WO2018058410A1 - 削波方法及装置 - Google Patents

削波方法及装置 Download PDF

Info

Publication number
WO2018058410A1
WO2018058410A1 PCT/CN2016/100741 CN2016100741W WO2018058410A1 WO 2018058410 A1 WO2018058410 A1 WO 2018058410A1 CN 2016100741 W CN2016100741 W CN 2016100741W WO 2018058410 A1 WO2018058410 A1 WO 2018058410A1
Authority
WO
WIPO (PCT)
Prior art keywords
input signal
cancellation noise
clipping
input signals
noise
Prior art date
Application number
PCT/CN2016/100741
Other languages
English (en)
French (fr)
Inventor
张烈
张彬彬
肖宇翔
李翔麟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100741 priority Critical patent/WO2018058410A1/zh
Publication of WO2018058410A1 publication Critical patent/WO2018058410A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a clipping method and apparatus.
  • Massive MIMO wireless communication technology is that dozens or even hundreds of antennas are arranged in the coverage area of the base station, and these antennas are concentrated in a large-scale array. Due to the large-scale antenna array, the number of transmitter transmission channels increases sharply, and the communication frequency continues to increase to reach the microwave communication frequency band, which causes the feedback channel implementation cost to be multiplied. In order to reduce the implementation cost of the transmitter, it is necessary to reduce the number of transmission channels, so the method of beamforming has become a research hotspot.
  • the multi-channel clipping algorithm can effectively reduce the peak-to-average ratio (PAR) of the signal and improve the efficiency of the PA.
  • PAR peak-to-average ratio
  • the PA needs to have a larger linear range, that is, the PA must amplify the signal with high PAR and transmit the amplified signal, which will inevitably be reduced.
  • the output power of the base station PA increases the pressure of the PA in efficiency. Therefore, in order to improve the effective output power of the PA and reduce the pressure of the PA on the efficiency of the improvement, the usual practice is to reduce the PAR of the signal, and in order to reduce the PAR of the signal, the usual practice is to perform CFR processing on the signal.
  • the error vector magnitude (Error Vector Magnitude (EVM) is optimized by adjusting the main lobe direction of the clipping noise signal and adjusting the clipping threshold by the baseband circuit.
  • the EVM is the main parameter for measuring the quality of the transmitted signal, and the influence of the signal PAR on the EVM is It is important that the direction of the main lobe of the clipping noise signal is different from the direction of the main lobe of the original signal, and the rotation of the main lobe direction of the clipping noise will bring about the phase change of each channel, so the clipping effect is poor, and the signal PAR is The degree of inhibition is low.
  • the embodiment of the invention provides a clipping method and device, which solves the problem of poor clipping capability in the related art, and the technical solution is as follows:
  • a clipping method for use in a transmitter, wherein the transmitter includes n transmit channels, n is an integer greater than or equal to 2, and the method includes: acquiring a joint cancellation according to the received m input signals Noise, 2 ⁇ m ⁇ n; each input signal is clipped according to joint cancellation noise.
  • each input signal is clipped, which solves the problem of poor clipping capability in the prior art, and achieves the effect of improving the clipping capability.
  • the joint cancellation noise is obtained according to the m input signal, including: calculating joint cancellation noise according to parameter information of each input signal; the parameter information includes data of each input signal, or input signal data and input.
  • the phase of the phase shifter corresponding to the signal is obtained according to the m input signal, including: calculating joint cancellation noise according to parameter information of each input signal; the parameter information includes data of each input signal, or input signal data and input.
  • the joint cancellation noise is calculated by using the following formula, including:
  • the joint cancellation noise is calculated by using the following formula, including:
  • the joint cancellation noise is calculated according to the parameter information of each input signal, which solves the problem of obtaining the inaccurate joint cancellation noise and improves the accuracy of calculating the joint cancellation noise.
  • the method before clipping each input signal according to the joint cancellation noise, the method further includes: For each input signal, a single stream cancellation noise is obtained according to the data of the input signal; wherein each input signal is clipped according to the joint cancellation noise, including: for each input signal, according to the joint cancellation noise and the input signal The corresponding single stream cancellation noise clips the input signal.
  • the cancellation noise is obtained according to the single-stream cancellation noise and the combined cancellation noise, and the effect of clipping is further improved.
  • the m input signals are divided into k groups, and at least one of the k groups includes at least two input signals; the joint cancellation noise is obtained according to the m input signals, including: for the group including at least two input signals Obtaining joint cancellation noise corresponding to at least two input signals according to at least two input signals in the group; and clipping each input signal in the m input signals according to the joint cancellation noise, including: The group of the two input signals clips each of the at least two input signals according to the joint cancellation noise corresponding to the group.
  • each input signal is clipped according to the joint cancellation noise corresponding to the group, thereby improving the clipping effect.
  • each input signal is clipped according to the joint cancellation noise, including: delaying each input signal according to a preset delay; and presetting the delayed input signal according to the joint cancellation noise delay Perform clipping.
  • Each input signal is delayed, so that each input signal after delay and the combined cancellation noise arrive at the clipping module for clipping, which improves the accuracy of clipping.
  • the method further includes: performing beamforming processing on the m-channel input signal after clipping according to the phase shifter; and combining the processed n-channel input signals into the antenna array channel.
  • the beamforming process is performed on the clipped input signal, and the processed multiple input signals are combined into the antenna array channel, which solves the problem that the combined signal PAR of the multi-channel input signal after clipping is less suppressed.
  • the problem is achieved by saving the system to realize the resources and the better suppression of the synthesized signal PAR of the multi-channel input signals after clipping.
  • a clipping device comprising: a transmitter that implements the clipping method provided by the first aspect above by executing an instruction.
  • a clipping device comprising at least one unit for implementing the clipping method provided by the first aspect above.
  • FIG. 1 is a schematic structural diagram of a base station according to an exemplary embodiment of the present invention.
  • FIG. 2A is a flowchart of a clipping method according to an exemplary embodiment of the present invention.
  • 2B is a diagram showing a clipping architecture of two input signals according to an exemplary embodiment of the present invention
  • FIG. 2C is a flowchart of a method specifically implemented by step 230 according to an exemplary embodiment of the present invention.
  • 2D is a structural diagram of two-channel clipping under a beamforming architecture according to an exemplary embodiment of the present invention
  • 2E is a flowchart of a clipping method according to another exemplary embodiment of the present invention.
  • FIG. 2F is a diagram showing a clipping architecture of two input signals according to another exemplary embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a clipping device according to an exemplary embodiment of the present invention.
  • a “module” as referred to herein refers to a program or instruction stored in a memory that is capable of implementing certain functions;
  • "unit” as referred to herein refers to a functional structure that is logically divided, the “unit” may be Pure hardware implementation, or a combination of hardware and software.
  • FIG. 1 is a schematic diagram showing a possible structure of a base station according to an embodiment of the present invention.
  • FIG. 1 shows a schematic structural diagram of a clipping device according to an exemplary embodiment of the present invention.
  • the clipping device can be implemented as all or part of a base station.
  • the base station includes a processor 120, a transmitter 140 coupled to the processor 120, and a receiver 160 coupled to the processor 120.
  • the base station structure shown in FIG. 1 does not constitute a limitation to a base station, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the base station further includes a memory 180, a power supply, and the like. among them:
  • the processor 120 is a control center of the base station, and connects various parts of the entire base station using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 180, and calling data stored in the memory 180, executing The base station's various functions and processing data provide overall control of the base station.
  • the processor 120 may include one or more processing cores; optionally, the processor The 120 can integrate an application processor and a modem processor, wherein the application processor primarily processes an operating system, a user interface, an application, etc., and the modem processor primarily processes wireless communications. It can be understood that the above-mentioned modem processor may not be integrated into the processor 120, and the above-mentioned modem processor may be implemented as a single chip.
  • Memory 180 is available for software programs as well as modules.
  • the processor 120 executes various functional applications and data processing by running software programs and modules stored in the memory 180.
  • the memory 180 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system 181, a receiving module 182, an obtaining module 183, a clipping module 184, and an application 185 required for at least one other function, and the like.
  • the processor 120 performs the clipping method on the base station side in the above embodiment by calling each module stored in the memory 180; the storage data area can store data (such as audio data, phone book, etc.) created according to the use of the base station.
  • memory 180 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • Transmitter 140 can include a radio frequency transmitting component, such as an antenna. Transmitter 140 is configured to carry data or information in a wireless signal for transmission.
  • the wireless signal can be a time-frequency resource in a mobile communication system.
  • the transmitter 140 in this embodiment may be a MIMO (multi-input multi-output) transmitter or an AAS (Active Antenna System).
  • Receiver 160 can include a radio frequency receiving component, such as an antenna. Receiver 160 is configured to receive data or information carried in a wireless signal.
  • the wireless signal can be a time-frequency resource in a mobile communication system.
  • the clipping method in the following embodiments can be used in the transmitter 140 shown in FIG.
  • This embodiment provides a clipping method applicable to a transmitter, where the transmitter includes n transmission channels for converting m input signals into transmission signals having a certain correlation, and n is an integer greater than or equal to 2.
  • a transmitted signal having a certain correlation may refer to an n-channel output signal formed by m-channel input signals subjected to clipping, beamforming, and multi-carrier combining.
  • FIG. 2A is a flowchart of a clipping method according to an exemplary embodiment, applied to a transmitter, where the transmitter includes n transmitting channels, and n is an integer greater than or equal to 2.
  • the method may include:
  • Step 210 receiving m input signals, 2 ⁇ m ⁇ n.
  • Step 220 Calculate joint cancellation noise according to parameter information of each input signal in the m input signal.
  • the parameter information includes data of the input signal, or data of the input signal and a phase of the phase shifter corresponding to the input signal, and each of the phase shifters corresponding to the current sampling moment of the input signal The number is n.
  • the step may include:
  • the step may include:
  • the transmitter includes a joint cancellation noise extraction module, where the module is used to perform step 220.
  • the joint cancellation noise extraction module calculates joint cancellation noise by the above calculation method.
  • Step 230 clipping each input signal in the m input signals according to the joint cancellation noise.
  • each input signal in the m input signals can be clipped according to the joint cancellation noise.
  • step 230 in combination with the prior art, each input signal of the m input signals may be clipped in a plurality of manners, and one of the embodiments is described as an example.
  • step 230 may include the following steps:
  • each input signal is delayed according to a preset delay.
  • Each input signal is clipped according to a preset delay to obtain each input signal for clipping.
  • the preset delay is the time required to acquire the joint cancellation noise, and the preset delay can be obtained by logic simulation. Since there is time consumption in the process of acquiring the joint cancellation noise, it is necessary to delay each input signal according to the preset delay obtained by the logic simulation, and the delay is obtained. Clip each input signal.
  • the delay value of delaying each input signal may be equal to the value of the preset delay, and each input signal for clipping is a signal obtained by delaying each input signal.
  • the time required to obtain the joint cancellation noise of the two input signals is 2s to illustrate.
  • two input signals are received, and the two input signals are respectively passed through two cache modules, and the buffer time of the cache module is preset to be 2s, and two input signals after delay of 2s are obtained.
  • step 230b the input signal after the delay is preset according to the joint cancellation noise is clipped.
  • each input signal after the delay can be clipped according to the obtained joint clipping noise, and each input signal after clipping is obtained.
  • each input signal after clipping can be obtained by the following formula:
  • CFR out_i (t) is the input signal after the i-th input signal is clipped
  • t is a sampling moment
  • CFR in_i (t) is obtained by delaying the i-th input signal according to the preset delay.
  • is the joint cancellation noise
  • the phase of the input signal CFR in_i (t) that is clipped after the delay is the same.
  • 2 are used as an example.
  • each input signal after clipping can be obtained by the following formula:
  • CFR out_i (k) is the input signal after the i-th input signal is clipped
  • k is the time sequence corresponding to a certain sampling point
  • CFR in_i (k) is the delay of the i-th input signal according to the preset delay.
  • is the joint cancellation noise,
  • the phase of the input signal CFR in_i (k) that is clipped after the delay is the same.
  • the value corresponding to the digital signal is 47839..., and the sampling points correspond to 4, 7, 8, 3, and 9, respectively.
  • Step 240 Perform beamforming processing on the m-channel input signal after clipping according to the phase shifter.
  • the m-channel input signal is subjected to independent clipping processing to obtain the clipped m-channel input signal, and the clipped m-channel input signal is beam-formed on the antenna side by the phase shifter.
  • the phase shifter can be an analog phase shifter or a digital phase shifter. Since the analog phase shifter continuously changes the value of the phase value, the analog phase shifter is used for the m input signal after clipping. The beamforming process is more accurate, so analog phase shifters are commonly used in this embodiment.
  • phase value of each phase shifter is a parameter required for performing beamforming processing according to the antenna tilt angle.
  • Step 250 Combine the processed n input signals into the antenna array channel.
  • the processed n input signals are combined into the antenna common plane channel through the combiner, wherein the number of processed input signals is equal to the number of phase shifters corresponding to each input signal after clipping .
  • the phase shifter is used to perform beamforming on the antenna side of the m input signal after clipping, and if the number of phase shifters corresponding to each input signal after clipping is n, the beam passes through
  • the number of signals obtained by the shaping is m*n, and then each of the input signals after clipping is multi-carrier combined by the signal formed by the first phase shifter corresponding to each input signal during beamforming.
  • the signal is multi-carrier combined by the signal formed by the second phase shifter corresponding to each input signal, and similarly, the signal formed by the nth phase shifter corresponding to each input signal is multi-carrier combined
  • the obtained processed n-channel input signals are combined into the antenna array channel through the combiner.
  • the number of phase shifters corresponding to the first input signal after clipping is eight, and the phase shifter corresponding to the second input signal after clipping
  • the number of the signals is 8 and the number of signals obtained by beamforming is 16.
  • the first phase input signal corresponding to the first input signal after clipping is passed through the first input signal corresponding to the first input signal.
  • the formed signal is added to the signal formed by the first phase shifter corresponding to the second input signal when the clipped second input signal is beamformed, and the processed first input signal is obtained.
  • the two input signals are respectively added by the signals formed by the corresponding second phase shifters to obtain the processed second input signals.
  • the two input signals are respectively formed by the corresponding eighth phase shifters.
  • the signals are added to obtain the processed eighth input signal, and the obtained processed eight input signals are combined into the antenna array channel through the combiner.
  • the embodiment of the present invention provides a clipping method, which is based on joint cancellation noise.
  • Each input signal after the preset delay is clipped, beam shaping processing is performed on each input signal after clipping according to the phase shifter, and the processed input signal is integrated into the antenna array through the combiner.
  • the channel solves the problem that the clipping ability of each input signal in the multiple input signals is poor in the related art, and the suppression of the synthesized signal PAR of the multi-channel input signals after clipping is poor;
  • the clipping capability of each input signal in the input signal of the channel and the suppression of the composite signal PAR of the multi-channel input signal after clipping are better.
  • the first point that needs to be supplemented is that, in this embodiment, the acquisition process of the joint cancellation noise of the m input signal and the acquisition process of the delay of the m input signal are not limited in sequence, that is, m inputs are obtained.
  • the step 220 of the joint cancellation noise of the signal has no sequential relationship with the execution sequence of the step 230a of obtaining the delay of the m input signal, and can also be performed simultaneously in general.
  • the second point that needs to be added is that, as shown in FIG. 2E, before step 230, the method further includes the following steps:
  • Step 260 For each input signal, obtain single stream cancellation noise according to the data of the input signal.
  • a single stream cancellation noise is obtained based on the data of the input signal, wherein the value of the single stream cancellation noise is equal to the data of each input signal.
  • single stream clipping noise can be obtained by the following formula:
  • step 230 can be replaced by:
  • Step 270 For each input signal, the input signal is clipped according to the combined cancellation noise and the single stream cancellation noise corresponding to the input signal.
  • the calculation method of the joint cancellation noise is similar to the step 220, and details are not described herein again.
  • the input signal is clipped by acquiring the maximum value of the single stream cancellation noise and the joint cancellation noise.
  • the clipping method is similar to step 230 in the previous embodiment.
  • the transmitter includes single stream cancellation.
  • the noise extraction module, the joint cancellation noise extraction module, the single stream cancellation noise extraction module is used to perform step 260, and the joint cancellation noise extraction module is used to extract the joint cancellation noise.
  • the single stream cancellation noise extraction module and the joint cancellation noise extraction module respectively extract single stream cancellation noise and joint cancellation noise.
  • the embodiment of the present invention provides a clipping method, which performs clipping on each input signal after a preset delay according to joint cancellation noise, and each input signal after clipping according to the phase shifter.
  • Do wave The beam shaping process is performed, and the processed input signal is integrated into the antenna array channel through the combiner; the related art has poor clipping capability for each input signal of the multiple input signals, thereby The problem that the synthesized signal PAR of the multiple input signals after the wave is less suppressed; the clipping capability of each input signal in the multi-channel input signal is improved, and the composite signal PAR of the multi-channel input signal after clipping is obtained. The degree of suppression is better.
  • step 220 can be replaced with a group including at least two input signals. And acquiring joint cancellation noise corresponding to at least two input signals according to at least two input signals in the group.
  • the calculation method of the joint cancellation noise is similar to the foregoing step 220, and details are not described herein again.
  • Step 230 may be replaced by, for a group comprising at least two input signals, clipping each of the at least two input signals according to the joint cancellation noise corresponding to the group.
  • the clipping mode is similar to the foregoing step 230, and details are not described herein again.
  • FIG. 3 is a schematic structural diagram of a clipping device according to an embodiment of the present invention.
  • the clipping device may include a receiving unit 310, an obtaining unit 320, and a clipping unit 330.
  • the receiving unit 310 is configured to perform step 210 in the foregoing embodiment.
  • the obtaining unit 320 is configured to perform step 220 in the foregoing embodiment.
  • the clipping unit 330 is configured to perform step 230 in the above embodiment.
  • the embodiment of the present invention provides a clipping device, which performs clipping on each input signal after a preset delay according to joint cancellation noise, and each input signal after clipping according to the phase shifter. Beamforming processing is performed, and the processed input signal is integrated into the antenna array channel through the plunging device; the related art has poor clipping capability for each input signal of the multiple input signals, thereby The problem that the combined signal PAR of the multi-channel input signal after clipping is less suppressed; the clipping capability of each input signal in the multi-channel input signal and the composite signal of the multi-channel input signal after clipping are achieved. The effect of PAR is better suppressed.
  • the obtaining unit 320 is further configured to perform step 260 in the foregoing embodiment.
  • the clipping unit 330 is further configured to perform steps 230a, 230b, 270 in the above embodiment.
  • the clipping device further includes: a processing unit 340 and a joining unit 350.
  • the processing unit 340 is configured to perform step 240 in the foregoing embodiment.
  • the merging unit 350 is configured to perform step 250 in the above embodiment.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例提供了一种削波方法及装置,涉及无线通信领域,用于发射机中,发射机中包括n个发射通道,n为大于等于2的整数,该方法包括:接收m路输入信号,2≤m≤n,根据m路输入信号获取联合对消噪声,根据联合对消噪声对m路输入信号中的每路输入信号进行削波;解决了相关技术中对多路输入信号中每路输入信号的削波能力较差,从而对削波后的多路输入信号的合成信号PAR的抑制程度较差的问题;达到了提高多路输入信号中每路输入信号的削波能力,以及对削波后的多路输入信号的合成信号PAR的抑制程度较好的效果。

Description

削波方法及装置 技术领域
本发明涉及无线通信领域,特别涉及一种削波方法及装置。
背景技术
随着智能终端的普及应用及移动新业务需求的持续增长,第五代移动通信技术(The Fifth Generation,5G)的研发已经拉开帷幕。在5G的研究工作中,一种思路提出应用采用高频段的频谱资源的大规模多输入多输出技术(Massive Multiple-Input Multiple-Output,Massive MIMO)无线通信环境。
Massive MIMO无线通信技术的基本特征是:在基站覆盖区域内配置数十根甚至数百根以上天线,这些天线以大规模阵列方式集中放置。由于采用大规模天线阵列的原因,发射机的发射通道的数量急剧增加,且通信频率的不断提高达到微波通信频段,这导致反馈通道实现代价将随之成倍增加。为了降低发射机实现成本,需要减少发射通道的数量,因此波束赋形的方法成为研究热点。
另一方面,为了在波束赋形的架构下提升功率放大器(Power Amplify,PA)的效率,有必要研究一种该架构下的多通道削波(Crest Factor Reduced,CFR)方法。多通道削波算法可以有效降低信号的峰均比(Peak Average Ratio,PAR),提高PA的效率。当高PAR的信号通过基站PA时,为了避免信号失真和频谱再生,需要PA具有更大的线性范围,也就是说PA必须放大具有高PAR的信号并发送放大后的信号,这样,必然会降低基站PA的输出功率,增加PA在效率上的压力。所以,为了提高PA的有效输出功率以及降低PA在提升效率上的压力,通常的做法是降低信号的PAR,而为了降低信号的PAR,通常的做法为对信号进行CFR处理。
相关技术中,通过基带电路调整削波噪声信号主瓣方向和调整削波门限来优化误差矢量幅度(Error Vector Magnitude,EVM),EVM是衡量发射信号质量的主要参数,信号PAR对EVM的影响至关重要,其中削波噪声信号主瓣方向与原信号主瓣方向是不相同的,且削波噪声主瓣方向的旋转会带来各通道相位的变化,因此削波效果较差,信号PAR的抑制程度较低。
发明内容
本发明实施例提供了一种削波方法及装置,解决了相关技术中削波能力较差的问题,所述技术方案如下:
第一方面,提供了一种削波方法,用于发射机中,发射机中包括n个发射通道,n为大于等于2的整数,方法包括:根据接收到的m路输入信号获取联合对消噪声,2≤m≤n;根据联合对消噪声对每路输入信号进行削波。
通过获取m路输入信号的联合对消噪声对每路输入信号进行削波,解决了现有技术中削波能力较差的问题,达到了可以提高削波能力的效果。
可选的,根据m路输入信号获取联合对消噪声,包括:根据每路输入信号的参数信息,计算联合对消噪声;参数信息包括每路输入信号的数据,或者,输入信号的数据以及输入信号所对应的移相器的相位。
可选的,根据m路输入信号中每路输入信号的数据,采用如下公式计算联合对消噪声,包括:
Figure PCTCN2016100741-appb-000001
或者,
Figure PCTCN2016100741-appb-000002
其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2...m。
可选的,根据m路输入信号中每路输入信号的数据以及输入信号所对应的移相器的相位,采用如下公式计算联合对消噪声,包括:
Figure PCTCN2016100741-appb-000003
或者,
Figure PCTCN2016100741-appb-000004
其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2...m;
Figure PCTCN2016100741-appb-000005
是第i路输入信号当前取样时刻第n个移相器的相位。
根据每路输入信号的参数信息计算联合对消噪声,解决了获取联合对消噪声不准确的问题,提高了计算联合对消噪声的准确性。
可选的,根据联合对消噪声对每路输入信号进行削波之前,该方法还包括: 对于每路输入信号,根据输入信号的数据获取单流对消噪声;其中,根据联合对消噪声对每路输入信号进行削波,包括:对于每路输入信号,根据联合对消噪声以及输入信号所对应的单流对消噪声对输入信号进行削波。
根据单流对消噪声和联合对消噪声获取对消噪声,更进一步的提高了削波的效果。
可选的,m路输入信号分为k组,k组中至少有一组中包括至少两路输入信号;根据m路输入信号获取联合对消噪声,包括:对于包括至少两路输入信号的组别,根据组别中的至少两路输入信号获取至少两路输入信号所对应的联合对消噪声;根据联合对消噪声对m路输入信号中的每路输入信号进行削波,包括:对于包括至少两路输入信号的组别,根据组别所对应的联合对消噪声对至少两路输入信号中的每路输入信号进行削波。
对m路输入信号进行分组,获取组别中的联合对消噪声,根据组别中所对应的联合对消噪声对每路输入信号进行削波,提高了削波的效果。可选的,根据联合对消噪声对每路输入信号进行削波,包括:根据预设时延对每路输入信号进行延时;根据联合对消噪声对延时预设时延后的输入信号进行削波。
对每路输入信号进行延时,使延时后的每路输入信号与联合对消噪声同时到达削波模块进行削波,提高了削波的准确性。
可选的,该方法还包括:根据移相器对削波后的m路输入信号做波束赋形处理;将处理后的n路输入信号合入至天线阵面通道。
对削波后的输入信号进行波束赋形处理,将处理后的多路输入信号合入至天线阵面通道,解决了对削波后的多路输入信号的合成信号PAR的抑制程度较差的问题,达到了节约***实现资源,以及对削波后的多路输入信号的合成信号PAR的抑制程度较好的效果。
第二方面,提供了一种削波装置,该削波装置包括:发射机,该发射机通过执行指令来实现上述第一方面提供的削波方法。
第三方面,提供了一种削波装置,该削波装置包括至少一个单元,该至少一个单元用于实现上述第一方面提供的削波方法。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个示例性实施例提供的一种基站的结构示意图;
图2A是本发明一个示例性实施例提供的一种削波方法的流程图;
图2B是本发明一个示例性实施例提供的一种两路输入信号的削波架构图;
图2C是本发明一个示例性实施例提供的步骤230具体实现的方法流程图;
图2D是本发明一个示例性实施例提供的一种波束赋形架构下两路通道削波的架构图;
图2E是本发明另一个示例性实施例提供的一种削波方法的流程图;
图2F是本发明另一个示例性实施例提供的一种两路输入信号的削波架构图;
图3是本发明一个示例性实施例提供的一种削波装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在本文提及的“模块”是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
图1示出了本发明实施例所涉及的基站的一种可能的结构示意图。
请参考图1,其示出了本发明一个示例性实施例提供的削波装置的结构示意图。该削波装置可以实现为基站中的全部或者部分。该基站包括:处理器120、与处理器120相连的发射机140和与处理器120相连的接收机160。本领域技术人员可以理解,图1中示出的基站结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。比如,基站还包括存储器180和供电电源等。其中:
处理器120是基站的控制中心,利用各种接口和线路连接整个基站的各个部分,通过运行或执行存储在存储器180内的软件程序和/或模块,以及调用存储在存储器180内的数据,执行基站的各种功能和处理数据,从而对基站进行整体控制。可选的,处理器120可包括一个或多个处理核心;可选的,处理器 120可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器120中,上述调制解调处理器可以单独实现成为一个芯片。
存储器180可用于软件程序以及模块。处理器120通过运行存储在存储器180的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器180可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***181、接收模块182、获取模块183、削波模块184和至少一个其它功能所需的应用程序185等,处理器120通过调用存储器180中存储的各个模块来执行上述实施例中有关基站侧的削波方法;存储数据区可存储根据基站的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器180可以由任何类型的易失性或非易失性存储设备或者它们的组合实现。
发射机140可以包括射频发射组件,比如天线。发射机140用于将数据或信息承载在无线信号中进行发送。该无线信号可以是移动通信***中的时频资源。本实施例所说的发射机140可以为MIMO(multi-input multi-output,多输入多输出)发射机,也可以是AAS(Active Antenna System,有源天线***)。
接收机160可以包括射频接收组件,比如天线。接收机160用于接收承载在无线信号中的数据或信息。该无线信号可以是移动通信***中的时频资源。
下述实施例中的削波方法可以用于图1所示的发射机140中。
本实施例提供了一种削波方法,可应用于发射机,该发射机包含n个用于将m路输入信号转换为具有一定相关性的发射信号的发射通道,n为大于等于2的整数。具有一定相关性的发射信号,可以是指m路输入信号经过削波、波束赋形以及多载波合路,形成的n路输出信号。
图2A是根据一示例性实施例示出的一种削波方法的流程图,应用于发射机,发射机中包括n个发射通道,n为大于等于2的整数,该方法可以包括:
步骤210,接收m路输入信号,2≤m≤n。
步骤220,根据m路输入信号中每路输入信号的参数信息,计算联合对消噪声。
其中,参数信息包括输入信号的数据,或者,输入信号的数据以及输入信号所对应的移相器的相位,且每路输入信号当前取样时刻所对应的移相器的个 数为n个。
当输入信号的参数信息包括m路输入信号中每路输入信号的数据时,本步骤可以包括:
Figure PCTCN2016100741-appb-000006
或者,
Figure PCTCN2016100741-appb-000007
其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2...m。
当输入信号的参数信息包括m路输入信号中每路输入信号的数据以及输入信号所对应的移相器的相位时,本步骤可以包括:
Figure PCTCN2016100741-appb-000008
或者,
Figure PCTCN2016100741-appb-000009
其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2...m;
Figure PCTCN2016100741-appb-000010
是第i路输入信号当前取样时刻第n个移相器的相位。
可选的,请参考图2B,发射机中,包括联合对消噪声提取模块,该模块用于执行步骤220,具体实现时,当接收到第一路输入信号和第二路输入信号时,利用联合对消噪声提取模块通过上述计算方式计算联合对消噪声。
步骤230,根据联合对消噪声对m路输入信号中的每路输入信号进行削波。
其中,当计算到联合对消噪声之后,便可以根据联合对消噪声对m路输入信号中的每路输入信号进行削波。
可选的,步骤230,结合现有技术,可以有多种方式对m路输入信号中的每路输入信号进行削波,在本实施例中以其中一种为例进行描述。请参考图2C,步骤230可以包括如下步骤:
步骤230a,根据预设时延对每路输入信号进行延时。
根据预设时延对每路输入信号进行延时得到进行削波的每路输入信号。
其中,预设时延为获取联合对消噪声所需的时间,且该预设时延可以通过逻辑仿真获取到。由于在获取联合对消噪声的过程中会有时间消耗,因此需要根据通过逻辑仿真得到的预设时延对每路输入信号进行延时,延时后得到进行 削波的每路输入信号。其中,对每路输入信号进行延时的延时值可以等于预设时延的值,进行削波的每路输入信号为对每路输入信号进行延时后得到的信号。
比如,以m=2,获取两路输入信号的联合对消噪声所需的时间为2s来举例说明。同时接收到两路输入信号,将两路输入信号分别通过两个缓存模块,预先设置缓存模块的缓存时间为2s,得到延时2s后的两路输入信号。
步骤230b,根据联合对消噪声对延时预设时延后的输入信号进行削波。
在获取到联合削波噪声之后,可以根据获得的联合削波噪声对延时后的每路输入信号进行削波,获得削波后的每路输入信号。
可选的,若输入信号是模拟信号,则削波后的每路输入信号可以通过下述公式获得:
Figure PCTCN2016100741-appb-000011
其中,CFRout_i(t)为第i路输入信号削波后的输入信号,t为某个取样时刻,CFRin_i(t)为根据预设时延对第i路输入信号进行延时后得到的进行削波的输入信号,|XNoise(t)|为联合对消噪声,
Figure PCTCN2016100741-appb-000012
与延时后得到的进行削波的输入信号CFRin_i(t)的相位相同。
比如,以第i路输入信号为正弦信号,t=6s,|XNoise(t)|=2来举例说明。t=6s时,第i路输入信号对应的数据为5,相位为π/4,即
Figure PCTCN2016100741-appb-000013
经过预设时延2s后的第i路输入信号对应的数据也是5,相位为π/4,即
Figure PCTCN2016100741-appb-000014
在取样时刻t=6s时,第i路输入信号削波后的输入信号
Figure PCTCN2016100741-appb-000015
可选的,若输入信号为数字信号,则削波后的每路输入信号可以通过下述公式获得:
Figure PCTCN2016100741-appb-000016
其中,CFRout_i(k)为第i路输入信号削波后的输入信号,k为某个取样点对应的时刻序号,CFRin_i(k)为根据预设时延对第i路输入信号进行延时后得到的进行削波的输入信号,|XNoise(k)|为联合对消噪声,
Figure PCTCN2016100741-appb-000017
与延时后得到的进行削波的输入信号CFRin_i(k)的相位相同。比如,数字信号对应的值为47839…,取样点分别对应4,7,8,3,9,当k=1时,对应取样点的值为4;k=2,对应的取样点的值为7;若k=5,对应取样点的值为9。若预设时延为2,表示数字信号47839比延时前的数字信号慢了两个取样点,对应延时前传输8的时刻,延时后传输的值为4。
步骤240,根据移相器对削波后的m路输入信号做波束赋形处理。
对m路输入信号进行独立的削波处理得到削波后的m路输入信号,利用移相器对削波后的m路输入信号在天线侧进行波束赋形。其中,移相器可以是模拟移相器,也可以是数字移相器,由于模拟移相器对于相位值的取值是连续变化的,采用模拟移相器对于削波后的m路输入信号做波束赋形处理更加准确,因此本实施例中通常采用模拟移相器。
比如,以请参考图2D,m=2,每路削波后的输入信号对应的移相器的个数为8个来举例说明。对2路输入信号进行独立的削波处理得到削波后的2路输入信号,利用8个移相器对削波后的每路输入信号进行不同的波束赋形,即,不同的发射通道的削波后的每路输入信号需要乘以不同的相位值,且经过波束赋形处理后的信号的个数为16个。其中,每个移相器的相位值为根据天线倾角得到的进行波束赋形处理时需要的参数。
步骤250,将处理后的n路输入信号合入至天线阵面通道。
将处理后的n路输入信号通过合入器合入至天线共阵面通道,其中,处理后的输入信号的个数与削波后的每路输入信号所对应的移相器的个数相等。
可选的,首先,利用移相器对削波后的m路输入信号在天线侧进行波束赋形,若削波后的每路输入信号对应的移相器的个数为n,则经过波束赋形得到的信号的个数为m*n个,然后对削波后的每路输入信号在波束赋形时经过每路输入信号所对应的第一个移相器形成的信号进行多载波合路,经过每路输入信号所对应的第二个移相器形成的信号进行多载波合路,类似的,经过每路输入信号所对应的第n个移相器形成的信号进行多载波合路,最后将得到的处理后的n路输入信号通过合入器进行合入至天线阵面通道。
比如,以m=2,n=8来举例说明,削波后的第一路输入信号对应的移相器的个数为8个,削波后的第2路输入信号对应的移相器的个数为8个,经过波束赋形得到的信号的个数为16个,对削波后的第一路输入信号在波束赋形时经过第一路输入信号所对应的第一个移相器形成的信号与削波后的第二路输入信号在波束赋形时经过第二路输入信号所对应的第一个移相器形成的信号相加,得到处理后的第一路输入信号,对两路输入信号分别经过对应的第二个移相器形成的信号相加,得到处理后的第二路输入信号,类似的,对两路输入信号分别经过对应的第8个移相器形成的信号相加,得到处理后的第八路输入信号,将得到的处理后的8路输入信号通过合入器进行合入至天线阵面通道。
综上所述,本发明实施例提供了一种削波方法,根据联合对消噪声对经过 预设时延后的每路输入信号进行削波,根据移相器对削波后每路输入信号做波束赋形处理,并将处理后的输入信号通过合入器进行合入至天线阵面通道;解决了相关技术中对多路输入信号中每路输入信号的削波能力较差,从而对削波后的多路输入信号的合成信号PAR的抑制程度较差的问题;达到了提高多路输入信号中每路输入信号的削波能力,以及对削波后的多路输入信号的合成信号PAR的抑制程度较好的效果。
需要补充说明的第一点是,本实施例中对m路输入信号的联合对消噪声的获取过程和对m路输入信号的延时的获取过程没有先后顺序的限制,即,获取m个输入信号的联合对消噪声的步骤220与获取m路输入信号的延时的步骤230a执行顺序没有先后关系,一般情况下也可以同时执行。
需要补充说明的第二点是,如图2E所示,在步骤230之前,该方法还包括如下步骤:
步骤260,对于每路输入信号,根据输入信号的数据获取单流对消噪声。
对于每路输入信号,根据输入信号的数据获取单流对消噪声,其中单流对消噪声的值等于每路输入信号的数据。
可选的,单流削波噪声可以通过下述公式获得:
Figure PCTCN2016100741-appb-000018
相应的,步骤230可以替换为:
步骤270,对于每路输入信号,根据联合对消噪声以及输入信号所对应的单流对消噪声对输入信号进行削波。
其中,联合对消噪声的计算方式与步骤220类似,在此不再赘述。
通过获取单流对消噪声和联合对消噪声中的最大值对输入信号进行削波,削波方法与上一个实施例中步骤230类似,请参考图2F,发射机中,包括单流对消噪声提取模块,联合对消噪声提取模块,单流对消噪声提取模块用于执行步骤260,联合对消噪声提取模块用于提取联合对消噪声,具体实现时,当接收到第一路输入信号和第二路输入信号时,利用单流对消噪声提取模块、联合对消噪声提取模块分别提取单流对消噪声和联合对消噪声。
综上所述,本发明实施例提供了一种削波方法,根据联合对消噪声对经过预设时延后的每路输入信号进行削波,根据移相器对削波后每路输入信号做波 束赋形处理,并将处理后的输入信号通过合入器进行合入至天线阵面通道;解决了相关技术中对多路输入信号中每路输入信号的削波能力较差,从而对削波后的多路输入信号的合成信号PAR的抑制程度较差的问题;达到了提高多路输入信号中每路输入信号的削波能力,以及对削波后的多路输入信号的合成信号PAR的抑制程度较好的效果。
需要补充说明的第三点是,若将m路输入信号分为k组,k组中至少有一组中包括至少两路输入信号;步骤220可以替换为,对于包括至少两路输入信号的组别,根据组别中的至少两路输入信号获取至少两路输入信号所对应的联合对消噪声。
其中,联合对消噪声的计算方式与上述步骤220类似,在此不再赘述。
步骤230可以替换为,对于包括至少两路输入信号的组别,根据组别所对应的联合对消噪声对至少两路输入信号中的每路输入信号进行削波。
其中,削波方式与上述步骤230类似,在此不再赘述。
请参考图3,其示出了本发明一个实施例提供的削波装置的结构示意图。如图3所示,该削波装置可以包括:接收单元310、获取单元320和削波单元330。
接收单元310,用于执行上述实施例中的步骤210。
获取单元320,用于执行上述实施例中的步骤220。
削波单元330,用于执行上述实施例中的步骤230。
综上所述,本发明实施例提供了一种削波装置,根据联合对消噪声对经过预设时延后的每路输入信号进行削波,根据移相器对削波后每路输入信号做波束赋形处理,并将处理后的输入信号通过合入器进行合入至天线阵面通道;解决了相关技术中对多路输入信号中每路输入信号的削波能力较差,从而对削波后的多路输入信号的合成信号PAR的抑制程度较差的问题;达到了提高多路输入信号中每路输入信号的削波能力,以及对削波后的多路输入信号的合成信号PAR的抑制程度较好的效果。
可选的,获取单元320,还用于执行上述实施例中的步骤260。
削波单元330,还用于执行上述实施例中的步骤230a、230b、270。
可选的,该削波装置还包括:处理单元340和合入单元350。
处理单元340,用于执行上述实施例中的步骤240。
合入单元350,用于执行上述实施例中的步骤250。
应当理解的是,在本文中使用的,除非上下文清楚地支持例外情况,单数形式“一个”(“a”、“an”、“the”)旨在也包括复数形式。还应当理解的是,在本文中使用的“和/或”是指包括一个或者一个以上相关联地列出的项目的任意和所有可能组合。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种削波方法,其特征在于,用于发射机中,所述发射机中包括n个发射通道,n为大于等于2的整数,所述方法包括:
    接收m路输入信号,2≤m≤n;
    根据所述m路输入信号获取联合对消噪声;
    根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述m路输入信号获取联合对消噪声,包括:
    根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声;所述参数信息包括所述输入信号的数据,或者,所述输入信号的数据以及所述输入信号所对应的移相器的相位。
  3. 根据权利要求2所述的方法,其特征在于,若所述参数信息包括所述输入信号的数据,所述根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声,包括:
    Figure PCTCN2016100741-appb-100001
    或者,
    Figure PCTCN2016100741-appb-100002
    其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2…m。
  4. 根据权利要求2所述的方法,其特征在于,若所述参数信息包括所述输入信号的数据以及所述输入信号所对应的移相器的相位,所述根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声,包括:
    Figure PCTCN2016100741-appb-100003
    或者,
    Figure PCTCN2016100741-appb-100004
    其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对 消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2…m,
    Figure PCTCN2016100741-appb-100005
    是第i路输入信号当前取样时刻第n个移相器的相位。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波之前,所述方法还包括:
    对于每路输入信号,根据所述输入信号的数据获取单流对消噪声;
    所述根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波,包括:
    对于每路输入信号,根据所述联合对消噪声以及所述输入信号所对应的单流对消噪声对所述输入信号进行削波。
  6. 根据权利要求1所述的方法,其特征在于,所述m路输入信号分为k组,k组中至少有一组中包括至少两路输入信号;所述根据所述m路输入信号获取联合对消噪声,包括:
    对于包括至少两路输入信号的组别,根据所述组别中的所述至少两路输入信号获取所述至少两路输入信号所对应的联合对消噪声;
    所述根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波,包括:
    对于包括至少两路输入信号的组别,根据所述组别所对应的所述联合对消噪声对所述至少两路输入信号中的每路输入信号进行削波。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波,包括:
    根据预设时延对每路输入信号进行延时;
    根据所述联合对消噪声对延时所述预设时延后的所述输入信号进行削波。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    根据移相器对削波后的所述m路输入信号做波束赋形处理;
    将处理后的所述n路输入信号合入至天线阵面通道。
  9. 一种削波装置,其特征在于,用于发射机中,所述发射机中包括n个 发射通道,n为大于等于2的整数,所述装置包括所述发射机;
    所述发射机,用于接收m路输入信号,2≤m≤n;
    所述发射机,还用于根据所述m路输入信号获取联合对消噪声;
    所述发射机,还用于根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波。
  10. 根据权利要求9所述的装置,其特征在于,
    所述发射机,还用于根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声;所述参数信息包括所述输入信号的数据,或者,所述输入信号的数据以及所述输入信号所对应的移相器的相位。
  11. 根据权利要求10所述的装置,其特征在于,若所述参数信息包括所述输入信号的数据,所述发射机,还用于根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声:
    Figure PCTCN2016100741-appb-100006
    或者,
    Figure PCTCN2016100741-appb-100007
    其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2…m。
  12. 根据权利要求10所述的装置,其特征在于,若所述参数信息包括所述输入信号的数据以及所述输入信号所对应的移相器的相位,所述发射机,还用于根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声:
    Figure PCTCN2016100741-appb-100008
    或者,
    Figure PCTCN2016100741-appb-100009
    其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2…m,
    Figure PCTCN2016100741-appb-100010
    是第i路输入信号当前取样时刻第n个移相器的相位。
  13. 根据权利要求9所述的装置,其特征在于,所述发射机,还用于:
    在根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波之前,对于每路输入信号,根据所述输入信号的数据获取单流对消噪声;
    对于每路输入信号,根据所述联合对消噪声以及所述输入信号所对应的单流对消噪声对所述输入信号进行削波。
  14. 根据权利要求9所述的装置,其特征在于,所述m路输入信号分为k组,k组中至少有一组中包括至少两路输入信号;所述发射机,还用于:
    对于包括至少两路输入信号的组别,根据所述组别中的所述至少两路输入信号获取所述至少两路输入信号所对应的联合对消噪声;
    所述根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波,包括:
    对于包括至少两路输入信号的组别,根据所述组别所对应的所述联合对消噪声对所述至少两路输入信号中的每路输入信号进行削波。
  15. 根据权利要求9所述的装置,其特征在于,所述发射机,还用于:
    根据预设时延对每路输入信号进行延时;
    根据所述联合对消噪声对延时所述预设时延后的所述输入信号进行削波。
  16. 根据权利要求9至15任一所述的装置,其特征在于,所述发射机,还用于:
    根据移相器对削波后的所述m路输入信号做波束赋形处理;
    将处理后的所述n路输入信号合入至天线阵面通道。
  17. 一种削波装置,其特征在于,用于发射机中,所述发射机中包括n个发射通道,n为大于等于2的整数,所述装置包括:
    接收单元,用于接收m路输入信号,2≤m≤n;
    获取单元,用于根据所述m路输入信号获取联合对消噪声;
    削波单元,用于根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波。
  18. 根据权利要求17所述的装置,其特征在于,
    所述获取单元,还用于根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声;所述参数信息包括所述输入信号的数据,或者,所述输入信号的数据以及所述输入信号所对应的移相器的相位。
  19. 根据权利要求18所述的装置,其特征在于,若所述参数信息包括所述输入信号的数据,所述获取单元,还用于根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声:
    Figure PCTCN2016100741-appb-100011
    或者,
    Figure PCTCN2016100741-appb-100012
    其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2…m。
  20. 根据权利要求18所述的装置,其特征在于,若所述参数信息包括所述输入信号的数据以及所述输入信号所对应的移相器的相位,所述获取单元,还用于根据所述m路输入信号中每路输入信号的参数信息,计算所述联合对消噪声:
    Figure PCTCN2016100741-appb-100013
    或者,
    Figure PCTCN2016100741-appb-100014
    其中,|XNoise(t)|为m路输入信号中每路输入信号的当前取样时刻的联合对消噪声,t为某个取样时刻,Xi(t)为第i路输入信号当前取样时刻的数据,i=1,2…m,
    Figure PCTCN2016100741-appb-100015
    是第i路输入信号当前取样时刻第n个移相器的相位。
  21. 根据权利要求17所述的装置,其特征在于,
    所述获取单元,还用于在根据所述联合对消噪声对所述m路输入信号中的每路输入信号进行削波之前,对于每路输入信号,根据所述输入信号的数据获取单流对消噪声;
    所述削波单元,还用于对于每路输入信号,根据所述联合对消噪声以及所述输入信号所对应的单流对消噪声对所述输入信号进行削波。
  22. 根据权利要求17所述的装置,其特征在于,所述m路输入信号分为k组,k组中至少有一组中包括至少两路输入信号;
    所述获取单元,还用于对于包括至少两路输入信号的组别,根据所述组别中的所述至少两路输入信号获取所述至少两路输入信号所对应的联合对消噪声;
    所述削波单元,还用于对于包括至少两路输入信号的组别,根据所述组别所对应的所述联合对消噪声对所述至少两路输入信号中的每路输入信号进行削波。
  23. 根据权利要求17所述的装置,其特征在于,所述削波单元,还用于:
    根据预设时延对每路输入信号进行延时;
    根据所述联合对消噪声对延时所述预设时延后的所述输入信号进行削波。
  24. 根据权利要求17至23任一所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据移相器对削波后的所述m路输入信号做波束赋形处理;
    合入单元,用于将处理后的所述n路输入信号合入至天线阵面通道。
PCT/CN2016/100741 2016-09-29 2016-09-29 削波方法及装置 WO2018058410A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100741 WO2018058410A1 (zh) 2016-09-29 2016-09-29 削波方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100741 WO2018058410A1 (zh) 2016-09-29 2016-09-29 削波方法及装置

Publications (1)

Publication Number Publication Date
WO2018058410A1 true WO2018058410A1 (zh) 2018-04-05

Family

ID=61763634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100741 WO2018058410A1 (zh) 2016-09-29 2016-09-29 削波方法及装置

Country Status (1)

Country Link
WO (1) WO2018058410A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022111677A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 载波信号的处理方法、通信装置及通信***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157812A1 (en) * 2004-01-20 2005-07-21 Der-Zheng Liu Method and related apparatus for reducing peak-to-average-power ratio
CN101222468A (zh) * 2007-12-28 2008-07-16 华为技术有限公司 多载波正交频分复用***中峰均比抑制的方法和装置
CN103718525A (zh) * 2013-07-12 2014-04-09 华为技术有限公司 一种削波方法、装置及***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157812A1 (en) * 2004-01-20 2005-07-21 Der-Zheng Liu Method and related apparatus for reducing peak-to-average-power ratio
CN101222468A (zh) * 2007-12-28 2008-07-16 华为技术有限公司 多载波正交频分复用***中峰均比抑制的方法和装置
CN103718525A (zh) * 2013-07-12 2014-04-09 华为技术有限公司 一种削波方法、装置及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022111677A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 载波信号的处理方法、通信装置及通信***

Similar Documents

Publication Publication Date Title
CN100479348C (zh) 多天线接收机的重复合并技术
US11848739B2 (en) Methods and devices for processing uplink signals
KR101125529B1 (ko) 다중-안테나 프로세싱 장치 및 이를 포함하는 이동단말기와 그 방법
WO2016202280A1 (zh) 波束赋形方法及装置
CN109818585A (zh) 一种数字预失真装置及方法
WO2015135340A1 (zh) 信号处理方法及装置
CN108293032A (zh) 一种削波方法及装置
JPH1098325A (ja) 無線通信システムで干渉を最小化し雑音の影響を減らすための信号処理装置及びその方法
JP4406010B2 (ja) 適応アンテナアレイ方式を使用する移動通信システムにおける信号を受信する装置及び方法
CN104378787B (zh) 基于扩展Prony算法的平坦快衰落长距离信道预测方法
US20060284725A1 (en) Antenna array calibration for wireless communication systems
WO2014171129A1 (ja) 通信システムおよび通信制御方法
CN105009536A (zh) 用于波束导向波峰因子降低(cfr)削波噪声的方法和***
CN105301557A (zh) 波达方位估计架构方法
JP2001285089A (ja) 無線通信装置及び送信電力制御方法
WO2018058410A1 (zh) 削波方法及装置
CN111641440B (zh) 一种确定预编码矩阵的方法、装置、终端以及存储介质
CA2606163A1 (en) Antenna array calibration for wireless communication systems
JP2003018081A (ja) 移動無線端末
Kim et al. Channel AoA estimation for massive MIMO systems using one-bit ADCs
CN113933864A (zh) 基于凸共形阵列天线的北斗接收机无失真抗干扰方法
KR20180080768A (ko) 복수의 무선 신호들을 컴바이닝하는 방법 및 장치
US8964914B2 (en) Device, system and method of combining received wireless communication signals
WO2016134529A1 (zh) 用于多入多出***中的数据传输方法、装置和网络设备
US11990963B2 (en) Radio communication apparatus and radio transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917164

Country of ref document: EP

Kind code of ref document: A1