of the control information.
  • the terminal device determines whether there is a sub-time domain resource on a time domain symbol in the first CORESET according to one or more TCI identifiers associated with the first CORESET; if the terminal device determines that there is 1 time domain
  • the sub-time domain resource on the symbol receives the control information from the access network device on the sub-time domain resource; if the terminal device determines that there is no sub-time domain resource on a time domain symbol, it receives it on the time domain symbol Control information from the access network equipment.
  • the terminal device determines whether the time domain resource indicated by the access network device includes sub-time domain resources according to one or more TCI identifiers associated with CORESET, and further, the terminal device can determine whether there is a blind time domain resource corresponding to the sub-time domain resource.
  • control information is received on the corresponding time domain resources to save the complexity of blind detection of the terminal equipment.
  • transform precoding is discrete fourier transform-spread-orthogonal frequency division multiplexing (DFT-S-OFDM).
  • an embodiment of the present application provides a communication device, which has a function performed by a terminal device in the method example of the third aspect described above.
  • the device may be located in the terminal device, or may be in the chip of the terminal device.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit.
  • These units can perform the corresponding steps or functions in the above-mentioned method example of the third aspect, including: a transceiving unit and a processing unit, where the transceiving unit is used for Receiving the first indication information sent by the access network device; the first indication information is used to indicate whether the at least one CORESET allocated to the terminal device is transformed and pre-encoded; the processing unit is used to pass the at least one CORESET according to the first indication information After performing transform precoding, the control information from the access network device is received through the transceiver unit.
  • the first indication information further includes: CORESET information of at least one CORESET; the CORESET information is used to indicate time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, or an end frequency point.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is included in CORESET One of at least one physical control channel resource block; the CORESET information further includes: indication information used to indicate N first sub-frequency domain resources of the first physical control channel resource block; where N is a positive integer.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping and/or bundling mapping.
  • the first indication information further includes: search space information corresponding to CORESET; the second physical control channel resource block includes K second sub-frequency domain resources; the second physical control channel resource block includes at least CORESET One of a physical control channel resource block; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources are aggregated Sub-frequency domain resources; where K1 is less than or equal to K; N1 is less than or equal to N; the search space information includes: used to indicate that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domains Resource instructions;
  • the processing unit is configured to jointly decode the K1 second sub-frequency domain resources and the N1 first sub-frequency domain resources according to the search space information, so as to receive the control information from the access network device through the transceiver unit.
  • the CORESET information includes: CORESET time-domain resource indication information;
  • the indication information includes: a time-domain symbol of a time-domain resource includes multiple sub-time-domain resources, or, a time-domain symbol of a time-domain resource is A time domain resource;
  • the processing unit is further configured to blindly detect the control information from the access network device through the search space corresponding to the multiple sub-time domain resources; and/or, use the search space corresponding to the time domain resource of one time domain symbol to blindly detect the control information from the access network. Control information of network equipment.
  • the time domain resources of CORESET include at least one of the following: one or more sub-time domain resources in one time domain symbol, one or more sub-time domain resources in multiple time domain symbols, or one time domain Symbol's time domain resource.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources, one or more sub-time-domain resources among multiple time-domain symbols, or time-domain resources of one or more time-domain symbols.
  • the transceiver unit is used to receive control information from the access network device on the CORESET time domain resource set.
  • the transceiver unit is used to receive second indication information from the access network device; the second indication information is used to indicate the first time domain resource in the time domain resource set; the first time domain resource is the terminal device The allocated time domain resource of CORESET; the processing unit is configured to receive control information from the access network device through the transceiver unit on the first time domain resource.
  • the sub-time domain resources are used to carry at least one of the following: DMRS, a physical control channel resource block; or, the time domain resources of time domain symbols are used to carry at least one of the following: DMRS, a physical control channel resource Piece.
  • the first time domain resource includes aggregated sub-time domain resources and/or time domain resources; wherein, the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources The resources and the time domain resources belong to search spaces of different periods; or, the aggregated time domain resources belong to different search spaces;
  • the processing unit is configured to jointly decode the aggregated sub-time domain resources and/or time domain resources according to the search space information corresponding to the first time domain resource, so as to receive control information from the access network device through the transceiver unit.
  • the first indication information further includes: indication information of P TCI identifiers associated with the first CORESET sent to the terminal device, where P is a positive integer; and the first CORESET is one of at least one CORESET;
  • the TCI identifier is used to indicate the port associated with the CORESET; wherein the reference signal of the corresponding port indicated by the TCI identifier and the physical control channel resource block transmitted on the first CORESET through the port have a quasi co-location attribute QCL.
  • the processing unit is configured to receive the control information sent from the access network device through the transceiver unit on the P1 port corresponding to the P1 first TCI identifier; the first TCI identifier is the P associated with the first CORESET One of the TCI identifiers; where P1 is less than or equal to P, and P1 is a positive integer.
  • the processing unit is configured to determine whether there is a sub-time domain resource on a time domain symbol in the first CORESET according to one or more TCI identifiers associated with the first CORESET; if it is determined that there is one sub-time domain resource For the sub-time domain resource on the domain symbol, the control information from the access network device is received through the transceiver unit on the sub-time domain resource; if it is determined that there is no sub-time domain resource on one time domain symbol, the time domain symbol The upper receives control information from the access network equipment through the transceiver unit.
  • transform precoding is Discrete Fourier Transform and Orthogonal Frequency Division Multiplexing (DFT-S-OFDM).
  • a communication device in a fifth aspect, has the function of implementing the above method executed by the access network device, and it includes components ( means).
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the device may be an access network device or a chip of the access network device.
  • the foregoing apparatus includes one or more processors and communication units.
  • One or more processors are configured to support the communication device to perform the corresponding functions of the access network device in the foregoing method.
  • the communication device may further include one or more memories, where the memory is used for coupling with the processor, and the memory is used to store programs, computer programs and/or data necessary for the device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the communication device executes any one of the first aspect and the first aspect.
  • the foregoing communication device includes one or more processors and communication units.
  • One or more processors are configured to support the communication device to perform the corresponding functions of the access network device in the foregoing method.
  • the communication device may further include one or more memories, where the memories are used for coupling with the processor and store necessary computer programs and/or data for the terminal device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be located in an access network device or be an access network device.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device can execute any one of the first aspect and the first aspect.
  • a computer-readable storage medium for storing a computer program, so that the computer executes the method in the first aspect and any one of the possible implementation manners of the first aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the foregoing first aspect and any one of the possible implementation manners of the first aspect Methods.
  • a communication device such as a chip system, which is connected to a memory, and is used to read and execute a software program stored in the memory, and execute any one of the foregoing first aspect and the first aspect. The method in the way.
  • a communication device in a ninth aspect, has the function of realizing the terminal device in the aforementioned method, and includes means for executing the steps or functions described in the second aspect and any one of the possible implementation manners of the second aspect.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the communication device may be a terminal device; the terminal device may be a terminal device, or a chip of the terminal device.
  • the foregoing communication device includes one or more processors and communication units.
  • One or more processors are configured to support the communication device to perform the corresponding functions of the terminal device in the foregoing method.
  • the communication device may further include one or more memories, where the memory is used for coupling with the processor and stores the computer programs and/or data necessary for the device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the third aspect or any one of the third aspect It is possible to implement the method completed by the terminal device in the manner.
  • the foregoing apparatus includes one or more processors and communication units.
  • One or more processors are configured to support the communication device to perform the corresponding functions of the terminal device in the foregoing method.
  • the communication device may further include one or more memories, where the memories are used for coupling with the processor and store necessary computer programs and/or data for the terminal device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be located in a terminal device, or may be a terminal device.
  • the foregoing communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device can execute any one of the third aspect and the third aspect.
  • a computer-readable storage medium for storing a computer program
  • the computer program includes a computer program for executing the method in the third aspect and any one of the possible implementation manners of the third aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the above-mentioned third aspect and the possible implementation manner of the third aspect In the method.
  • a communication device such as a chip system
  • the device is connected to a memory and is used to read and execute a software program stored in the memory.
  • the stored software program is used to execute the above-mentioned third aspect and third aspect.
  • the method in any possible implementation of the aspect.
  • a communication system in a thirteenth aspect, includes an access network device for executing the method described in the first aspect, and a terminal device for executing the method described in the third aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a CORESET in the frequency domain in the prior art
  • 3A is a schematic diagram of a mapping relationship between search space and CORESET provided by an embodiment of the application
  • FIG. 3B is a schematic diagram of a CORESET provided by an embodiment of this application.
  • FIG. 3C is a schematic diagram of CORESET in the time domain according to an embodiment of this application.
  • FIG. 3D is a schematic diagram of monitoring timing on the time slot of FIG. 3B;
  • 4A is a schematic diagram of the structure of a DFT-s-OFDM transmitter and receiver provided by an embodiment of the application;
  • 4B is a schematic diagram of signal attenuation at different frequencies provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for sending and receiving control information according to an embodiment of this application
  • 6A-6B are schematic diagrams of a CORESET in the frequency domain according to an embodiment of this application.
  • FIG. 6C is a schematic diagram of binding of CORESET in the time-frequency direction according to an embodiment of the application.
  • FIG. 6D is a schematic diagram of the aggregation of CORESET in the time domain according to an embodiment of this application.
  • FIGS. 7A-7C are schematic diagrams of a CORESET in the time domain provided by an embodiment of this application.
  • 7D-7E are schematic diagrams of a CORESET in the time domain according to an embodiment of this application.
  • 8A-8C are schematic diagrams of a TCI state of CORESET provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 1 is a schematic diagram of a possible system architecture applicable to the present application.
  • the system architecture includes access network equipment and terminal equipment.
  • the Uu air interface can be used to communicate between the access network equipment and the terminal equipment.
  • the Uu air interface can be understood as a universal UE to network interface between the terminal equipment and the access network equipment.
  • Uu air interface transmission includes uplink transmission and downlink transmission.
  • the access network device can provide wireless access-related services for at least one terminal device, and implement one or more of the following functions: wireless physical layer function, resource scheduling and wireless resource management, quality of service (QoS) ) Management, wireless access control and mobility management functions.
  • QoS quality of service
  • the access network device and at least one terminal device can communicate with each other through a beam.
  • the access network device may establish a communication link with at least one terminal device (for example, the terminal device 1 and the terminal device 2 shown in FIG. 1) through beams in different directions. At least one terminal device may also form a beam for data transmission with the access network device.
  • this application does not limit the number of access network devices and the number of terminal devices in the system architecture, and the system architecture applicable to this application may include other network devices in addition to access network devices and terminal devices. Such as core network equipment, wireless relay equipment, and wireless backhaul equipment, etc., this application is not limited to this, and is only an example.
  • the access network device in this application may integrate all functions in one independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited in this application.
  • the terminal device in this application can be connected to the access network device in a wireless manner.
  • the architecture of the communication system shown in FIG. 1 is not limited to only include the devices shown in the figure, and may also include other devices not shown in the figure.
  • the specific devices included in this application will not be one by one here. Enumerate.
  • the network architecture and business scenarios described in this application are intended to more clearly illustrate the technical solutions provided in this application, and do not constitute a limitation on the technical solutions provided in this application. Those of ordinary skill in the art will know that as the network architecture evolves and new With the emergence of business scenarios, the technical solutions provided in this application are equally applicable to similar technical problems.
  • the interaction between the terminal device and the access network device is taken as an example for description.
  • the method provided in the embodiment of this application can also be applied to the interaction between other execution subjects, for example, it can be a terminal device chip or module.
  • it can be a terminal device chip or module.
  • the execution subject when the execution subject is the chip or module, reference may be made to the description in the embodiment of the present application, which will not be repeated here.
  • GSM global system of mobile communication
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • 5G 5th Generation
  • Various evolved communication systems such as Internet of Things, Internet of Vehicles, 6G communication systems, etc.
  • a terminal device can be referred to as a terminal for short, which is a device with a wireless transceiver function.
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites, etc.).
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminal equipment in ), wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety (transportation safety) Wireless terminal equipment in a smart city (smart city), wireless terminal equipment in a smart home (smart home), and may also include user equipment (UE), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminal equipment in wireless terminal equipment in self-driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • UE user equipment
  • the terminal equipment can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of 6G, etc.
  • Terminal equipment can sometimes be called terminal, access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal Equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile. The embodiments of the present application are not limited to this.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solutions provided in the embodiments of the present application.
  • the terminal device includes a device that provides voice and/or data connectivity to the user, for example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G or future 6G networks, or new evolved public land mobile network (PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal equipment in) is not limited in this embodiment of the present application.
  • the terminal device may include: a radio resource control (radio resource control, RRC) signaling interaction module, a media access control (media access control, MAC) signaling interaction module, and physical (PHY) signaling Interactive module.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • the RRC signaling interaction module may be: a module used by the access network equipment and terminal equipment to send and receive RRC signaling.
  • the MAC signaling interaction module may be: a module used by an access network device and a terminal device to send and receive MAC control element (CE) signaling.
  • CE MAC control element
  • the PHY signaling and data may be modules used by the access network equipment and terminal equipment to send and receive uplink control signaling or downlink control signaling, uplink and downlink data or downlink data.
  • An access network device may also be called a radio access network (RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, for example, but is not limited to: next-generation base stations (generation nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit) , BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • generation nodeB generation nodeB, gNB
  • evolved node B evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or an access network
  • the networked devices may be relay stations, access points, in-vehicle devices, wearable devices, and access network devices in a 5G network or access network devices in a PLMN network that will evolve in the future.
  • the terminal device can communicate with multiple access network devices of different technologies. For example, the terminal device can communicate with an access network device that supports long term evolution (LTE), or can communicate with an access network device that supports 5G. , It can also be dual-connected with LTE-supporting access network equipment and 5G-supporting access network equipment.
  • LTE long term evolution
  • 5G 5G-supporting access network equipment
  • the embodiments of the application are not limited.
  • the device used to implement the function of the access network device may be the access network device; it may also be a device capable of supporting the access network device to implement the function, such as a chip system, which can be installed in the access network device. Connected to the network equipment.
  • the device used to implement the functions of the access network equipment is the access network equipment, and the access network equipment is the base station as an example to describe the technical solutions provided in the embodiments of the present application.
  • Access network equipment such as access network (AN) equipment, such as a base station (e.g., access point), may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network .
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network equipment may include the evolved base station in the LTE system or the long term evolution-advanced (LTE-A), or may also include the next generation node B (next generation node B) in the 5G new wireless system.
  • GNB may also include a centralized unit (CU) and a distributed unit (DU) in a cloud access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the application .
  • Cloud RAN cloud radio access network
  • the access network equipment in the embodiments of the present application may be equipment used to communicate with terminal equipment.
  • the access network equipment may be a base station (NodeB, NB) in a GSM system, or an evolved base station ( Evolutional NodeB, eNB or eNodeB), it can also be a wireless controller in the cloud radio access network (CRAN) scenario, or the access network device can be a relay station, an access point, a vehicle-mounted device, or a wearable
  • the device and the access network device in the 5G network (for example, gNB) or the access network device in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the access network equipment may also include: an RRC signaling interaction module, a MAC signaling interaction module, and a PHY signaling interaction module.
  • the access network equipment may include a centralized unit (CU) and a distributed unit (DU).
  • the access network device may also include an active antenna unit (AAU).
  • CU implements part of the functions of access network equipment
  • DU implements part of the functions of access network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence layer protocol (packet Data Convergence Protocol, PDCP) layer function.
  • RRC radio resource control
  • PDCP Packet Data Convergence Protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the access network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make a limit.
  • Downlink transmission means that the access network device sends downlink information to the terminal device, the access network device serves as the sending device, and the terminal device serves as the receiving device.
  • the downlink information may include one or more of downlink data information, downlink control information, and downlink reference signals.
  • the downlink reference signal may be a channel state information reference signal (CSI-RS) or a phase tracking reference signal (PTRS).
  • the channel used to transmit downlink information is called a downlink channel, and the downlink channel may be a physical downlink shared channel (PDSCH) or PDCCH.
  • the PDCCH is used to carry downlink control information (DCI)
  • the PDSCH is used to carry downlink data
  • the downlink data may also be referred to as downlink data information.
  • the downlink control channel such as PDCCH, or enhanced physical downlink control channel (ePDCCH), or other downlink control channels, is not specifically limited.
  • the main downstream control channel is PDCCH as an example for description.
  • Reference signal resources In this embodiment of the application, the resources used by the access network device to send reference signals may be referred to as reference signal resources.
  • the reference signal may be any of the following signals: synchronization signal, broadcast channel, and synchronization signal broadcast channel Block (synchronization signal and PBCH block, SSB), broadcast signal demodulation signal, channel state information downlink signal (channel state information reference signal, CSI-RS), cell specific reference signal (cell specific reference signal, CS-RS), terminal Dedicated reference signal (user equipment specific reference signal, US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, downlink phase noise tracking signal, sounding reference signal (sounding reference signal, SRS), etc.
  • Symbols can also be called time-domain symbols, including but not limited to orthogonal frequency division multiplexing (OFDM) symbols, sparse code multiplexing access (SCMA) symbols, filtering orthogonal frequency Filtered orthogonal frequency division multiplexing (F-OFDM) symbols and non-orthogonal multiple access (NOMA) symbols can be specifically determined according to actual conditions and will not be repeated here.
  • OFDM orthogonal frequency division multiplexing
  • SCMA sparse code multiplexing access
  • F-OFDM filtering orthogonal frequency Filtered orthogonal frequency division multiplexing
  • NOMA non-orthogonal multiple access
  • the time slot occupies multiple consecutive OFDM symbols in the time domain. For example, in LTE, 1 slot occupies 6 or 7 consecutive OFDM symbols in the time domain; in NR, 1 slot occupies 14 consecutive OFDM symbols in the time domain (regular cyclic prefix) or continuous 12 OFDM symbols (extended cyclic prefix).
  • PDCCH is a downlink control channel, which carries the control information DCI of PUSCH and PDSCH.
  • the PDCCH occupies the entire bandwidth in the frequency domain, and occupies the first 1-3 symbols of each subframe in the time domain, and is dynamically scheduled by the amount of resources.
  • PDCCH does not need to occupy the entire bandwidth.
  • the PDCCH will be in the BWP, and the time domain can also be assigned to the corresponding time slot.
  • the time-frequency code domain resource information of the PDCCH channel can be It is determined by the following two configurations: CORESET and search space.
  • each CORESET supports 1/2/3 symbols in the time domain, and these symbols can be located at any position in the time slot.
  • the existing 5G NR protocol downlink control information transmission uses only multi-carrier OFDM waveforms, and the corresponding resource configuration method is also based on the multi-carrier configuration method, that is, the minimum granularity of CORESET frequency domain resources is sub-carriers.
  • a CORESET includes multiple physical resource blocks (PRB) in the frequency domain, that is, it may include 6N RBs in the frequency domain, where N is a positive integer and the total number of RBs does not exceed the BWP for the convenience of description.
  • PRB physical resource blocks
  • CCE corresponds to 6 resource element groups (REG).
  • REG resource element groups
  • One REG occupies one OFDM symbol in the time domain and 12 subcarriers in the frequency domain, that is, 1 RB.
  • Each bit in the CCE and PRB mapping pattern (bitmap) has a one-to-one mapping relationship with a group of 6 RBs that do not overlap each other, and they are arranged in ascending order of the RB index in the BWP. A total of 45 bits, the highest bit represents the first RB group, and so on.
  • a bit value of 1 indicates that this RB group is a frequency domain resource of CORESET.
  • the start position of the first RB group in the BWP is the position of the CRB indicated by 6 ⁇ roundup(N/6). In the formula, roundup means rounding up, and N means the CRB number of the starting position of the BWP.
  • Figure 2 shows a schematic diagram of 6 REGs continuously as a CCE.
  • the sending device in addition to transmitting the foregoing control information, the sending device also needs to transmit a reference signal (RS).
  • the reference signal is used by the receiving device to perform channel estimation or channel detection.
  • the reference signal can be frequency-division multiplexed with the control information or data that needs to be transmitted in the transmission scenario to reduce the time-domain overhead of the reference signal.
  • the DMRS density is 1/4.
  • the reference signal and the control information that need to be transmitted in the transmission scenario are frequency-division multiplexed, the PAPR performance of the single carrier waveform will be severely degraded. Therefore, for a single carrier waveform, the minimum granularity of resources cannot be divided into subcarriers. Therefore, in a single carrier, frequency domain resources cannot use the above-mentioned CCE including PRB, and set the mapping pattern between the CCE and the PRB. Moreover, the reference signal cannot be used to distribute the DMRS on the sub-carriers in the REG. Therefore, the design of the above-mentioned CORESET cannot be used for single-carrier waveforms, and the design of the reference signal in the CORESET is not applicable.
  • the access network device can configure one or more search space sets (search space set, SS set) for the terminal device.
  • the search space can be bound to any CORESET that has been configured, indicating the period, duration, or time of receiving the PDCCH signal at the specified CORESET.
  • N control channel resources are aggregated (N is currently a maximum of 16, and aggregation means that the receiving end can Joint decoding), control information format, etc.
  • search spaces There can be many types of search spaces. For example, it can include common search space (CSS) and user-specific search space (UE-specific search space, USS).
  • CCS common search space
  • UE-specific search space USS
  • the set of public search spaces will also be written as CSS.
  • the user-specific search space collection is written as USS.
  • the primary cell is usually configured with a public search space set, and may also be configured with a public search space set and a user-specific search space set.
  • the secondary cell may be configured with a public search space set, or may be configured with a public search space set and a user-specific search space set, and the secondary cell may only be configured with a user-specific search space set in some cases.
  • Type0-PDCCH CSS set Type0A-PDCCH CSS set; Type1-PDCCH CSS set; Type2-PDCCH CSS set; Type3-PDCCH CSS set; USS set; different types of CSS have different application scenarios, such as Type1 for For random access, please refer to Chapter 10 of 38213 for details.
  • Different types of search spaces will have different PDCCH scrambled by Radio Network Tempory Identity (RNTI).
  • RNTI Radio Network Tempory Identity
  • search space set identifier is configured for each search space set.
  • the search space collection identifier may also be referred to as the index number of the search space collection.
  • search space collection refers to the public search space collection identifier.
  • search space collection refers to the user-specific search space collection identifier.
  • the search space set can include candidate PDCCHs, and the candidate PDCCHs are all located in the corresponding CORESET. Therefore, the search space set identifier can be the same as the index number of the CORESET where the candidate PDCCH included in the search space set is located (the index number of the CORESET can also be referred to as the CORESET identifier. ) Is associated, and the CORESET associated with the search space set determines the control-channel element (CCE) index of the candidate PDCCH of the search space set in the CORESET.
  • the candidate PDCCH in search space set 1 may include ⁇ SS set#1, SS set#2 ⁇ , and search space set 1 is associated with CORESET#1.
  • the candidate PDCCH in the search space set 2 may include ⁇ SS set#3 ⁇ , and the search space set 2 is associated with CORESET#2.
  • the candidate PDCCH in search space set 3 may include ⁇ SS set#4 ⁇ , and search space set 3 is associated with CORESET#3.
  • time domain information can be configured for each search space set, and the search space can configure which symbols in a slot the UE starts to detect PDCCH;
  • the search space can configure the period for the UE to detect the PDCCH.
  • monitoring period that is, the time interval of the monitoring search space collection, in units of time slots
  • slot offset that is, the time slot offset between the start of the monitoring period and the actual monitoring search space collection, and the time slot offset
  • the quantity is less than the value of the monitoring period
  • the number of time slots that is, the number of time slots in the continuous monitoring search space set, and the number of time slots is less than the value of the monitoring period
  • the symbol position that is, within each time slot, the search space set is associated The position of the start symbol of CORESET.
  • the monitoring period of SSset#1 can be 10 time slots
  • the time slot offset is 0 time slots
  • the number of time slots is 2 time slots
  • the monitoring period of SSset#2 can be 10 time slots.
  • Time slot, the time slot offset is 3 time slots, and the number of time slots is 2 time slots
  • the monitoring period of SS set#3 can be 10 time slots, the time slot offset is 3 time slots, and the number of time slots is 1 time slot.
  • the search space indicated by the high-level parameters will indicate the time domain period and offset of the search space, the number of time slots continuously monitored during the week, and the specific start symbol of the monitoring in each time slot. These actually indicate the time domain position of CORESET; then, according to the information contained in the corresponding CORESET indicated by the search space, the resource size of each CORESET is further obtained. Through the time domain location and resource size, the corresponding CORESET0 can be determined, so that the UE can blindly detect the PDCCH from it. The process of blind PDCCH detection is to decode PDCCH candidate resources one by one. If the CRC check passes, the decoded PDCCH is considered to be the PDCCH the UE is looking for. CORESET0 will also inform the UE of information about decoding the PDCCH, such as the size of the REG bundle.
  • Figure 3C exemplarily shows a schematic diagram of CORESET in the time domain direction, as shown in Figure 3C, where the monitoring period is 10 time slots, the time slot offset is 3 time slots, and the number of time slots is 2 time slots.
  • the CORESET associated with the search space set is a CORESET that occupies 2 symbols, and the symbol positions are symbols 0 and 7 in the time slot.
  • the terminal device monitors the candidate PDCCHs in the search space set in CORESET on symbols 0 and 7 in time slots 3 and 4 in the monitoring period of each 10 time slots, and CORESET is in the time domain. Occupies 2 symbols.
  • Downlink physical control channel monitoring opportunity refers to monitoring 1 start symbol and/or duration length corresponding to 1 search space set.
  • the monitoring start symbol (the monitoring start symbol can also be called the start symbol) is the configuration information of a search space set, which is jointly determined by three high-level signaling.
  • the high-level signaling monitoringSymbolsWithinSlot indicates 14 OFDM symbols in a time slot.
  • the start symbol position of the associated search space set, the high-level parameter monitoringSlotPeriodicityAndOffset indicates the slot-level period and/or offset of the associated search space set, and the high-level signaling duration indicates the time slot in which the associated search space set appears in consecutive time slots. Number. Therefore, a search space set may appear multiple times in one time slot, or it may appear once in several time slots.
  • the listening duration is the duration of the CORESET associated with the search space collection.
  • FIG. 3D exemplarily shows a schematic diagram of the monitoring timing on time slot 3 or time slot 4 of FIG. 3C.
  • PDCCH MO301 occupies symbols 0 and 1
  • PDCCH MO302 occupies symbols 7 and 8.
  • CORESET is a concept with frequency domain width (in RB as unit) and time domain duration (in OFDM symbol as unit).
  • 1 SS set is associated with 1 CORESET, the PDCCH MO corresponding to this SS set can be determined .
  • Figure 3D can be described as, a search space set has two PDCCH MO start symbols in one time slot, namely time domain symbol 0 and time domain symbol 7; this search space set is associated with 1 time domain duration 2
  • the CORESET of the symbol, that is, the duration of the two PDCCH MO is 2 symbols.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams. Different beams can be considered as different resources (spatial domain resources).
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after a signal is emitted by an antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter, or a spatial parameter (such as a spatial receiving parameter and a spatial sending parameter).
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), or it can be called a spatial domain transmission filter, a spatial transmission filter, and a spatial domain transmission parameter (spatial domain). parameter) or spatial transmission parameter.
  • the beam used to receive the signal can be called a reception beam (Rx beam), or it can be called a spatial domain reception filter, a spatial reception filter, and a spatial domain reception parameter (spatial domain). reception parameter) or spatial reception parameter.
  • signals can be sent omnidirectionally or through a wider angle.
  • high-frequency bands thanks to the smaller carrier wavelength of the high-frequency communication system, it can be used at the transmitting end.
  • An antenna array composed of many antenna elements is arranged with the receiving end to make the transmitted signal form a beam with spatial directivity, which can improve signal coverage and combat path loss.
  • QCL is defined as: if the large-scale characteristics of a certain symbol channel transmitted on one antenna port can be derived from the channel of a certain symbol transmitted on another antenna port, then these two antenna ports It is called quasi co-location, which can describe that the two antenna ports have a quasi co-location property, and can also describe that the two antenna ports have a quasi co-location relationship.
  • the QCL relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics.
  • the same or similar communication configuration can be adopted. For example, if two signals are transmitted from two different antenna ports and the large-scale characteristics experienced are the same, then the two antenna ports can be considered to have a QCL relationship. Then the large-scale characteristics of the channel/channel estimation result of one symbol transmitted by one port can be obtained from the other The large-scale characteristics of the channel that one port transmits one symbol are inferred, which is conducive to receiver processing.
  • QCL types can be divided into four types: QCL-TypeA, QCL-TypeB, QCL-TypeC and QCL-TypeD.
  • the parameters of QCL-TypeA are: ⁇ doppler shift, doppler spread, average delay, delay spread ⁇ ; the parameters of QCL-TypeB are: ⁇ doppler shift, doppler spread ⁇ ; the parameters of QCL-TypeC are: ⁇ doppler shift, average delay ⁇ ;
  • the parameter of QCL-TypeD is: ⁇ spatial Rx parameter ⁇ .
  • the English QCL-type D relationship can be described as "for the purpose of determining the CORESET, a Synchronization/PBCH block is considered to have different QCL-TypeD properties than a CSI-RS", and the corresponding translation is to determine the CORESET that monitors the PDCCH, It can be understood that a synchronization/physical broadcast channel block (SS/PBCH) and a channel state information measurement reference signal (Channel State Information Reference Signal, CSI-RS) have different type D quasi co-location attributes". It can be understood as a synchronization. /The physical broadcast channel block corresponds to a wide beam, and a channel state information reference signal corresponds to a narrow beam.
  • SS/PBCH synchronization/physical broadcast channel block
  • CSI-RS Channel State Information Reference Signal
  • the narrow beam may be obtained from the wide beam through beam refinement, it is still considered that the wide beam and the narrow beam are two For different beams, their beam information is different, that is, the quasi co-location properties of type D are different.
  • QCL-type D is used to assist beamforming, such as forming spatial filters, beam indicators, etc.
  • QCL-TypeD you can From the perspective of the transmitting end and the receiving end. From the perspective of the transmitting end, if the two antenna ports are QCL-TypeD, it means that the corresponding beam directions of the two antenna ports are the same in space. From the receiving end It can be seen that if the two antenna ports are QCL-TypeD, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the access network device In downlink transmission, when the access network device uses a specific beam to send data to the terminal device, it needs to inform the terminal device of the transmission beam information it uses, so that the terminal device can use the receiving beam corresponding to the transmission beam to receive the access. Data sent by connected devices.
  • the access network device uses the TCI field in the downlink control information (DCI) to indicate to the terminal device related information about the transmission beam used by it.
  • the TCI field includes 3 bits, which can specifically represent 8 different values (codepoints).
  • Each value of the TCI field corresponds to an index of a transmission configuration number state (TCI-state), and the index can identify a TCI-state.
  • TCI-state includes multiple parameters, through which the relevant information of the transmission beam can be determined.
  • the TCI-state is configured by the access network device to the terminal device.
  • the TCI-state may include a TCI-state identifier and two QCL information (QCL-Info).
  • the TCI-state identifier can be regarded as an index of the TCI-state, indicating a TCI-state.
  • Each QCL-Info includes a cell field and a bandwidth part (bandwidth part, BWP) identification field, which respectively indicate the application of the TCI-state Which bwp of which cell, that is, different cells or different bwps of the same cell can be configured with different QCL-Info.
  • QCL-Info also includes a reference signal field, which is used to indicate which reference signal resource forms a quasi-coordinate relationship with the TCI-state.
  • beam generally does not appear, and beams are generally replaced by other terms.
  • beams correspond to reference signal resources, and one beam corresponds to one reference signal resource. Therefore, in the embodiments of the present application, the description of "which reference signal resource forms the QCL relationship between the TCI-state and the TCI-state” essentially refers to which beam forms the QCL relationship between the TCI-state and the TCI-state.
  • the QCL relationship means that two reference signal resources (or two antenna ports, the antenna port and the reference signal resource are also in a one-to-one correspondence) have some same spatial parameters.
  • the QCL type field can have four values, namely typeA, typeB, typeC, and typeD. Taking typeD as an example, typeD indicates that two reference signal resources have the same spatial receiving parameter information, that is, the two beams have the same receiving beam. At most one of the two QCL-Info included in the TCI-state may be TypeD.
  • the access network device uses the TCI-state to send downlink data to the terminal device, multiple TCI-states need to be configured for the terminal device. After the access network device is configured with multiple TCI-states, it also needs to activate at least one of the TCI-states. After the access network device activates at least one TCI-state, it will also indicate one of the activated TCI-states to the terminal device. For example, the value of the TCI field in the DCI sent by the access network device to the terminal device is 000, which represents the TCI-state corresponding to 000 used by the data transmission beam.
  • the reference signal contained in the QCL-Info of type D in the TCI-state is the CSI-RS with index #1, indicating that the beam used for data transmission is the same as the receiving beam corresponding to the CSI-RS with index #1 .
  • the receiving beam corresponding to the CSI-RS with index #1 can be determined through a beam measurement procedure, which is known to the terminal device. Therefore, by indicating the TCI-state, the terminal device can determine the receiving beam corresponding to the data transmission beam, and thus adopt the corresponding receiving beam to receive the downlink data sent by the access network device.
  • the received PDCCH configuration information may also include beam indication information, which is used by the base station to indicate that the PDCCH transmission beam and one of the reference signals are the same beam.
  • the indication information can be completed through TCI.
  • the base station can activate a specific TCI in the above-mentioned TCI state set through MAC layer (Multi-media access control) signaling.
  • the UE assumes that the beam used by the base station to transmit the control channel is the same beam as the DM-RS signal activated by the MAC signaling. If the UE may not have access to the network, it may not be able to receive MAC signaling activation, so the UE may assume that the receiving beam is a beam that receives synchronization signal/physical broadcast channel (SS/PBCH) signals.
  • SS/PBCH synchronization signal/physical broadcast channel
  • the method provided in the embodiments of the present application can be used to indicate downlink transmission reception beam information or TCI-state, and can also be used to indicate uplink transmission transmission beam information or spatial relations.
  • the control information is used to indicate the transmit beam information or the spatial relationship of uplink transmission, it is only necessary to replace the TCI-state in the following method with a spatial relation or a resource indicator (RI) of a sounding reference signal.
  • RI resource indicator
  • the single carrier time domain symbols in this application may include single carrier time domain symbols such as DFT-s-OFDM or single carrier quadrature amplitude modulation (single carrier quadrature amplitude modulation, SC-QAM).
  • single carrier time domain symbols such as DFT-s-OFDM or single carrier quadrature amplitude modulation (single carrier quadrature amplitude modulation, SC-QAM).
  • SC-QAM single carrier quadrature amplitude modulation
  • the DFT-s-OFDM transmitter includes a discrete Fourier transform (DFT) module, a Mapping module, an inverse fast Fourier transform (designing pipeline FFT, IFFT), and a parallel-serial (parallel fourier transform) module.
  • DFT discrete Fourier transform
  • Mapping module add cyclic prefix (CP)/PS module, DAC/radio frequency (RF) module and antenna; among them, the Mapping module can be used to map the signal output by DFT to sub On the carrier; M represents the number of DFT points, and N represents the number of IFFT points.
  • the device for signal transmission may also be a DFT-s-OFDM receiver.
  • the structure of the DFT-s-OFDM receiver can be referred to the above-mentioned structural diagram of the DFT-s-OFDM transmitter.
  • the signal processing process of the DFT-s-OFDM receiver is the inverse process of the signal processing of the DFT-s-OFDM transmitter. .
  • control information or data to be transmitted can be encoded in advance to obtain the encoded bit stream.
  • the coded bit stream is input to the DFT-s-OFDM transmitter, and the coded bit stream is sequentially modulated to obtain at least one set of modulation symbols.
  • the data symbols may include CCEs that carry control information, and reference signal sequences.
  • the data symbol can be used as the input of the DFT module.
  • the Mapping module maps the signal output by the DFT to the sub-carrier, and then performs DFT transformation, adds the demodulation reference signal and other processing, and maps the processed signal to the corresponding sub-carrier.
  • IFFT transforms to the time domain signal, and transmits the time domain signal.
  • a group of modulation symbols includes the first modulation symbol.
  • the first modulation symbol may be transform domain precoding, which is used to perform DFT transformation on the first modulation symbol set. Perform processes such as sub-carrier mapping and DFT-s-OFDM symbol generation on the first modulation symbol after DFT transformation to obtain the first single-carrier time-domain symbol.
  • the first single-carrier time-domain symbol is mapped to the middle radio frequency for transmission.
  • the receiving device receives the first single carrier time domain symbol.
  • the receiving device obtains the first modulation symbol according to the first single carrier time domain symbol.
  • a specific implementation may be: the receiving device obtains the transmitted control information or reference signal according to the first single carrier time domain symbol.
  • the reference signals in the embodiments of the present application include but are not limited to reference signals such as DMRS.
  • a cyclic prefix and/or cyclic suffix can be added to the reference signal sequence.
  • the reference signal sequence can use low PAPR sequences, such as ZC sequences, frequency domain QPSK sequences searched by computers, Time domain pi/2-BPSK sequence, computer searched time domain M-PSK sequence, etc.
  • DFTs-OFDM Since the OFDM symbol is composed of multiple independently modulated sub-carrier signals superimposed, when the phase of each sub-carrier is the same or close, the superimposed signal will be modulated by the same initial phase signal, resulting in a larger instantaneous power peak. This further brings higher PAPR. Compared with OFDM, DFTs-OFDM has a lower PAPR, which can improve the transmission efficiency of the transmitter and improve coverage under the limitation of limited output power. In the prior art, DFTs-OFDM is used in LTE uplink signal generation methods. DFTs-OFDM is also called linear precoding OFDM technology in some documents, or single carrier-FDMA (SC-FDMA).
  • SC-FDMA single carrier-FDMA
  • the transmission of control information can use a single carrier waveform.
  • the existing downlink physical control channel only supports OFDM multi-carrier, and the existing downlink physical channel PDCCH resource configuration method cannot be directly used for a single carrier.
  • the implementation of CORESET cannot be used for single-carrier waveforms, and the implementation of reference signals in CORESET is also not applicable.
  • a CORESET is divided into 6 CEEs, each CCE includes 6 REGs, and each REG includes 12 sub-carriers in the frequency domain.
  • the single-carrier modulation method determines that the granularity of the frequency domain cannot be sub-carriers.
  • the multi-carrier frequency domain resource division method cannot be directly adopted.
  • DMRS mapping is directly mapped to sub-carriers and cannot be used for single-carrier.
  • an embodiment of the present application provides a method for sending control information, including:
  • Step 501 The access network device sends first indication information to the terminal device; the first indication information is used to indicate whether the at least one CORESET allocated to the terminal device performs transformation precoding.
  • the terminal device receives the first indication information sent by the access network device.
  • whether the first CORESET indicated by the access network device performs transformation precoding may include the following A1, A2 and other methods.
  • Manner A1 In the first indication information, whether the first CORESET performs transformation precoding can be indicated by means of RRC signaling, MAC signaling, or default rules.
  • mode A1 it can be realized by adding a new configuration information or indication field.
  • the following uses example a1, example a2, example a3, and example a4 to introduce.
  • Example a1 in the configuration information of CORESET, a new configuration information can be added to indicate whether CORESET performs transform precoding. For example, by increasing the value of the CORESET transform precoding indication field, it is possible to determine whether CORESET performs transform precoding.
  • Example a2 In the configuration information of CORESET, a new configuration information can be added to indicate whether the mapping relationship between CORESET ID and/or search space ID and CORESET is transformed and pre-encoded.
  • the content explicitly configured in the PDCCH configuration can also be implemented by a method agreed by the protocol.
  • the mapping relationship between CORESET and CORESET ID and/or search space ID can also be agreed through the protocol.
  • the first indication information is to instruct CORESET ID#0 to perform transform precoding.
  • the protocol may stipulate that the PDCCH associated with CORESET ID#0 and/or search space ID#0 is a single carrier modulation method for transform precoding.
  • the PDCCH time-frequency resource associated with CORESET and search space is a multi-carrier modulation method without transform precoding.
  • the PDCCH associated with CORESET ID#0 and/or search space ID#0 can be determined according to other indication methods. Whether to perform transform precoding.
  • Example a4 When the access network device indicates whether to perform transform precoding for at least one CORESET through the first indication information, a new indication field may be added to the first indication information, and the added new indication field is only used to indicate at least one CORESET CORESET indicates whether to perform transform precoding.
  • Manner A2 by indicating the configuration information of the CORESET/search space, such as time-frequency resources, or implicitly indicating the beam direction.
  • method A2 it can be implemented in the original configuration information or indication field, and the following will introduce examples b1 and b2.
  • Example b1 CORESET configuration information can also be implicitly indicated in the original configuration information. For example, the configuration information of the mapping relationship between CCE and REG is set to a mapping relationship without REG, and CORESET is determined to perform transformation precoding. If there is at least one mapping relationship configuration information in the configuration information of the mapping relationship between the CCE and the REG, it can be determined that CORESET does not perform transform precoding.
  • the access network device can also multiplex an indication field included in the existing indication information, that is, the multiplexed indication field can be used to indicate the content and/or originally indicated by the indication field.
  • the first indication information may include the indication domain "frequency domain resource", which is used to indicate whether CORESET performs transformation precoding.
  • the access network device may multiplex the indication domain "frequency domain resource" so that the indication domain can be used to indicate whether CORESET is Perform transform precoding. For example, if the indication field "frequency domain resource" includes 1 bit and includes 2 different values, the meaning of each value can be as shown in Table 1.
  • Step 502 After the access network device performs transformation precoding on at least one CORESET, it sends control information to the terminal device on the at least one CORESET.
  • the access network device sends control information to the terminal device on at least one CORESET through a single carrier modulation method.
  • the terminal device receives the control information sent by the access network device by transforming precoding on at least one CORESET according to the first instruction information.
  • the terminal device may receive the control information sent by the access network device in a single-carrier demodulation manner according to the first indication information.
  • the access network device sends the first indication information to instruct the terminal device to use a single carrier modulation mode when receiving the control information, which improves the signal coverage capability of the terminal device to receive the downlink control information.
  • the access network device may also indicate the specific time-frequency resource of CORESET for the terminal device.
  • the access network device may send CORESET information of at least one CORESET to the terminal device through the first indication information; the CORESET information is used to indicate the time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the physical control channel resource block can be used to indicate the aggregation level of the PDCCH.
  • the aggregation level of PDCCH is 1, and CORESET includes 2 physical control channel resource blocks, then the aggregation level of PDCCH It is 2, the number of physical control channel resource blocks that CORESET can include can be determined according to needs, and it is not limited here.
  • the number of physical control channel resource blocks that CORESET can include can be 1, 2, 4, 8, 16.
  • the carrier used for carrying on the physical control channel resource block is a single carrier. If the CORESET is a multi-carrier modulation mode, the physical control channel resource blocks included in the CORESET may be CCEs in the prior art.
  • the first part is used to explain the frequency domain resource configuration information of CORESET
  • the second part is used to explain the time domain resource configuration information of CORESET
  • the third part is used to explain the spatial resource configuration information of CORESET.
  • the first part frequency domain resource configuration information for CORESET.
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, or an end frequency point.
  • the bandwidth indication is used to determine the frequency domain range of CORESET, and may be the indicated bandwidth, the start frequency point, or the end frequency point.
  • the access network equipment can divide a continuous frequency domain resource block for CORESET. For example, taking the system bandwidth of 200MHz as an example, the frequency domain resource block size of CORESET can be set to 200MHz, the starting frequency can be 52.6GHz, and the ending frequency can be set to 200MHz. The point can be 52.8GHz. Furthermore, the access network device uses a single carrier modulation method to transmit the PDCCH information carried by the CORESET on a frequency domain resource with a starting frequency of 52.6 GHz, an ending frequency of 52.8 GHz and a bandwidth of 200 MHz.
  • the physical control channel resource block may be used for frequency division multiplexing to divide the physical control channel resource block into multiple sub-frequency domain resources.
  • the frequency domain resource configuration information of CORESET may include a subband indicator, which is used to instruct the UE to receive the PDCCH in a frequency division manner even when the base station uses a single carrier to transmit the PDCCH.
  • the base station may further configure the form of frequency division.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is at least one physical control channel included in CORESET One of the resource blocks; where N is a positive integer. Taking N as 2, for example, the control channel resource block is divided into 2 sub-frequency domain resources. At this time, a single carrier signal is transmitted on each sub-frequency domain resource.
  • sub-frequency domain resource 1 carries control information 1
  • sub-frequency domain resource 2 carries control information 2.
  • the control information 1 and control information 2 to be transmitted can be encoded in advance to obtain an encoded bit stream.
  • the coded bit stream is input to the DFT-s-OFDM transmitter, and the coded bit stream is sequentially modulated and grouped by modulation symbols to obtain multiple sets of modulation symbols.
  • the multiple modulation conformance sets include a first modulation symbol set and a second modulation symbol set.
  • the first set of modulation symbols is the modulation symbols of control information 1
  • the second set of modulation symbols is the modulation symbols of control information 2.
  • Transform domain precoding is used to perform DFT transformation on the first modulation symbol set and the second modulation symbol set respectively.
  • processes such as subcarrier mapping and DFT-s-OFDM symbol generation are respectively performed to obtain the first single carrier time domain symbol and the second single carrier time domain symbol.
  • the first single-carrier time-domain symbol and the second single-carrier time-domain symbol are mapped to the middle radio frequency for transmission.
  • the CORESET information further includes: indication information used to indicate the N first sub-frequency domain resources of the first physical control channel resource block.
  • the indication information of the N first sub-frequency domain resources may have multiple indication methods.
  • the first indication information may include the indication domain "sub-frequency domain resources", which is used to indicate whether the physical control channel resource block in CORESET is Including sub-frequency domain resources, if the indication field "sub-frequency domain resources" includes 2 bits and 4 different values, the meaning of each value can be as shown in Table 2.
  • the indication field "sub-frequency domain resource" includes 3 bits, including 8 different values, for example, includes 1 single carrier resource block, divided into 2 single carrier resource blocks, divided into 3 single carrier resources
  • the block includes 4 single carrier resource blocks, divided into 5 single carrier resource blocks, divided into 6 single carrier resource blocks, divided into 7 single carrier resource blocks, including 8 single carrier resource blocks.
  • the number of single-carrier resource blocks divided above can be set according to needs, and the above is only an example.
  • sub-frequency domain resource indication field can also be used to indicate whether CORESET performs transform precoding.
  • indication field "sub-frequency domain resource” includes 2 bits and 4 different values, the meaning of each value can be as shown in Table 3.
  • the number of frequency divisions can be set accordingly.
  • the number of frequency divisions set includes: 1, 2, 3, and 4.
  • the base station may also indicate whether different sub-frequency resources in the physical control channel resource block are interleaved and mapped.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping.
  • Figure 6A shows a schematic diagram of frequency division interleaved single-carrier PDCCH resources.
  • a physical control channel resource block includes 4 sub-frequency domain resources, namely, sub-frequency domain resource 1, sub-frequency domain resource 2, sub-frequency domain resource 3, and sub-frequency domain resources. Frequency domain resources 4.
  • sub-frequency domain resource 1 and sub-frequency domain resource 3 are interleaved and mapped, and sub-frequency domain resource 1 and sub-frequency domain resource 3 can be used to carry the first single-carrier time domain symbol, and are on one port, for example, on port 0 Send the first single carrier time domain symbol.
  • the sub-frequency domain resource 2 and the sub-frequency domain resource 4 are interleaved and mapped.
  • the sub-frequency domain resource 2 and the sub-frequency domain resource 4 can be used to carry the second single-carrier time-domain symbol, and the second single-carrier time-domain symbol is sent on another port, for example, the second one is sent on port1.
  • Single carrier time domain symbol can be noted that the port identifiers described above are only examples, and the port identifiers can be set as required, which will not be repeated here.
  • the access network device may also indicate whether different sub-frequency resources in the physical control channel resource block are bound and mapped.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are bundling mapping.
  • Fig. 6B shows a schematic diagram of frequency division bundling single-carrier PDCCH resources. The access network device divides a continuous physical control channel resource into 4 sub-frequency domain resources, namely, sub-frequency domain resource 1, sub-frequency domain resource 2, sub-frequency domain resource 3, and sub-frequency domain resource 4.
  • the sub-frequency domain resource 1 and the sub-frequency domain resource 3 may be bound into one physical control channel resource block, and the sub-frequency domain resource 2 and the sub-frequency domain resource 4 may be bound into one physical control channel resource block.
  • a physical control channel resource block bound by sub-frequency domain resource 1 and sub-frequency domain resource 3 can be allocated to the UE as a physical control channel resource block 1 in CORESET, sub-frequency domain resource 2 and sub-frequency domain resource 4
  • a bound physical control channel resource block 2 can be allocated to the UE as a physical control channel resource block in CORESET.
  • Physical control channel resource block 1 and physical control channel resource block 2 can correspond to different CORESETs or belong to the same CORESET is not limited here.
  • the access network device determines that the UE can receive control information at port 0, and the physical control channel resource block 1 may be carried in the CORESET allocated for the UE.
  • the access network equipment determines that the UE can receive control information in port1, and the physical control channel resource block 2 can be carried in the CORESET allocated to the UE.
  • the access network device may transmit control information on two ports, and the terminal device determines which port to receive the control information on. At this time, the access network device may configure both physical control channel resource block 1 and physical control channel resource block 2 to the UE.
  • binding manners may include the following examples 1 to 5 in several ways.
  • Example 1 Under the same symbol, consecutive physical control channel resource blocks are bound. For example, as shown in FIG. 6C, under one symbol, 6 consecutive physical control channel resource blocks may be bound, or 2 consecutive physical control channel resource blocks may be bound.
  • Example 2 Between different symbols, continuous physical control channel resource blocks are bound. For example, as shown in FIG. 6C, under 2 consecutive symbols, 3 consecutive physical control channel resource blocks can be bound in one symbol to form a bundling of 6 consecutive physical control channel resource blocks. Or, under 3 symbols, each symbol is bound with 2 consecutive physical control channel resource blocks to form 6 consecutive physical control channel resource blocks. It is also possible to bind 1 physical control channel resource block in each symbol under 2 consecutive symbols, thereby forming a bundling of 2 consecutive physical control channel resource blocks. It is also possible to bundle 1 physical control channel resource block in each symbol under 3 consecutive symbols, thereby forming a bundling of 3 consecutive physical control channel resource blocks.
  • Example 3 Between different symbols, discontinuous physical control channel resource blocks are bound.
  • 3 consecutive physical control channel resource blocks can be bound in each symbol to form a bundling of 6 discontinuous physical control channel resource blocks.
  • 3 discontinuous physical control channel resource blocks are bound to form a bundling of 6 discontinuous physical control channel resource blocks.
  • 3 discontinuous physical control channel resource blocks can be bound to form a bundling of 6 discontinuous physical control channel resource blocks.
  • Example 4 the sub-frequency domain resources in the physical control channel resource block are bound.
  • the physical control channel resource block includes 1 symbol, including 3 sub-frequency domain resources, for example, including a first sub-frequency domain resource, a second sub-frequency domain resource, and a third sub-frequency domain resource.
  • the sub-frequency domain resources and the second sub-frequency domain resources can be bound, and the second sub-frequency domain resources and the third sub-frequency domain resources can also be bound.
  • the binding method is only an example here, and there can be any other The binding method of the combination.
  • Example 5 Bundling between sub-frequency domain resources in different physical control channel resource blocks.
  • each symbol including 2 sub-frequency domain resources, for example, including a first sub-frequency domain resource and a second sub-frequency domain Resources.
  • the first sub-frequency domain resource in each symbol can be bound, or the second sub-frequency domain resource in each symbol can be bound, or the first sub-frequency domain resource in the first symbol can be bound.
  • a sub-frequency domain resource is bound to a second sub-frequency domain resource in the second symbol.
  • aggregation may also be performed. Used to improve the transmission reliability of the control channel.
  • a manner of frequency domain resource aggregation is described by taking an example that the access network device can instruct the frequency domain resources between the first physical control channel resource block and the second physical control channel resource block to aggregate.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the second physical control channel resource block includes K second sub-frequency domain resources; the first physical control channel resource block and the second physical control channel resource block are One of at least one physical control channel resource block included in CORESET; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources Resources are aggregated sub-frequency domain resources; K1 is less than or equal to K; N1 is less than or equal to N.
  • the first physical control channel resource block includes four first sub-frequency domain resources, namely, the first sub-frequency domain resource 1, the first sub-frequency domain resource 2, and the first sub-frequency domain resource 3.
  • the first sub-frequency domain resource 4; the second physical control channel resource block, including two second sub-frequency domain resources, that is, the second sub-frequency domain resource 1 and the second sub-frequency domain resource 2; the access network equipment can be as required ,
  • the first sub-frequency domain resource 1 and the second sub-frequency domain resource 1 are aggregated, and the first sub-frequency domain resource 2 and the second sub-frequency domain resource 2 are aggregated.
  • the first sub-frequency domain resource 1 and the second sub-frequency domain resource 2 are aggregated.
  • the first indication information may also include: search space information corresponding to CORESET; the search space information may include: an indication for indicating that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domain resources information.
  • the access network device can indicate the aggregated sub-frequency domain resources through the search space corresponding to CORESET, so that the access network device can send control information on the aggregated sub-frequency domain resources, for example, combine the first sub-frequency domain resource 1 with The second sub-frequency domain resource 1 is aggregated.
  • the access network device may send control information 1 on the first sub-frequency domain resource 1, and the access network device may send control information 1 on the second sub-frequency domain resource 1.
  • the terminal device can determine the aggregation of the first sub-frequency domain resource 1 and the second sub-frequency domain resource 1 according to the indication information of the search space. Therefore, the terminal device can be on the first sub-frequency domain resource 1 and the second sub-frequency domain resource 1 Perform joint decoding to improve the transmission reliability of the control channel.
  • the control information 1 sent by the access network device on the first sub-frequency domain resource 1 and the control information 1 sent on the second sub-frequency domain resource 1 may be the same data or partly the same. The data is not limited here.
  • the coverage capability of the downlink channel is improved.
  • the base station is supported to configure resources more flexibly, and under the configuration of sub-frequency domain resources, terminal equipment can obtain frequency domain diversity gain.
  • the UE can not only obtain a certain frequency domain diversity gain, but also provide partial coverage enhancement performance, thereby improving the overall performance of receiving and sending control information.
  • a complete time domain symbol can be divided into multiple sub-time domain resources.
  • the data to be sent can be divided into two parts with a certain number of 0s inserted in the middle (if split into multiple sub-time domain resources, the data to be sent is divided into multiple parts , And insert 0) in the middle of each part.
  • the data is serial-to-parallel converted, and then input to the DFT module (discrete Fourier transform), and then input to the IFFT module ( Inverse fast Fourier transform), add the cyclic prefix, and send it to the air interface.
  • the finally generated signal can be regarded as the access network device sending 2 parts of data on 2 sub-time domain resources.
  • the first part of data is sent on sub-time domain symbol 1 and the second part of data is sent on sub-time domain symbol 2.
  • the number of zeros inserted is related to the interval of the sub-time domain resource symbols after splitting. This means that the guard interval between sub-time domain resources can be determined according to the number of 0s inserted.
  • a complete time domain symbol is divided into multiple sub-time domain resources.
  • Figure 7B shows two symbols, which are split into 4 sub-time domain resources (virtual sub-symbols).
  • CP refers to the cyclic prefix added to the original length symbol.
  • a cyclic prefix in order to reduce the inter-symbol interference (ISI) between sub-time domain resources, a cyclic prefix can also be added to the sub-time domain resources. Specifically, the cyclic prefix is added to the sub-time domain resources.
  • the method can refer to the method of adding a cyclic prefix to the time domain symbol, which will not be repeated here.
  • Another possible implementation is to divide the data to be sent into multiple parts, insert a special codeword (unique word) in the middle of each part, and perform DFT- the data that is divided into multiple parts after the special codeword is inserted. Modulation of s-OFDM to realize the division of a complete time domain symbol into multiple sub-time domain resources.
  • the access network device can consider the time dimension resource allocation on the basis of single carrier frequency domain resource allocation.
  • the access network device can instruct the physical control channel resource block in the CORESET of the terminal device to include the following scenarios, scenario 2, and scenario 3.
  • the access network device may indicate whether the physical control channel resource block in the CORESET of the terminal device includes sub-time domain resources.
  • CORESET information can be used to carry CORESET time-domain resource indication information; the indication information includes: a time-domain symbol of a time-domain resource includes multiple sub-time-domain resources. Used to indicate that the physical control channel resource block in CORESET includes sub-time domain resources. Alternatively, the indication information includes: a time domain resource of a time domain symbol is a time domain resource, used to indicate that a time domain symbol in the physical control channel resource block in CORESET is a complete time domain resource, and no sub-time domain resource is performed The division.
  • Example 2 The access network device can also use other CORESET configuration methods to indicate whether the physical control channel resource block in CORESET includes sub-time domain resources.
  • the base station configures the time domain resources corresponding to the specific CORESET ID and/or search space ID as resources including sub-time domain resources through semi-static configuration, such as the configuration of CORESET and/or search space in RRC.
  • the terminal device can determine whether the corresponding time domain resource needs to be blindly checked on the control information by including the sub-time domain resource according to the CORESET ID and/or search space ID.
  • the time domain resources corresponding to CORESET ID#1 and/or search space ID#1 include sub-time domain resources; the time domain resources corresponding to CORESET ID#2 and/or search space ID#2 do not include sub-time domain resources.
  • the terminal device may perform blind detection on the control information by including the sub-time domain resource. That is, through blind detection, the signal on each sub-time domain resource is determined, and the signal on each sub-time domain resource is decoded. If the terminal device receives the control information on the time domain resource corresponding to CORESET ID#1, the terminal device may perform blind detection on the control information in a manner that does not include the sub-time domain resource. That is, through blind detection, the signal on each time domain symbol is determined, and the signal on each time domain symbol is decoded.
  • the access network device may also indicate the physical control channel resource block in CORESET through semi-static configuration, which may include sub-time domain resources.
  • the base station configures the time domain resources corresponding to the specific CORESET ID and/or search space ID to allow resources including sub-time domain resources through semi-static configuration, such as the configuration of CORESET and/or search space in RRC. .
  • the terminal device can determine the corresponding time domain resource according to the CORESET ID and/or search space ID. Two methods are adopted, the method including the sub-time domain resource and the method not including the sub-time domain resource are used to control the control information. Blind inspection. For example, the control information may be blindly checked by including the sub-time domain resources. If it is determined that there are no sub-time domain resources, then the control information may be blindly checked by not including the sub-time domain resources.
  • Example 4 when the access network device sends control information, it can also determine whether the time domain resource includes the sub-time domain resource through the indication of DCI or MAC CE according to whether the sub-time domain resource is adopted. To determine the blind inspection method of control information.
  • the access network device can also directly indicate the time domain resources of each physical control channel resource block in CORESET; for example, CORESET includes 2 physical control channel resource blocks, physical control channel resource block 1 and physical control channel resources Block 2, where the physical control channel resource block 1 includes time domain resources in one time domain symbol; the physical control channel resource block 2 includes some or all sub-time domain resources in one time domain symbol.
  • the time domain resource of CORESET includes at least one of the following: one or more sub-time domain resources in a time domain symbol, one or more sub-time domain resources in a plurality of time domain symbols, or a time domain resource of a time domain symbol .
  • the time domain resource of CORESET ID#1 includes two time domain symbols, for example, time domain symbol 1 and time domain symbol 2.
  • the time domain symbol 1 can be divided into multiple sub-time domain resources; the time domain symbol 2 can be 1.
  • the time domain resource of CORESET ID#2 includes at least 1 sub-time domain resource in 1 time domain symbol.
  • the time domain symbol 3 is divided into 4 sub-time domain resources.
  • the time domain resource of CORESET ID#2 includes at least 2 sub-time domain resources in the time domain symbol 3.
  • the time domain resource of CORESET ID#2 includes at least 1 sub-time domain resource among multiple time domain symbols; for example, the time domain resource of CORESET ID#2 includes 1 sub-time domain resource and time domain resource in time domain symbol 1. 1 sub-time domain resource in domain symbol 3.
  • time domain symbols and sub-time domain resources may also be bound to form a physical control channel resource block.
  • one or more sub-time domain resources in a time domain symbol can be bound to form a physical control channel resource block.
  • one or more sub-time-domain resources in multiple time-domain symbols may be bound to form one physical control channel resource block.
  • time domain resources of one or more time domain symbols can be bound to form one physical control channel resource block.
  • the single-carrier control channel resource does not have a smaller resource granularity in the frequency band.
  • the solution of configuring time domain resources for binding allows The access network equipment maps different resources/signals on different sub-symbols, and makes full use of the time domain/space domain diversity gain, thereby effectively improving the coverage capability of the PDCCH.
  • the reference signal pattern on a single carrier in the time domain direction, it can be carried in sub-time domain resources for channel estimation and demodulation at the receiving end. It can also be carried in time domain resources for channel estimation and demodulation at the receiving end.
  • the sub-time domain resources are used to carry at least one of the following: DMRS, a physical control channel resource block; the time domain resources of time domain symbols are used to carry at least one of the following: DMRS, a physical control channel resource block.
  • Example 1 The reference signal sequence can completely occupy one sub-time domain symbol, or it can completely occupy one time domain symbol.
  • the sub-time domain resource or a complete time domain symbol occupied by the reference signal sequence can be adjacent to the physical control channel resource block, so that the terminal device can estimate the channel based on the reference signal to demodulate the physical control channel resource block. Control information.
  • the reference signal sequence can partly occupy 1 sub-time domain symbol, the remaining part can be used to carry physical control channel resource blocks, or partly occupy one time domain symbol, and the remaining part can be used to carry physical control channel resource blocks; As shown in 7D, the time domain symbol 1 includes the sub-time domain resource 1 and the sub-time domain resource 2, the time domain symbol 2 includes the sub-time domain resource 3 and the sub-time domain resource 4, and the time domain symbol 3 is a complete time domain symbol.
  • the pattern of the reference signal sequence can be configured according to channel conditions. For example, if the channel has strong volatility, the reference signal sequence can be set on each sub-time domain resource or time domain symbol. If the channel conditions are good, reference signal sequences can be set at intervals to reduce the occupation of time domain resources by the reference signal sequences.
  • the reference signal in the sub-time domain symbol may be used for the demodulation of the physical control channel resource block in the sub-time domain symbol, and may also be used for the demodulation of the physical control channel resource block of the adjacent sub-time domain symbol.
  • the reference signal in the time domain symbol can be used for the demodulation of the physical control channel resource block in the time domain symbol, and can also be used for the demodulation of the physical control channel resource block of the adjacent time domain symbol.
  • time domain resources of different periods can be aggregated.
  • the first time domain resource includes aggregated sub-time domain resources or time domain resources; wherein, the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources And time domain resources belong to search spaces of different periods; or, the aggregated time domain resources belong to search spaces of different periods.
  • Example 1 Different periods can be periods corresponding to different search spaces.
  • sub-time domain resource 1 is located in the first period of search space ss#1 corresponding to CORESET ID#1, and sub-time domain resource 2 is located in CORESET ID#1.
  • sub-time domain resource 1 and sub-time domain resource 2 can be aggregated sub-time domain resources.
  • the access network device sends control information according to CORESET ID#1, it can The first data of control information is sent on sub-time domain resource 1, and the second data of control information can be sent on sub-time domain resource 2.
  • the terminal device When the terminal device receives control information through CORESET ID#1, it can be based on the search space ss #1, in the first cycle, determine the sub-time domain resource 1, and obtain the first data signal of the control information on the sub-time domain resource 1; according to the search space ss#2, in the second cycle, determine the sub-time Domain resource 2, and obtain the second data signal of the control information on the sub-time domain resource 2.
  • the terminal device decodes the signal of the first data and the signal of the second data at the same time to obtain more reliable data than decoding alone .
  • the first data and the second data may be the same data, or may be part of the same data, which is not limited here.
  • the first data is newly transmitted control information
  • the second data is retransmitted control information, or redundant version of control information.
  • Example 2 Different periods can be different periods in the same search space.
  • sub-time domain resource 1 is located in the first period of search space ss#1 corresponding to CORESET ID#1
  • sub-time domain resource 3 is located in the second period of search space ss#1 corresponding to CORESET ID#1.
  • the domain resource 1 and the sub-time domain resource 3 may be aggregated sub-time domain resources.
  • the access network device sends control information according to CORESET ID#1, it may send the first data of the control information on the sub-time domain resource 1.
  • the second data signal of the control information can be sent on the sub-time domain resource 3.
  • the terminal device When the terminal device receives the control information through CORESET ID#1, it can determine the sub-time domain resource in the first cycle according to the search space ss#1 1, and obtain the first data signal of the control information on the sub-time domain resource 1; according to the search space ss#1, in the second cycle, determine the sub-time domain resource 3, and obtain the control on the sub-time domain resource 3
  • the terminal device decodes the signal of the first data and the signal of the second data at the same time to obtain more reliable data than decoding alone. As shown in FIG. 7E, the physical control channel resource blocks of the sub-time domain resources in two different periods are aggregated.
  • time-domain symbols during different periods can also be aggregated, or time-domain symbols and sub-time-domain resources during different periods can be aggregated.
  • time-domain symbols and sub-time-domain resources during different periods can be aggregated.
  • the access network device can also allocate a CORESET time domain resource set to the terminal device.
  • the CORESET time domain resource set is used by the access network device to indicate a certain CORESET time domain resource before sending control information, and Send control information on the time domain resource of the CORESET.
  • the terminal device may receive the time domain resource set allocated by the access network device to the terminal device in advance, and determine the time domain resource used by the control information through further instruction information of the access network device before receiving the control information each time. Furthermore, the control information is received according to the dynamically indicated time domain resource. In order to realize the flexible configuration of the time domain resources of the CORESET of the terminal equipment.
  • the time-domain resource set of CORESET can be indicated by the first indication information, or it can be pre-configured for the terminal device by the access network device.
  • the time-domain resource set of CORESET can be shared by multiple terminal devices, or for each terminal device. If each terminal device is set separately, it is not limited here.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources; one or more sub-time-domain resources among multiple time-domain symbols; time-domain resources of one or more time-domain symbols.
  • the access network device sends second indication information to the terminal device; the second indication information is used to indicate the second time domain resource in the time domain resource set; the second time domain resource is the CORESET time domain resource allocated to the terminal device .
  • the access network device configures a CORESET time domain resource set for multiple terminal devices (for example, multiple terminal devices in a cell).
  • the CORESET time domain resource set can include multiple time domain resources to avoid access
  • the complexity of configuring time-domain resources for networked devices can also reduce the possibility of time-domain resource conflicts between cells.
  • the access network device further indicates the time domain resources of the terminal device. For example, the access network device can send the CORESET time domain resource identifier to the terminal device to indicate that the terminal device is in the time domain of CORESET The control information is received on the time domain resource corresponding to the resource identifier.
  • the access network device configures a CORESET time domain resource set for one terminal device.
  • the access network device sends control information to the terminal device, it can be in one or more time domains in the CORESET time domain resource set.
  • the control information is sent on the resource, and the terminal device can blindly check all the time domain resources in the time domain resource set of CORESET to obtain the information sent by the access network device on one or more time domain resources in the time domain resource set of CORESET Control information. In this way, when the access network device cannot send the second indication information, or the terminal device cannot receive the second indication information, the control information sent by the access network device is received.
  • the access network device configures a CORESET time-domain resource set for one terminal device.
  • the time-domain resources in the time-domain resource set include: when there are sub-time-domain resources 1 and 2 in the time-domain symbols
  • the domain symbol, the complete time domain symbol 2, and the time domain symbol 3 are divided into sub-time domain resources 1-sub-time domain resources 3.
  • the time domain symbol 3 is divided into sub-time domain resources 1-sub time domain resources 3, which can be set as possible to be divided into sub-time domain resources 1-sub time domain resources 3, or can be set as a complete time domain symbol 3.
  • the access network equipment can determine whether to divide the sub-time domain in the time domain symbol 3 according to the access network equipment, channel conditions, and terminal equipment capabilities, that is, the resources occupied by the control information.
  • the control information is sent on one or more sub-time-domain resources in the resource 1-the sub-time-domain resource 3. For example, at the first moment, the access network device determines that the time domain symbol 3 is used as a complete time domain symbol to send control information 1, then the access network device can send control information 1 on the time domain symbol 3 and instruct the terminal device to The control information 1 is received on the domain symbol 3, and the physical control information resource block carried by the time domain symbol 3 does not include the sub-time domain resource alone carrying the physical control information resource block.
  • the terminal device receives the control information 1 on the physical control information resource block carried by the time domain symbol 3.
  • the access network device determines to send the control information 2 on the sub-time domain resource 1 and the sub-time domain resource 2 on the time domain symbol 3, and the access network device can send the control information 2 on the sub-time domain resource 1 of the time domain symbol 3
  • the control information 2 is sent on the sub-time domain resource 2 and the terminal device is instructed to receive the control information 2 on the sub-time domain resource 1 and the sub-time domain resource 2 of the time domain symbol 3.
  • the terminal device receives the control information 2 on the physical control information resource block carried by the sub-time domain resource 1 of the time domain symbol 3 and the physical control information resource block carried by the sub-time domain resource 2.
  • the time domain resources of the single carrier are divided to increase the time domain resources that can be used for aggregation or binding. Improve the utilization of system resources, increase the flexibility of resource allocation, and reduce the burden of system overhead.
  • the UE can only correspond to one activated TCI state for one CORESET, that is, one port of CORESET activated TCI status indication is fixed, and one CORESET activated TCI status indication port is different from the activation.
  • the DMRS port indicated by the TCI status is bound, and the terminal device can only obtain the beam direction of the DMRS on the DMRS port indicated by the activated TCI status, and according to the QCL relationship, the terminal device can only receive the CORESET bearer according to the beam direction of the DMRS Control information. If the terminal device can receive control information of multiple ports, in the above manner, the control information carried by CORESET cannot be received on multiple ports, additional space diversity cannot be obtained, and the probability of the UE correctly detecting the physical control channel is not high.
  • the access network device may also associate multiple TCI states for CORESET. For example, the access network device associates P TCI states for the first CORESET. Specifically, the access network device may associate P TCI states for the first CORESET through the first indication information.
  • the first indication information may be MAC CE signaling or other signaling, such as RRC signaling or DCI signaling, which is not limited in the embodiment of the present application. In order to avoid repetition, this application uses “instructions" uniformly, but it should be understood that “instructions" can also be replaced with "activation".
  • the first indication information further includes: indication information of P TCI identifiers associated with the first CORESET sent to the terminal device, where P is a positive integer; and the first CORESET is one of at least one CORESET.
  • the access network device may send control information to the terminal device on the P1 ports corresponding to the P1 first TCI identifiers, where the first TCI identifiers have a one-to-one correspondence with the ports; P1 is less than or equal to P, and P1 Is a positive integer.
  • the terminal device can determine the port corresponding to the reference signal indicated by the TCI and the beam direction of the reference signal according to the TCI identifier, and then, according to the QCL relationship, the terminal device can receive the TCI on the port corresponding to the reference signal and the beam direction of the reference signal
  • the TCI identifier is used to indicate the port associated with CORESET.
  • the access network device associates two TCI states with CORESET ID#1, where TCI ID#1 is used to indicate port 0 (port0) associated with CORESET ID#1, and TCI ID#2 is used to indicate CORESET ID#1 is associated Port 1 (port1).
  • the access network device can send control information on port 0 associated with CORESET ID#1 and port 1 associated with CORESET ID#1, so that the terminal device can associate two TCI states according to CORESET ID#1 to determine TCI ID#1 It is used to indicate the port 0 associated with CORESET ID#1, and the TCI ID#2 is used to indicate port 1 associated with CORESET ID#1, and further, the control information sent by the access network device is received on port 0 and port 1. In order to obtain more diversity than single-port reception, the performance of terminal equipment to receive control information is improved.
  • the TCI identifier can also be used to indicate the beam direction of the reference signal associated with CORESET.
  • the access network device associates two TCI states with CORESET ID#1, where TCI ID#1 is used to indicate the beam direction 0 associated with CORESET ID#1, and TCI ID#2 is used to indicate the beam associated with CORESET ID#1 Direction 1.
  • the access network device can send control information in beam direction 0 associated with CORESET ID#1 and beam direction 1 associated with CORESET ID#1, so that the terminal device can associate two TCI states according to CORESET ID#1 to determine the TCI ID.
  • TCI ID#2 is used to indicate the beam direction 1 associated with CORESET ID#1, and in turn, the beam direction 0 and beam direction 1 are sent by the access network device. Control information. In order to obtain more diversity than single-port reception, the performance of the terminal device to receive control information is improved.
  • configuration mode of the port or beam direction corresponding to each TCI state may be indicated explicitly or implicitly.
  • the access network device can also multiplex an indication field included in the existing indication information, that is, the multiplexed indication field can be used to indicate the content originally indicated by the indication field for indicating The port corresponding to the TCI state associated with CORESET.
  • the first indication information may include the indication field "TCI state", which is used to indicate the beam direction corresponding to the TCI state associated with CORESET.
  • the access network device may reuse the indication field "TCI state” so that the indication field can be used to indicate The beam direction corresponding to the TCI state associated with CORESET. For example, if the indication field "TCI status" includes 2 bits and 4 different values, the meaning of each value can be as shown in Table 1.
  • TCI status indicator field meaning 00 Default beam, port 0 01 Beam direction 1, port 1 10 Beam direction 2, port 2 11 Beam direction 3, port 3
  • "default beam” may indicate that the PDCCH is transmitted through the default beam. Since the number of bits in the TCI state indication field remains unchanged, the value of the beam used to indicate the transmission of the PDCCH is reduced, and the access network device can reduce the number of beams included in the set of beams for the transmission of the PDCCH. Alternatively, the number of bits of the TCI state indication field can be increased, for example, to 4 bits, 16 different values can be included, so that the beam for transmitting the PDDCH can be selected from a larger number of beams. It should be understood that the foregoing Table 4 is only an example. Whether the default beam exists and the number of beams used to indicate PDCCH transmission can be adjusted according to requirements, which is not limited in the embodiment of the present application.
  • the terminal device may also determine whether the time-frequency resource of the CORESET associated with the TCI state includes sub-time domain resources or sub-frequency domain resources according to the TCI state indicated in the first indication information.
  • the time domain can be determined The symbol includes sub-time domain resources.
  • the first CORESET includes multiple TCI states, that is, the first CORESET is associated with more than one DMRS antenna port, and there are no aggregated frequency domain resources in the frequency domain resources corresponding to the first CORESET, then the first CORESET can be determined
  • the frequency domain resources corresponding to a CORESET include sub-frequency domain resources.
  • FIG 8A shows a schematic diagram of a possible MAC layer signaling format, including a serving cell identifier, a CORESET ID, and two TCI state IDs included in the CORESET ID.
  • CORESET contains two TCI status IDs, which are used to indicate the antenna port through which the UE receives the PDCCH. As above, it can also be used to indicate the transmission mode (whether it includes sub-time domain resources or sub-frequency domain resources).
  • the priority of sending can be determined according to the order of the TCI status ID in the signaling indication. For example, the port corresponding to the TCI status ID ranked first is sent first in the time-frequency resource, so that the terminal device receives control information on the corresponding port according to the priority.
  • the access network device can configure multiple TCI states through RRC or MAC CE signaling. Further, the access network device can configure the active TCI state indication (TCI State Indication for UE-specific PDCCH) for the UE.
  • This active TCI state indication includes two or more TCI state IDs, which are used to identify the access network device to activate multiple TCI states for the UE.
  • TCI State Indication for UE-specific PDCCH
  • This active TCI state indication includes two or more TCI state IDs, which are used to identify the access network device to activate multiple TCI states for the UE.
  • the indication manner of indicating the activated TCI status in the first indication information reference may be made to the indication manner of the frequency domain resource, or may also refer to the indication manner of the time domain resource.
  • the specific method of configuring multiple TCI states through RRC or MAC CE signaling reference may be made to the description in the prior art, which will not be repeated here.
  • Method 1 Use the TCI-state index to indicate the activated TCI-state.
  • the first indication information sent by the access network device may include Q TCI-state index lists, and each TCI-state index list in the Q TCI-state index lists may include one or more TCI-state index lists.
  • the index of the state may be carried by a single first indication information, and may also be carried by Q first indication information respectively.
  • Method 2 Use a bitmap to represent the activated TCI-state.
  • the first indication information sent by the access network device may include Q bitmaps, and each bitmap in the Q bitmaps is used to indicate one TCI-state in the Q TCI-state lists TCI-state included in the list. For example, each bit in each bitmap corresponds to a TCI-state, a bit value of 1 indicates that the TCI-state is activated, a bit value of 0 indicates that the TCI-state is not activated, and all TCIs with a bit value of 1 -state forms the corresponding TCI-state list.
  • a bit value of 0 indicates that the TCI-state is activated
  • a bit value of 1 indicates that the TCI-state is not activated
  • all TCI-states with a bit value of 0 form a corresponding TCI-state list.
  • the foregoing Q bitmaps may be carried by a single first indication information, or may be carried separately by Q first indication information.
  • the access network equipment indicates Q TCI-state lists through the first indication information, and the TCI-states in the Q TCI-state lists are paired in a preset order to form P TCI-states Group.
  • the Q TCI-state lists may be indicated by one first indication information, or may be indicated by multiple first indication messages, which is not limited in the embodiment of the present application, for example, through Q first indications Information indicates, and each first indication information indicates a TCI-state list.
  • the pairing described in the embodiment of this application takes one TCI-state from multiple TCI-state lists to form a TCI-state group, and this TCI-state group can be mapped to a TCI field value. Pairing can also be expressed as correspondence, mapping, etc., which is not limited in the embodiment of the present application.
  • At least one TCI-state in an activated TCI-state group is used for multi-beam or multi-TRP joint transmission, that is, each beam or TRP uses one of the TCI-states to transmit the PDCCH to the terminal device.
  • any two beams or TRPs can be transmitted at the same time, or can be transmitted in time sharing. If it is transmitted at the same time, the above two TCI-states must meet the requirement of simultaneous reception, that is, the two TCI-states can be received by the terminal device at the same time. That is, the reference signal resources included in the typeD QCL-info in the two TCI-states can be received by the terminal device at the same time.
  • the reference signal resources included in the QCL-info of the typeD type in the two TCI-states must be two resources previously reported to the access network device by the terminal device that can be received simultaneously.
  • the two reference signal resources included in the QCL-info of the typeD type in the two TCI-states and the two resources previously reported by the terminal equipment to the access network equipment that can be received at the same time respectively meet the typeD type QCL relationship.
  • multiple TCI-states included in the same TCI-state group must meet the simultaneous receipt requirement, or multiple TCI-states included in the TCI-state group corresponding to the same TCI field value must meet the simultaneous receipt requirement.
  • multiple TCI-states included in the TCI-state group corresponding to the same TCI field value need to meet the requirement of co-receiving.
  • the transmission mode can be configured through RRC signaling.
  • two TRPs use two TCI-states to transmit data to the terminal device at the same time, then when the TCI-state is activated, two TCI-states corresponding to the same TCI-state group are required Meet the requirements of the same collection. If in the transmission mode configured through RRC signaling, two TRPs use two TCI-states to transmit data to the terminal device in a time-sharing manner, then when the TCI-state is activated, the two TCI-states corresponding to the same TCI-state group There is no need to meet the same collection requirements.
  • the transmission mode parameter such as the transmission mode indicated by URLLSchemeEnabler
  • sub-time domain resources similar to TDM
  • the transmission mode parameter such as the transmission mode indicated by URLLSchemeEnabler
  • the transmission mode parameter includes sub-frequency domain resources (similar to FDM)
  • the TCI-state in the TCI-state group indicated by the DCI is required to be simultaneously received by the terminal device.
  • each TCI-state group corresponding to each TCI field value may be limited to include at least one TCI-state group, and the corresponding multiple TCI-state groups can be simultaneously received by the terminal device.
  • it may be limited that in each TCI-state group corresponding to each TCI field value, multiple TCI-states corresponding to all TCI-state groups can be simultaneously received by the terminal device.
  • each TCI-state group corresponding to each TCI field value can be limited to include at least one TCI-state group, and the corresponding multiple TCI-states can be received by the terminal device at the same time, and at least one TCI-state group is included , The corresponding multiple TCI-states do not need to be received by the terminal device at the same time.
  • the terminal device can receive a beam at the same time, for example, the terminal device reports an antenna panel, or can open an antenna panel at the same time, the following restriction methods need to be adopted. Which method is used can be indicated by RRC signaling or reported to the access network device by the terminal device.
  • the access network device can send multiple activation signaling to the terminal device, and each activation signaling is used for activation K TCI-states transmitted by a beam or PDCCH of TRP.
  • each activation signaling is used for activation K TCI-states transmitted by a beam or PDCCH of TRP.
  • the access network device sends activation signaling to activate 8 TCI-states.
  • the above method can also be used to activate multiple TCI-states for each TRP.
  • two activation signalings are used to activate K TCI-states for each TRP respectively, and these K TCI-states are associated with the K values of the TCI field in the DCI of the TRP.
  • the activation signaling in the embodiment of the present application may be MAC CE signaling or other signaling.
  • the access network device may also use the third indication information to indicate that the at least two TCI-states can be transmitted at the same time, or can be transmitted in time sharing.
  • the time-sharing transmission method is to use multiple TCI-states to transmit one or more redundant versions (redundant versions, RVs) of the same data on different symbols in the same time slot. ), such as the transmission mode TDMSchemeA.
  • RVs redundant versions
  • the transmission mode TDMSchemeA Take two TCI-states as an example.
  • the data transmitted by the two TCI-states can be the same or different redundant versions of the same data, which can improve the reliability of data transmission.
  • the aforementioned time-sharing transmission mode may be configured by the access network device, that is, the access network device configures this transmission mode to the terminal device through RRC signaling.
  • the time-frequency resource of the first CORESET includes 2 time-domain symbols.
  • the time domain symbol 1 includes two sub-time domain resources, the sub-time domain resource 1 includes DMRS1 and the physical control channel resource block 1, and the sub-time domain resource 2 includes DMRS2 and the physical control channel resource block 2.
  • the time domain symbol 2 includes two sub-time domain resources, the sub-time domain resource 3 includes DMRS 3 and the physical control channel resource block 3, and the sub-time domain resource 4 includes DMRS 4 and the physical control channel resource block 4.
  • the first CORESET is associated with 2 TCI states.
  • the control information sent corresponding to each TCI state corresponds to a reference signal demodulation method.
  • the terminal equipment needs to demodulate the relevant physical control channel resource block according to the reference signal corresponding to each TCI state. On the control information.
  • sub-time domain resource 1 and sub-time domain resource 3 are associated with TCI ID#1, and sub-time domain resource 2 and sub-time domain resource 4 are associated with TCI ID#2.
  • the DMRS1 in the sub-time domain resource 1 and the DMRS3 in the sub-time domain resource 3 are associated with port 0 and beam direction 0.
  • the physical control channel resource block 1 in the sub-time domain resource 1 and the physical control channel resource block 3 in the sub-time domain resource 3 are associated with port 0 and beam direction 0.
  • DMRS2 in sub-time domain resource 2 and DMRS4 in sub-time domain resource 4 are associated with port 1 and beam direction 1.
  • the physical control channel resource block 2 in the sub-time domain resource 2 and the physical control channel resource block 4 in the sub-time domain resource 4 are associated with port 1 and beam direction 1.
  • the access network device can send control information on sub-time domain resource 1 and sub-time domain resource 3 through port 0, and can also send control information on sub-time domain resource 2 and sub-time domain resource 4 through port 1 at the same time. Furthermore, the terminal device can use the TCI ID#1 associated with the first CORESET to determine to receive the control information sent by the access network device on the sub-time domain resource 1 and the sub-time domain resource 3 through port 0, and the terminal device can pass the first CORESET The associated TCI ID#2 is determined to receive the control information sent by the access network device on the sub-time domain resource 2 and the sub-time domain resource 4 through port 1.
  • the frequency domain resource of the first CORESET includes 4 sub-frequency domain resources.
  • Sub-frequency domain resource 1, sub-frequency domain resource 2, sub-frequency domain resource 3, sub-frequency domain resource 4, sub-frequency domain resource 1 is used to carry reference signals corresponding to physical control channel resource block 1, physical control channel resource block 1
  • the sequence can be a reference signal sequence in the adjacent time domain of the same frequency band;
  • the sub-frequency domain resource 2 is used to carry the physical control channel resource block 2, and the reference signal sequence corresponding to the physical control channel resource block 2 can be the adjacent time domain of the same frequency band
  • the sub-frequency domain resource 3 is used to carry the physical control channel resource block 3.
  • the reference signal sequence corresponding to the physical control channel resource block 3 may be the reference signal sequence in the adjacent time domain of the same frequency band; the sub-frequency domain
  • the resource 4 is used to carry the physical control channel resource block 4, and the reference signal sequence corresponding to the physical control channel resource block 4 may be a reference signal sequence in the adjacent time domain of the same frequency band.
  • the first CORESET is associated with 2 TCI states. For example, sub-frequency domain resource 1 and sub-frequency domain resource 3 are associated with TCI ID#1, and sub-frequency domain resource 2 and sub-frequency domain resource 4 are associated with TCI ID#2.
  • the reference signal sequence corresponding to sub-frequency domain resource 1 and the reference signal sequence in sub-frequency domain resource 3 are associated with port 0 and beam direction 0.
  • the physical control channel resource block 1 in the sub-frequency domain resource 1 and the physical control channel resource block 3 in the sub-frequency domain resource 3 are associated with port 0 and beam direction 0.
  • the reference signal sequence in the sub-frequency domain resource 2 and the reference signal sequence in the sub-frequency domain resource 4 are associated with port 1 and beam direction 1.
  • the physical control channel resource block 2 in the sub-frequency domain resource 2 and the physical control channel resource block 4 in the sub-frequency domain resource 4 are associated with port 1 and beam direction 1.
  • the access network device can send control information on sub-frequency domain resource 1 and sub-frequency domain resource 3 through port 0, and can also send control information on sub-frequency domain resource 2 and sub-frequency domain resource 4 through port 1 at the same time. Furthermore, the terminal device can use the TCI ID#1 associated with the first CORESET to determine to receive the control information sent by the access network device on the sub-frequency domain resource 1 and the sub-frequency domain resource 3 through port 0, and the terminal device can pass the first CORESET The associated TCI ID#2 is determined to receive the control information sent by the access network device on the sub-frequency domain resource 2 and the sub-frequency domain resource 4 through port 1.
  • the prior art only supports single-port control information transmission.
  • the implementation method incorporates spatial dimension diversity, and multiple ports control channel transmission, which can bring additional spatial diversity gain to the UE, compensate for the frequency domain diversity gain loss, and ensure PDCCH The coverage performance.
  • the coverage performance of the single-carrier control channel is improved, and the total number of allocatable resources is increased.
  • multiple TCI states can improve the utilization of system resources, and can be used to schedule more terminal devices, thereby improving the overall performance of the system.
  • an embodiment of the present application also provides a communication device 900.
  • the communication device 900 includes a processing unit 901 and a transceiver unit 902.
  • the communication device 900 (hereinafter referred to as The apparatus 900) can be used to implement the method executed by the access network device in the foregoing embodiment.
  • the apparatus 900 may be an access network device, may also be located in an access network device, or may be an originating device.
  • the foregoing apparatus 900 may be an access network device, or a chip applied to the access network device, or other combination devices, components, etc. having the functions of the foregoing access network device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit 902 may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • the apparatus 900 may be used to perform the steps performed by the access network device in the foregoing method embodiments, or perform the steps performed by the originating device.
  • the processing unit 901 is configured to perform transformation precoding on at least one CORESET, and then send control information to the terminal device on the at least one CORESET through the transceiver unit.
  • the transceiving unit 902 is configured to send first indication information to the terminal device; the first indication information is used to indicate whether at least one CORESET allocated to the terminal device performs transformation precoding.
  • the first indication information further includes: CORESET information of at least one CORESET; the CORESET information is used to indicate time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, or an end frequency point.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is included in CORESET One of at least one physical control channel resource block; the CORESET information further includes: indication information for indicating N first sub-frequency domain resources of the first physical control channel resource block; where N is a positive integer.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping and/or bundling mapping.
  • the first indication information further includes: search space information corresponding to CORESET; the second physical control channel resource block includes K second sub-frequency domain resources; the second physical control channel resource block includes at least CORESET One of a physical control channel resource block; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources are aggregated Sub-frequency domain resources; K1 is less than or equal to K; N1 is less than or equal to N; the search space information includes: information used to indicate that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domain resources Instructions.
  • the CORESET information includes: CORESET time-domain resource indication information; the indication information includes: the time-domain resource of one time-domain symbol includes multiple sub-time-domain resources, or the time-domain resource of one time-domain symbol is A time domain resource.
  • the time domain resources of CORESET include at least one of the following: one or more sub-time domain resources in one time domain symbol, one or more sub-time domain resources in multiple time domain symbols, or one time domain Symbol's time domain resource.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources, one or more sub-time-domain resources among multiple time-domain symbols, or time-domain resources of one or more time-domain symbols.
  • the transceiver unit 902 is configured to send second indication information to the terminal device; the second indication information is used to indicate the second time domain resource in the time domain resource set; the second time domain resource is allocated to the terminal device The time domain resource of CORESET.
  • the sub-time domain resources are used to carry at least one of the following: DMRS, a physical control channel resource block; or, the time domain resources of time domain symbols are used to carry at least one of the following: DMRS, a physical control channel resource Piece.
  • the first time domain resource includes aggregated sub-time domain resources or time domain resources; wherein the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources and The time domain resources belong to search spaces of different periods, or the aggregated time domain resources belong to search spaces of different periods.
  • the first indication information further includes: indication information of P TCI identifiers associated with the first CORESET sent to the terminal device, where P is a positive integer; the first CORESET is one of at least one CORESET; The TCI identifier is used to indicate the port associated with the CORESET; where the reference signal of the corresponding port indicated by the TCI identifier and the physical control channel resource block transmitted on the first CORESET through the port have a quasi co-location attribute QCL.
  • the transceiver unit 902 is further configured to send control information to the terminal device on the P1 ports corresponding to the P1 first TCI identifiers, where the first TCI identifiers have a one-to-one correspondence with the ports;
  • the first TCI identifier is one of the P TCI identifiers associated with the first CORESET; P1 is less than or equal to P, and P1 is a positive integer.
  • transform precoding is DFT-S-OFDM.
  • each functional unit in each embodiment of this application may be Integrated in one processing unit, it can also be a separate physical presence, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the medium includes several computer programs to enable a computer device (which may be a personal computer, a server, or an access network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store program codes. Medium.
  • an embodiment of the present application further provides a communication device 1000.
  • the communication device 1000 (hereinafter referred to as the device 1000) can be used to implement the method executed by the access network device in the foregoing method embodiment.
  • the device 1000 may be an access network device, or may be located in Among the access network equipment, it can be the originating equipment.
  • the apparatus 1000 includes one or more processors 1001.
  • the processor 1001 may be a general-purpose processor, a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the communication device 1000 may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, and so on.
  • the apparatus 1000 includes one or more processors 1001, and the one or more processors 1001 can implement the method executed by the originating device or the access network device in the above-described embodiment.
  • the processor 1001 may implement other functions in addition to the methods in the above-mentioned embodiments.
  • the processor 1001 may execute a computer program, so that the apparatus 1000 executes the method for sending control information executed by the access network device in the foregoing method embodiment.
  • the computer program may be stored in the processor 1001 in whole or in part, such as the computer program 1003, or in the memory 1002 coupled to the processor 1001, in whole or in part, such as the computer program 1004, or may be shared by the computer programs 1003 and 1004.
  • the apparatus 1000 is caused to execute the method executed by the access network device in the foregoing method embodiment.
  • the communication device 1000 may also include a circuit, which may implement the functions performed by the terminal device in the foregoing method embodiment.
  • the apparatus 1000 may include one or more memories 1002, on which a computer program 1004 is stored, and the computer program may be run on a processor, so that the apparatus 1000 executes the above method embodiments Describe the method of sending control information.
  • data may also be stored in the memory.
  • computer programs and/or data may also be stored in the processor.
  • the foregoing one or more memories 1002 may store the association or correspondence described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory may be separately provided, or may be integrated or coupled together.
  • the apparatus 1000 may further include a transceiver unit 1005.
  • the processor 1001 may be referred to as a processing unit, and controls a device (terminal or base station).
  • the transceiving unit 1005 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 1000 may include a transceiver unit 1005.
  • the apparatus 1000 may further include a transceiver unit 1005 and an antenna 1006.
  • the processor 1001 may be referred to as a processing unit, and controls a device (terminal or base station).
  • the transceiver unit 1005 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1006.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in a processor or a computer program in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the determination reference described in any method embodiment applied to an originating device or an access network device is realized. Signal sequence method.
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the method for determining a reference signal sequence described in any method embodiment applied to an originating device or an access network device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program may be transmitted from a website, computer, server, or data center through a wired (for example, coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method for determining a reference signal sequence described in any method embodiment applied to an originating device or an access network device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor It may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • an embodiment of the present application also provides a communication device.
  • the communication device 1100 includes a processing unit 1101 and a transceiver unit 1102. 1100) can be used to implement the method executed by the terminal device in the foregoing embodiment.
  • the apparatus 1100 may be a terminal device, may also be located in a terminal device, or may be a receiving device.
  • the foregoing apparatus 1100 may be a terminal device, or may be a chip applied in a terminal device, or other combination devices, components, etc. having the functions of the foregoing terminal device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit 1102 may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • the apparatus 1100 is configured to perform the steps performed by the terminal device in the foregoing method embodiment, or perform the steps performed by the receiving device.
  • the transceiving unit 1102 is configured to receive the first indication information sent by the access network device; the first indication information is used to indicate whether at least one CORESET allocated to the terminal device performs transformation precoding; the processing unit 1101 is configured to follow the first indication information After performing transformation precoding on at least one CORESET, the control information from the access network device is received through the transceiver unit 1102.
  • the first indication information further includes: CORESET information of at least one CORESET; the CORESET information is used to indicate time-frequency resource configuration information of at least one physical control channel resource block included in the CORESET.
  • the CORESET information includes: the frequency domain range of at least one physical control channel resource block corresponding to the CORESET; the frequency domain range includes at least one of the following: a bandwidth range, a start frequency point, or an end frequency point.
  • the first physical control channel resource block includes N first sub-frequency domain resources; the N first sub-frequency domain resources are respectively used for transform precoding; the first physical control channel resource block is included in CORESET One of at least one physical control channel resource block; the CORESET information further includes: indication information for indicating N first sub-frequency domain resources of the first physical control channel resource block; where N is a positive integer.
  • the CORESET information further includes: indication information used to indicate whether the N first sub-frequency domain resources of the first physical control channel resource block are interlaced mapping and/or bundling mapping.
  • the first indication information further includes: search space information corresponding to CORESET; the second physical control channel resource block includes K second sub-frequency domain resources; the second physical control channel resource block includes at least CORESET One of a physical control channel resource block; K1 second sub-frequency domain resources among K second sub-frequency domain resources and N1 first sub-frequency domain resources among N first sub-frequency domain resources are aggregated Sub-frequency domain resources; where K1 is less than or equal to K; N1 is less than or equal to N; the search space information includes: used to indicate that K1 second sub-frequency domain resources and N1 first sub-frequency domain resources are aggregated sub-frequency domains Resource instructions;
  • the processing unit 1101 is configured to jointly decode the K1 second sub-frequency domain resources and the N1 first sub-frequency domain resources according to the search space information, so as to receive the control information from the access network device through the transceiver unit 1102.
  • the CORESET information includes: CORESET time-domain resource indication information;
  • the indication information includes: a time-domain symbol of a time-domain resource includes multiple sub-time-domain resources, or, a time-domain symbol of a time-domain resource is A time domain resource;
  • the processing unit 1101 is further configured to blindly detect the control information from the access network device through the search space corresponding to the multiple sub-time domain resources; and/or, through the blind detection of the search space corresponding to the time domain resource of one time domain symbol, the access network Control information of networked devices.
  • the time-domain resources of CORESET include at least one of the following: one or more sub-time-domain resources in one time-domain symbol, one or more sub-time-domain resources in multiple time-domain symbols, or one time domain The time domain resource of the domain symbol.
  • the first indication information is also used to indicate the time-domain resource set of CORESET; the time-domain resource set includes at least one time-domain resource; the time-domain resource includes at least one of the following: one or one of a time-domain symbol Multiple sub-time-domain resources, one or more sub-time-domain resources among multiple time-domain symbols, or time-domain resources of one or more time-domain symbols.
  • the transceiver unit 1102 is configured to receive control information from the access network device on the CORESET time domain resource set.
  • the transceiver unit 1102 is used to receive second indication information from the access network device; the second indication information is used to indicate the first time domain resource in the time domain resource set; the first time domain resource is the terminal The time domain resource of the CORESET allocated by the device; the processing unit 1101 is configured to receive control information from the access network device through the transceiver unit 1102 on the first time domain resource.
  • the sub-time domain resources are used to carry at least one of the following: DMRS, a physical control channel resource block; or, the time domain resources of time domain symbols are used to carry at least one of the following: DMRS, a physical control channel resource Piece.
  • the first time domain resource includes aggregated sub-time domain resources and/or time domain resources; wherein, the aggregated sub-time domain resources belong to search spaces of different periods; or, the aggregated sub-time domain resources The resource and the time domain resource belong to search spaces of different periods; or, the aggregated time domain resources belong to different search spaces; the processing unit 1101 is configured to compare the aggregated search space information according to the search space information corresponding to the first time domain resource.
  • the sub-time domain resources and/or the time domain resources are jointly decoded to receive control information from the access network device through the transceiver unit 1102.
  • the first indication information further includes: indication information of P TCI identifiers associated with the first CORESET sent to the terminal device, where P is a positive integer; the first CORESET is one of at least one CORESET; The TCI identifier is used to indicate the port associated with the CORESET; where the reference signal of the corresponding port indicated by the TCI identifier and the physical control channel resource block transmitted on the first CORESET through the port have a quasi co-location attribute QCL.
  • the processing unit 1101 is configured to receive the control information sent from the access network device through the transceiver unit 1102 on the P1 port corresponding to the P1 first TCI identifier; the first TCI identifier is the first CORESET association One of the P TCI identifiers; where P1 is less than or equal to P, and P1 is a positive integer.
  • the processing unit 1101 is configured to determine whether there is a sub-time domain resource on a time domain symbol in the first CORESET according to one or more TCI identifiers associated with the first CORESET; if it is determined that there is 1 For the sub-time domain resource on the time domain symbol, the control information from the access network device is received through the transceiver unit 1102 on the sub-time domain resource; if it is determined that there is no sub-time domain resource on the time domain symbol, the time domain resource is On the domain symbol, the control information from the access network device is received through the transceiver unit 1102.
  • transform precoding is DFT-S-OFDM.
  • the present application also provides a communication device 1200.
  • the apparatus 1200 can be used to implement the method executed by the terminal device in the foregoing method embodiment.
  • the device 1200 may be located in the terminal device or the terminal device, or For terminal equipment.
  • the device 1200 includes one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as terminals or chips), execute software programs, and process data in the software programs.
  • the communication device 1200 may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, and so on.
  • the apparatus 1200 includes one or more processors 1201, and the one or more processors 1201 can implement the method executed by the terminal device or the terminal device in the above-described embodiment.
  • the processor 1201 may implement other functions in addition to the method in the above-mentioned embodiment.
  • the processor 1201 may execute a computer program, so that the apparatus 1200 executes the method for receiving control information executed by the terminal device in the foregoing method embodiment.
  • the computer program can be stored in the processor in whole or in part, such as the computer program 1203, or in the memory 1202 coupled to the processor 1201, in whole or in part, such as the computer program 1204, or the computer programs 1203 and 1204 can be used together to make The apparatus 1200 executes the method for receiving control information executed by the terminal device described in the foregoing method embodiment.
  • the communication device 1200 may also include a circuit, which may implement the functions performed by the terminal device in the foregoing method embodiment.
  • the apparatus 1200 may include one or more memories 1202, on which a computer program 1204 is stored, and the computer program may be run on a processor, so that the apparatus 1200 executes the foregoing method embodiments. Describe the receiving method of control information.
  • data may also be stored in the memory.
  • computer programs and/or data may also be stored in the processor.
  • the foregoing one or more memories 1202 may store the association or correspondence described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory may be separately provided, or may be integrated or coupled together.
  • the apparatus 1200 may further include a transceiver unit 1205.
  • the processor 1201 may be referred to as a processing unit, and controls the device (terminal device).
  • the transceiving unit 1205 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 1200 may include a transceiver unit 1205.
  • the apparatus 1200 may further include a transceiver unit 1205 and an antenna 1206.
  • the processor 1201 may be referred to as a processing unit, which controls the device (terminal device).
  • the transceiving unit 1205 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 1206.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in a processor or a computer program in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable Logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the above method steps in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the control information described in any method embodiment applied to a terminal device or a terminal device is realized. Receiving method.
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the control information receiving method described in any method embodiment applied to a terminal device or a terminal device.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs.
  • the computer When the computer program is loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program may be transmitted from a website, computer, server, or data center through a wired (for example, coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the control information receiving method described in any method embodiment applied to a terminal device or a terminal device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor It may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the solutions and objectives provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable storage medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • a computer storage medium may be any available medium that can be accessed by a computer.
  • the computer-readable storage medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage devices, or can be used to carry or store computer programs or data
  • any connection can also become a computer-readable storage medium as appropriate.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and Disc include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs.
  • CDs compact discs
  • DVD digital versatile discs
  • Discs can usually copy data magnetically, and Discs can use lasers to optically copy data. The above combination should also be included in the protection scope of the computer-readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种控制信息的发送、接收方法及装置,该发送方法包括:接入网设备向终端设备发送第一指示信息;第一指示信息用于指示为所述终端设备分配的至少一个CORESET是否进行变换预编码;接入网设备对至少一个CORESET进行变换预编码后,在至少一个CORESET上向终端设备发送控制信息。

Description

一种控制信息的发送、接收方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种控制信息的发送、接收方法及装置。
背景技术
在新一代无线通信网络(如第五代移动通信技术(5th generation mobile networks,5G)或第六代移动通信技术(6th generation mobile networks,6G)通信网络)中,通信***的工作频段在6GHz以上,例如28GHz、39GHz、60GHz、73GHz等频段,因此新一代无线通信网络具有高频通信***的显著特点,从而容易实现较高的吞吐量。由于信号在自由空间中的衰减变大,为了保证移动通信***的覆盖,尤其是在高频频段,例如52.6GHz以上,可能需要在基站引入增强覆盖的下行通信技术,以解决信号在自由空间衰减过大而导致覆盖受限的问题。
但是,现有技术中,在无线接入(new radio access technology in 3gpp,NR)***中,承载物理下行控制信道(physical downlink control channel,PDCCH)的时频资源配置的方案都是基于多载波波形的,由于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号是由多个独立经过调制的子载波信号叠加而成,当各个子载波相位相同或者相近时,叠加信号便会受到相同初始相位信号的调制,从而产生较大的瞬时功率峰值,由此进一步带来较高的峰值平均功率比(peak to average power ratio,PAPR)。而较高的PAPR则会导致输出功率或功放效率受限,从而无法实现提高覆盖和降低能耗的目的。
因此,现有技术中的PDCCH时频资源配置的方案无法应用于高频通信***。
发明内容
本申请提供一种控制信息的发送、接收方法及装置,用于解决现有技术中,在高频信号下PDCCH的传输无法实现覆盖增强的问题。
第一方面,本申请提供一种控制信息的发送方法,接入网设备向终端设备发送第一指示信息;第一指示信息用于指示为终端设备分配的至少一个控制资源集合(control-resource set,CORESET)是否进行变换预编码;接入网设备对至少一个CORESET进行变换预编码后,在至少一个CORESET上向终端设备发送控制信息。
通过上述方法,接入网设备通过发送第一指示信息,指示终端设备接收控制信息时,利用变换预编码等单载波的调制方式,提升了接入网设备发送下行控制信息的信号覆盖能力。
一种可能的实现方式,第一指示信息还包括:至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。进而,通过接入网设备为终端设备配置单载波的调制方式下的物理控制信道资源块的时频资源,进而,接入网设备可以在单载波对应的物理控制信道资源块的时频资源上发送控制信息,进而,可以实现在单载波的调制方式下发送控制信息,提升了终端设备接收下行控制信息的信号覆盖能力。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围,起始频点,结束频点。
通过上述方法,通过划分频域范围的方式确定物理控制信道资源块,以使频域资源的划分方式适应单载波的调制方式。
一种可能的实现方式,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
通过上述方法,在N个第一子频域资源上的每个子频域资源上,可以实现单载波的调制,相比多载波的调制方式,可以提升终端设备接收下行控制信息的信号覆盖能力,并且,提升了频域资源配置的灵活性。
一种可能的实现方式,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
通过将子频域资源交织映射或绑定映射的方式,提高频域资源的利用率,减少资源的浪费。
一种可能的实现方式,第一指示信息还包括:CORESET对应的搜索空间信息;第二物理控制信道资源块包括K个第二子频域资源;第二物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;K1小于或等于K;N1小于或等于N;搜索空间信息包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息。
通过不同搜索空间内的子频域资源聚合的方式,可以提升控制信息传输的可靠性,并提高终端设备解码控制信息的成功率。
一种可能的实现方式,CORESET信息包括:CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源。
通过上述方法,将时域资源划分为多个子时域资源,在时域资源上,提升控制信息的时域资源配置的灵活性。
一种可能的实现方式,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源;多个时域符号中的一个或多个子时域资源;或者,一个时域符号的时域资源。
通过上述方法,为终端设备配置的时域资源可以有多种类型,提升控制信息的时域资源配置的灵活性,提高资源的利用率。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源、或者一个或多个时域符号的时域资源。
通过上述方法,接入网设备可以预先为终端设备分配时域资源集,接入网设备可以在时域资源集的时域资源上为终端设备发送控制信息,以减少接入网设备信令的消耗。
一种可能的实现方式,接入网设备向终端设备发送第二指示信息;第二指示信息用于 指示时域资源集中的第二时域资源;第二时域资源为为终端设备分配的CORESET的时域资源。
通过上述方法,接入网设备可以在需要时,通过动态发送第二指示信息的方式,为终端设备灵活配置时域资源,以使终端设备在第二指示信息指示的时域资源上接收控制信息。
一种可能的实现方式,子时域资源用于承载以下至少一项:解调参考信号(Demodulation Reference Signal,DMRS),物理控制信道资源块;或者,时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
通过上述方法,使得接入网设备在时域方向上,配置参考信号,以适应单载波的调制方式。通过在时域符号上或在子时域资源上配置参考信号,实现灵活的参考信号配置。
一种可能的实现方式,第一时域资源包括聚合的子时域资源或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者,聚合的时域资源之间属于不同周期的搜索空间。
通过上述方法,在不同周期的子时域资源或时域资源实现聚合,提高控制信息传输的可靠性,并提高终端设备解码控制信息的成功率。
一种可能的实现方式,第一指示信息还包括:向终端设备发送的第一CORESET关联的P个传输配置编号(transmission configuration index,TCI)标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个;TCI标识用于指示CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
一种可能的实现方式,接入网设备在P1个第一TCI标识对应的P1个端口上向终端设备发送控制信息,所述第一TCI标识与所述端口具有一一对应关系;第一TCI标识为第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
通过上述方法,为终端设备配置的CORESET关联多个TCI标识,每个TCI标识对应一个天线端口,进而使得接入网设备在多个天线端口上发送控制信息,实现控制信息的空间分集,提高单载波调制下的资源的利用率。
一种可能的实现方式,变换预编码是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
第二方面,本申请实施例提供一种通信装置,该通信装置(以下简称装置)具有实现上述第一方面的方法实例中由接入网设备所执行的步骤的功能。该装置可以位于接入网设备中,也可以为接入网设备的芯片。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,装置的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面方法示例中由接入网设备所执行的相应步骤或功能,包括收发单元和处理单元。其中,收发单元,用于向终端设备发送第一指示信息;第一指示信息用于指示为终端设备分配的至少一个CORESET是否进行变换预编码;处理单元,用于对至少一个CORESET进行变换预编码后,通过收发单元在至少一个CORESET上向终端设备发送控制信息。
一种可能的实现方式,第一指示信息还包括:至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
一种可能的实现方式,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
一种可能的实现方式,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
一种可能的实现方式,第一指示信息还包括:CORESET对应的搜索空间信息;第二物理控制信道资源块包括K个第二子频域资源;第二物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;K1小于或等于K;N1小于或等于N;搜索空间信息包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息。
一种可能的实现方式,CORESET信息包括:CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源。
一种可能的实现方式,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源、或者一个或多个时域符号的时域资源。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源、或者一个或多个时域符号的时域资源。
一种可能的实现方式,收发单元,用于向终端设备发送第二指示信息;第二指示信息用于指示时域资源集中的第二时域资源;第二时域资源为为终端设备分配的CORESET的时域资源。
一种可能的实现方式,子时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;或者,时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
一种可能的实现方式,第一时域资源包括聚合的子时域资源或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者,聚合的时域资源之间属于不同周期的搜索空间。
一种可能的实现方式,第一指示信息还包括:向终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个;TCI标识用于指示CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
一种可能的实现方式,收发单元,还用于在P1个第一TCI标识对应的P1个端口上向终端设备发送控制信息,所述第一TCI标识与所述端口具有一一对应关系;第一TCI标识为第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
一种可能的实现方式,变换预编码是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
第三方面,本申请提供一种控制信息的接收方法,终端设备接收接入网设备发送的第 一指示信息;第一指示信息用于指示为终端设备分配的至少一个CORESET是否进行变换预编码;终端设备根据第一指示信息,在至少一个CORESET上通过进行变换预编码后,接收来自接入网设备的控制信息。
通过上述方法,终端设备通过第一指示信息,确定了控制信息的单载波的调整方式,进而,终端设备根据第一指示信息,在至少一个CORESET上通过进行变换预编码后,接收来自接入网设备的控制信息,提升了终端设备接收下行控制信息的信号覆盖能力。
一种可能的实现方式,第一指示信息还包括:至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
通过上述方法,终端设备通过确定单载波的调制方式下的物理控制信道资源块的时频资源,可以实现在单载波的调制方式下接收控制信息,提升了终端设备接收下行控制信息的信号覆盖能力。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
通过上述方法,通过划分频域范围的方式确定物理控制信道资源块,以使频域资源的划分方式适应单载波的调制方式,可以实现在单载波的调制方式下在物理控制信道资源块上接收控制信息,提升了终端设备接收下行控制信息的信号覆盖能力。
一种可能的实现方式,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
通过上述方法,在N个第一子频域资源上的每个子频域资源上,可以实现单载波的调制,相比多载波的调制方式,可以提升终端设备接收下行控制信息的信号覆盖能力,并且,提升了控制信息接收的灵活性,提高资源的利用率。
一种可能的实现方式,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
通过将子频域资源交织映射或绑定映射的方式,提高频域资源的利用率,减少资源的浪费。
一种可能的实现方式,第一指示信息还包括:CORESET对应的搜索空间信息;第二物理控制信道资源块包括K个第二子频域资源;第二物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;K1小于或等于K;N1小于或等于N;搜索空间信息包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息;终端设备根据搜索空间信息,在K1个第二子频域资源与N1个第一子频域资源上联合解码,以接收来自接入网设备的控制信息。
通过不同搜索空间内的子频域资源聚合的方式,使得终端设备可以在聚合的子频域资源上同时解码控制信息,可以提升控制信息传输的可靠性,并提高终端设备解码控制信息的成功率。
一种可能的实现方式,CORESET信息包括:CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域 资源为一个时域资源;终端设备通过多个子时域资源对应的搜索空间盲检来自接入网设备的控制信息;和/或,终端设备通过1个时域符号的时域资源对应的搜索空间盲检来自接入网设备的控制信息。
通过上述方法,将时域资源划分为多个子时域资源,在时域资源上,提升控制信息的时域资源配置的灵活性。
一种可能的实现方式,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个时域符号的时域资源。
通过上述方法,为终端设备配置的时域资源可以有多种类型,提升控制信息的时域资源配置的灵活性,提高资源的利用率。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源、或者一个或多个时域符号的时域资源。终端设备在CORESET的时域资源集上接收来自接入网设备的控制信息。
通过上述方法,终端设备可以接收接入网设备分配的时域资源集,进而,终端设备可以在时域资源集的时域资源上接收控制信息,避免无法接收到具体的时域资源的指示信息的场景下,无法接收时域资源的指示信息导致无法接收控制信息的问题,也可以以减少接入网设备信令的消耗。
一种可能的实现方式,终端设备接收来自接入网设备的第二指示信息;第二指示信息用于指示时域资源集中的第一时域资源;第一时域资源为终端设备分配的CORESET的时域资源;终端设备在第一时域资源上接收来自接入网设备的控制信息。
通过接收第二指示信息的方式,以使终端设备在第二指示信息指示的时域资源上接收控制信息,节省终端设备盲检的复杂度。
一种可能的实现方式,子时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;或者,时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
通过上述方法,使得终端设备在时域方向上,接收参考信号,以适应单载波的调制方式。并且,通过在时域符号上或在子时域资源上接收参考信号方式,实现灵活的参考信号的接收,避免参考信号占用不必要的资源,以提高时域资源的利用率。
一种可能的实现方式,第一时域资源包括聚合的子时域资源和/或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间,或聚合的时域资源之间属于不同的搜索空间;进而,终端设备根据第一时域资源对应的搜索空间信息,对聚合的子时域资源和/或时域资源联合解码,以接收来自接入网设备的控制信息。
通过上述方法,使得终端设备在聚合的不同周期的子时域资源或时域资源上接收控制信息,并同时进行解码,提高控制信息传输的可靠性,提高终端设备解码控制信息的成功率。
一种可能的实现方式,第一指示信息还包括:向终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个;TCI标识用于指示CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在准共址 (quasi co-located,QCL)属性。
通过上述方法,终端设备根据CORESET关联多个TCI标识,确定TCI标识对应的端口,使得终端设备可以在对应的端口上接收控制信息,实现控制信息的空间分集。
一种可能的实现方式,终端设备在P1个第一TCI标识对应的P1个端口上接收来自接入网设备发送的控制信息;第一TCI标识为第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
通过上述方法,终端设备根据CORESET关联的P1个TCI标识,确定P1个TCI标识对应的P1端口,进而在对应的P1个端口上接收控制信息,实现控制信息的空间分集。
一种可能的实现方式,终端设备根据第一CORESET关联的1个或多个TCI标识,确定第一CORESET是否存在1个时域符号上的子时域资源;终端设备若确定存在1个时域符号上的子时域资源,则在子时域资源上接收来自接入网设备的控制信息;终端设备若确定不存在1个时域符号上的子时域资源,则在时域符号上接收来自接入网设备的控制信息。
通过上述方法,终端设备根据CORESET关联的1个或多个TCI标识,确定接入网设备指示的时域资源是否包括子时域资源,进而,终端设备可以根据是否存在子时域资源对应的盲检方式,在对应的时域资源上接收控制信息,以节省终端设备盲检的复杂度。
一种可能的实现方式,变换预编码是离散傅里叶变换扩展正交频分复用(discrete fourier transform-spread-orthogonal frequency division multiplexing,DFT-S-OFDM)。
第四方面,本申请实施例提供一种通信装置,该装置具有实现上述第三方面的方法实例中由终端设备所执行的功能。该装置可以位于终端设备中,或者可以为终端设备的芯片中。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,装置的结构中包括处理单元和收发单元,这些单元可以执行上述第三方面方法示例中的相应步骤或功能,包括:收发单元和处理单元,其中,收发单元,用于接收接入网设备发送的第一指示信息;第一指示信息用于指示为终端设备分配的至少一个CORESET是否进行变换预编码;处理单元,用于根据第一指示信息,在至少一个CORESET上通过进行变换预编码后,通过收发单元接收来自接入网设备的控制信息。
一种可能的实现方式,第一指示信息还包括:至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
一种可能的实现方式,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
一种可能的实现方式,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
一种可能的实现方式,第一指示信息还包括:CORESET对应的搜索空间信息;第二物理控制信道资源块包括K个第二子频域资源;第二物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资 源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;其中,K1小于或等于K;N1小于或等于N;搜索空间信息包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息;
处理单元,用于根据搜索空间信息,在K1个第二子频域资源与N1个第一子频域资源上联合解码,以通过收发单元接收来自接入网设备的控制信息。
一种可能的实现方式,CORESET信息包括:CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源;
处理单元,还用于通过多个子时域资源对应的搜索空间盲检来自接入网设备的控制信息;和/或,通过1个时域符号的时域资源对应的搜索空间盲检来自接入网设备的控制信息。
一种可能的实现方式,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个时域符号的时域资源。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个或多个时域符号的时域资源。
收发单元,用于在CORESET的时域资源集上接收来自接入网设备的控制信息。
一种可能的实现方式,收发单元,用于接收来自接入网设备的第二指示信息;第二指示信息用于指示时域资源集中的第一时域资源;第一时域资源为终端设备分配的CORESET的时域资源;处理单元,用于在第一时域资源上通过收发单元接收来自接入网设备的控制信息。
一种可能的实现方式,子时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;或者,时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
一种可能的实现方式,第一时域资源包括聚合的子时域资源和/或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者,聚合的时域资源之间属于不同的搜索空间;
处理单元,用于根据第一时域资源对应的搜索空间信息,对聚合的子时域资源和/或时域资源联合解码,以通过收发单元接收来自接入网设备的控制信息。
一种可能的实现方式,第一指示信息还包括:向终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个;TCI标识用于指示CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
一种可能的实现方式,处理单元,用于在P1个第一TCI标识对应的P1个端口上通过收发单元接收来自接入网设备发送的控制信息;第一TCI标识为第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
一种可能的实现方式,处理单元,用于根据第一CORESET关联的1个或多个TCI标识,确定第一CORESET是否存在1个时域符号上的子时域资源;若确定存在1个时域符号上的子时域资源,则在子时域资源上通过收发单元接收来自接入网设备的控制信息;若确定不存在1个时域符号上的子时域资源,则在时域符号上通过收发单元接收来自接入网 设备的控制信息。
一种可能的实现方式,变换预编码是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
第五方面,提供了一种通信装置。本申请提供的通信装置具有实现上述方法由接入网设备执行的功能,其包括用于执行第一方面、第一方面中任一种可能实现方式、所描述的步骤或功能相对应的部件(means)。步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,该装置可以为接入网设备或接入网设备的芯片。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中接入网设备相应的功能。可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存装置必要的程序计算机程序和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该通信装置执行第一方面、第一方面中任一种可能实现方式中接入网设备完成的方法。
在一种可能的实现中,上述通信装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中接入网设备相应的功能。可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存终端设备必要的程序计算机程序和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。通信装置可以位于接入网设备中,或为接入网设备。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面、第一方面中任一种可能实现方式中发端设备或收端设备完成的方法。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,使得计算机执行第一方面、第一方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第一方面中任一种可能实现方式的方法。
第八方面,提供了一种通信装置,例如芯片***等,该装置与存储器相连,用于读取并执行存储器中存储的软件程序,执行上述第一方面、第一方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信装置。本申请提供的通信装置具有实现上述方法方面终端设备的功能,其包括用于执行第二方面、第二方面中任一种可能实现方式所描述的步骤或功能相对应的部件(means)。步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,通信装置可以为终端设备;终端设备可以为终端设备,或终端设备的芯片。
在一种可能的实现中,上述通信装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中终端设备相应的功能。
可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存装置必要的计算机程序和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第三方面或第三方面中任一种可能实现方式中终端设备完成的方法。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中终端设备相应的功能。可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存终端设备必要的程序计算机程序和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。通信装置可以位于终端设备中,或可以为终端设备。
另一个可能的实现中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第三方面、第三方面中任一种可能实现方式中终端设备执行的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面、第三方面中任一种可能实现方式中的方法的计算机程序。
第十一方面,提供一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第三方面、第三方面中任一种可能的实现方式中的方法。
第十二方面,提供了一种通信装置,例如芯片***等,该装置与存储器相连,用于读取并执行存储器中存储的软件程序,存储的软件程序用于执行上述第三方面、第三方面中任一种可能的实现方式中的方法。
第十三方面,提供了一种通信***,通信***包括用于执行上述第一方面所述的方法的接入网设备、用于执行上述第三方面所述的方法的终端设备。
附图说明
图1为本申请实施例提供的通信***的一结构示意图;
图2为现有技术中的一种CORESET在频域方向的示意图;
图3A为本申请实施例提供的一种搜索空间与CORESET的映射关系的示意图;
图3B为本申请实施例提供的一种CORESET的示意图;
图3C为本申请实施例提供的一种CORESET在时域方向的示意图;
图3D为图3B的时隙上的监听时机的示意图;
图4A为本申请实施例提供的DFT-s-OFDM发射机和接收机结构的示意图;
图4B为本申请实施例提供的不同频率下的信号衰减示意图;
图5为本申请实施例提供的一种控制信息的发送、接收方法的流程示意图;
图6A-图6B为本申请实施例提供的一种CORESET在频域方向的示意图;
图6C为本申请实施例提供的一种CORESET在时频方向的绑定的示意图;
图6D为本申请实施例提供的一种CORESET在时域方向的聚合的示意图;
图7A-图7C为本申请实施例提供的一种CORESET在时域方向的示意图;
图7D-图7E为本申请实施例提供的一种CORESET在时域方向的示意图;
图8A-图8C为本申请实施例提供的一种CORESET的TCI状态的示意图;
图9为本申请提供的一种通信装置的结构示意图;
图10为本申请提供的一种通信装置的结构示意图;
图11为本申请提供的一种通信装置的结构示意图;
图12为本申请提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请提供的技术方案进行详细描述。
图1为适用于本申请的一种可能的***架构示意图。如图1所示,该***架构包括接入网设备和终端设备。接入网设备和终端设备间可通过Uu空口通信,Uu空口可理解为通用的终端设备和接入网设备之间的接口(universal UE to network interface)。Uu空口的传输包括上行传输和下行传输。接入网设备可以为至少一个终端设备提供无线接入有关的服务,实现下述功能中的一个或多个功能:无线物理层功能、资源调度和无线资源管理、服务质量(quality of service,QoS)管理、无线接入控制以及移动性管理功能。在本申请中,接入网设备与至少一个终端设备之间可以通过波束进行通信。接入网设备可以通过不同方向的波束建立与至少一个终端设备(例如图1中示出的终端设备1和终端设备2)之间的通信链路。至少一个终端设备也可以形成波束进行与接入网设备之间的数据传输。应理解,本申请对***架构中接入网设备的数量、终端设备的数量不作限定,而且本申请所适用的***架构中除了包括接入网设备和终端设备以外,还可以包括其它网络设备,如核心网设备、无线中继设备和无线回传设备等,对此本申请也不作限定,仅为举例。以及,本申请中的接入网设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本申请也不作限定。此外,本申请中的终端设备可以通过无线方式与接入网设备连接。
需要说明的是,图1所示的通信***的架构不限于仅包含图中所示的设备,还可以包含其它未在图中表示的设备,具体包含的设备本申请在此处不再一一列举。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请提供的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。本申请实施例中,以终端设备和接入网设备之间的交互为例进行说明,本申请实施例提供的方法还可以适用于其他执行主体之间的交互,例如可以是终端设备芯片或模块,与接入网设备中的芯片或模块之间的交互,当执行主体为芯片或模块时,可以参考本申请实施例中的描述,在此不再赘述。可以理解的是,本申请实施例所提供的的方法及装置,可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、通用分组无线业务(general packet radio service,简称GPRS)***、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD),以及5G通信***;或未来各种演进的通信***等,例如物联网、车联网、6G通信***等。
下面对本申请所使用到的一些名词或术语进行解释说明,该名词或术语也作为发明内容的一部分。
一、终端设备
终端设备可以简称为终端,是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备,以及还可以包括用户设备(user equipment,UE)等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的6G的终端设备等。终端设备有时也可以称为终端、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片***,该装置可以被安装在终端中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
终端设备包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫 描器等信息传感设备。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G或未来6G网络中的终端设备或者新的演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
示例性地,终端设备中可以包括:无线资源控制(radio resource control,RRC)信令交互模块、媒体接入控制(media access control,MAC)信令交互模块、以及物理(physical,PHY)信令交互模块。其中,RRC信令交互模块可以为:接入网设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块可以为:接入网设备和终端设备用于发送及接收MAC控制元素(control element,CE)信令的模块。PHY信令及数据可以为:接入网设备和终端设备用于发送及接收上行控制信令或下行控制信令、上下行数据或下行数据的模块。
二、接入网设备
接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等。终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请实施例并不限定。
本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片***,该装置可以被安装在接入网设备中。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备,以接入网设备是基站为例,描述本申请实施例提供的技术方案。
接入网设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。接入网设备还可协调对空 口的属性管理。例如,接入网设备可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站,或者也可以包括5G新无线***中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,该接入网设备可以是GSM***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入网设备(例如gNB)或者未来演进的PLMN网络中的接入网设备等,本申请实施例并不限定。
示例性地,接入网设备中也可以包括:RRC信令交互模块、MAC信令交互模块、以及PHY信令交互模块。在一些部署中,接入网设备可以包括集中式单元(centralized unit,CU)和(distributed unit,DU)。接入网设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现接入网设备的部分功能,DU实现接入网设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
三、下行控制信息的资源
下行传输是指接入网设备向终端设备发送下行信息,接入网设备作为发送设备,终端设备作为接收设备。下行信息可包括下行数据信息、下行控制信息和下行参考信号中的一个或多个。下行参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)或相位跟踪参考信号(phase tracking reference signal,PTRS)。用于传输下行信息的信道称为下行信道,下行信道可以为物理下行共享信道(physical downlink shared channel,PDSCH)或PDCCH。PDCCH用于承载下行控制信息(downlink control information,DCI),PDSCH用于承载下行数据,下行数据也可称为下行数据信息。
下行控制信道,例如PDCCH,或者增强的物理下行控制信道(enhanced physical downlink control channel,ePDCCH),或者是其他的下行控制信道,具体的不做限制。本申请实施例中将主要以下行控制信道为PDCCH为例进行描述。
参考信号的资源,本申请实施例中,接入网设备发送参考信号的资源可以称为参考信号资源,参考信号可以为以下信号中的任一种信号:同步信号、广播信道、同步信号广播信道块(synchronization signal and PBCH block,SSB),广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell  specific reference signal,CS-RS)、终端专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号、下行数据信道解调参考信号、下行相位噪声跟踪信号,探测参考信号(sounding reference signal,SRS)等。
符号,也可称为时域符号,包含但不限于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、稀疏码分多址技术(sparse code multiplexing access,SCMA)符号、过滤正交频分复用(filtered orthogonal frequency division multiplexing,F-OFDM)符号、非正交多址接入(non-orthogonal multiple access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
时隙,在时域上占用连续的多个OFDM符号。例如,在LTE中,1个时隙在时域上占用连续的6或7个OFDM符号;在NR中,1个时隙在时域上占据连续的14个OFDM符号(常规循环前缀)或连续的12个OFDM符号(扩展循环前缀)。
PDCCH是下行控制信道,承载着PUSCH和PDSCH的控制信息DCI。在LTE中,PDCCH频域上占据全部带宽,时域上占据每个子帧的前1-3个符号,由资源的多少动态调度。在NR中,由于***带宽增加,为避免资源的浪费,PDCCH无需占据全部带宽,NR中PDCCH会在BWP内,而且时域也可以分配对应的时隙,PDCCH信道的时频码域资源信息可以通过以下2个配置确定:CORESET和搜索空间(search space)。
PDCCH是在CORESET中传输,每个UE可配置多个CORESET。现有技术中,每个CORESET在时域上支持1/2/3个符号且这些符号可位于时隙内的任意位置。现有5G NR协议下行控制信息的传输,仅采用多载波OFDM波形,对应的资源配置方式也是基于多载波的配置方式,即CORESET的频域资源的最小粒度为子载波。一个CORESET在频域上包括多个物理资源块(physical resource block,PRB),即在频域上可以包括6N个RB,N为正整数且总RB数不超出所在BWP为方便描述,将6个RB称为一个控制信道元素(control channel element,CCE),即一个PDCCH候选资源CORESET可以由N={1,2,4,8,16}个CCE组成,CCE的数量表示PDCCH的聚合级别。一个CCE对应于6个资源元素组(resource element group,REG),一个REG时域上占一个OFDM符号,频域上占12个子载波,即1个RB。CCE与PRB的映射图案(bitmap)中的每个bit和互不重叠的一组6个RB有一一映射关系,以BWP内RB的序列(index)升序排列。共45个bit,最高bit代表第一个RB组,以此类推。bit值为1表示这个RB group是CORESET的频域资源。BWP内第一个RB group的起始位置为6×roundup(N/6)所指示的CRB的位置。式中roundup表示向上取整,N表示BWP起始位置的CRB编号。
图2表示的是6个REG连续作为一个CCE的示意图。标准上为了支持基站侧灵活的资源分配,也允许配置频域离散的REG,或者时域占两个或三个符号的REG,并进行绑定。绑定的方式可以包括:L个REG,L={2,3,6}。
在上述控制信息传输场景中,发送设备除了传输上述控制信息外,还需要传输参考信号(reference signal,RS),参考信号用于接收设备进行信道估计或信道探测等。目前,对于采用多载波波形的时域符号,可将参考信号与传输场景中需要传输的控制信息或数据进行频分复用,以降低参考信号的时域开销。在REG内,DMRS密度为1/4。REG中的DMRS RE索引:1、5、9等。
由于对于单载波波形的时域符号,参考信号与传输场景中需要传输的控制信息进行频分复用,会严重恶化单载波波形的PAPR性能。因此,对于单载波波形,并不能将资源的 最小粒度划分为子载波,因此,在单载波中,频域资源无法采用上述的CCE中包括PRB的方式,并为CCE设置与PRB间的映射图案,并且,参考信号也无法采用在REG内的子载波上分布DMRS的方式,因此,上述CORESET的设计并不能用于单载波波形,并且CORESET中参考信号的设计也不适用。
在5G通信***中,为了更好地控制盲检测下行控制信道的复杂度,接入网设备可为终端设备配置一个或多个搜索空间集合(search space set,SS set)。搜索空间可以和任意一个已经被配置的CORESET绑定,指示了在指定CORESET接收PDCCH信号的周期、持续时间或者时间,N个控制信道资源为一组聚合(N目前最大16,聚合即收端可以联合解码),控制信息的格式等。
搜索空间可以有很多类型,例如,可以包括公共搜索空间(common search space,CSS)和用户专用搜索空间(UE specific search space,USS),本申请中也会将公共搜索空间集合写为CSS,将用户专用搜索空间集合写为USS。例如,主小区通常会配置有公共搜索空间集合,也有可能会配置有公共搜索空间集合和用户专用搜索空间集合。辅小区可能会配置有公共搜索空间集合,也有可能会配置有公共搜索空间集合和用户专用搜索空间集合,辅小区可能在某些情况下仅配置用户专用搜索空间集合。具体如下:Type0-PDCCH CSS set;Type0A-PDCCH CSS set;Type1-PDCCH CSS set;Type2-PDCCH CSS set;Type3-PDCCH CSS set;USS set;不同类型的CSS有不同的适用情形,比如Type1用于随机接入,具体的可以参考38213第10章。不同类型的搜索空间会有不同无线网络临时标识(Radio Network Tempory Identity,RNTI)加扰的PDCCH。
接入网设备为终端设备配置搜索空间集合时,会为每个搜索空间集合配置搜索空间集合标识。搜索空间集合标识也可以称为搜索空间集合的索引号。当搜索空间集合为公共搜索空间集合时,搜索空间集合是指公共搜索空间集合标识。当搜索空间集合为用户专用搜索空间集合时,搜索空间集合是指用户专用搜索空间集合标识。
搜索空间集合可以包括候选PDCCH,候选PDCCH都位于相应的CORESET中,因此搜索空间集合标识可以与搜索空间集合所包括的候选的PDCCH所在的CORESET的索引号(CORESET的索引号也可以称为CORESET标识)相关联,而搜索空间集合所关联的CORESET决定了该搜索空间集合的候选PDCCH在CORESET内的控制信道元素(control-channel element,CCE)索引。如图3A所示,搜索空间集合1中的候选PDCCH可以包括{SS set#1,SS set#2},搜索空间集合1与CORESET#1关联。搜索空间集合2中的候选PDCCH可以包括{SS set#3},搜索空间集合2与CORESET#2关联。搜索空间集合3中的候选PDCCH可以包括{SS set#4},搜索空间集合3与CORESET#3关联。
在时域上,终端设备以一定的时间间隔监听搜索空间集合中的候选PDCCH,因此对于每个搜索空间集合可以配置时域信息,搜索空间可以配置UE在一个slot中的哪些符号开始检测PDCCH;搜索空间可以配置UE检测PDCCH的周期。比如:监听周期(即监听搜索空间集合的时间间隔,单位为时隙);时隙偏移(即监听周期开始到实际监听搜索空间集合之间的时隙偏移量,且该时隙偏移量小于监听周期的取值);时隙数量(即连续监听搜索空间集合的时隙数量,且时隙数量小于监听周期的取值);符号位置(即每个时隙内,搜索空间集合关联的CORESET的起始符号的位置)。如图3B所示,SS set#1的监听周期可以为10个时隙,时隙偏移为0个时隙,时隙数量为2个时隙;SS set#2的监听周期可以为10个时隙,时隙偏移为3个时隙,时隙数量为2个时隙;SS set#3的监听周期可 以为10个时隙,时隙偏移为3个时隙,时隙数量为1个时隙。
当UE想要找到PDCCH时,高层参数指示的搜索空间中会指示搜索空间的时域周期和偏移、每周期内持续监测的时隙数和每个时隙内的监测的具体起始符号,这些其实就是指示了CORESET的时域位置;然后按照该搜索空间指示的与其对应的CORESET中包含的信息,进一步获取每个CORESET的资源大小。通过时域位置和资源大小,就可以确定对应的CORESET0,从而UE可以从中盲检PDCCH。盲检PDCCH的过程就是逐一对PDCCH候选资源进行译码,如果CRC校验通过,则认为所译码的PDCCH就是UE要找的PDCCH。CORESET0也会将解码PDCCH的信息也一并告知UE,比如REG绑定(bundle)的大小(size)等。
为了方便理解,以具体例子介绍各参数的含义。图3C示例性示出了CORESET在时域方向的示意图,如图3C所示,其中,监听周期为10个时隙,时隙偏移为3个时隙,时隙数量为2个时隙,搜索空间集合相关联的CORESET为一个占用2个符号的CORESET,符号位置为时隙内符号0和符号7。在这个示例中,终端设备在每个10个时隙的监听周期内的时隙3和时隙4内的符号0和符号7上监听CORESET内搜索空间集合的候选PDCCH,且CORESET在时域上占用2个符号。
下行物理控制信道监听时机(Physical Downlink Control Channel Monitoring Occasion,PDCCH MO):指监听1个搜索空间集合所对应的1个起始符号和/或持续时间长度。监听起始符号(也可以将监听起始符号称为起始符号)是一个搜索空间集合的配置信息,通过三个高层信令联合确定,其中高层信令monitoringSymbolsWithinSlot指示一个时隙14个OFDM符号上关联的搜索空间集合的起始符号位置,高层参数monitoringSlotPeriodicityAndOffset指示关联的搜索空间集合的时隙级周期和/或偏移量,高层信令duration指示关联的搜索空间集合在连续时隙出现的时隙个数。因此,一个搜索空间集合可能在一个时隙中出现多次,也可能在若干时隙上出现一次。监听持续时间是搜索空间集合关联的CORESET的持续时间。
图3D示例性示出了图3C的时隙3或时隙4上的监听时机的示意图,如图3D所示,PDCCH MO301占用符号0和1,PDCCH MO302占用符号7和8。CORESET是一个具有频域宽度(以RB为单位)和时域持续时间长度(以OFDM符号为单位)的概念,当1个SS set关联1个CORESET后,就可以确定这个SS set对应的PDCCH MO。图3D可以描述为,1个搜索空间集合在1个时隙内有两个PDCCH MO起始符号,分别为时域符号0和时域符号7;该搜索空间集合关联了1个时域持续2符号的CORESET,即该两个PDCCH MO持续时间为2个符号。
四、波束
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。不同的波束可以认为是不同的资源(空间域资源)。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形 成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空间参数(spatial parameter)(如空间接收参数,和空间发送参数)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain parameter)或空间发送参数(spatial transmission parameter)。用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或空间接收参数(spatial reception parameter)。
在使用低频或中频频段时,可以全向发送信号或者通过一个较宽的角度来发送信号,而在使用高频频段时,得益于高频通信***较小的载波波长,可以在发送端和接收端布置很多天线阵子构成的天线阵列,使发送信号形成具有空间指向性的波束,可以提高信号覆盖,对抗路径损耗。
NR协议中,QCL的定义为:若在一个天线端口上传输的某一符号的信道的大尺度特性,可以从另一个天线端口上传输的某一符号的信道推导得到,则这两个天线端口被称为是准共址的,可以描述该两个天线端口具有准共址属性,也可以描述该两个天线端口具有准共址关系。
QCL关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。例如,两个信号从两个不同天线端口发射,所经历的大尺度特性相同,则可以认为两个天线端口具有QCL关系,那么一个端口传送一个符号的信道大尺度特性/信道估计结果可以从另一个端口传送一个符号的信道大尺度特性推断出来,有利于接收机处理。大尺度特性包括一个或多个时延扩展(delay spread),多普勒扩展(doppler spread),多普勒频移(doppler shift),平均增益,平均时延(average delay),空间接收参数(patial Rx parameter)。QCL的类型(Type)可以分为QCL-TypeA、QCL-TypeB、QCL-TypeC和QCL-TypeD4种。
其中,QCL-TypeA的参数为:{doppler shift,doppler spread,average delay,delay spread};QCL-TypeB的参数为:{doppler shift,doppler spread};QCL-TypeC的参数为:{doppler shift,average delay};QCL-TypeD的参数为:{spatial Rx parameter}。
QCL-type D关系的英文可以描述为“for the purpose of determining the CORESET,a Synchronization/PBCH block is considered to have different QCL-TypeD properties than a CSI-RS”,对应翻译为为了确定监听PDCCH的CORESET,可以理解一个同步/物理广播信道块(SS/PBCH)与一个信道状态信息测量参考信号(Channel State Information Reference Signal,CSI-RS)具有不同的类型D的准共址属性”。可以理解为一个同步/物理广播信道块对应一个宽波束,而一个信道状态信息参考信号对应一个窄波束,虽然窄波束可能是从宽波束通过波束细化(beam refinement)得到,但仍然认为宽波束和窄波束为两个不同的波束,他们的波束信息不同,即类型D的准共址属性不同。QCL-type D用于辅助波束赋形,比如用于形成空间滤波器,波束指示等。对于QCL-TypeD,可以分别从发送端和接收端两个角度理解。从发送端来看,如果两个天线端口是QCL-TypeD的,表示这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果两个天线端口是QCL-TypeD的,表示这个接收端能够在相同的波束方向上接收到这两个天线端口发送的信 号。
在下行传输中,接入网设备在采用一个特定的波束向终端设备发送数据时,需要告知终端设备其采用的发送波束信息,这样终端设备才能采用与该发送波束相对应的接收波束来接收接入网设备发送的数据。接入网设备通过下行控制信息(downlink control information,DCI)中的TCI字段来向终端设备指示其采用的发送波束的相关信息。其中,TCI字段包括3比特,可以具体表示8个不同的值(codepoint)。TCI字段的每个值对应一个传输配置编号状态(TCI-state)的索引,该索引可以标识一个TCI-state。TCI-state包括多个参数,通过这些参数可以确定发送波束的相关信息。TCI-state是由接入网设备配置给终端设备的,举例来说,TCI-state可以包括一个TCI-state标识,和两个QCL信息(QCL-Info)。TCI-state标识可以视为TCI-state的索引,指示一个TCI-state,每个QCL-Info包括一个小区(cell)字段和带宽部分(bandwidth part,BWP)标识字段,分别表示该TCI-state应用于哪个小区的哪个bwp,即不同小区或相同小区的不同bwp可以配置不同QCL-Info。QCL-Info还包括一个参考信号字段,用于表示TCI-state与哪个参考信号资源构成准同位关系。
需要说明的是,在第三代伙伴计划(the 3rd generation partnership project,3GPP)R15(release 15)协议中,一般不会出现“波束”这个词汇,波束一般是通过其他术语进行代替的。例如,在数据传输和信道测量中,波束都是与参考信号资源进行对应的,一个波束对应一个参考信号资源。因此,本申请实施例中,描述的“TCI-state与哪个参考信号资源构成QCL关系”,实质是指TCI-state与哪个波束构成QCL关系。QCL关系是指两个参考信号资源(或两个天线端口,天线端口和参考信号资源也是一一对应的)在具有某些相同的空间参数。具体哪些空间参数是相同的取决于该QCL-Info的类型,QCL-Info的类型通过QCL类型(qcl-Type)字段指示。QCL类型字段可以有四种取值,分别为typeA,typeB,typeC,typeD。以typeD为例,typeD表示两个参考信号资源具有相同的空间接收参数信息,即两个波束具有相同的接收波束。TCI-state包括的两个QCL-Info中最多可能有一个类型是TypeD的。
本申请中,接入网设备使用TCI-state向终端设备发送下行数据之前,需要为终端设备配置多个TCI-state。接入网设备配置多个TCI-state后,还需要通过激活其中至少一个TCI-state。接入网设备激活至少一个TCI-state之后,还会向终端设备指示激活的TCI-state中的一个TCI-state。例如,接入网设备发送给终端设备的DCI中的TCI字段的值为000,表示数据传输波束采用的000对应的TCI-state。该TCI-state内的类型为typeD的QCL-Info所包含的参考信号是索引为#1的CSI-RS,表示数据传输采用的波束与索引为#1的CSI-RS对应的接收波束是相同的。索引为#1的CSI-RS对应的接收波束可通过波束测量流程来确定,对终端设备来说是已知的。因此,通过指示TCI-state,终端设备就可以确定数据传输波束对应的接收波束,从而采用相应的接收波束来接收接入网设备发送的下行数据。
在NR中,接收PDCCH配置信息中,还可以包括波束的指示信息,用于基站指示PDCCH的发送波束与其中一个参考信号是同一波束,该指示信息可以通过TCI来完成。UE接收的PDCCH的配置中,就有一个潜在的TCI状态集合。基站调度UE之前可以通过MAC层(Multi-media access control)信令,对上述TCI状态集合中的具体某个TCI进行激活。此时,UE假设基站发送控制信道的波束是与被MAC信令激活的DM-RS信号相同的波束。若UE可能还未接入网络,可能无法接收MAC的信令激活,所以UE可以假设接收波束是接收同步信号块(synchronization signal/physical broadcast channel,SS/PBCH)信 号的波束。
需要说明的是,本申请实施例提供的方法可以用于指示下行传输接收波束信息或TCI-state,也可以用于指示上行传输的发送波束信息或空间关系(spatial relation)。当控制信息用于指示上行传输的发送波束信息或空间关系时,只需要将下述方法中的TCI-state替换为spatial relation或者探测参考信号的资源指示(resource indicator,RI)即可。
本申请中的单载波时域符号可包括DFT-s-OFDM或单载波正交幅度调制(single carrier quadrature amplitude modulation,SC-QAM)等单载波的时域符号。以DFT-s-OFDM单载波的发射机为例,详细介绍图4A流程中的方法:
如图4A所示,该DFT-s-OFDM发射机包括离散傅里叶变换(discrete fourier transform,DFT)模块、Mapping模块、快速傅里叶逆变换(designing pipeline FFT,IFFT)、并串(parallel/serial,P/S)转换器、增加循环前缀(cyclic prefix,CP)/PS模块,DAC/射频(radio frequency,RF)模块和天线;其中,Mapping模块可用于将DFT输出的信号映射到子载波上;M表示DFT点数,N表示IFFT点数。可以理解的是,该用于信号传输的装置也可能为DFT-s-OFDM接收机。该DFT-s-OFDM接收机的结构可参见上述DFT-s-OFDM发射机的结构示意图,DFT-s-OFDM接收机对信号的处理过程为DFT-s-OFDM发射机对信号处理的逆过程。
其中,可预先将待传输的控制信息或数据进行编码,得到编码后比特流。将编码后比特流输入到DFT-s-OFDM发射机,编码后比特流依次经过调制、得到至少一组调制符号。
数据符号可以包括承载控制信息的CCE,参考信号序列。数据符号可以作为DFT模块的输入,Mapping模块将DFT输出的信号映射到子载波上,然后再进行DFT变换,加入解调参考信号等处理,将处理后的信号映射到相应的子载波上,通过IFFT变换到时域信号,将时域信号进行发送。
例如,1组调制符号中包括第一调制符号。第一调制符号可以为变换域预编码,用于对第一调制符号集合进行DFT变换。对DFT变换后的第一调制符号,进行子载波映射、DFT-s-OFDM符号生成等过程,得到第一单载波时域符号。最后,将第一单载波时域符号,映射至中射频进行发送。进而,接收设备接收第一单载波时域符号。接收设备根据第一单载波时域符号,得到第一调制符号。一种具体实现可为:接收设备根据第一单载波时域符号,得到传输的控制信息或参考信号。
需要说明的是,本申请实施例中的参考信号包括但不限于DMRS等参考信号。同时,为了使参考信号序具有抵抗多径干扰的能力,可对参考信号序列添加循环前缀和/或循环后缀,参考信号序列可以采用低PAPR序列,如ZC序列、计算机搜索的频域QPSK序列、时域pi/2-BPSK序列、计算机搜索的时域M-PSK序列等。
由于OFDM符号是由多个独立经过调制的子载波信号叠加而成的,当各个子载波相位相同或者相近时,叠加信号便会受到相同初始相位信号的调制,从而产生较大的瞬时功率峰值,由此进一步带来较高的PAPR。相比OFDM,DFTs-OFDM的PAPR比较低,可以提高发射机的发射效率,在有限输出功率的限制下提升覆盖。现有技术中,在LTE的上行链路的信号生成方式中,有采用DFTs-OFDM。DFTs-OFDM在有些文献中也被叫做线性预编码OFDM技术,或单载波FDMA(single carrier-FDMA,SC-FDMA)。
在Rel-17beyond 52.6GHz的前期讨论中,指出该频段频带资源丰富,并且由于为了支持更大带宽的传输,单个载波的最大带宽会在Rel-16的基础上进一步增加。根据电磁波的 物理性质,随着工作频段(载波频率)的提升,电磁波信号在自由空间的衰减会变大。如图4B所示,在52.6Ghz以上的毫米波频段,有一个衰减陡增的点(有时称为氧衰)。由于信号在自由空间中的衰减变大,为了保证移动通信***的覆盖,尤其是在高频频段,例如52.6GHz以上,可能需要在基站引入增强覆盖的下行通信技术,以解决信号在自由空间衰减过大而导致覆盖受限的问题。因此,在4G LTE和5G NR中,为了增强UE的上行覆盖,未来在更高频段(比如52.6GHz以上),可能会引入DFT-s-OFDM等单载波波形信号。利用DFTs-OFDM的PAPR比较低,可以提高发射机的发射效率,在有限输出功率的限制下提升覆盖。
为提高信号的覆盖增强,控制信息的发送可以采用单载波波形,但是,现有的下行物理控制信道只支持OFDM多载波,现有的下行物理信道PDCCH资源的配置方式并不能直接用于单载波的方式,例如,CORESET的实现方式并不能用于单载波波形,并且CORESET中参考信号的实现方式也不适用。例如,将1个CORESET划分为6个CEE,每个CCE包括6个REG,每个REG在频域上包括12个子载波,而单载波调制方式,决定了其频域的粒度不能是子载波,因此,单载波中的频域资源划分方式中,不能直接采用多载波的频域资源划分方式。再比如,在多载波中,DMRS的映射是直接映射到子载波上的,无法用于单载波。
基于上述技术问题,如图5所示,本申请实施例提供一种控制信息的发送方法,包括:
步骤501:接入网设备向终端设备发送第一指示信息;第一指示信息用于指示为终端设备分配的至少一个CORESET是否进行变换预编码。相对应的,终端设备接收接入网设备发送的第一指示信息。
其中,接入网设备所指示的第一CORESET是否进行变换预编码可以包括以下A1、方式A2等几种方式。
方式A1、第一指示信息中,第一CORESET是否进行变换预编码可以通过RRC信令、MAC信令或者默认规则的方法指示。
在方式A1中,可以通过增加一项新的配置信息或指示域实现,下面通过示例a1、示例a2、示例a3和示例a4进行介绍。
示例a1,在CORESET的配置信息中,可以增加一项新的配置信息,用于指示CORESET是否进行变换预编码。例如,可以通过增加CORESET变换预编码指示域的取值,确定CORESET是否进行变换预编码。
示例a2,在CORESET的配置信息中,可以增加一项新的配置信息,用于表示CORESET ID和/或搜索空间ID与CORESET是否进行变换预编码的映射关系。
示例a3,上述在PDCCH配置中显式配置的内容也可以通过协议约定的方法实现,例如,还可以通过协议约定CORESET是否进行变换预编码与CORESET ID和/或搜索空间ID的映射关系。例如,第一指示信息为指示CORESET ID#0进行变换预编码,协议可以约定,CORESET ID#0和/或搜索空间ID#0所关联的PDCCH为进行变换预编码的单载波调制方式,在除上述CORESET和搜索空间所关联的PDCCH时频资源上为不进行变换预编码的多载波调制方式,当然,除CORESET ID#0和/或搜索空间ID#0所关联的PDCCH可以根据其他指示方式确定是否进行变换预编码。
示例a4,接入网设备在通过第一指示信息指示至少一个CORESET是否进行变换预编码时,可以在第一指示信息中增加一个新的指示域,该增加的新指示域仅用于指示至少一 个CORESET是否进行变换预编码的指示信息。
方式A2、通过指示CORESET/搜索空间的配置信息,例如时频资源、或波束方向时隐式指示。
在方式A2中,可以通过在原配置信息或指示域中实现,下面通过示例b1和示例b2进行介绍。
示例b1,CORESET的配置信息中,还可以在原有的配置信息中隐式指示,例如,在CCE对应REG的映射关系的配置信息设置为无REG的映射关系,确定CORESET进行变换预编码。若CCE对应REG的映射关系的配置信息中存在至少一个映射关系的配置信息,可以确定CORESET不进行变换预编码。
示例b2,接入网设备也可以通过对现有指示信息中包括的某个指示域进行复用,即,复用后的指示域,可以用于指示该指示域原本所指示的内容和/或用于指示至少一个CORESET是否进行变换预编码的信息。第一指示信息中可以包括指示域“频域资源”,用于CORESET是否进行变换预编码,接入网设备可以复用该指示域“频域资源”,令该指示域可以用于指示CORESET是否进行变换预编码。例如,若该指示域“频域资源”包括1个比特,包括2个不同的取值,每个取值的含义可以如表1所示。
表1
Figure PCTCN2020080747-appb-000001
步骤502:接入网设备对至少一个CORESET进行变换预编码后,在至少一个CORESET上向终端设备发送控制信息。
另一种可能的方式,接入网设备通过单载波的调制方式,在至少一个CORESET上向终端设备发送控制信息。
进而,终端设备根据第一指示信息,在至少一个CORESET上通过变换预编码接收接入网设备发送的控制信息。
另一种可能的方式,终端设备可以根据第一指示信息,通过单载波解调方式,接收接入网设备发送的控制信息。
通过上述方法,接入网设备通过发送第一指示信息,指示终端设备接收控制信息时,利用单载波的调制方式,提升了终端设备接收下行控制信息的信号覆盖能力。
进一步的,接入网设备还可以为终端设备指示CORESET具体的时频资源。例如,接入网设备可以通过第一指示信息,向终端设备发送至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。其中,物理控制信道资源块可以用于表示PDCCH的聚合等级,例如,CORESET包括一个物理控制信道资源块,则PDCCH的聚合等级为1,CORESET包括2个物理控制信道资源块,则PDCCH的聚合等级为2,CORESET可以包括的物理控制信道资源块的数量可以根据需要确定,在此不做限定。例如,CORESET可以包括的物理控制信道资源块的数量可以为1,2,4,8,16。相比现有技术中的CCE,由于在单载波中没有PRB,因此,物理控制信道资源块上用于承载的载波即为单载波。若该CORESET为多载波的调制方式, 则CORESET所包括的物理控制信道资源块可以为现有技术中的CCE。
下面具体对CORESET的频域资源配置信息,CORESET的时域资源配置信息,CORESET的空域资源配置信息,分别进行说明。具体的,第一部分用于说明CORESET的频域资源配置信息,第二部分用于说明CORESET的时域资源配置信息,第三部分用于说明CORESET的空域资源配置信息。
第一部分:针对CORESET的频域资源配置信息。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
具体的,带宽指示用于确定CORESET的频域范围,可以为指示的带宽、起始频点或结束频点。
接入网设备可以为CORESET划分一段连续的频域资源块,例如,以***带宽为200MHz为例,可以将CORESET的频域资源块大小设置为200MHz,起始频点可以为52.6GHz,结束频点可以为52.8GHz。进而,接入网设备在起始频点为52.6GHz,结束频点为52.8GHz,带宽范围200MHz的频域资源上,采用单载波的调制方式传输该CORESET承载的PDCCH信息。
进一步的,为提高频域资源的配置的灵活性,物理控制信道资源块可以用于频分复用,将物理控制信道资源块划分为多个子频域资源。CORESET的频域资源配置信息可以包括子带指示,用于指示UE即使在基站使用单载波发送PDCCH时,也按照频分的方式接收。在单载波的PDCCH中,指示为频分时,基站可以进一步配置频分的形式。
在每个子频域资源上,承载不同的数字信号。例如,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;其中,N为正整数。以N为2举例来说理控制信道资源块划分为2个子频域资源,此时,每个子频域资源上发送一个单载波信号。例如,子频域资源1上承载控制信息1,子频域资源2上承载控制信息2,可预先将待传输的控制信息1和控制信息2进行编码,得到编码后比特流。将编码后比特流输入到DFT-s-OFDM发射机,编码后比特流依次经过调制、调制符号分组,得到多组调制符号集合。例如,多组调制符合集合中包括第一调制符号集合和第二调制符号集合。第一调制符号集合为控制信息1的调制符号,第二调制符号集合为控制信息2的调制符号。变换域预编码,用于分别对第一调制符号集合和第二调制符号集合进行DFT变换。对DFT变换后的第一调制符号集合和第二调制符号集合,分别进行子载波映射、DFT-s-OFDM符号生成等过程,得到第一单载波时域符号、第二单载波时域符号。最后,将第一单载波时域符号、第二单载波时域符号,映射至中射频进行发送。
进一步的,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息。
其中,N个第一子频域资源的指示信息可以有多种指示方式,例如,第一指示信息中可以包括指示域“子频域资源”,用于指示CORESET中的物理控制信道资源块是否包括子频域资源,若该指示域“子频域资源”包括2个比特,包括4个不同的取值,每个取值的含义可以如表2所示。
表2
Figure PCTCN2020080747-appb-000002
另一种可能的例子,其中,11比特还可以用于表示划分为8个单载波资源块,指示CORESET进行变换预编码。或者,该指示域“子频域资源”包括3个比特,包括8个不同的取值,例如,包括1个单载波资源块,划分为2个单载波资源块,划分为3个单载波资源块,包括4个单载波资源块,划分为5个单载波资源块,划分为6个单载波资源块,划分为7个单载波资源块,包括8个单载波资源块。上述划分的单载波资源块的数量可以根据需要设置,上述仅为举例。
当然,该子频域资源指示域还可以用于指示CORESET是否进行变换预编码。例如,若该指示域“子频域资源”包括2个比特,包括4个不同的取值,每个取值的含义可以如表3所示。
表3
Figure PCTCN2020080747-appb-000003
需要说明的是,为保证单载波增强覆盖的性能,可以相应的设置频分的数量,例如设置频分的数量包括:1,2,3,4。
为获得频域分集,基站还可以指示物理控制信道资源块中不同的子频率资源是否是交织映射的。例如,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射的指示信息。
图6A给出了一个频分交织的单载波PDCCH资源示意图,一个物理控制信道资源块上包括4个子频域资源,即子频域资源1,子频域资源2,子频域资源3,子频域资源4。举例来说,子频域资源1和子频域资源3交织映射,子频域资源1和子频域资源3上可以用于承载第一单载波时域符号,并在一个端口,例如,在port0上发送第一单载波时域符号。子频域资源2和子频域资源4交织映射,子频域资源2和子频域资源4上可以用于承载第二单载波时域符号,并在另一个端口,例如,在port1上发送第二单载波时域符号。 需要说明的是,上述端口的标识仅为示例,可以根据需要设置端口的标识,在此不再赘述。
进一步的,接入网设备还可以指示物理控制信道资源块中不同的子频率资源是否是绑定映射的。例如,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为绑定(bundling)映射的指示信息。图6B给出了一个频分绑定的单载波PDCCH资源示意图。接入网设备将一段连续的物理控制信道资源划分为4个子频域资源,即子频域资源1,子频域资源2,子频域资源3和子频域资源4。子频域资源1和子频域资源3可以绑定为1个物理控制信道资源块,子频域资源2和子频域资源4可以绑定为1个物理控制信道资源块。此时,子频域资源1和子频域资源3绑定的1个物理控制信道资源块可以作为CORESET中的1个物理控制信道资源块1分配给UE,子频域资源2和子频域资源4绑定的1个物理控制信道资源块2可以作为CORESET中的1个物理控制信道资源块分配给UE,物理控制信道资源块1和物理控制信道资源块2可以对应不同的CORESET,也可以属于同一CORESET,在此不做限定。例如,若当前需传输的控制信息为单端口传输,例如,接入网设备确定UE可以在port0接收控制信息,则可以为UE分配的CORESET中携带物理控制信道资源块1。接入网设备确定UE可以在port1接收控制信息,则可以为UE分配的CORESET中携带物理控制信道资源块2。当然,也可以为接入网设备在2个端口上传输控制信息,由终端设备确定在哪个端口上接收控制信息。此时,接入网设备可以将物理控制信道资源块1和物理控制信道资源块2都配置给UE。
当然,不同的物理控制信道资源块之间也可以进行绑定,提高配置资源的灵活性,绑定的方式可以包括,以下示例1-示例5的几种方式。
示例1,相同符号下,连续的物理控制信道资源块之间进行绑定。例如,如图6C所示,在1个符号下,可以绑定6个连续的物理控制信道资源块,或者,可以绑定2个连续的物理控制信道资源块。
示例2,不同符号间,连续的物理控制信道资源块进行绑定。例如,如图6C所示,在2个连续的符号下,可以在1个符号中绑定3个连续的物理控制信道资源块,进而组成6个连续的物理控制信道资源块的绑定。或者,在3个符号下,每个符号绑定2个连续的物理控制信道资源块,进而组成6个连续的物理控制信道资源块。还可以在2个连续的符号下,在每个符号中绑定1个物理控制信道资源块,进而组成2个连续的物理控制信道资源块的绑定。还可以在3个连续的符号下,在每个符号中绑定1个物理控制信道资源块,进而组成3个连续的物理控制信道资源块的绑定。
示例3,不同符号间,不连续的物理控制信道资源块进行绑定。
例如,在2个不连续的符号下,可以在每个符号中,绑定3个连续的物理控制信道资源块,进而组成6个不连续的物理控制信道资源块的绑定。或者,在2个连续的符号下,在每个符号中,绑定3个不连续的物理控制信道资源块,进而组成6个不连续的物理控制信道资源块的绑定。再比如,还可以在2个不连续的符号下,在每个符号中,绑定3个不连续的物理控制信道资源块,进而组成6个不连续的物理控制信道资源块的绑定。其他绑定不同个数的不同符号间,不连续的物理控制信道资源块的方式可以参见上述绑定方式,在此不再赘述。
示例4,物理控制信道资源块中的子频域资源之间进行绑定。
例如,物理控制信道资源块包括1个符号,包括3个子频域资源,例如,包括第一子频域资源、第二子频域资源和第三子频域资源,此时,可以将第一子频域资源和第二子频 域资源进行绑定,也可以将第二子频域资源和第三子频域资源进行绑定,绑定的方式在此仅为举例,还可以有其他任意组合的绑定方式。
示例5,不同物理控制信道资源块中的子频域资源之间进行绑定。
例如,在2个不连续的符号下,例如,包括第一符号和第二符号,在每个符号中,包括2个子频域资源,例如,包括第一子频域资源和第二子频域资源,此时,可以将每个符号中的第一子频域资源进行绑定,也可以将每个符号中的第二子频域资源进行绑定,或者,可以将第一符号中的第一子频域资源与第二符号中的第二子频域资源进行绑定。绑定的方式在此仅为举例,还可以有其他任意组合的绑定方式。
进一步的,对于所指示的同一组频域资源,也可以进行聚合。用以提高控制信道的传输可靠性。以接入网设备可以指示第一物理控制信道资源块与第二物理控制信道资源块间的频域资源进行聚合为例来说明频域资源聚合的方式。
第一物理控制信道资源块包括N个第一子频域资源;第二物理控制信道资源块包括K个第二子频域资源;第一物理控制信道资源块和第二物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;K1小于或等于K;N1小于或等于N。
例如,如图6D所示,第一物理控制信道资源块包括4个第一子频域资源,即第一子频域资源1,第一子频域资源2,第一子频域资源3,第一子频域资源4;第二物理控制信道资源块,包括2个第二子频域资源,即第二子频域资源1,第二子频域资源2;接入网设备可以根据需要,将第一子频域资源1与第二子频域资源1聚合,将第一子频域资源2与第二子频域资源2聚合。或者,第一子频域资源1与第二子频域资源2聚合。
第一指示信息还可以包括:CORESET对应的搜索空间信息;搜索空间信息可以包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息。
接入网设备可以通过CORESET对应的搜索空间,指示聚合的子频域资源,从而,接入网设备可以在聚合的子频域资源上发送控制信息,例如,将第一子频域资源1与第二子频域资源1聚合,此时,接入网设备可以在第一子频域资源1上发送控制信息1,接入网设备可以在第二子频域资源1上发送控制信息1,终端设备可以根据搜索空间的指示信息,确定第一子频域资源1与第二子频域资源1聚合,因此,终端设备可以在第一子频域资源1和第二子频域资源1上进行联合解码,提高控制信道的传输可靠性。需要说明的是,接入网设备在第一子频域资源1上发送的控制信息1,和在第二子频域资源1上发送的控制信息1,可以是相同的数据,可以是部分相同的数据,在此不做限定。
本申请实施例中,通过支持单载波,提升了下行信道的覆盖能力。通过支持单载波的频分,支持基站更加灵活的配置资源,并且在子频域资源的配置下,终端设备可以获得频域分集增益。在单载波下考虑频分,使UE即能获得一定频域分集增益,又能提供部分覆盖增强的性能,进而整体提高控制信息的收发性能。
第二部分:
在基于DFT-s-OFDM的波形生成中,通过特殊的数值映射和操作,可以将一个完整的时域符号划分为多个子时域资源。
一种可能的实现方式,如图7A所示,可以将待发送的数据分为两部分,中间***一定数量的0(如果***成多个子时域资源,则将待发送的数据分成多个部分,并且每个部 分中间插0)。将***一定数量的0后分成2个部分的数据进行串并转换后,输入到DFT模块(进行离散傅里叶变换),之后在映射到频域子带的子载波上,输入到IFFT模块(快速傅里叶逆变换),再加循环前缀,发送到空口。如图7B所示,最后生成的信号从时域上来看,可以看成是接入网设备在2个子时域资源上发送2个部分的数据。即,在子时域符号1上发送第一部分的数据,在子时域符号2上发送第二部分的数据。其中***0的数量,与***后的子时域资源符的间隔有关。意味着,可以根据***0的数量,确定子时域资源之间的保护间隔。进而,实现了将一个完整的时域符号划分为多个子时域资源。图7B中展示了两个符号,被***成了4个子时域资源(虚拟子符号)。图中CP是指原始长度符号上添加的循环前缀。进一步的,图7C所示,为减少子时域资源之间的符号间干扰(inter-symbol interference,ISI),还可以为子时域资源添加循环前缀,具体为子时域资源添加循环前缀的方式可以参考在时域符号添加循环前缀的方法,在此不再赘述。
另一种可能的实现方式,可以将待发送的数据分为多个部分,每个部分中间***特殊码字(unique word)的方法,将***特殊码字后分成多个部分的数据进行DFT-s-OFDM的调制,以实现将一个完整的时域符号划分为多个子时域资源。
上述示例仅为举例,本申请实施例中,并不限定将一个完整的时域符号划分为多个子时域资源的实现方式。
基于上述方案,接入网设备可以在单载波频域资源分配的基础上,考虑了时间维度的资源分配。
其中,接入网设备可以指示终端设备CORESET中的物理控制信道资源块可以包括以下情形一、情形二、情形三等几种方式。
情形一,接入网设备可以指示终端设备CORESET中的物理控制信道资源块,是否包括子时域资源。
示例1,可以通过CORESET信息中携带CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源。用于指示CORESET中的物理控制信道资源块中包括子时域资源。或者,指示信息包括:一个时域符号的时域资源为一个时域资源,用于指示CORESET中的物理控制信道资源块中的一个时域符号为完整的时域资源,没有进行子时域资源的划分。
示例2,接入网设备还可以通过其他CORESET的配置方式,指示CORESET中的物理控制信道资源块,是否包括子时域资源。
例如,基站通过半静态的配置,例如RRC中对CORESET和/或search space的配置方式,把具体的CORESET ID和/或search space ID对应的时域资源配置为包括子时域资源的资源。进而,终端设备可以根据CORESET ID和/或search space ID,确定是否需要在对应的时域资源上,采用包括子时域资源的方式对控制信息进行盲检。例如,CORESET ID#1和/或search space ID#1对应的时域资源包括子时域资源;CORESET ID#2和/或search space ID#2对应的时域资源不包括子时域资源。此时,若终端设备在CORESET ID#1对应的时域资源上接收控制信息,则终端设备可以采用包括子时域资源的方式对控制信息进行盲检。即通过盲检的方式,确定每个子时域资源上的信号,并对每个子时域资源上的信号进行解码。若终端设备在CORESET ID#1对应的时域资源上接收控制信息,则终端设备可以采用不包括子时域资源的方式对控制信息进行盲检。即通过盲检的方式,确定每个时域符号上的信号,并对每个时域符号上的信号进行解码。
示例3,接入网设备还可以通过半静态的配置,指示CORESET中的物理控制信道资源块,可能包括子时域资源。
此时,基站通过半静态的配置,例如RRC中对CORESET和/或search space的配置方式,把具体的CORESET ID和/或search space ID对应的时域资源配置为允许包括子时域资源的资源。进而,终端设备可以根据CORESET ID和/或search space ID,确定在对应的时域资源上,采用2种方式,采用包括子时域资源的方式和不包括子时域资源的方式对控制信息进行盲检。例如,可以先通过采用包括子时域资源的方式对控制信息进行盲检,若确定没有子时域资源,则再通过不包括子时域资源的方式对控制信息进行盲检。
示例4,接入网设备在发送控制信息时,还可以针对是否采用子时域资源的方式,通过DCI或者MAC CE的指示的方式,使得终端设备确定时域资源中是否包括子时域资源,以确定控制信息的盲检方式。
情形二,接入网设备还可以直接指示CORESET中的每个物理控制信道资源块的时域资源;例如,CORESET中包括2个物理控制信道资源块,物理控制信道资源块1和物理控制信道资源块2,其中,物理控制信道资源块1包括1个时域符号中的时域资源;物理控制信道资源块2包括1个时域符号中的部分或全部子时域资源。
其中,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个时域符号的时域资源。
例如,CORESET ID#1的时域资源包括2个时域符号,例如,时域符号1和时域符号2,时域符号1中可以划分为多个子时域资源;时域符号2可以为1个完整的时域符号。
CORESET ID#2的时域资源包括1个时域符号中的至少1个子时域资源。例如,时域符号3划分为4个子时域资源。CORESET ID#2的时域资源包括时域符号3中的至少2个子时域资源。
再比如,CORESET ID#2的时域资源包括多个时域符号中的至少1个子时域资源;例如,CORESET ID#2的时域资源包括时域符号1中的1个子时域资源和时域符号3中的1个子时域资源。
进一步的,时域资源上也可以对时域符号和子时域资源进行绑定,组成1个物理控制信道资源块。
例如,一个时域符号中的一个或多个子时域资源可以进行绑定,组成1个物理控制信道资源块。
或者,多个时域符号中的一个或多个子时域资源可以进行绑定,组成1个物理控制信道资源块。
再比如,一个或多个时域符号的时域资源可以进行绑定,组成1个物理控制信道资源块。
当然,还可以结合频域资源的绑定方式,对CORESET中的时频资源进行绑定。
相比现有技术中多载波的方案,单载波控制信道资源没有频带内更小的资源粒度,本申请实施例,针对单载波的控制信道资源的配置,配置时域资源进行绑定的方案允许接入网设备在不同子符号上映射不同的资源/信号,充分利用时域/空域分集增益,进而有效提升PDCCH的覆盖能力。
针对单载波上的参考信号的图案,在时域方向上,可以承载于子时域资源中,用于接收端进行信道估计和解调。也可以承载于时域资源中,于接收端进行信道估计和解调。子 时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
示例1,参考信号序列可以完整占用一个子时域符号,也可以完整占用一个时域符号。
此时,参考信号序列占用的子时域资源或1个完整的时域符号可以与物理控制信道资源块相邻,以便终端设备根据参考信号对信道估计,以解调物理控制信道资源块上的控制信息。
示例2,参考信号序列可以部分占用1个子时域符号,剩余部分可以用于承载物理控制信道资源块,也可以部分占用一个时域符号,剩余部分可以用于承载物理控制信道资源块;如图7D所示,时域符号1中包括子时域资源1和子时域资源2,时域符号2中包括子时域资源3和子时域资源4,时域符号3为完整的时域符号。需要说明的是,参考信号序列的图案可以根据信道条件配置,例如,若信道波动性较强,可以在每个子时域资源或时域符号上设置参考信号序列。若信道条件较好,可以间隔设置参考信号序列,以减少参考信号序列对时域资源的占用。
此时,子时域符号中的参考信号可以用于子时域符号中的物理控制信道资源块的解调,也可以用于相邻子时域符号的物理控制信道资源块的解调。时域符号中的参考信号可以用于时域符号中的物理控制信道资源块的解调,也可以用于相邻时域符号的物理控制信道资源块的解调。
进一步的,为提高控制信道传输的可靠性,以及增加UE检测控制信道资源的数量,不同周期的时域资源,可以进行聚合。
一种可能的实现方式中,第一时域资源包括聚合的子时域资源或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者,聚合的时域资源之间属于不同周期的搜索空间。
示例1,不同周期可以为不同搜索空间对应的周期,例如,子时域资源1位于CORESET ID#1对应的搜索空间ss#1的第一周期中,子时域资源2位于CORESET ID#1对应的搜索空间ss#2的第二周期中,子时域资源1和子时域资源2可以为聚合的子时域资源,进而,接入网设备在根据CORESET ID#1发送控制信息时,可以在子时域资源1上发送控制信息的第一数据,可以在子时域资源2上发送控制信息的第二数据的信号,终端设备在通过CORESET ID#1接收控制信息时,可以根据搜索空间ss#1,在第一周期上,确定子时域资源1,并在子时域资源1上获得控制信息的第一数据的信号;根据搜索空间ss#2,在第二周期上,确定子时域资源2,并在子时域资源2上获得控制信息的第二数据的信号,终端设备同时对第一数据的信号和第二数据的信号进行解码,以获得相比单独解码更可靠的数据。需要说明的是,第一数据和第二数据可以为相同的数据,也可以是部分相同的数据,在此不做限定。例如,第一数据为新传的控制信息,第二数据为重传的控制信息,或者,冗余版本的控制信息。
示例2,不同周期可以为同一搜索空间中的不同周期。例如,子时域资源1位于CORESET ID#1对应的搜索空间ss#1的第一周期中,子时域资源3位于CORESET ID#1对应的搜索空间ss#1的第二周期中,子时域资源1和子时域资源3可以为聚合的子时域资源,进而,接入网设备在根据CORESET ID#1发送控制信息时,可以在子时域资源1上发送控制信息的第一数据,可以在子时域资源3上发送控制信息的第二数据的信号,终端设备在通过CORESET ID#1接收控制信息时,可以根据搜索空间ss#1,在第一周期上,确定 子时域资源1,并在子时域资源1上获得控制信息的第一数据的信号;根据搜索空间ss#1,在第二周期上,确定子时域资源3,并在子时域资源3上获得控制信息的第二数据的信号,终端设备同时对第一数据的信号和第二数据的信号进行解码,以获得相比单独解码更可靠的数据。如图7E所示,两个不同周期内的子时域资源的物理控制信道资源块进行了聚合。
基于相同的构思,不同周期间的时域符号也可以进行聚合,或者不同周期间的时域符号与子时域资源可以进行聚合。具体实施过程可以参考上述实施方式,在此不再赘述。
情形三,接入网设备还可以为终端设备分配CORESET的时域资源集,该CORESET的时域资源集用于接入网设备在发送控制信息前,指示一个确定的CORESET的时域资源,并在该CORESET的时域资源上发送控制信息。进而终端设备可以预先接收接入网设备为终端设备分配CORESET的时域资源集,在每次接收控制信息之前,通过接入网设备的进一步的指示信息,确定控制信息所采用的时域资源,进而根据动态指示的时域资源接收控制信息。以实现对终端设备的CORESET的时域资源的灵活配置。
其中,CORESET的时域资源集可以通过第一指示信息指示,也可以为接入网设备为终端设备预配置的,CORESET的时域资源集可以为多个终端设备共用的,也可以为为每个终端设备单独设置的,在此不做限定。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源;多个时域符号中的一个或多个子时域资源;一个或多个时域符号的时域资源。进一步的,接入网设备向终端设备发送第二指示信息;第二指示信息用于指示时域资源集中的第二时域资源;第二时域资源为为终端设备分配的CORESET的时域资源。
情形1,接入网设备为多个终端设备(例如,1个小区的多个终端设备)配置一个CORESET的时域资源集,CORESET的时域资源集中可以包括多个时域资源,以避免接入网设备配置时域资源的复杂度,也可以减少小区间的时域资源的冲突的可能。在为终端设备发送控制信息时,接入网设备进一步指示终端设备的时域资源,例如,接入网设备可以将CORESET的时域资源标识发送给终端设备,以指示终端设备在CORESET的时域资源标识对应的时域资源上接收控制信息。
情形2,接入网设备为1个终端设备配置1个CORESET的时域资源集,接入网设备在向终端设备发送控制信息时,可以在CORESET的时域资源集中的一个或多个时域资源上发送控制信息,终端设备可以对CORESET的时域资源集上的所有时域资源进行盲检,以获取接入网设备在CORESET的时域资源集中的一个或多个时域资源上发送的控制信息。以便在接入网设备无法发送第二指示信息,或终端设备接收不到第二指示信息时,接收到接入网设备发送的控制信息。
情形3,接入网设备为1个终端设备配置1个CORESET的时域资源集,时域资源集中的时域资源包括:时域符号中有子时域资源1和子时域资源2的部分时域符号,完整的时域符号2,时域符号3中划分有子时域资源1-子时域资源3。其中,时域符号3中划分有子时域资源1-子时域资源3,可以设置为可能划分为子时域资源1-子时域资源3,也可以设置为完整的时域符号3。在接入网设备发送控制信息时,接入网设备可以根据接入网设备、信道条件、终端设备的能力即控制信息所占用的资源,确定是否要在时域符号3中划分有子时域资源1-子时域资源3中的一个或多个子时域资源上发送控制信息。例如,在第一时刻,接入网设备确定时域符号3作为完整的时域符号发送控制信息1,则接入网设 备可以在时域符号3上发送控制信息1,并指示终端设备在时域符号3上接收控制信息1,且时域符号3承载的物理控制信息资源块不包括子时域资源单独承载物理控制信息资源块。进而,终端设备在时域符号3承载的物理控制信息资源块上接收控制信息1。在第二时刻,接入网设备确定在时域符号3上的子时域资源1和子时域资源2上发送控制信息2,则接入网设备可以在时域符号3的子时域资源1和子时域资源2上发送控制信息2,并指示终端设备在时域符号3的子时域资源1和子时域资源2上接收控制信息2。进而,终端设备在时域符号3的子时域资源1承载的物理控制信息资源块和子时域资源2承载的物理控制信息资源块上接收控制信息2。
由于单载波为了保证覆盖增益,频域资源的分配的灵活性较差,因此,本申请实施例中,对单载波的时域资源进行划分,提高可用于聚合或绑定的时域资源,以提高***资源的利用率,提高资源分配的灵活性,减少***开销负担。
第三部分:
现有技术中,UE针对1个CORESET只能对应1个激活的TCI状态,即1个CORESET激活的TCI状态指示的端口(port)固定不变,1个CORESET激活的TCI状态指示的端口与激活的TCI状态指示的DMRS端口绑定,进而,终端设备只能在激活的TCI状态指示的DMRS端口上获得DMRS的波束方向,并且根据QCL关系,终端设备只能根据DMRS的波束方向接收CORESET承载的控制信息。若终端设备可以接收多个端口的控制信息,上述方式,无法在多个端口上接收CORESET承载的控制信息,无法获得额外空间分集,UE正确检出物理控制信道的概率不高。
基于上述问题,本申请实施例中,接入网设备还可以为CORESET关联多个TCI状态。例如,接入网设备为第一CORESET关联P个TCI状态。具体的,接入网设备可以通过第一指示信息,为第一CORESET关联P个TCI状态。第一指示信息可以为MAC CE信令或者其他信令,如RRC信令或DCI信令,本申请实施例并不限定。为了避免赘述,本申请统一采用“指示”,但应理解,“指示”也可以替换为“激活”。
即第一指示信息还包括:向终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个。进而,接入网设备可以在P1个第一TCI标识对应的P1个端口上向终端设备发送控制信息,所述第一TCI标识与所述端口具有一一对应关系;P1小于或等于P,P1为正整数。其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在QCL关系。即,终端设备可以根据TCI标识,确定TCI指示的参考信号对应的端口及参考信号的波束方向,进而,根据QCL关系,终端设备可以在参考信号对应的端口及参考信号的波束方向上,接收TCI状态关联的CORESET上传输的物理控制信道资源块上的控制信息。
示例1,TCI标识用于指示CORESET关联的端口。例如,接入网设备为CORESET ID#1关联2个TCI状态,其中,TCI ID#1用于指示CORESET ID#1关联的端口0(port0),TCI ID#2用于指示CORESET ID#1关联的端口1(port1)。进而,接入网设备可以在CORESET ID#1关联的端口0和CORESET ID#1关联的端口1上发送控制信息,以使终端设备根据CORESET ID#1关联2个TCI状态,确定TCI ID#1用于指示CORESET ID#1关联的端口0,和TCI ID#2用于指示CORESET ID#1关联的端口1,进而,在端口0和端口1上接收接入网设备发送的控制信息。以获得相比单端口接收更多的分集,提高终端设备接收控制 信息的性能。
示例2,TCI标识还可以用于指示CORESET关联的参考信号的波束方向。例如,接入网设备为CORESET ID#1关联2个TCI状态,其中,TCI ID#1用于指示CORESET ID#1关联的波束方向0,TCI ID#2用于指示CORESET ID#1关联的波束方向1。进而,接入网设备可以在CORESET ID#1关联的波束方向0和CORESET ID#1关联的波束方向1上发送控制信息,以使终端设备根据CORESET ID#1关联2个TCI状态,确定TCI ID#1用于指示CORESET ID#1关联的波束方向0,和TCI ID#2用于指示CORESET ID#1关联的波束方向1,进而,在波束方向0和波束方向1上接收接入网设备发送的控制信息。以获得相比单端口接收更多的分集,提高终端设备接收控制信息的性能。
进一步的,每个TCI状态对应的端口或波束方向的配置方式可以显式指示,也可以隐式指示。
例如,接入网设备也可以通过对现有指示信息中包括的某个指示域进行复用,即,复用后的指示域,可以用于指示该指示域原本所指示的内容,用于指示CORESET关联的TCI状态对应的端口。第一指示信息中可以包括指示域“TCI状态”,用于指示CORESET关联的TCI状态对应的波束方向,接入网设备可以复用该指示域“TCI状态”,令该指示域可以用于指示CORESET关联的TCI状态对应的波束方向。例如,若该指示域“TCI状态”包括2个比特,包括4个不同的取值,每个取值的含义可以如表1所示。
表4
TCI状态指示域的取值 含义
00 默认波束,端口0
01 波束方向1,端口1
10 波束方向2,端口2
11 波束方向3,端口3
在表4中,“默认波束”可以表示通过默认波束发送PDCCH。由于TCI状态指示域的比特数量不变,用于指示发送PDCCH的波束的取值减少,接入网设备可以减少发送PDCCH的波束集合中包含的波束数量。或者,还可以增加TCI状态指示域的比特数量,例如,增加至4个比特,则可包括16个不同的取值,实现可以从更多数量的波束中选取发送PDDCH的波束。应当理解,上述表4仅为举例,默认波束是否存在、用于指示发送PDCCH的波束的数量,都可以根据需求进行调整,本申请实施例对此不做限制。
进一步的,终端设备还可以根据第一指示信息中指示的TCI状态,确定TCI状态关联的CORESET的时频资源是否包括子时域资源或子频域资源。
例如,若确定第一CORESET包括多个TCI状态,即第一CORESET关联到了大于1个DMRS天线端口,且第一CORESET对应的时域资源中,仅包括一个时域符号,则可以确定该时域符号中包括子时域资源。
再比如,若确定第一CORESET包括多个TCI状态,即第一CORESET关联到了大于1个DMRS天线端口,且第一CORESET对应的频域资源中不存在聚合的频域资源,则可以确定该第一CORESET对应的频域资源中包括子频域资源。
图8A给出了一种可能的MAC层信令格式的示意图,包括服务小区标识、CORESET ID,和CORESET ID包括的2个TCI状态ID。其中CORESET包含两个TCI状态ID,用于指 示UE接收PDCCH的天线端口,如上,也可以用于指示传输模式(是否包括子时域资源或子频域资源)。一种可能的实现方式中,可以根据信令指示中TCI状态ID的排序,确定发送的优先级。例如排在前面的TCI状态ID对应的端口,在时频资源中先发送,以使终端设备根据优先级在对应的端口上接收控制信息。
需要说明的是,接入网设备可以通过RRC或MAC CE信令配置多个TCI状态,进一步的,接入网设备可以为UE配置激活的TCI状态指示(TCI State Indication for UE-specific PDCCH),这个激活TCI状态指示包含两个或多个TCI state ID,用于标识接入网设备为UE激活多个TCI状态。第一指示信息中指示激活的TCI状态的指示方式,可以参考上述频域资源的指示方式,也可以参考时域资源的指示方式。具体通过RRC或MAC CE信令配置多个TCI状态的方法可以参考现有技术中的描述,在此不再赘述。
在该实现方式中,可能存在多种具体的CORESET关联多个TCI状态的指示方法。
方法一:通过TCI-state的索引来表示激活的TCI-state。
在方法一中,接入网设备发送的第一指示信息中可以包括Q个TCI-state索引列表,Q个TCI-state索引列表中的每个TCI-state索引列表可以包括一个或多个TCI-state的索引。Q个TCI-state索引列表可以由单个第一指示信息携带,也可以通过Q个第一指示信息分别携带。
方法二:通过映射图案(bitmap)来表示激活的TCI-state。
方法二中,接入网设备发送的第一指示信息中可以包括Q个比特位图,Q个比特位图中的每个比特位图用于指示Q个TCI-state列表中的一个TCI-state列表中所包括的TCI-state。举例来说,每个比特位图中的每个比特对应一个TCI-state,比特值为1表示激活该TCI-state,比特值为0表示不激活该TCI-state,所有比特值为1的TCI-state组成了对应的TCI-state列表。或者反过来,比特值为0表示激活该TCI-state,比特值为1表示不激活该TCI-state,所有比特值为0的TCI-state组成了对应的TCI-state列表。上述Q个比特位图可以由单个第一指示信息携带,也可以通过Q个第一指示信息分别携带。
具体采用上述两个方法中的哪一种,可以通过RRC信令进行指示,或由终端设备上报给接入网设备。不论方法一还是方法二,接入网设备都是通过第一指示信息指示Q个TCI-state列表,通过Q个TCI-state列表中的TCI-state按照预设顺序配对,组成P个TCI-state组。需要说明的是,Q个TCI-state列表可以通过一个第一指示信息进行指示,也可以通过多个第一指示信息进行指示,本申请实施例对此并不限定,例如通过Q个第一指示信息进行指示,每个第一指示信息指示一个TCI-state列表。不失一般性,本申请实施例中所描述的配对,是从多个TCI-state列表中各取一个TCI-state,组成一个TCI-state组,这一个TCI-state组可以映射到一个TCI字段值。配对也可以表述为对应,映射等,本申请实施例不作限定。
激活的一个TCI-state组内的至少一个TCI-state是用于多波束或者多TRP联合传输的,即每个波束或者TRP分别采用其中一个TCI-state向终端设备传输PDCCH。其中,任意两个波束或者TRP可以同时传输,也可以分时传输。如果是同时传输,则上述两个TCI-state必须满足同收要求,即这两个TCI-state是能被终端设备同时接收的。即这两个TCI-state中的typeD类型的QCL-info中包括的参考信号资源是能被终端设备同时接收的。例如,这两个TCI-state中的typeD类型的QCL-info中包括的参考信号资源,必须是终端设备之前上报给接入网设备的两个能被其同时接收的资源。或者,这两个TCI-state中的typeD类型 的QCL-info中包括的两个参考信号资源,与终端设备之前上报给接入网设备的两个能被其同时接收的资源分别满足typeD类型的QCL关系。
上述方法中同一个TCI-state组中包括的多个TCI-state必须满足同收要求,或者同一个TCI字段值对应的TCI-state组中包括的多个TCI-state必须满足同收要求。或者,在特定传输模式下,同一个TCI字段值对应的TCI-state组中包括的多个TCI-state需要满足同收要求。例如,两个TRP是采用两个TCI-state进行同时传输的时候,采用的TCI字段值对应的两个TCI-state需要满足同收要求,或者激活的每个TCI-state组对应的两个TCI-state都需要满足同收要求,或者每个TCI字段值对应的两个TCI-state都需要满足同收要求。其中,传输模式可以通过RRC信令进行配置。如果通过RRC信令配置的传输模式中,两个TRP采用两个TCI-state同时向终端设备传输数据,则在进行TCI-state的激活时,同一TCI-state组对应的两个TCI-state需要满足同收要求。如果通过RRC信令配置的传输模式中,两个TRP采用两个TCI-state分时向终端设备传输数据,则在进行TCI-state的激活时,同一TCI-state组对应的两个TCI-state不需要满足同收要求。例如,如果传输模式参数,如URLLSchemeEnabler指示的传输模式为包括子时域资源(类似TDM)时,则不要求DCI指示的TCI-state组中的TCI-state是能被终端设备同时接收的。如果传输模式参数,如URLLSchemeEnabler指示的传输模式包括子频域资源,(类似FDM)时,则要求DCI指示的TCI-state组中的TCI-state是能被终端设备同时接收的。
或者,可以限定各TCI字段值对应的各个TCI-state组中,至少包括一个TCI-state组,其对应的多个TCI-state是能被终端设备同时接收的。或者,可以限定各TCI字段值对应的各个TCI-state组中,所有TCI-state组对应的多个TCI-state是能被终端设备同时接收的。
或者,可以限定各TCI字段值对应的各个TCI-state组中,至少包括一个TCI-state组,其对应的多个TCI-state是能被终端设备同时接收的,且至少包括一个TCI-state组,其对应的多个TCI-state是不需要被终端设备同时接收的。
另一方面,当两个TRP采用两个TCI-state发送PDCCH时,如果两个TCI-state对应的PDCCH在时间上是重叠的,那么这两个TCI-state必须是满足同收要求的。具体的,如果终端设备可以同时接收一个波束,例如终端设备上报一个天线面板,或能同时开启一个天线面板等,需要采用以下约束方法。具体采用哪一种方法,可以通过RRC信令进行指示,或由终端设备上报给接入网设备。
接入网设备单独为每个波束或者TRP激活多个用于PDSCH或下行数据传输的TCI-state时,接入网设备可以向终端设备发送多个激活信令,每个激活信令用于激活一个波束或者TRP的PDCCH传输的K个TCI-state。例如,对于TRP1,接入网设备发送激活信令,激活8个TCI-state。上述方法用于也可以为各个TRP分别激活多个TCI-state。例如,当有两个TRP时,通过两个激活信令分别即为每个TRP激活K个TCI-state,这K个TCI-state与该TRP的DCI中TCI字段的K个值关联。应理解,本申请实施例中的激活信令可以是MAC CE信令,也可以是其他信令。
进一步的,接入网设备还可以采用第三指示信息指示至少两个TCI-state可以同时传输,也可以分时传输。举例来说,一种可能的实现方式中,分时传输方式是在同一时隙的不同符号上,分别采用多个TCI-state来传输同一数据的一个或多个冗余版本(redundant version,RV),例如传输模式TDMSchemeA。以两个TCI-state为例进行说明。两个TCI-state传输的数据可以是同一数据的相同或不同的冗余版本,可以提高数据传输的可靠性。上述分时 传输方式可以是接入网设备配置的,即接入网设备通过RRC信令向终端设备配置这种传输方式。
下面具体举例说明CORESET关联多个TCI状态的空域分集方法。
如图8B所示,第一CORESET的时频资源包括2个时域符号。时域符号1包括2个子时域资源,子时域资源1中包括DMRS1和物理控制信道资源块1,子时域资源2中包括DMRS2和物理控制信道资源块2。时域符号2包括2个子时域资源,子时域资源3中包括DMRS3和物理控制信道资源块3,子时域资源4中包括DMRS4和物理控制信道资源块4。第一CORESET关联2个TCI状态。对应终端设备来说,可以认为每个TCI状态对应发送的控制信息对应一种参考信号的解调方式,终端设备需要根据每个TCI状态对应的参考信号,对应解调相关的物理控制信道资源块上的控制信息。
举例来说,子时域资源1和子时域资源3关联TCI ID#1,子时域资源2和子时域资源4关联TCI ID#2。子时域资源1中的DMRS1和子时域资源3中的DMRS3关联端口0和波束方向0。进而,根据QCL关系,子时域资源1中的物理控制信道资源块1和子时域资源3中的物理控制信道资源块3关联端口0和波束方向0。子时域资源2中的DMRS2和子时域资源4中的DMRS4关联端口1和波束方向1。进而,根据QCL关系,子时域资源2中的物理控制信道资源块2和子时域资源4中的物理控制信道资源块4关联端口1和波束方向1。
因此,接入网设备可以通过端口0,在子时域资源1和子时域资源3上发送控制信息,也可以同时通过端口1,在子时域资源2和子时域资源4上发送控制信息。进而,终端设备可以通过第一CORESET关联的TCI ID#1,确定通过端口0,在子时域资源1和子时域资源3上接收接入网设备发送的控制信息,终端设备可以通过第一CORESET关联的TCI ID#2,确定通过端口1,在子时域资源2和子时域资源4上接收接入网设备发送的控制信息。
如图8C所示,第一CORESET的频域资源包括4个子频域资源。子频域资源1,子频域资源2,子频域资源3,子频域资源4,子频域资源1中用于承载物理控制信道资源块1,物理控制信道资源块1对应的参考信号序列可以为同频段相邻时域上的参考信号序列;子频域资源2中用于承载物理控制信道资源块2,物理控制信道资源块2对应的参考信号序列可以为同频段相邻时域上的参考信号序列;子频域资源3中用于承载物理控制信道资源块3,物理控制信道资源块3对应的参考信号序列可以为同频段相邻时域上的参考信号序列;子频域资源4中用于承载物理控制信道资源块4,物理控制信道资源块4对应的参考信号序列可以为同频段相邻时域上的参考信号序列。第一CORESET关联2个TCI状态。举例来说,子频域资源1和子频域资源3关联TCI ID#1,子频域资源2和子频域资源4关联TCI ID#2。子频域资源1对应的参考信号序列和子频域资源3中的参考信号序列关联端口0和波束方向0。进而,根据QCL关系,子频域资源1中的物理控制信道资源块1和子频域资源3中的物理控制信道资源块3关联端口0和波束方向0。子频域资源2中的参考信号序列和子频域资源4中的参考信号序列关联端口1和波束方向1。进而,根据QCL关系,子频域资源2中的物理控制信道资源块2和子频域资源4中的物理控制信道资源块4关联端口1和波束方向1。
因此,接入网设备可以通过端口0,在子频域资源1和子频域资源3上发送控制信息,也可以同时通过端口1,在子频域资源2和子频域资源4上发送控制信息。进而,终端设 备可以通过第一CORESET关联的TCI ID#1,确定通过端口0,在子频域资源1和子频域资源3上接收接入网设备发送的控制信息,终端设备可以通过第一CORESET关联的TCI ID#2,确定通过端口1,在子频域资源2和子频域资源4上接收接入网设备发送的控制信息。
现有技术只支持单端口的控制信息传输。在单载波波形下,由于频域分集增益变小,所以实现方式并引入空域维度分集,多个端口控制信道发送,可以为UE带来额外的空域分集增益,弥补频域分集增益损失,保证PDCCH的覆盖性能。
综上,本申请实施例中,通过实现方式多种提升分集增益的方法,提升了单载波控制信道的覆盖性能,提升可分配资源的总数,通过设置子频域资源和/或子时域资源,和多TCI状态,都可以提升利用***的资源的利用率,可以用于调度更多的终端设备,进而提高***的整体性能。
基于与上述控制信息的发送方法相同的发明构思,本申请实施例还提供一种通信装置900,如图9所示,通信装置900中包含处理单元901和收发单元902,通信装置900(以下简称装置900)可用于实现上述实施例中由接入网设备所执行的方法。装置900可以为接入网设备,也可以位于接入网设备内,或为发端设备。
需要说明的是,上述装置900可以是接入网设备,也可以是应用于接入网设备中的芯片或者其他具有上述接入网设备功能的组合器件、部件等。当装置900是接入网设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置900是具有上述接入网设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置900是芯片***时,收发单元902可以是芯片***的输入输出接口、处理模块可以是芯片***的处理器。
在一个实施例中,装置900可以用于执行上述方法实施例中由接入网设备所执行的步骤,或执行由发端设备所执行的步骤。
具体的,处理单元901,用于对至少一个CORESET进行变换预编码后,通过收发单元在至少一个CORESET上向终端设备发送控制信息。
收发单元902,用于向终端设备发送第一指示信息;第一指示信息用于指示为终端设备分配的至少一个CORESET是否进行变换预编码。
一种可能的实现方式,第一指示信息还包括:至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
一种可能的实现方式,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
一种可能的实现方式,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
一种可能的实现方式,第一指示信息还包括:CORESET对应的搜索空间信息;第二物理控制信道资源块包括K个第二子频域资源;第二物理控制信道资源块为CORESET包括 的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;K1小于或等于K;N1小于或等于N;搜索空间信息包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息。
一种可能的实现方式,CORESET信息包括:CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源。
一种可能的实现方式,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个时域符号的时域资源。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个或多个时域符号的时域资源。
一种可能的实现方式,收发单元902,用于向终端设备发送第二指示信息;第二指示信息用于指示时域资源集中的第二时域资源;第二时域资源为为终端设备分配的CORESET的时域资源。
一种可能的实现方式,子时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;或者,时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
一种可能的实现方式,第一时域资源包括聚合的子时域资源或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间,或聚合的时域资源之间属于不同周期的搜索空间。
一种可能的实现方式,第一指示信息还包括:向终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个;TCI标识用于指示CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
一种可能的实现方式,收发单元902,还用于在P1个第一TCI标识对应的P1个端口上向终端设备发送控制信息,所述第一TCI标识与所述端口具有一一对应关系;第一TCI标识为第一CORESET关联的P个TCI标识中的一个;P1小于或等于P,P1为正整数。
一种可能的实现方式,变换预编码是DFT-S-OFDM。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干计算机程序用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动 硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述控制信息的发送方法相同的构思,如图10所示,本申请实施例还提供一种通信装置1000。通信装置1000(以下简称装置1000)可用于实现上述方法实施例中由接入网设备所执行的方法,可以参见上述方法实施例中的说明,其中装置1000可以为接入网设备,或者可以位于接入网设备中,可以为发端设备。
装置1000包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置1000可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为收发器,射频芯片等。
装置1000包括一个或多个处理器1001,一个或多个处理器1001可实现上述所示的实施例中发端设备或接入网设备执行的方法。
可选的,处理器1001除了可以实现上述所示的实施例中的方法,还可以实现其他功能。可选的,一种实现方式中,处理器1001可以执行计算机程序,使得装置1000执行上述方法实施例中接入网设备所执行的控制信息的发送方法。该计算机程序可以全部或部分存储在处理器1001内,如计算机程序1003,也可以全部或部分存储在与处理器1001耦合的存储器1002中,如计算机程序1004,也可以通过计算机程序1003和1004共同使得装置1000执行上述方法实施例中接入网设备所执行的方法。
在又一种可能的实现方式中,通信装置1000也可以包括电路,该电路可以实现前述方法实施例中终端设备所执行的功能。
在又一种可能的实现方式中,装置1000中可以包括一个或多个存储器1002,其上存储有计算机程序1004,该计算机程序可在处理器上被运行,使得装置1000执行上述方法实施例中描述的控制信息的发送方法。可选的,存储器中还可以存储有数据。可选的,处理器中也可以存储计算机程序和/或数据。例如,上述一个或多个存储器1002可以存储上述实施例中所描述的关联或对应关系,或者上述实施例中所涉及的相关的参数或表格等。其中,处理器和存储器可以单独设置,也可以集成或耦合在一起。
在又一种可能的实现方式中,装置1000还可以包括收发单元1005。处理器1001可以称为处理单元,对装置(终端或者基站)进行控制。收发单元1005可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果装置1000为应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等,装置1000中可以包括收发单元1005。
在又一种可能的实现方式中,装置1000还可以包括收发单元1005以及天线1006。处理器1001可以称为处理单元,对装置(终端或者基站)进行控制。收发单元1005可以称为收发机、收发电路、或者收发器等,用于通过天线1006实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的计算机程序完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者 晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例公开的方法步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于发端设备或接入网设备的任一方法实施例所述的确定参考信号序列的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于发端设备或接入网设备的任一方法实施例所述的确定参考信号序列的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种处理装置,包括处理器和接口;处理器,用于执行上述应用于发端设备或接入网设备的任一方法实施例所述的确定参考信号序列的方法。
应理解,上述处理装置可以是一个芯片,处理器可以通过硬件实现也可以通过软件实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码实现,该存储器可以集 成在处理器中,也可以位于处理器之外,独立存在。
基于与上述控制信息的接收方法的相同发明构思,本申请实施例还提供一种通信装置,如图11所示,通信装置1100中包含处理单元1101和收发单元1102,通信装置1100(以下简称装置1100)可用于实现上述实施例中终端设备所执行的方法。装置1100可以为终端设备,也可以位于终端设备内,或为收端设备。
需要说明的是,上述装置1100可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述收端设备功能的组合器件、部件等。当装置是终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置1100是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置1100是芯片***时,收发单元1102可以是芯片***的输入输出接口、处理模块可以是芯片***的处理器。
在一个实施例中,装置1100用于执行上述方法实施例中终端设备所执行的步骤,或执行收端设备所执行的步骤。
收发单元1102,用于接收接入网设备发送的第一指示信息;第一指示信息用于指示为终端设备分配的至少一个CORESET是否进行变换预编码;处理单元1101,用于根据第一指示信息,在至少一个CORESET上通过进行变换预编码后,通过收发单元1102接收来自接入网设备的控制信息。
一种可能的实现方式,第一指示信息还包括:至少一个CORESET的CORESET信息;CORESET信息用于指示CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
一种可能的实现方式,CORESET信息包括:CORESET对应的至少一个物理控制信道资源块的频域范围;频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
一种可能的实现方式,第一物理控制信道资源块包括N个第一子频域资源;N个第一子频域资源分别用于变换预编码;第一物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
一种可能的实现方式,CORESET信息还包括:用于指示第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
一种可能的实现方式,第一指示信息还包括:CORESET对应的搜索空间信息;第二物理控制信道资源块包括K个第二子频域资源;第二物理控制信道资源块为CORESET包括的至少一个物理控制信道资源块中的一个;K个第二子频域资源中的K1个第二子频域资源与N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;其中,K1小于或等于K;N1小于或等于N;搜索空间信息包括:用于指示K1个第二子频域资源和N1个第一子频域资源为聚合的子频域资源的指示信息;
处理单元1101,用于根据搜索空间信息,在K1个第二子频域资源与N1个第一子频域资源上联合解码,以通过收发单元1102接收来自接入网设备的控制信息。
一种可能的实现方式,CORESET信息包括:CORESET的时域资源的指示信息;指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源;
处理单元1101,还用于通过多个子时域资源对应的搜索空间盲检来自接入网设备的控 制信息;和/或,通过1个时域符号的时域资源对应的搜索空间盲检来自接入网设备的控制信息。
一种可能的实现方式,CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源、或者一个时域符号的时域资源。
一种可能的实现方式,第一指示信息还用于指示CORESET的时域资源集;时域资源集包括至少一个时域资源;时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源、或者一个或多个时域符号的时域资源。
收发单元1102,用于在CORESET的时域资源集上接收来自接入网设备的控制信息。
一种可能的实现方式,收发单元1102,用于接收来自接入网设备的第二指示信息;第二指示信息用于指示时域资源集中的第一时域资源;第一时域资源为终端设备分配的CORESET的时域资源;处理单元1101,用于在第一时域资源上通过收发单元1102接收来自接入网设备的控制信息。
一种可能的实现方式,子时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;或者,时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
一种可能的实现方式,第一时域资源包括聚合的子时域资源和/或时域资源;其中,聚合的子时域资源之间属于不同周期的搜索空间;或者,聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者,聚合的时域资源之间属于不同的搜索空间;处理单元1101,用于根据第一时域资源对应的搜索空间信息,对聚合的子时域资源和/或时域资源联合解码,以通过收发单元1102接收来自接入网设备的控制信息。
一种可能的实现方式,第一指示信息还包括:向终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;第一CORESET为至少一个CORESET中的一个;TCI标识用于指示CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过端口在第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
一种可能的实现方式,处理单元1101,用于在P1个第一TCI标识对应的P1个端口上通过收发单元1102接收来自接入网设备发送的控制信息;第一TCI标识为第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
一种可能的实现方式,处理单元1101,用于根据第一CORESET关联的1个或多个TCI标识,确定第一CORESET是否存在1个时域符号上的子时域资源;若确定存在1个时域符号上的子时域资源,则在子时域资源上通过收发单元1102接收来自接入网设备的控制信息;若确定不存在1个时域符号上的子时域资源,则在时域符号上通过收发单元1102接收来自接入网设备的控制信息。
一种可能的实现方式,变换预编码是DFT-S-OFDM。
基于与上述控制信息的接收方法相同的构思,如图12所示,本申请还提供一种通信装置1200。装置1200可用于实现上述方法实施例中由终端设备所执行的方法,详细的可执行步骤可以参见上述方法实施例中的说明,其中所述装置1200可以位于终端设备或收端设备中,也可以为终端设备。
所述装置1200包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用 处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,终端或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置1200可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为收发器,射频芯片等。
所述装置1200包括一个或多个处理器1201,一个或多个处理器1201可以实现上述所示的实施例中由终端设备或收端设备执行的方法。
可选的,处理器1201除了可以实现上述所示的实施例中的方法,还可以实现其他功能。
可选的,一种可能的实现方式中,处理器1201可以执行计算机程序,使得装置1200执行上述方法实施例中终端设备所执行的控制信息的接收方法。该计算机程序可以全部或部分存储在处理器内,如计算机程序1203,也可以全部或部分存储在与处理器1201耦合的存储器1202中,如计算机程序1204,也可以通过计算机程序1203和1204共同使得装置1200执行上述方法实施例中描述的终端设备所执行的控制信息的接收方法。
在又一种可能的实现方式中,通信装置1200也可以包括电路,该电路可以实现前述方法实施例中终端设备所执行的功能。
在又一种可能的实现方式中,装置1200中可以包括一个或多个存储器1202,其上存有计算机程序1204,该计算机程序可在处理器上被运行,使得装置1200执行上述方法实施例中描述的控制信息的接收方法。可选的,存储器中还可以存储有数据。可选的,处理器中也可以存储计算机程序和/或数据。例如,上述一个或多个存储器1202可以存储上述实施例中所描述的关联或对应关系,或者上述实施例中所涉及的相关的参数或表格等。其中,处理器和存储器可以单独设置,也可以集成或耦合在一起。
在又一种可能的实现方式中,装置1200还可以包括收发单元1205。处理器1201可以称为处理单元,对装置(终端设备)进行控制。收发单元1205可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果所述装置1200为应用于终端设备中的芯片或者其他具有接入网设备终端设备功能的组合器件、部件等,所述装置1200中可以包括收发单元1205。
在又一种可能的实现方式中,所述装置1200还可以包括收发单元1205以及天线1206。所述处理器1201可以称为处理单元,对装置(终端设备)进行控制。所述收发单元1205可以称为收发机、收发电路、或者收发器等,用于通过天线1206实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的计算机程序完成。上述处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例公开的方法步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于终端设备或收端设备的任一方法实施例所述的控制信息的接收方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于终端设备或收端设备的任一方法实施例所述的控制信息的接收方法。
需要指出的是,“第一”、“第二”等词汇,例如,“第一指示信息、第二指示信息”等,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
上述实施例,可以全部或部分地通过软件、硬件、固件或者其任意组合实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种处理装置,包括处理器和接口;处理器,用于执行上述应用于终端设备或收端设备的任一方法实施例所描述的控制信息的接收方法。
应理解,上述处理装置可以是一个芯片,处理器可以通过硬件实现也可以通过软件实 现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码实现,该存储器可以集成在处理器中,也可以位于处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同的方法实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
根据本申请所提供的几个实施例,应该理解,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,单元的划分,仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案和目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可以用硬件实现,软件实现,或固件实现,或它们的组合方式实现。当使用软件实现时,可以将上述功能存储在计算机可读存储介质中或作为计算机可读存储介质上的一个或多个计算机程序或代码进行传输。计算机可读存储介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。计算机存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有计算机程序或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外,任何连接也可以适当的成为计算机可读存储介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(Disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常可以磁性的复制数据,而碟则可以使用激光来光学的复制数据。上面的组合也应当包括在计算机可读存储介质的保护范围之内。
总之,以上所述仅为本申请提供的技术方案中较佳的实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (37)

  1. 一种控制信息的发送方法,其特征在于,包括:
    接入网设备向终端设备发送第一指示信息;所述第一指示信息用于指示为所述终端设备分配的至少一个CORESET是否进行变换预编码;
    所述接入网设备对所述至少一个CORESET进行变换预编码后,在所述至少一个CORESET上向所述终端设备发送控制信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息还包括:至少一个CORESET的CORESET信息;所述CORESET信息用于指示所述CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
  3. 如权利要求2所述的方法,其特征在于,所述CORESET信息包括:所述CORESET对应的至少一个物理控制信道资源块的频域范围;所述频域范围包括以下至少一项:带宽范围、起始频点或者结束频点。
  4. 如权利要求3所述的方法,其特征在于,第一物理控制信道资源块包括N个第一子频域资源;所述N个第一子频域资源分别用于变换预编码;
    所述第一物理控制信道资源块为所述CORESET包括的至少一个物理控制信道资源块中的一个;
    所述CORESET信息还包括:用于指示所述第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
  5. 如权利要求4所述的方法,其特征在于,所述CORESET信息还包括:用于指示所述第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling)映射的指示信息。
  6. 如权利要求4所述的方法,其特征在于,所述第一指示信息还包括:所述CORESET对应的搜索空间信息;
    第二物理控制信道资源块包括K个第二子频域资源;所述第二物理控制信道资源块为所述CORESET包括的至少一个物理控制信道资源块中的一个;
    所述K个第二子频域资源中的K1个第二子频域资源与所述N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;其中,K1小于或等于K;N1小于或等于N;
    所述搜索空间信息包括:用于指示所述K1个第二子频域资源和所述N1个第一子频域资源为聚合的子频域资源的指示信息。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述CORESET信息包括:所述CORESET的时域资源的指示信息;所述指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源。
  8. 如权利要求7所述的方法,其特征在于,所述CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个时域符号的时域资源。
  9. 如权利要求2-6任一项所述的方法,其特征在于,所述第一指示信息还用于指示所述CORESET的时域资源集;所述时域资源集包括至少一个时域资源;所述时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个或多个时域符号的时域资源。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送第二指示信息;所述第二指示信息用于指示所述时域资源集中的第二时域资源;所述第二时域资源为所述终端设备分配的CORESET的时域资源。
  11. 如权利要求7-10任一项所述的方法,其特征在于,所述子时域资源用于承载以下至少一项:解调参考信号DMRS,物理控制信道资源块;或者,
    所述时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
  12. 如权利要求7-10任一项所述的方法,其特征在于,所述第一时域资源包括聚合的子时域资源或时域资源;其中,所述聚合的子时域资源之间属于不同周期的搜索空间;或者,所述聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者所述聚合的时域资源之间属于不同周期的搜索空间。
  13. 如权利要求2-12任一项所述的方法,其特征在于,所述第一指示信息还包括:向所述终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;所述第一CORESET为所述至少一个CORESET中的一个;所述TCI标识用于指示所述CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过所述端口在所述第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
  14. 如权利要求2-12任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备在P1个第一TCI标识对应的P1个端口上向所述终端设备发送所述控制信息;所述第一TCI标识为所述第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
  15. 如权利要求1-13任一项所述的方法,其特征在于,所述变换预编码是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
  16. 一种控制信息的接收方法,其特征在于,包括:
    终端设备接收接入网设备发送的第一指示信息;所述第一指示信息用于指示为所述终端设备分配的至少一个CORESET是否进行变换预编码;
    所述终端设备根据所述第一指示信息,在所述至少一个CORESET上通过进行变换预编码后,接收来自所述接入网设备的控制信息。
  17. 如权利要求16所述的方法,其特征在于,所述第一指示信息还包括:至少一个CORESET的CORESET信息;所述CORESET信息用于指示所述CORESET包括的至少一个物理控制信道资源块的时频资源配置信息。
  18. 如权利要求17所述的方法,其特征在于,所述CORESET信息包括:所述CORESET对应的至少一个物理控制信道资源块的频域范围;所述频域范围包括以下至少一项:带宽范围,起始频点,结束频点。
  19. 如权利要求18所述的方法,其特征在于,第一物理控制信道资源块包括N个第一子频域资源;所述N个第一子频域资源分别用于变换预编码;所述第一物理控制信道资源块为所述CORESET包括的至少一个物理控制信道资源块中的一个;
    所述CORESET信息还包括:用于指示所述第一物理控制信道资源块的N个第一子频域资源的指示信息;其中,N为正整数。
  20. 如权利要求19所述的方法,其特征在于,所述CORESET信息还包括:用于指示所述第一物理控制信道资源块的N个第一子频域资源是否为交织映射和/或绑定(bundling) 映射的指示信息。
  21. 如权利要求19所述的方法,其特征在于,所述第一指示信息还包括:所述CORESET对应的搜索空间信息;
    第二物理控制信道资源块包括K个第二子频域资源;所述第二物理控制信道资源块为所述CORESET包括的至少一个物理控制信道资源块中的一个;
    所述K个第二子频域资源中的K1个第二子频域资源与所述N个第一子频域资源中的N1个第一子频域资源为聚合的子频域资源;K1小于或等于K;N1小于或等于N;
    所述搜索空间信息包括:用于指示所述K1个第二子频域资源和所述N1个第一子频域资源为聚合的子频域资源的指示信息;
    所述终端设备根据所述第一指示信息,在所述至少一个CORESET上通过进行变换预编码后,接收来自所述接入网设备的控制信息,包括:
    所述终端设备根据所述搜索空间信息,在所述K1个第二子频域资源与所述N1个第一子频域资源上联合解码,以接收来自所述接入网设备的控制信息。
  22. 如权利要求17-21任一项所述的方法,其特征在于,所述CORESET信息包括:所述CORESET的时域资源的指示信息;所述指示信息包括:一个时域符号的时域资源包括多个子时域资源,或者,一个时域符号的时域资源为一个时域资源;
    所述终端设备根据所述第一指示信息,在所述至少一个CORESET上接收来自所述接入网设备的控制信息,包括:
    所述终端设备通过所述多个子时域资源对应的搜索空间盲检来自所述接入网设备的控制信息;和/或,
    所述终端设备通过所述1个时域符号的时域资源对应的搜索空间盲检来自所述接入网设备的控制信息。
  23. 如权利要求17-22任一项所述的方法,其特征在于,所述CORESET的时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个时域符号的时域资源。
  24. 如权利要求17-23任一项所述的方法,其特征在于,所述第一指示信息还用于指示所述CORESET的时域资源集;所述时域资源集包括至少一个时域资源;所述时域资源包括以下至少一项:一个时域符号中的一个或多个子时域资源、多个时域符号中的一个或多个子时域资源或者一个或多个时域符号的时域资源;
    所述终端设备根据所述第一指示信息,在所述至少一个CORESET上接收来自所述接入网设备的控制信息,包括:
    所述终端设备在所述CORESET的时域资源集上接收来自所述接入网设备的控制信息。
  25. 如权利要求24所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述接入网设备的第二指示信息;所述第二指示信息用于指示所述时域资源集中的第一时域资源;所述第一时域资源为所述终端设备分配的CORESET的时域资源;
    所述终端设备在所述第一时域资源上接收来自所述接入网设备的控制信息。
  26. 如权利要求22-25任一项所述的方法,其特征在于,所述子时域资源用于承载以下至少一项:DMRS,物理控制信道资源块;或者,
    所述时域符号的时域资源用于承载以下至少一项:DMRS,物理控制信道资源块。
  27. 如权利要求22-26任一项所述的方法,其特征在于,所述第一时域资源包括聚合的子时域资源和/或时域资源;其中,所述聚合的子时域资源之间属于不同周期的搜索空间;或者,所述聚合的子时域资源和时域资源之间属于不同周期的搜索空间;或者,所述聚合的时域资源之间属于不同的搜索空间;
    所述终端设备根据所述第一指示信息,在所述至少一个CORESET上通过进行变换预编码后,接收来自所述接入网设备的控制信息,包括:
    所述终端设备根据所述第一时域资源对应的搜索空间信息,对所述聚合的子时域资源和/或时域资源联合解码,以接收来自所述接入网设备的控制信息。
  28. 如权利要求17-27所述的方法,其特征在于,所述第一指示信息还包括:向所述终端设备发送的第一CORESET关联的P个TCI标识的指示信息,其中,P为正整数;所述第一CORESET为所述至少一个CORESET中的一个;所述TCI标识用于指示所述CORESET关联的端口;其中,TCI标识所指示的对应端口的参考信号与通过所述端口在所述第一CORESET上传输的物理控制信道资源块间存在准共址属性QCL。
  29. 如权利要求17-28任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在P1个第一TCI标识对应的P1个端口上接收来自所述接入网设备发送的所述控制信息;所述第一TCI标识为所述第一CORESET关联的P个TCI标识中的一个;其中,P1小于或等于P,P1为正整数。
  30. 如权利要求28-29任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一CORESET关联的1个或多个TCI标识,确定所述第一CORESET是否存在1个时域符号上的子时域资源;
    所述终端设备根据所述第一指示信息,在所述至少一个CORESET上接收来自所述接入网设备的控制信息,包括:
    所述终端设备若确定存在1个时域符号上的子时域资源,则在所述子时域资源上接收来自所述接入网设备的控制信息;
    所述终端设备若确定不存在1个时域符号上的子时域资源,则在所述时域符号上接收来自所述接入网设备的控制信息。
  31. 如权利要求16-30任一项所述的方法,其特征在于,所述变换预编码是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
  32. 一种通信装置,其特征在于,用于实现如权利要求1至15任一项所述的方法。
  33. 一种通信装置,其特征在于,用于实现如权利要求16至31任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至15任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求16至31任一项所述的方法。
  36. 一种芯片***,其特征在于,所述芯片***包括至少一个处理器和收发器,所述收发器和所述至少一个处理器通过线路互联,所述处理器通过运行计算机程序,以执行权利要求1到31任一项所述的方法。
  37. 一种通信***,其特征在于,包括用于执行如权利要求1至15任一项所述的方法的接入网设备、用于执行如权利要求16至31任一项所述的方法的终端设备。
PCT/CN2020/080747 2020-03-23 2020-03-23 一种控制信息的发送、接收方法及装置 WO2021189213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080747 WO2021189213A1 (zh) 2020-03-23 2020-03-23 一种控制信息的发送、接收方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080747 WO2021189213A1 (zh) 2020-03-23 2020-03-23 一种控制信息的发送、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2021189213A1 true WO2021189213A1 (zh) 2021-09-30

Family

ID=77890834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080747 WO2021189213A1 (zh) 2020-03-23 2020-03-23 一种控制信息的发送、接收方法及装置

Country Status (1)

Country Link
WO (1) WO2021189213A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131653A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Hybrid automatic repeat request (harq) process type configuration
CN114557012A (zh) * 2022-01-11 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
CN116545468A (zh) * 2023-07-07 2023-08-04 成都明夷电子科技有限公司 一种高速波束赋形芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842576A (zh) * 2017-10-01 2019-06-04 维沃移动通信有限公司 利用控制资源集的预编码粒度进行信道估计的方法和设备
WO2019109921A1 (en) * 2017-12-04 2019-06-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Multiple resource set configuration
WO2019159235A1 (ja) * 2018-02-13 2019-08-22 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110383723A (zh) * 2017-08-11 2019-10-25 Lg电子株式会社 在无线通信***中测量并报告信号的方法及其设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383723A (zh) * 2017-08-11 2019-10-25 Lg电子株式会社 在无线通信***中测量并报告信号的方法及其设备
CN109842576A (zh) * 2017-10-01 2019-06-04 维沃移动通信有限公司 利用控制资源集的预编码粒度进行信道估计的方法和设备
WO2019109921A1 (en) * 2017-12-04 2019-06-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Multiple resource set configuration
WO2019159235A1 (ja) * 2018-02-13 2019-08-22 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Corrections to 38.214, R1-1805208", TSG-RAN WG1 #92BIS, 20 April 2018 (2018-04-20), XP051414417 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131653A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Hybrid automatic repeat request (harq) process type configuration
CN114557012A (zh) * 2022-01-11 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
CN116545468A (zh) * 2023-07-07 2023-08-04 成都明夷电子科技有限公司 一种高速波束赋形芯片
CN116545468B (zh) * 2023-07-07 2023-09-08 成都明夷电子科技有限公司 一种高速波束赋形芯片

Similar Documents

Publication Publication Date Title
CN110166209B (zh) 下行控制信息传输方法
KR102586001B1 (ko) 무선 통신 시스템에서 우선 순위를 고려한 물리계층 채널 송수신 방법 및 장치
US20210298072A1 (en) Method and device for channel access in wireless communication system
US11109406B2 (en) Scheduling method and device in wireless communication system providing broadband service
CN111052666A (zh) 用于在无线通信***中传送和接收控制及数据信道的方法和装置
CN113519137A (zh) 用于多波束操作的方法和装置
US20210329647A1 (en) Method and apparatus for repeatedly transmitting control information in wireless communication system
WO2018210243A1 (zh) 一种通信方法和装置
WO2021189213A1 (zh) 一种控制信息的发送、接收方法及装置
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及***
CN113678536A (zh) 用于在无线通信***中发射/接收控制信息的方法和设备
TW201803384A (zh) 傳輸數據的方法及裝置
KR102288180B1 (ko) 데이터 전송 방법, 장치 및 통신 시스템
WO2021017949A1 (zh) 一种数据传输方法、装置及***
WO2021208673A1 (zh) 空间参数确定方法及装置
WO2020216314A1 (zh) 通信方法和通信装置
CN115804219A (zh) 使用聚合载波进行信号发送/接收的方法和装置
KR20210150286A (ko) 비-지상 네트워크에 대한 타이밍 어드밴스 지시 및 타이밍 관계 지시 방법
CN117769880A (zh) 无线通信***中发送交叠上行链路信道的方法和装置
WO2020261463A1 (ja) 端末
KR20230130624A (ko) 상향링크 제어 정보를 송신 및 수신하기 위한 방법
JP2023159100A (ja) 無線通信システムで基準信号の送受信方法及び装置
CN114503736A (zh) 用于在无线通信***中分配频率资源的方法和装置
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
CN113767684A (zh) 无线通信***中频域资源分配的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927137

Country of ref document: EP

Kind code of ref document: A1