WO2022110509A1 - 一种判断位错滑移类型的方法 - Google Patents

一种判断位错滑移类型的方法 Download PDF

Info

Publication number
WO2022110509A1
WO2022110509A1 PCT/CN2021/000088 CN2021000088W WO2022110509A1 WO 2022110509 A1 WO2022110509 A1 WO 2022110509A1 CN 2021000088 W CN2021000088 W CN 2021000088W WO 2022110509 A1 WO2022110509 A1 WO 2022110509A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip
sample
dislocation
different
type
Prior art date
Application number
PCT/CN2021/000088
Other languages
English (en)
French (fr)
Inventor
李阁平
张英东
袁福森
韩福洲
***•阿里
郭文斌
任杰
刘承泽
顾恒飞
佟敏
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Publication of WO2022110509A1 publication Critical patent/WO2022110509A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0098Tests specified by its name, e.g. Charpy, Brinnel, Mullen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention belongs to the field of material analysis, in particular to a method for judging the type of dislocation slip through EBSD, Vickers hardness tester, tilt-scanning sample stage and Schmid theory.
  • deformation The deformation of the material when it is under load is called deformation, and the common deformation methods are mainly tension, compression, shear and torsion.
  • the two most common ways of deformation are dislocation slip and twinning.
  • dislocation slip often occurs in the vast majority of deformation processes, and is a particularly important deformation method. Slip in a crystal can only proceed along a certain crystal plane and a certain crystallographic direction on this plane, which we call the slip plane and the slip direction.
  • Common slips include cylinder slip, basal slip and cone slip.
  • dislocation slip is very important to study the formation mechanism of dislocation slip.
  • the most mainstream method for dislocation calibration is to calibrate by transmission, that is, to obtain different double-beam g-vectors by tilting the transmission sample rod, and then realize the calibration of dislocations.
  • this method requires high-end and expensive instruments (transmission electron microscope) to implement, the cost is high, and the popularity is not high.
  • transmission calibration is used, the operation is more complicated, and it is often difficult to calibrate complex dislocations, such as dislocation networks. Therefore, it is currently difficult to find an affordable, simple and convenient method to mark the type of misalignment slip. Therefore, it is very important to find a simple and convenient method to judge the type of dislocation slip.
  • the invention provides a method for judging the type of dislocation slip through EBSD, Vickers hardness tester, tilting scanning sample stage and Schmid theory, which is a simple, effective and accurate method for judging the type of dislocation slip.
  • a method for judging dislocation slip types characterized in that the specific steps are as follows:
  • the EBSD block sample is prepared by chemical light wiping corrosion method and slight mechanical vibration polishing method to ensure the flatness of the sample surface.
  • the preferred preparation method is: first mount the sample on the mounting machine, and then sequentially. Pre-grind with 150#, 320#, 800#, 2000# water sandpaper, after removing the deep scratches, perform mechanical polishing on the woolen cloth, the polishing liquid is SiO 2 nano-suspension, polishing for 6-10 minutes , to obtain a bright and traceless polished surface with a mirror effect; then etch, gently and quickly wipe the surface of the test sample with acid-stained cotton for 3-10 seconds, until the surface of the sample becomes bright; vibrate polishing on an automatic polishing machine , the polishing liquid is SiO 2 nano-suspension, polished for 10 minutes, and finally a bright and traceless polished surface with mirror effect was obtained.
  • the samples were rinsed with water and absolute ethanol in turn, and finally dried and stored.
  • step 2) the region to be measured is preferably marked with Vickers hardness on the surface of the sample, and the crystal orientation of the region is calibrated with EBSD technology.
  • step 3 a Vickers hardness tester is used to test the hardness of different crystal orientations in the region to be measured, and the diagonal size of the indentation and the hardness value are recorded.
  • the weight range of the Vickers hardness tester used is: 10-1000g.
  • different dislocation slip lines are obtained by applying weights of different weights, and at the same time, the propagation of slip lines between different crystal grains is obtained; and the quasi-in situ observation of dislocation slip can be realized by calibrating the crystal orientation function of EBSD.
  • the formation process of the line through the geometric force analysis of Vickers hardness indentation under different loads, the shear stress that forms the slip line is analyzed, and the Schmid factor of different dislocation slip is calculated based on the three-dimensional crystal structure calibrated by EBSD.
  • step 3 combined with the hardness test results, the geometric stress analysis of the indentation and the Schmid factor values at different slip starts, the first preliminary judgment of the dislocation slip types can be made, so as to exclude some dislocation slip types. .
  • the slip line comparison method is: matching and comparing the length direction of the slip line with the basal plane, cylindrical surface and cone surface of the three-dimensional crystal structure, combining the general direction of dislocation slip, the calculated The Schmid factor values of different slip systems and the angle of intersection between slip lines can preliminarily determine the type of dislocation slip.
  • step 5 after preliminarily judging the type of dislocation slip, set the sample rod on the scanning sample stage of the scanning electron microscope, then place the sample on the sample rod, first record the length direction of the slip line, and make the slip line
  • the length direction is perpendicular to the tilting direction of the scanning sample stage;
  • the sample rod is specially made, and its main body is a cylinder (the height is much larger than the radius of the bottom surface), and the lower end of the cylinder is provided with a threaded fastener that matches the scanning sample stage. It is used to install the sample rod on the scanning sample stage.
  • the upper end of the cylinder is provided with a sample stage.
  • the sample stage can be a plane or an inclined surface with a certain inclination. The inclination angle of the inclined surface ranges from -90° to 90°.
  • the tilt angle of the scanning sample stage of the SEM is only: -80 ⁇ 10°.
  • Installing a special sample rod on the scanning sample stage can increase the tilt angle range of the sample; that is, when the sample stage on the upper part of the sample rod is flat, The tilt angle of the sample is: -80 ⁇ 10°; when the sample stage on the upper part of the sample rod is inclined, the tilt direction of the sample can be tilted along the X-Y plane, the Y-Z plane and the X-Z plane or tilted simultaneously, which can increase the tilt of the scanned sample
  • the angle range is -90 ⁇ 90°.
  • the invention can also prepare transmission samples, and realize the determination of different dislocation types by TKD technology combined with dislocations observed by transmission electron microscope, combined with slip line comparison method, and tilted scanning electron microscope sample stage.
  • the inclination direction of the sample can be inclined along the X-Y plane, the Y-Z plane and the X-Z plane or inclined at the same time, which can increase the tilt angle range of the scanned sample (- 90 ⁇ 90°);
  • the determination of different dislocation types can also be realized by combining TKD technology with dislocations observed by transmission electron microscopy, combined with slip line comparison method.
  • ⁇ CRSS is the critical shear stress
  • is the loading stress
  • m is the Schmidt factor.
  • Crystals with different orientations have different strengths, that is, their corresponding slip system activations are also different.
  • the easier the slip system is to be activated the larger the corresponding Schmid factor value, that is, the activation of the dislocation-slip system can be predicted by the Schmid factor theory.
  • the tilt angle range of the scanned sample can be increased (-90 ⁇ 90°).
  • ⁇ angle is the inclination of the X-Z plane direction
  • ⁇ angle is the inclination of the X-Y plane
  • ⁇ angle is the inclination of the Y-Z plane
  • Figure 5 is the actual picture of the sample rod with the top inclination of 70°, that is, when the sample is placed on the inclined plane
  • the tilt angles of the sample are: -90 to -60° and -10 to 80°.
  • Fig. 2 Schematic diagram of the change of the slip step when the sample stage is tilted and scanned.
  • Fig. 3 is a solid view of a flat sample rod.
  • Figure 4 is a schematic diagram of the sample rod with different angles of the top inclination.
  • Figure 5 is a solid view of the sample rod with a 70° inclination at the top.
  • Fig. 6 is a schematic diagram of the variation of the width of the slip step by theoretically judging.
  • FIG. 7 Schematic diagram of the principle of the slip line comparison method.
  • Fig. 9 The variation of the width of the slip line step and the theoretical comparison result when the SEM sample stage is tilted.
  • a method for judging the type of dislocation slip the specific steps are as follows:
  • the polishing liquid is SiO 2 nano-suspension, polish for 6-10 minutes to obtain a bright and traceless polished surface with mirror effect; then etch, gently and quickly wipe the surface of the test sample with acid-stained cotton for 3-10 seconds until the sample is The surface becomes brighter; vibration polishing is performed on an automatic polishing machine.
  • the polishing solution is a nano-suspension of SiO 2 , and polishing is performed for 10 minutes. Finally, a bright and trace-free polished surface with a mirror effect is obtained. Rinse the sample with water and anhydrous ethanol in turn. Finally dry and store.
  • the dislocation slip type is preliminarily determined, as shown in Figure 7;
  • the type of dislocation slip of the ⁇ 0001 ⁇ -oriented grains of the ⁇ -region as-quenched Zr-4 alloy was determined by the method described above.
  • Zr-4 alloy (Zr-1.5Sn-0.2Fe-0.1Cr) has very low thermal neutron absorption cross section, good mechanical properties and excellent corrosion resistance, mainly used in pressurized water reactor, boiling water reactor, heavy water reactor fuel cladding material.
  • the EBSD samples were prepared by wire-cutting samples, grinding, chemical light wiping corrosion and slight mechanical vibration polishing.
  • the morphology changes before and after the Vickers hardness indenter was observed by metallography and scanning electron microscope, and the crystal orientation was determined by EBSD and the calculation results of Schmid factor were shown in Figure 8. It can be seen from Figure 8 that the Schmid factor of base slip is greater than that of cone slip and cylinder slip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种判断滑移类型的方法,具体为:先制备EBSD块状样品,通过EBSD标定晶体取向,并使用不同载荷的维氏硬度压头对EBSD测定的晶粒进行原位压缩;由于压缩变形后该取向晶粒就会发生变形,进而在晶粒的表面形成滑移线;对要测定区域的不同晶粒进行硬度测试,结合压痕的几何应力分析,计算不同滑移开动时的Schmid因子值;然后通过滑移线和三维晶体结构进行对比,结合位错滑移线的传播方向,所计算的不同滑移系的Schmid因子值以及滑移线之间相互交叉的角度,初步判断滑移类型;最后在扫描电镜上通过倾转扫描样品台,记录不同角度倾转时滑移台阶的宽度变化,结合EBSD测定的晶体取向,获得理论上不同滑移类型的台阶宽度变化,然后与实验结果相对比,综合判断出滑移类型。

Description

一种判断位错滑移类型的方法 技术领域
本发明属于材料分析领域,特别是指一种通过EBSD、维氏硬度计、倾转扫描样品台结合Schmid理论判断位错滑移类型的方法。
背景技术
材料零部件在实际应用之前,往往需要经过不同方式的机械加工(锻造、轧制、挤压以及成形等等)和热处理(淬火、退火等)。而材料在机械加工时就会发生严重的变形。那么在实际应用过程中,为了获得更好的材料力学性能以及更好的加工工艺,我们需要对材料的变形行为进行***的基础研究。
材料在承受载荷时发生的变形称为形变,而常见的变形方式主要有拉伸、压缩、剪切以及扭转等。发生变形最常见的2种方式是位错滑移和孪生。其中,位错滑移往往发生于绝大多数的变形过程中,是一种特别重要的变形方式。晶体中的滑移只能沿一定的晶面和该面上一定的晶体学方向进行,我们将其称为滑移面和滑移方向。常见的滑移有柱面滑移、基面滑移以及锥面滑移。
位错滑移作为一种特别重要的变形方式,研究位错滑移的形成机制至关重要。在研究位错的形成机理时,我们需要对材料在发生某种变形时,滑移系开动的类型进行标定。目前,最主流的标定位错方法是通过透射进行标定,即通过倾转透射样品杆获得不同的双束g矢量,进而实现对位错的标定。但是该方法需要高端、昂贵的仪器(透射电子显微镜)去实现,成本很高,普及性不高。其次,通过透射标定时,操作较为复杂,往往很难标定出复杂的位错,如位错网。所以目前很难找到一种即实惠,又简单方便的方法去标定位错滑移的类型。因此,寻求一种能够简单方便判断位错滑移类型的方法至关重要。
发明内容
本发明提供了一种通过EBSD、维氏硬度计、倾转扫描样品台结合Schmid理论判断位错滑移类型的方法,是一种简单、有效、准确地判断位错滑移类型的方法。
本发明通过以下技术方案获得:
一种判断位错滑移类型的方法,其特征在于,具体步骤如下:
1)、制备EBSD块状样品;
2)、在样品表面标记要测定的区域,并测定该区域的晶体取向;
3)、对要测定的区域的不同晶粒进行硬度测试,结合压痕的几何应力分析,计算不同滑移开动时的Schmid因子值;
4)、通过扫描电镜对压痕附近的变形部位进行观察,获得滑移线(滑移迹线)的形貌图;通过滑移线比对法初步判断位错滑移类型;
5)、记录滑移线的长度方向,使滑移线长度方向垂直扫描电镜的扫描样品台倾转方向,通过倾转扫描样品台,统计滑移台阶的宽度变化,通过EBSD测定的晶体取向,获得理论上不同滑移类型的台阶宽度变化,然后与实验结果相对比,最终判断出位错滑移类型。
作为优选的技术方案:
步骤1)中,采用化学轻擦拭腐蚀法和轻微的机械振动抛光法制备EBSD块状样品,保证了样品表面的平整度,优选的制备方法为:先把样品在镶样机上镶样,然后依次用150#、320#、800#、2000#的水砂纸预磨,去除较深的划痕后,在洋绒布上进行机械抛光,抛光液为SiO 2的纳米悬浊液,抛光6-10分钟,得到镜面效果的光亮无痕的抛光面;然后进行蚀刻,用沾有酸的棉花轻轻快速擦拭试样品表面3-10秒钟,直至样品表面变亮;在自动抛磨机上进行振动抛光,抛光液为SiO 2的纳米悬浊液,抛光10分钟,最后得到镜面效果的光亮无痕的抛光 面,依次使用清水和无水乙醇冲洗样品,最后干燥保存。
步骤2)中,在样品表面优选用维氏硬度标记要测定的区域,用EBSD技术对该区域的晶体取向进行标定。
步骤3)中,通过维氏硬度计对要测定的区域的不同晶体取向进行硬度测试,记录压痕的对角线大小以及硬度值,所用维氏硬度计的砝码范围为:10-1000g。
本发明通过施加不同重量的砝码来获得不同位错滑移线,同时,获得滑移线在不同晶粒之间的传播;通过EBSD标定晶体取向功能,可以实现准原位观察位错滑移线的形成过程,通过对不同载荷的维氏硬度压痕几何受力分析,分析形成滑移线的剪切应力,结合EBSD标定出的三维晶体结构,计算出不同位错滑移的Schmid因子。
步骤3)中,结合硬度测试结果、压痕的几何应力分析以及不同滑移开动时的Schmid因子值,可以对位错滑移类型进行第一次的初步判断,从而排除部分位错滑移类型。
步骤4)中,所述滑移线比对法为:通过滑移线的长度方向与三维晶体结构的基面、柱面以及锥面进行匹配比对,结合位错滑移大体方向、所计算的不同滑移系的Schmid因子值以及滑移线之间相互交叉的角度,初步判断位错滑移类型。
步骤5)中,在初步判断位错滑移类型后,将样品杆设置于扫描电镜的扫描样品台上,然后将样品放置于样品杆上,先记录滑移线的长度方向,使滑移线长度方向垂直扫描样品台倾转方向;所述样品杆为特制的,其主体部分为圆柱体(高度远大于底面半径),该圆柱体下端设有与扫描样品台相配合的螺纹紧固件,用于将样品杆安装在扫描样品台上,圆柱体上端设有样品台,该样品台可为平面状或具有一定倾斜度的斜面,该斜面的倾斜角度范围是-90~90°。
扫描电镜的扫描样品台其倾转角度仅为:-80~10°,在扫描样品台上安装特制样品杆,可以增加样品的倾转角度范围;即当样品杆上部样品台为平面状时,样品的倾转角度为:-80~10°;当样品杆上部样品台为斜面时,样品的倾斜方向可以沿着X-Y平面、Y-Z平面以及X-Z平面倾斜或者同时倾斜,能够增加扫描样品的倾转角度范围至-90~90°。
本发明还可以制备透射样品,并通过TKD技术结合透射电镜观察的位错,结合滑移线比对法,倾转扫描电镜样品台实现对不同位错类型的判定。
本发明的特点如下所示:
1、通过EBSD、维氏硬度计结合Schmid理论判断位错滑移类型的方法,维氏硬度计的砝码范围为:10-1000g,通过施加不同重量的砝码来获得不同位错滑移迹线,同时,能够获得滑移线在不同晶粒之间的传播;
2、通过EBSD标定晶体取向功能,可以实现准原位观察位错滑移线的形成过程,通过维氏硬度压痕几何受力分析,分析形成滑移线的剪切应力,结合EBSD标定出的三维晶体结构,计算出位错滑移的Schmid因子;
3、通过位错滑移线的传播方向,结合维氏硬度形成的应力方向,大体判断位错滑移的方向;
4、通过滑移线的长度方向与三维晶体结构的基面、柱面以及锥面进行匹配比对,结合位错滑移大体方向,所计算的不同滑移系的Schmid因子值以及滑移线之间相互交叉的角度,初步判断位错滑移类型;
5、放置样品时,先记录滑移线的长度方向,使滑移线长度方向垂直扫描样品台倾转方向,记录不同倾转角度时,滑移台阶的宽度变化;
6、通过设置具有不同倾斜度(-90~90°)的样品杆,使样品倾斜方向可以沿着X-Y平面、Y-Z平面以及X-Z平面倾斜或者同时倾斜,能够增加扫描样品 的倾转角度范围(-90~90°);
7、通过倾转扫描样品台,统计滑移台阶的宽度变化,通过EBSD测定的晶体取向,获得理论上不同滑移类型的台阶宽度变化,然后与实验结果相对比,最终判断出位错滑移类型;
8、基于本发明所述方法,还可以通过TKD技术结合透射电镜观察的位错,结合滑移线比对法,实现对不同位错类型的判定。
相关技术原理:
通过维氏硬度压痕的几何受力分析原理如图1所示:
从图1可知:维氏硬度压头为136°,当载荷P加于其上时,垂直于压头棱锥体侧表面的压力为P n,即P n=Psin(136°/2)。那么棱锥体压入金属的表面积为:A=d^2/(2sin(136°/2)),即压头所导致的压力为σ HV=P n/A。维氏硬度的计算公式为:HV=2Psin(136°/2)/d^2。综上,可得维氏硬度与应力的相互关系推导公式:σ HV=0.9272HV。
Schmid因子理论:
当滑移面上沿滑移方向的切应力达到临界分切应力值τ CRSS时,滑移就发生了,即如公式(1)所示:
τ CRSS=σm    (1)
式中τ CRSS为临界剪切应力;σ为加载应力;m为施密特因数。不同取向的晶体的强度不同,即其对应的滑移系开动情况也不同。此外,滑移系越容易开动,其对应的Schmid因子值越大,即可以通过Schmid因子理论来预判位错滑移系的开动情况。
倾转扫描样品台时滑移台阶变化的原理如图2所示:
放置样品时,先记录滑移线的长度方向,使滑移线长度方向垂直扫描样品 台倾转方向,记录不同角度时,滑移台阶的宽度变化。
通过在扫描样品台上安装样品杆,可以增加扫描样品的倾转角度范围(-90~90°),平面状样品杆如图3所示,倾斜度为不同角度的样品杆示意图如图4所示(β角为X-Z平面方向的倾斜,γ角为X-Y平面的倾斜,σ角为Y-Z平面的倾斜),图5为顶部倾斜度为70°的样品杆实物图,即当样品放在倾斜度为70°的样品杆时,其样品的倾转角度为:-90~-60°和-10~80°。
理论判断滑移台阶宽度变化方法的原理:
已知晶体取向,那么可以理论上判断出该晶体内部不同滑移线形成时的台阶宽度变化,如{0001}取向晶粒的基面滑移台阶宽度变化如图6所示。{0001}取向的晶粒的基面滑移,当样品旋转角度为0°时,观察到的台阶为一条直线,随着旋转角度β的增大,台阶宽度也增大,当倾转到90°时,台阶的宽度为最大,那么可以获得基面滑移时,台阶宽度变化的理论变化趋势。
附图说明
为了更清楚地说明本发明的技术方案,下面将对本申请中所需要使用的附图作简单地介绍。
图1通过维氏硬度压痕几何受力分析原理。
图2倾转扫描样品台时滑移台阶变化的原理示意图。
图3顶部为平面状的样品杆实体图。
图4顶部倾斜度为不同角度的样品杆示意图。
图5顶部倾斜度为70°的样品杆实体图。
图6通过理论判断滑移台阶宽度变化示意图。
图7滑移线比对法原理示意图。
图8 Zr-4合金原位维氏硬度压缩前后金相、扫描形貌和EBSD测定的晶体取向图。
图9倾转扫描电镜样品台时,滑移线台阶的宽度变化与理论对比结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
实施例1
一种判断位错滑移类型的方法,具体步骤如下:
1)、制备EBSD块状样品(保证样品的平整度):
先把样品在镶样机上镶样,然后依次用150#、320#、800#、2000#的水砂纸预磨,去除较深的划痕后,在洋绒布上进行机械抛光,抛光液为SiO 2的纳米悬浊液,抛光6-10分钟,得到镜面效果的光亮无痕的抛光面;然后进行蚀刻,用沾有酸的棉花轻轻快速擦拭试样品表面3-10秒钟,直至样品表面变亮;在自动抛磨机上进行振动抛光,抛光液为SiO 2的纳米悬浊液,抛光10分钟,最后得到镜面效果的光亮无痕的抛光面,依次使用清水和无水乙醇冲洗样品,最后干燥保存。
2)、通过金相显微镜观察块状样品表面,并用维氏硬度标记试样表面某一要测定的位置,用EBSD技术对该区域的晶体取向进行标定;
3)、通过维氏硬度计(载荷:10-1000g)对该区域已知的晶体取向进行硬度测定(记录压痕的对角线大小以及硬度值),结合维氏压痕的几何应力分析,计算不同滑移开动时的Schmid因子值;
4)、通过扫描电镜对维氏硬度压痕附近的变形部位进行观察,获得滑移线 的形貌图;通过滑移线的长度方向与三维晶体结构的基面、柱面以及锥面进行匹配比对,结合位错滑移线的传播方向,所计算的不同滑移系的Schmid因子值以及滑移线之间相互交叉的角度,初步判断位错滑移类型,如图7所示;
5)、将样品杆设置于扫描电镜的扫描样品台上,然后将样品放置于样品杆上,先记录滑移线的长度方向,使滑移线长度方向垂直扫描电镜的扫描样品台倾转方向,通过倾转扫描样品台,统计滑移台阶的宽度变化,通过EBSD测定的晶体取向,获得理论上不同滑移类型的台阶宽度变化,然后与实验结果相对比,最终判断位错滑移类型。
下述的实施例2是在实施例1的基础上具体展开实施的,特此说明。
实施例2
通过以上描述的方法对β相区淬火态的Zr-4合金的{0001}取向的晶粒的位错滑移类型进行判定。
Zr-4合金(Zr-1.5Sn-0.2Fe-0.1Cr)具有非常低的热中子吸收截面,良好的力学性能和优良的耐腐蚀性,主要用于压水堆,沸水堆,重水堆中的燃料包壳材料。
首先通过线切割样品、研磨,化学轻微擦拭腐蚀和轻微的机械振动抛光等过程后制备出EBSD样品。其次,通过金相、扫描电子显微镜观察维氏硬度压头压入前后的形貌变化,EBSD测定晶体取向以及Schmid因子计算结果,如图8所示。从图8可以看出,基面滑移的Schmid因子大于锥面滑移大于柱面滑移,由于锥面的临界剪切应力很大以及柱面滑移的Schmid因子较小,所以基面滑移更容易开启;然后,结合滑移线的增值方向、维氏硬度压痕的受力方向、滑移方向和不同滑移线的交角(120°)综合判断,初步判断该滑移为基面滑移;并且通过倾转扫描样品台发现,滑移线台阶的宽度随着倾转角α增大而减小,与理 论的基面滑移台阶宽度变化相一致,最终判断该滑移类型为基面滑移,如图9。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种判断位错滑移类型的方法,其特征在于,具体步骤如下:
    1)、制备EBSD块状样品;
    2)、在样品表面标记要测定的区域,并测定该区域的晶体取向;
    3)、对要测定的区域的不同晶粒进行硬度测试,结合维氏压痕的几何应力分析,计算不同滑移开动时的Schmid因子值;
    4)、通过扫描电镜对压痕附近的变形部位进行观察,获得滑移线的形貌图;通过滑移线比对法初步判断位错滑移类型;
    5)、记录滑移线的长度方向,使滑移线长度方向垂直扫描样品台倾转方向,通过倾转扫描样品台,统计滑移台阶的宽度变化,通过EBSD测定的晶体取向,获得理论上不同滑移类型的台阶宽度变化,然后与实验结果相对比,最终判断出位错滑移类型。
  2. 按照权利要求1所述判断位错滑移类型的方法,其特征在于:步骤1)中,EBSD块状样品的制备方法为:先把样品在镶样机上镶样,然后依次用150#、320#、800#、2000#的水砂纸预磨,去除较深的划痕后,在洋绒布上进行机械抛光,抛光液为SiO 2的纳米悬浊液,抛光6-10分钟,得到镜面效果的光亮无痕的抛光面;然后进行蚀刻,用沾有酸的棉花擦拭试样品表面3-10秒钟,直至样品表面变亮;在自动抛磨机上进行振动抛光,抛光液为SiO 2的纳米悬浊液,抛光10分钟,最后得到镜面效果的光亮无痕的抛光面,依次使用清水和无水乙醇冲洗样品,最后干燥保存。
  3. 按照权利要求1所述判断位错滑移类型的方法,其特征在于:步骤2)中,在样品表面用维氏硬度标记要测定的区域,并用EBSD测定该区域的晶体取向。
  4. 按照权利要求1所述判断位错滑移类型的方法,其特征在于:步骤3) 中,通过维氏硬度计对要测定的区域的不同晶体取向进行硬度测试,记录压痕的对角线大小以及硬度值,所用维氏硬度计的砝码范围为:10-1000g。
  5. 按照权利要求1所述判断位错滑移类型的方法,其特征在于:步骤3)中,结合硬度测试结果、压痕的几何应力分析以及不同滑移开动时的Schmid因子值,对位错滑移类型进行第一次的初步判断,从而排除部分位错滑移类型。
  6. 按照权利要求1所述判断位错滑移类型的方法,其特征在于:步骤4)中,所述滑移线比对法为:通过滑移线的长度方向与三维晶体结构的基面、柱面以及锥面进行匹配比对,结合位错滑移线的传播方向、所计算的不同滑移系的Schmid因子值以及滑移线之间相互交叉的角度,初步判断位错滑移类型。
  7. 按照权利要求1所述判断位错滑移类型的方法,其特征在于:步骤5)中,在初步判断位错滑移类型后,将样品杆设置于扫描电镜的扫描样品台上,然后将样品放置于样品杆上,先记录滑移线的长度方向,使滑移线长度方向垂直扫描样品台倾转方向;所述样品杆的主体部分为圆柱体,该圆柱体下端设有与扫描样品台相配合的螺纹紧固件,圆柱体上端设有样品台,该样品台可为平面状或具有一定倾斜度的斜面。
  8. 按照权利要求7所述判断位错滑移类型的方法,其特征在于:所述样品台为不同角度的斜面时,可以增加扫描样品的倾转角度范围,使样品的倾斜角度范围是-90~90°,倾斜方向可以沿着X-Y平面和Y-Z以及X-Z平面倾斜或者同时倾斜。
PCT/CN2021/000088 2020-11-30 2021-04-14 一种判断位错滑移类型的方法 WO2022110509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011370476.6A CN112611661B (zh) 2020-11-30 2020-11-30 一种判断位错滑移类型的方法
CN202011370476.6 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110509A1 true WO2022110509A1 (zh) 2022-06-02

Family

ID=75228007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000088 WO2022110509A1 (zh) 2020-11-30 2021-04-14 一种判断位错滑移类型的方法

Country Status (2)

Country Link
CN (1) CN112611661B (zh)
WO (1) WO2022110509A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611661B (zh) * 2020-11-30 2022-04-12 中国科学院金属研究所 一种判断位错滑移类型的方法
CN113203763B (zh) * 2021-06-04 2023-07-04 哈尔滨工业大学 一种利用极图分析的滑移线快速精确标定方法
CN113484351A (zh) * 2021-07-07 2021-10-08 中国航发北京航空材料研究院 一种表征β锻钛合金锻件屈服强度各向异性的方法
CN115183726B (zh) * 2022-09-13 2022-11-22 太原理工大学 木构件间相对转角及水平摩擦滑移量的测量装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000424B2 (ja) * 2007-08-10 2012-08-15 一般財団法人電力中央研究所 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法
CN103175856A (zh) * 2013-03-17 2013-06-26 中国科学院苏州纳米技术与纳米仿生研究所 样品位错的扫描透射电镜成像方法
CN104569012A (zh) * 2015-01-19 2015-04-29 大连理工大学 一种确定多晶金属变形激活滑移系的方法
CN108333203A (zh) * 2018-02-09 2018-07-27 中国科学院地球化学研究所 一种原位检测矿物微区ebsd图像的方法
CN109142402A (zh) * 2018-09-28 2019-01-04 中国科学院金属研究所 一种多晶材料单个晶粒应力状态的tkd确定方法
CN110940686A (zh) * 2019-11-18 2020-03-31 中国科学院金属研究所 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法
CN112611661A (zh) * 2020-11-30 2021-04-06 中国科学院金属研究所 一种判断位错滑移类型的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784076B2 (en) * 2018-07-05 2020-09-22 Fei Company 3D defect characterization of crystalline samples in a scanning type electron microscope
CN110133022B (zh) * 2019-04-12 2021-12-21 中国科学院金属研究所 一种通过ebsd技术计算材料氧化膜底部晶面取向的方法
CN110940683A (zh) * 2019-11-18 2020-03-31 中国科学院金属研究所 通过维氏硬度计结合透射电镜实现原位压缩观察的方法
CN111999323A (zh) * 2020-08-13 2020-11-27 中国科学院金属研究所 一种镁合金再结晶晶粒微观取向演变的原位ebsd观察方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000424B2 (ja) * 2007-08-10 2012-08-15 一般財団法人電力中央研究所 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法
CN103175856A (zh) * 2013-03-17 2013-06-26 中国科学院苏州纳米技术与纳米仿生研究所 样品位错的扫描透射电镜成像方法
CN104569012A (zh) * 2015-01-19 2015-04-29 大连理工大学 一种确定多晶金属变形激活滑移系的方法
CN108333203A (zh) * 2018-02-09 2018-07-27 中国科学院地球化学研究所 一种原位检测矿物微区ebsd图像的方法
CN109142402A (zh) * 2018-09-28 2019-01-04 中国科学院金属研究所 一种多晶材料单个晶粒应力状态的tkd确定方法
CN110940686A (zh) * 2019-11-18 2020-03-31 中国科学院金属研究所 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法
CN112611661A (zh) * 2020-11-30 2021-04-06 中国科学院金属研究所 一种判断位错滑移类型的方法

Also Published As

Publication number Publication date
CN112611661B (zh) 2022-04-12
CN112611661A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022110509A1 (zh) 一种判断位错滑移类型的方法
Oliver et al. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
Andersson et al. In-situ SEM study of fatigue crack growth behaviour in IN718
Hay et al. Instrumented indentation testing
Uchic et al. Exploring specimen size effects in plastic deformation of Ni3 (Al, Ta)
WO2008096914A1 (en) Estimation of non-equibiaxial stress using instrumented indentation technique
CN110940686B (zh) 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法
CN108931544B (zh) 用于原位电子背散射衍射研究的样品夹持装置及测试方法
Sagadevan et al. Novel Analysis on the Influence of Tip Radius and Shape of the Nanoindenter on the Hardness of Materials
Useinov et al. Mutual consistency of hardness testing at micro-and nanometer scales
Fischer-Cripps et al. Factors affecting nanoindentation test data
Ridgway et al. The hardness and elastic modulus of some crystalline pharmaceutical materials
Fischer-Cripps Factors affecting nanoindentation test data
Ma et al. Effect of the spherical indenter tip assumption on the initial plastic yield stress
Popelar An investigation into the fracture of silicon die used in flip chip applications
Lee et al. Fracture strength measurement of silicon chips
Wang Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel
Xin et al. Quantitative characterization of the fracture surface of Si single crystals by confocal microscopy
CN115047216A (zh) 颗粒增强金属基复合材料磨损性能测试方法
CN111735405B (zh) 一种沥青胶结料微尺度应变的测试方法
US3435668A (en) Method of determining preferred orientation in metals
Tsai et al. Determination of silicon die strength
Shen et al. Prediction of residual stress components and their directions from pile-up morphology: An experimental study
Zhou et al. Study on the size effect of single crystal gallium oxide during the nanoindentation process
Soifer et al. Investigation of the local mechanical properties of potassium chloride single crystals by atomic force microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896029

Country of ref document: EP

Kind code of ref document: A1