WO2022111523A1 - 光学成像镜头及成像设备 - Google Patents

光学成像镜头及成像设备 Download PDF

Info

Publication number
WO2022111523A1
WO2022111523A1 PCT/CN2021/132782 CN2021132782W WO2022111523A1 WO 2022111523 A1 WO2022111523 A1 WO 2022111523A1 CN 2021132782 W CN2021132782 W CN 2021132782W WO 2022111523 A1 WO2022111523 A1 WO 2022111523A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
optical
imaging lens
object side
Prior art date
Application number
PCT/CN2021/132782
Other languages
English (en)
French (fr)
Inventor
张歆越
王克民
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Priority to US17/787,060 priority Critical patent/US20230050188A1/en
Publication of WO2022111523A1 publication Critical patent/WO2022111523A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the technical field of imaging lenses, in particular to an optical imaging lens and an imaging device.
  • ADAS Advanced Driver Assist System
  • vehicle camera lens as the key component of ADAS, can sense the road conditions around the vehicle in real time and realize forward collision
  • the performance of functions such as early warning, lane deviation alarm and pedestrian detection directly affects the safety factor of ADAS. Therefore, the performance requirements for vehicle camera lenses are getting higher and higher.
  • the ADAS system has extremely high requirements for the mounted on-board lens.
  • the lens requires high imaging resolution and can effectively distinguish the details of the road environment to meet the needs of intelligent Special requirements for driving systems.
  • most of the lenses on the existing market cannot meet the above requirements well. Therefore, it is imperative to develop an optical imaging lens with high resolution, large imaging surface and large aperture that can cooperate with ADAS.
  • the purpose of the present invention is to provide an optical imaging lens and an imaging device to solve the above problems.
  • the present invention provides an optical imaging lens, which includes in sequence from the object side to the imaging surface along the optical axis: a first lens, a second lens, a diaphragm, a third lens, a fourth lens, a fifth lens, a first lens Six lenses and filters;
  • the first lens has negative refractive power, the object side is convex, and the image side is concave;
  • the second lens has negative refractive power, the object side is concave, and the image side is convex
  • the diaphragm is arranged between the second lens and the third lens;
  • the third lens has positive refractive power, and its object side and image side are convex surfaces;
  • the fourth lens has positive refractive power , the object side and the image side are convex;
  • the fifth lens has negative refractive power, the object side and the image side are concave, and the fourth lens and the fifth lens form a cemented lens;
  • the The sixth lens has a positive refractive power, and both the
  • the present invention provides an imaging device, including an imaging element and the optical imaging lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical imaging lens into an electrical signal.
  • the optical imaging lens and imaging equipment provided by the present invention through the reasonable configuration of each lens surface type and the reasonable collocation of the optical power, enable the lens to have ultra-high resolution, good thermal stability, large imaging surface and It is easy to assemble and other characteristics.
  • the lens due to the reasonable setting of the diaphragm position, the lens has a large aperture, strong light transmission ability, can adapt to the changes of light and shade in the external environment, and can well meet the requirements of ADAS for the lens.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens in a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the field curvature of the optical imaging lens in the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the distortion of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the MTF of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the field curvature of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the distortion of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the MTF of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an imaging device provided by a third embodiment of the present invention.
  • the present invention provides an optical imaging lens, which sequentially includes from the object side to the imaging plane along the optical axis: the first lens, the second lens, the diaphragm, the third lens, the fourth lens and the fourth lens are sequentially included along the optical axis from the object side to the imaging plane.
  • a lens, a fifth lens, a sixth lens and a filter the first lens has negative refractive power, and its object side is convex and its image side is concave; the second lens has negative refractive power, and its object side is concave.
  • the diaphragm is arranged between the second lens and the third lens;
  • the third lens has a positive refractive power, and both the object side and the image side are convex;
  • the The fourth lens has positive refractive power, and both the object side and the image side are convex;
  • the fifth lens has negative refractive power, and both the object side and the image side are concave, and the fourth lens and the fifth lens are concave.
  • the lens is composed of a cemented lens; the sixth lens has positive refractive power, and the object side and the image side are convex; wherein, the first lens, the second lens, the third lens, and the fourth lens And the fifth lens is a glass spherical lens, and the sixth lens is a glass aspheric lens.
  • the optical imaging lens satisfies the following conditional formula:
  • TTL represents the total optical length of the optical imaging lens
  • ImgH represents half of the maximum diameter of the effective pixel area of the optical imaging lens on the imaging surface.
  • the optical imaging lens satisfies the following conditional formula:
  • F# represents the aperture number of the optical imaging lens. Satisfying the conditional expression (2) indicates that the lens has the characteristics of large aperture. By moving the diaphragm forward between the second lens and the third lens, the optical imaging lens can have a larger aperture, strong light transmission ability, and can adapt to the external environment. shading changes.
  • the optical imaging lens satisfies the following conditional formula:
  • R5 represents the curvature radius of the object side surface of the third lens
  • R6 represents the curvature radius of the image side surface of the third lens
  • TTL represents the optical total length of the optical imaging lens.
  • the optical imaging lens satisfies the following conditional formula:
  • (CRA) max represents the maximum value of the incident angle of the chief ray of the full field of view of the optical imaging lens on the image plane. Satisfying the conditional formula (5) can make the CRA (principal ray incident angle) of the lens more matched with the CRA of the chip photosensitive element, thereby improving the photosensitive efficiency of the chip.
  • the optical imaging lens satisfies the following conditional formula:
  • f4 represents the focal length of the fourth lens
  • f5 represents the focal length of the fifth lens
  • the optical imaging lens satisfies the following conditional formula:
  • T34 represents the separation distance between the third lens and the fourth lens on the optical axis
  • TTL represents the total optical length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • T23 represents the separation distance between the second lens and the third lens on the optical axis
  • T34 represents the separation distance between the third lens and the fourth lens on the optical axis
  • T56 represents the distance between the fifth lens and the sixth lens on the optical axis interval distance.
  • the optical imaging lens satisfies the following conditional formula:
  • Vd4 represents the Abbe number of the fourth lens
  • Vd5 represents the Abbe number of the fifth lens
  • Nd4 represents the refractive index of the fourth lens
  • Nd5 represents the refractive index of the fifth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • ⁇ 10 is the face-centered angle of the object side of the sixth lens at the effective semi-aperture
  • ⁇ 11 is the face-centered angle of the image side of the sixth lens at the effective semi-aperture
  • S10 is the effective semi-aperture of the object side of the sixth lens
  • S11 represents the effective semi-aperture of the image side of the sixth lens
  • R10 represents the curvature radius of the object side of the sixth lens
  • R11 represents the curvature radius of the image side of the sixth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • the present invention will be further described below with a plurality of embodiments.
  • the thickness and radius of curvature of each lens in the optical imaging lens are different, and the specific differences can be found in the parameter table in each embodiment.
  • z represents the distance of the surface from the surface vertex in the direction of the optical axis
  • c represents the curvature of the surface vertex
  • K represents the quadratic surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E, F, G and H represents the fourth-order, sixth-order, eighth-order, tenth-order, twelfth-order, fourteenth-order, and sixteenth-order surface coefficients, respectively.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens 100 provided by a first embodiment of the present invention.
  • the optical imaging lens 100 sequentially includes a first lens L1 and a second lens L2 along the optical axis from the object side to the imaging plane. , diaphragm ST, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and filter G1;
  • the first lens L1 has negative refractive power, the object side S1 of the first lens L1 is convex, and the image side S2 of the first lens L1 is concave;
  • the second lens L2 has negative refractive power, the object side S3 of the second lens L2 is concave, and the image side S4 of the second lens L2 is convex;
  • the diaphragm ST is arranged between the second lens L2 and the third lens L3;
  • the third lens L3 has positive refractive power, and both the object side S5 and the image side S6 of the third lens L3 are convex;
  • the fourth lens L4 has positive refractive power, and the object side S7 and the image side of the fourth lens L4 are convex surfaces;
  • the fifth lens L5 has negative refractive power, the object side and the image side S9 of the fifth lens L5 are both concave, and the fourth lens L4 and the fifth lens L5 form a cemented lens, that is, the image side of the fourth lens and the fifth lens.
  • the glued surface on the side of the object is S8;
  • the sixth lens L6 has positive refractive power, and both the object side S10 and the image side S11 of the sixth lens L6 are convex;
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 are all glass spherical lenses, and the sixth lens L6 is a glass aspherical lens.
  • Table 1 shows the relevant parameters of each lens of the optical imaging lens 100 in this embodiment.
  • FIG. 2 , FIG. 3 , and FIG. 4 show a field curvature graph, an f- ⁇ distortion graph, and an MTF graph of the optical imaging lens 100 in this embodiment, respectively.
  • the field curvature curve of FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane.
  • the horizontal axis represents the offset (unit: mm)
  • the vertical axis represents the field angle (unit: degree). It can be seen from Figure 2 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.02mm, indicating that the field curvature of the optical imaging lens is well corrected.
  • the distortion curves in Figure 3 represent the distortion at different image heights on the imaging plane.
  • the horizontal axis represents the f- ⁇ distortion percentage
  • the vertical axis represents the field angle (unit: degree). It can be seen from Figure 3 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within [-2%, 0], indicating that the distortion of the optical imaging lens is well corrected.
  • the MTF curves of Figure 4 represent paraxial MTF values for different spatial frequencies.
  • the horizontal axis in FIG. 4 represents the spatial frequency (unit: line pair/mm), and the vertical axis represents the MTF value. It can be seen from Figure 4 that the MTF value at the paraxial position of the high frequency is around 0.6, indicating that the paraxial aberration of the optical imaging lens is well corrected and the overall resolution is high.
  • the optical imaging lens provided by the second embodiment of the present invention has substantially the same structure as the optical imaging lens 100 in the first embodiment, and the difference lies in that the parameters such as the radius of curvature of each lens are different.
  • FIG. 5 , FIG. 6 and FIG. 7 are respectively a field curvature graph, an f- ⁇ distortion graph and an MTF graph of the optical imaging lens in the second embodiment.
  • the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.04mm, indicating that the field curvature of the optical imaging lens is well corrected.
  • the f- ⁇ distortion at different image heights on the imaging surface is controlled within [-5%, 0], indicating that the distortion of the optical imaging lens is well corrected.
  • the MTF value is around 0.6 at the paraxial position of the high frequency, indicating that the optical imaging lens has a high resolution.
  • Table 5 shows the corresponding optical characteristics in the above-mentioned embodiments, including the focal length EFL of the system, the total optical length TTL, the field of view angle FOV, the aperture number F#, and the values corresponding to each conditional expression described above.
  • Example 1 Example 2 TTL(mm) 30.085 30.087 EFL(mm) 5.022 5.022 FOV 123.2° 123.2° F# 1.75 1.75 ImgH(mm) 5.245 5.121 TTL/ImgH 5.736 5.875 R6/R5 -3.188 -9.893 R6/TTL -1.492 -3.941 (CRA) max 13.2° 11.5° f4/f5 -1.592 -1.639 TTL/T34 12.835 10.738 T34/T23 31.253 25.473 T34/T56 8.254 12.736 Vd4/Vd5 2.878 2.878 Nd4/Nd5 0.859 0.859
  • a third embodiment of the present invention provides an imaging device 200 , and the imaging device 200 may include an imaging element 210 and an optical imaging lens (eg, the optical imaging lens 100 ) in any of the foregoing embodiments.
  • the imaging element 210 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 200 may be a vehicle-mounted surveillance device, an unmanned aerial vehicle, a panoramic camera, or any other electronic device equipped with an optical imaging lens.
  • the imaging device 200 provided in this embodiment includes the optical imaging lens in any of the above embodiments. Since the optical imaging lens has the advantages of high resolution, large imaging surface, large aperture, and good thermal stability, the imaging device 200 has high resolution. , large imaging surface, large aperture and good thermal stability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头(100)及成像设备(200),光学成像镜头(100)沿光轴从物侧到成像面依次包含:第一透镜(L1),第二透镜(L2),光阑(ST),第三透镜(L3),第四透镜(L4),第五透镜(L5),第六透镜(L6)和滤光片(G1);第一透镜(L1)为具有负光焦度的弯月型镜片,其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(L2)具有负光焦度,其物侧面(S3)为凹面,像侧面(S4)为凸面;光阑(ST)设置于第二透镜(L2)和第三透镜(L3)之间;第三透镜(L3)具有正光焦度,其物侧面(S5)与像侧面(S6)均为凸面;第四透镜(L4)具有正光焦度,其物侧面(S7)与像侧面均为凸面;第五透镜(L5)具有负光焦度,其物侧面与像侧面(S9)均为凹面;第六透镜(L6)具有正光焦度,其物侧面(S10)与像侧面(S11)均为凸面。光学成像镜头(100)具有超高解像力、热稳定性好、大光圈以及方便组装等特点。

Description

光学成像镜头及成像设备
交叉引用
本申请要求2020年11月26日递交的发明名称为:“光学成像镜头及成像设备”的申请号202011346215.0的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中
技术领域
本发明涉及成像镜头技术领域,特别是涉及一种光学成像镜头及成像设备。
背景技术
随着自动驾驶技术的发展,ADAS(Advanced Driver AssistantSystem,高级驾驶辅助***)已经成了汽车的标配;其中,车载摄像镜头作为ADAS的关键器件,能够实时感知车辆周边的路况,实现前向碰撞预警、车道偏移报警和行人检测等功能,其性能高低直接影响着ADAS的安全系数,因此,对车载摄像镜头的性能要求越来越高。
ADAS***对所搭载的车载镜头要求极高,首先要求其通光能力强,能适应外界环境的明暗变化,同时要求镜头有较高的成像清晰度,能有效分辨道路环境的细节,以满足智能驾驶***的特殊要求。然而,现有市场上的大多镜头均不能很好的满足上述要求,因此,开发一种可以配合ADAS的高解像力、大成像面、大光圈的光学成像镜头是当务之急。
发明内容
为此,本发明的目的在于提出一种光学成像镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学成像镜头,沿光轴从物侧到成像面依次包含:第一透镜,第二透镜,光阑,第三透镜,第四透镜,第五透镜,第六透镜和滤光片;所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;所述光阑设置于所述第二透镜和所述第三透镜之间;所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第五透镜具有负光焦度,其物侧面和像侧面均为凹面,且所述第四透镜和所 述第五透镜组成胶合透镜;所述第六透镜具有正光焦度,其物侧面和像侧面均为凸面;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜均为玻璃球面镜片,所述第六透镜为玻璃非球面镜片;所述光学成像镜头满足条件式:5.5<TTL/ImgH<5.9,TTL表示所述光学成像镜头的光学总长,ImgH表示所述光学成像镜头在成像面上有效像素区域最大直径的一半。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学成像镜头,成像元件用于将光学成像镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学成像镜头及成像设备,通过各镜片面型的合理配置以及光焦度的合理搭配,使镜头具有超高解像力、热稳定性好、大成像面以及方便组装等特点,同时由于将光阑位置设置合理,使镜头具有较大的光圈,通光能力强,能适应外界环境的明暗变化,能够很好的满足ADAS对镜头的要求。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学成像镜头的结构示意图;
图2为本发明第一实施例中的光学成像镜头的场曲示意图;
图3为本发明第一实施例中的光学成像镜头的畸变示意图;
图4为本发明第一实施例中的光学成像镜头的MTF示意图;
图5为本发明第二实施例中的光学成像镜头的场曲示意图;
图6为本发明第二实施例中的光学成像镜头的畸变示意图;
图7为本发明第二实施例中的光学成像镜头的MTF示意图;
图8为本发明第三实施例提供的成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的 公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提出一种光学成像镜头,沿光轴从物侧至成像面依次包括:沿光轴从物侧到成像面依次包含:第一透镜,第二透镜,光阑,第三透镜,第四透镜,第五透镜,第六透镜和滤光片;所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;所述光阑设置于所述第二透镜和所述第三透镜之间;所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第五透镜具有负光焦度,其物侧面和像侧面均为凹面,且所述第四透镜和所述第五透镜组成胶合透镜;所述第六透镜具有正光焦度,其物侧面和像侧面均为凸面;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜均为玻璃球面镜片,所述第六透镜为玻璃非球面镜片。
在一些实施方式中,所述光学成像镜头满足以下条件式:
5.5<TTL/ImgH<5.9;                                          (1)
其中,TTL表示光学成像镜头的光学总长,ImgH表示光学成像镜头在成像面上有效像素区域最大直径的一半。满足条件式(1),可以实现镜头像面扩大同时压缩镜头的总长,使镜头的设计更加小型化,便于搭载在其它成像设备上。
在一些实施方式中,所述光学成像镜头满足以下条件式:
F#<1.76;                                                   (2)
其中,F#表示光学成像镜头的光圈数。满足条件式(2),表明镜头具有大光圈特性,通过将光阑前移至第二透镜和第三透镜间,可以使光学成像镜头具有更大的光圈,通光能力强,能适应外界环境的明暗变化。
在一些实施方式中,所述光学成像镜头满足以下条件式:
R6/R5<-2.8;                                                  (3)
-4<R6/TTL<-1;                                               (4)
其中,R5表示第三透镜的物侧面的曲率半径,R6表示第三透镜的像侧面的曲率半径, TTL表示光学成像镜头的光学总长。满足条件式(3)至(4),可以改变第三透镜的像侧面二次反射鬼像的光瞳像在焦面上的相对位置,通过控制曲率半径可以使得鬼像的光瞳像远离焦面,有效降低鬼像的相对能量值,提高镜头成像画面的质量。
在一些实施方式中,所述光学成像镜头满足以下条件式:
(CRA) max<14°;                                               (5)
其中,(CRA) max表示光学成像镜头的全视场主光线在像面上入射角的最大值。满足条件式(5),可以使镜头的CRA(主光线入射角)与芯片感光元件的CRA更匹配,提高芯片的感光效率。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-1.8<f4/f5<-1.4;                                              (6)
其中,f4表示第四透镜的焦距,f5表示第五透镜的焦距。满足条件式(6),通过第四正透镜和第五负透镜两枚正负光焦度镜片的胶合,达到消除色差的作用。
在一些实施方式中,所述光学成像镜头满足以下条件式:
10<TTL/T34<14;                                             (7)
其中,T34表示第三透镜和第四透镜在光轴上的间隔距离,TTL表示光学成像镜头的光学总长。满足条件式(7),通过增大第三透镜和第四透镜之间的间距,使后端光学***远离前端,从而使不同视场的物方光线在第三透镜收束后以一定角度发散,会聚到更远的垂轴位置上,进而增大了像高。
在一些实施方式中,所述光学成像镜头满足以下条件式:
20<T34/T23<40;                                               (8)
6<T34/T56<20;                                                (9)
其中,T23表示第二透镜和第三透镜在光轴上的间隔距离,T34表示第三透镜和第四透镜在光轴上的间隔距离,T56表示第五透镜和第六透镜在光轴上的间隔距离。满足条件式(8)和(9),通过减小第二透镜和第三透镜的间距、以及第五透镜和第六透镜的间距,可以有效压缩光学成像镜头的总长。
在一些实施方式中,所述光学成像镜头满足以下条件式:
2.5<Vd4/Vd5<3;                                              (10)
0.85<Nd4/Nd5<0.88;                                           (11)
其中,Vd4表示第四透镜的阿贝数,Vd5表示第五透镜的阿贝数,Nd4表示第四透镜的折射率,Nd5表示第五透镜的折射率。满足条件式(10)至(11),通过增大第四透镜和第五透镜之间的阿贝数差值、折射率差值,更有利于色差的消除。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-18°<|φ10|-arctan[S10/(R10 2-S10 2) 1/2]<18°;                        (12)
-15°<|φ11|-arctan[S11/(R11 2-S11 2) 1/2]<15°;                        (13)
其中,φ10表示第六透镜的物侧面在有效半口径处的面心角,φ11表示第六透镜的像侧面在有效半口径处的面心角,S10表示第六透镜的物侧面的有效半口径,S11表示第六透镜的像侧面的有效半口径,R10表示第六透镜的物侧面的曲率半径,R11表示第六透镜的像侧面的曲率半径。满足条件式(12)至(13),使得第六透镜的镜片中心到边缘光焦度的变化趋势更接近余弦函数,在温度变化时,所有视场的离焦曲线会更加聚拢,有利于改善镜头的温度性能。
在一些实施方式中,所述光学成像镜头满足以下条件式:
10| max≤30°;                                                (14)
11| max≤30°;                                                (15)
其中,|φ 10| max表示第六透镜的物侧面的面心角的最大值,|φ 11| max表示第六透镜的像侧面的面心角的最大值,面心角即该透镜表面垂直截面上的切线与水平方向的夹角。满足条件式(14)至(15),有利减小CRA,提升相对照度。
下面分多个实施例对本发明进行进一步的说明。在以下每个实施例中,光学成像镜头中的各个透镜的厚度、曲率半径有所不同,具体不同可参见各实施例中的参数表。
本发明各实施例中的光学成像镜头的非球面的表面形状均满足下列方程:
Figure PCTCN2021132782-appb-000001
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G和H分别表示四阶、六阶、八阶、十阶、十二阶、十四阶和十六阶曲面系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学成像镜头100的结构示意图,该光学成像镜头100沿光轴从物侧到成像面依次包括:第一透镜L1,第二透镜L2,光阑ST,第三透镜L3,第四透镜L4,第五透镜L5,第六透镜L6,以及滤光片G1;
第一透镜L1具有负光焦度,第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2具有负光焦度,第二透镜L2的物侧面S3为凹面,第二透镜L2的像侧面S4为凸面;
光阑ST设置于第二透镜L2和第三透镜L3之间;
第三透镜L3具有正光焦度,第三透镜L3的物侧面S5和像侧面S6均为凸面;
第四透镜L4具有正光焦度,第四透镜L4的物侧面S7和像侧面均为凸面;
第五透镜L5具有负光焦度,第五透镜L5的物侧面与像侧面S9均为凹面,且第四透镜L4和第五透镜L5组成胶合透镜,即第四透镜的像侧面和第五透镜的物侧面的胶合面为S8;
第六透镜L6具有正光焦度,第六透镜L6的物侧面S10和像侧面S11均为凸面;
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5均为玻璃球面镜片,第六透镜L6为玻璃非球面镜片。
本实施例中的光学成像镜头100的各透镜的相关参数如表1所示。
表1
Figure PCTCN2021132782-appb-000002
Figure PCTCN2021132782-appb-000003
本实施例的各透镜非球面的参数如表2所示。
表2
Figure PCTCN2021132782-appb-000004
请参照图2、图3和图4,所示分别为本实施例中光学成像镜头100的场曲曲线图、f-θ畸变图和MTF曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.02mm以内,说明光学成像镜头的场曲矫正良好。
图3的畸变曲线表示成像面上不同像高处的畸变。其中,图3中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面上不同像高处的f-θ畸变控制在[-2%,0]以内,说明光学成像镜头的畸变得到良好的校正。
图4的MTF曲线表示不同空间频率的近轴MTF值。其中,图4中横轴表示空间频率(单位:线对/毫米),纵轴表示MTF值。从图4中可以看出,在高频的近轴处MTF值在0.6左右,说明光学成像镜头的近轴像差得到良好的校正,整体上拥有较高的分辨率。
第二实施例
本发明第二实施例提供的光学成像镜头与第一实施例中的光学成像镜头100的结构大抵相同,不同之处在于各透镜的曲率半径等参数不同。
本发明第二实施例的光学成像镜头中各透镜的相关参数如表3所示。
表3
Figure PCTCN2021132782-appb-000005
本实施例的各透镜非球面的参数如表4所示。
表4
Figure PCTCN2021132782-appb-000006
请参照图5、图6和图7,所示分别为第二实施例中光学成像镜头的场曲曲线图、f-θ畸变图和MTF曲线图。从图5中可以看出,子午像面和弧矢像面的场曲控制在±0.04mm以内,说明光学成像镜头的场曲矫正良好。从图6中可以看出,成像面上不同像高处的f-θ畸变控制在[-5%,0]以内,说明光学成像镜头的畸变得到良好的校正。从图7中可以看出,在高频的近轴处MTF值在0.6左右,说明光学成像镜头拥有较高的分辨率。
表5是上述各实施例中对应的光学特性,包括***的焦距EFL、光学总长TTL、视场角FOV、光圈数F#和前面所述每个条件式对应的数值。
表5
  实施例1 实施例2
TTL(mm) 30.085 30.087
EFL(mm) 5.022 5.022
FOV 123.2° 123.2°
F# 1.75 1.75
ImgH(mm) 5.245 5.121
TTL/ImgH 5.736 5.875
R6/R5 -3.188 -9.893
R6/TTL -1.492 -3.941
(CRA) max 13.2° 11.5°
f4/f5 -1.592 -1.639
TTL/T34 12.835 10.738
T34/T23 31.253 25.473
T34/T56 8.254 12.736
Vd4/Vd5 2.878 2.878
Nd4/Nd5 0.859 0.859
10|-arctan[S10/(R10 2-S10 2) 1/2] -3.971° -17.708°
11|-arctan[S11/(R11 2-S11 2) 1/2] -13.853° 1.014°
10| max 27.617° 27.050°
11| max 13.402° 24.946°
第三实施例
请参阅图8,本发明第三实施例提供了一种成像设备200,该成像设备200可以包括成像元件210和上述任一实施例中的光学成像镜头(例如光学成像镜头100)。成像元件210可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备200可以是车载监控、无人机、全景相机以及其他任意一种形态的装载了光学成像镜头的电子设备。
本实施例提供的成像设备200包括上述任一实施例中的光学成像镜头,由于光学成像镜头具有高解像力、大成像面、大光圈以及良好的热稳定性等优点,因此成像设备200具有高解像力、大成像面、大光圈以及良好的热稳定性等优点。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学成像镜头,其特征在于,沿光轴从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;
    光阑;
    具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
    具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
    具有负光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凹面,且所述第四透镜和所述第五透镜组成胶合透镜;
    具有正光焦度的第六透镜,所述第六透镜的物侧面和像侧面均为凸面;
    其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜均为玻璃球面镜片,所述第六透镜为玻璃非球面镜片;
    所述光学成像镜头满足条件式:
    5.5<TTL/ImgH<5.9;
    其中,TTL表示所述光学成像镜头的光学总长,ImgH表示所述光学成像镜头在成像面上有效像素区域最大直径的一半。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    F#<1.76;
    其中,F#表示所述光学成像镜头的光圈数。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    R6/R5<-2.8;
    -4<R6/TTL<-1;
    其中,R5表示所述第三透镜的物侧面的曲率半径,R6表示所述第三透镜的像侧面的曲率半径,TTL表示所述光学成像镜头的光学总长。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    (CRA) max<14°;
    其中,(CRA) max表示所述光学成像镜头的全视场主光线在像面上入射角的最大值。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    -1.8<f4/f5<-1.4;
    其中,f4表示所述第四透镜的焦距,f5表示所述第五透镜的焦距。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    10<TTL/T34<14;
    其中,T34表示所述第三透镜和所述第四透镜在所述光轴上的间隔距离,TTL表示所述光学成像镜头的光学总长。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    20<T34/T23<40;
    6<T34/T56<20;
    其中,T23表示所述第二透镜和所述第三透镜在所述光轴上的间隔距离,T34表示所述第三透镜和所述第四透镜在所述光轴上的间隔距离,T56表示所述第五透镜和所述第六透镜在所述光轴上的间隔距离。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    2.5<Vd4/Vd5<3;
    0.85<Nd4/Nd5<0.88;
    其中,Vd4表示所述第四透镜的阿贝数,Vd5表示所述第五透镜的阿贝数,Nd4表示所述第四透镜的折射率,Nd5表示所述第五透镜的折射率。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    -18°<|φ10|-arctan[S10/(R10 2-S10 2) 1/2]<18°;
    -15°<|φ11|-arctan[S11/(R11 2-S11 2) 1/2]<15°;
    其中,φ10表示所述第六透镜的物侧面在有效半口径处的面心角,φ11表示所述第六透镜的像侧面在有效半口径处的面心角,S10表示所述第六透镜的物侧面的有效半口径,S11表示所述第六透镜的像侧面的有效半口径,R10表示所述第六透镜的物侧面的曲率半径,R11表示所述第六透镜的像侧面的曲率半径。
  10. 一种成像设备,其特征在于,包括如权利要求1-9任一项所述的光学成像镜头及成像元件,所述成像元件用于将所述光学成像镜头形成的光学图像转换为电信号。
PCT/CN2021/132782 2020-11-26 2021-11-24 光学成像镜头及成像设备 WO2022111523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/787,060 US20230050188A1 (en) 2020-11-26 2021-11-24 Optical imaging lens and imaging equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011346215.0A CN112485889B (zh) 2020-11-26 2020-11-26 光学成像镜头及成像设备
CN202011346215.0 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022111523A1 true WO2022111523A1 (zh) 2022-06-02

Family

ID=74935137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132782 WO2022111523A1 (zh) 2020-11-26 2021-11-24 光学成像镜头及成像设备

Country Status (3)

Country Link
US (1) US20230050188A1 (zh)
CN (1) CN112485889B (zh)
WO (1) WO2022111523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980984A (zh) * 2023-03-15 2023-04-18 江西联创电子有限公司 光学镜头

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485889B (zh) * 2020-11-26 2022-04-12 江西联创电子有限公司 光学成像镜头及成像设备
CN113640973B (zh) * 2021-10-15 2022-02-11 江西联创电子有限公司 光学成像镜头及成像设备
CN113900235B (zh) * 2021-10-20 2023-09-05 江西晶超光学有限公司 光学***、取像模组、电子设备及载具
CN113900237B (zh) * 2021-12-10 2022-04-26 江西联创电子有限公司 光学成像镜头及成像设备
CN114114649B (zh) * 2022-01-26 2022-06-24 江西联创电子有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991331A (zh) * 2015-08-06 2015-10-21 浙江舜宇光学有限公司 超广角镜头
US20170357081A1 (en) * 2015-01-06 2017-12-14 Zhejiang Sunny Optics Co.,Ltd. Camera Lens
CN109270662A (zh) * 2018-11-27 2019-01-25 浙江舜宇光学有限公司 光学成像镜头
CN110007444A (zh) * 2019-05-21 2019-07-12 浙江舜宇光学有限公司 光学成像镜头
CN110187478A (zh) * 2019-07-12 2019-08-30 浙江舜宇光学有限公司 光学成像镜头
CN110716288A (zh) * 2019-12-12 2020-01-21 江西联创电子有限公司 光学成像镜头
CN112485889A (zh) * 2020-11-26 2021-03-12 江西联创电子有限公司 光学成像镜头及成像设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947700B2 (ja) * 2006-09-21 2012-06-06 富士フイルム株式会社 広角撮像レンズ、撮像装置、およびカメラモジュール
KR101136939B1 (ko) * 2010-07-15 2012-04-20 엘지이노텍 주식회사 초광각 광학 렌즈 시스템
CN106468824B (zh) * 2015-08-21 2019-02-12 信泰光学(深圳)有限公司 广角光学镜头
TWI652504B (zh) * 2018-01-25 2019-03-01 今國光學工業股份有限公司 六片式廣角鏡頭
CN110794551B (zh) * 2018-08-01 2022-01-14 宁波舜宇车载光学技术有限公司 光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170357081A1 (en) * 2015-01-06 2017-12-14 Zhejiang Sunny Optics Co.,Ltd. Camera Lens
CN104991331A (zh) * 2015-08-06 2015-10-21 浙江舜宇光学有限公司 超广角镜头
CN109270662A (zh) * 2018-11-27 2019-01-25 浙江舜宇光学有限公司 光学成像镜头
CN110007444A (zh) * 2019-05-21 2019-07-12 浙江舜宇光学有限公司 光学成像镜头
CN110187478A (zh) * 2019-07-12 2019-08-30 浙江舜宇光学有限公司 光学成像镜头
CN110716288A (zh) * 2019-12-12 2020-01-21 江西联创电子有限公司 光学成像镜头
CN112485889A (zh) * 2020-11-26 2021-03-12 江西联创电子有限公司 光学成像镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980984A (zh) * 2023-03-15 2023-04-18 江西联创电子有限公司 光学镜头
CN115980984B (zh) * 2023-03-15 2023-06-27 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
CN112485889B (zh) 2022-04-12
US20230050188A1 (en) 2023-02-16
CN112485889A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022111523A1 (zh) 光学成像镜头及成像设备
WO2022111524A1 (zh) 光学成像镜头及成像设备
CN100507631C (zh) 广角摄像透镜、摄像装置、及摄像机组件
WO2020119278A1 (zh) 广角镜头及成像设备
WO2019242411A1 (zh) 车载摄像镜头
US10416420B2 (en) Optical lens
WO2021008319A1 (zh) 广角镜头及成像设备
CN110727087B9 (zh) 广角镜头
KR101671451B1 (ko) 촬영 렌즈 광학계
US9140880B2 (en) Zoom lens and zoom lens module
WO2020107759A1 (zh) 光学镜头及成像设备
CN113031230B (zh) 超广角镜头及成像设备
CN112612113B (zh) 一种3.9mm大孔径日夜共焦镜头及其成像方法
WO2021114458A1 (zh) 光学成像镜头及成像设备
WO2024061220A1 (zh) 光学镜头
WO2022233304A1 (zh) 光学成像镜头及成像设备
US8320061B2 (en) Lens system having wide-angle, high resolution, and large aperture
WO2022100731A1 (zh) 光学镜头及电子设备
CN108957705B (zh) 一种无热化超广角高清车载镜头
CN112882209B (zh) 广角镜头及成像设备
CN112285884B (zh) 1.14mm超广角光学***及其成像方法
CN214704152U (zh) 一种3.9mm大孔径日夜共焦镜头
CN215264198U (zh) 一种4k像素行车记录仪光学***
CN112285883B (zh) 一种超广角光学***及其成像方法
CN113031212A (zh) 一种4k像素行车记录仪光学***及其成像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897023

Country of ref document: EP

Kind code of ref document: A1