CN110940686B - 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法 - Google Patents

通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法 Download PDF

Info

Publication number
CN110940686B
CN110940686B CN201911126572.3A CN201911126572A CN110940686B CN 110940686 B CN110940686 B CN 110940686B CN 201911126572 A CN201911126572 A CN 201911126572A CN 110940686 B CN110940686 B CN 110940686B
Authority
CN
China
Prior art keywords
ebsd
vickers hardness
indentation
twin
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911126572.3A
Other languages
English (en)
Other versions
CN110940686A (zh
Inventor
李阁平
张英东
袁福森
韩福洲
***·阿里
郭文斌
任杰
刘承泽
顾恒飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201911126572.3A priority Critical patent/CN110940686B/zh
Publication of CN110940686A publication Critical patent/CN110940686A/zh
Application granted granted Critical
Publication of CN110940686B publication Critical patent/CN110940686B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/2005Preparation of powder samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法。该方法主要通过对不同载荷的维氏硬度压痕几何分析计算,结合EBSD标定晶体取向和孪晶的功能,最终获得孪晶的临界分切应力。该方法计算过程如下步骤:先制备EBSD块状样品,通过化学擦拭腐蚀或者机械振动抛光保证样品表面的平整度;在金相显微镜和EBSD测定样品某一区域,并且用维氏硬度标记位置;然后通过不同载荷的维氏硬度对该区域进行硬度测试,直至某一载荷下,硬度压痕旁边出现孪晶,并且记录硬度压痕的对角线大小以及硬度数值;接着用EBSD标定这种孪晶的类型,最后通过该载荷下的硬度压痕几何分析计算结合Schmid因子计算,进而获得孪晶的临界分切应力。

Description

通过EBSD技术和维氏硬度计来计算孪晶临界分切应力的方法
技术领域
本发明属于材料分析领域,特别提供一种通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法。
背景技术
维氏硬度就是在一个规定的载荷下,用一个夹角为136°的金刚石正棱锥压头压入样品的外表面,保持一定时间后卸除载荷,通过测量对角线长度,获得压痕的几何关系,计算出压痕的表面积,进而求出压痕表面积的平均压力,该压力即为材料的维氏硬度值(HV)。
在一定载荷下,维氏硬度压头压入材料表面,那么等于材料受到压应力的作用,材料会发生变形,而变形最主要的两种方式是位错滑移和孪生。位错的滑动主要分为两种:位错绕割和切割。而孪生就是指晶体在切应力的作用下,晶体的一部分沿着某一个晶面和晶向相对于另一部分的晶体作相对的切变,即两部分的晶体以孪生面为对称面形成镜像对称。
孪生作为一种重要的变形方式,研究孪生的形成机制至关重要。而为了研究孪晶的形成机理,那么就必须获知孪晶的临界分切应力大小。目前对不同孪晶的临界分切应力测定主要通过VPSC等模型模拟获得,以及通过微悬臂梁压缩等实验测定。VPSC模型模拟的孪晶的临界分切应力数值不能反映实际临界分切应力的大小。微悬臂梁压缩等实验虽然可以较准确测定孪晶的临界分切应力,但是需要高端、昂贵的仪器去实现,成本很高,普及性不高。所以目前很难找到一种即实惠又简单方便的方法去测定孪晶的实际临界分切应力的大小。因此,寻求一种能够简单方便测定孪晶的临界分切应力的方法至关重要。
发明内容
本发明的目的是提供一种通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法。该方法简单有效,能够准确地获取孪晶的临界分切应力的方法。
本发明技术方案如下:
通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于:利用维氏硬度计结合EBSD技术,通过计算压痕的几何关系进而获得孪晶的临界分切应力的大小:先制备EBSD样品,在金相显微镜和EBSD测定样品某一区域,并且用维氏硬度标记位置;然后通过不同载荷的维氏硬度对该区域进行硬度测试,直至某一载荷下,硬度压痕旁边出现孪晶,记录硬度压痕的对角线大小以及硬度数值;接着用EBSD标定这种孪晶的类型,最后通过该载荷下的硬度压痕几何分析计算结合Schmid因子计算,进而获得孪晶的临界分切应力。
本发明所述通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于,具体步骤如下:
1)、制备EBSD块状样品,通过化学擦拭腐蚀或者机械振动抛光保证样品表面的平整度;
2)、用维氏硬度标记样品表面某一位置,通过金相显微镜、扫描电子显微镜和EBSD记录该区域的原始形貌和晶体取向;
3)、通过维氏硬度计对该区域进行硬度测定,更换不同大小的载荷(从10g到1000g),直至某一载荷下压痕旁边出现孪晶,记录压痕的对角线大小以及硬度值;
4)、通过EBSD测定该压痕所在晶体的取向,并根据压痕的几何关系获得导致孪晶形成的分力方向,结合EBSD标定的晶体结构,计算出该分力下孪晶的Schmid因子数值;结合EBSD标定晶体取向功能,可以准原位观察孪晶的形成过程,并且把测定孪晶的形成力带入EBSD标定出的晶体结构中,计算出Schmid因子
5)、根据压痕的几何关系获得导致孪晶形成的应力大小,结合Schmid因子计算结果,最终获得孪晶的临界分切应力。
其中,步骤1)可采用以下任一方法对样品表面进行处理:
方法一:
(1)预磨与抛光:采用150#、320#、800#、2000#的水砂纸依次预磨,去除较深的划痕后,在洋绒布上进行机械抛光,抛光液为SiO2的纳米悬浊液,抛光6-10分钟,最后得到镜面效果的光亮无痕的抛光面;
(2)蚀刻:用沾有酸的棉花轻轻快速擦拭样品表面3-10秒,直至样品表面变亮,依次使用清水和无水乙醇冲洗样品,最后干燥保存;
方法二:
先把样品在镶样机上镶样,然后用150#、320#、800#、2000#的水砂纸依次预磨,去除较深的划痕后,最后在自动抛磨机上进行振动抛光,抛光液为SiO2的纳米悬浊液,抛光0.5-1小时,得到镜面效果的光亮无痕的抛光面。
本发明的特点如下所示:
1、通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,通过调节维氏硬度计的砝码(10-1000g)大小,可以精准测定某种孪晶形成力的大小;
2、通过EBSD技术测定压痕所在晶体的取向,结合孪晶形成力的方向,能够计算出在该力作用下,孪晶的Schmid因子值;
3、该方法通过EBSD技术结合维氏硬度压痕的几何关系,建立了维氏硬度数值与孪晶的临界分切应力的互换关系模型,即可以简单、方便以及准确测定孪晶的临界分切应力的大小;
4、通过定时定速机械抛光的方法,可以逐渐去除表面材料并且逐步观察孪晶的形貌,以及通过扫描电镜逐步观察维氏压痕的尺寸大小变化,进而根据维氏硬度压痕的几何关系结合孪晶形貌获得孪晶形成的立体模型。
相关技术原理:
图1为维氏硬度压头三维示意图。通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的求解原理如图2所示:
从图2可知:维氏硬度压头为136°时,当载荷P加于其上时,垂直于棱锥体侧表面的压力为Pn,即Pn=Psin(136°/2)。那么棱锥体压入金属的表面积为:A=d^2/(2sin(136°/2)),即压头所导致的压力为σHV=Pn/A。维氏硬度的计算公式为:HV=2Psin(136°/2)/d^2。综上,可得维氏硬度与应力的相互关系推导公式:σHV=0.9272HV。
临界分切应力,又称Schmid定律,是指把滑移系或者孪晶开动所需要的最小分切应力称为临界分切应力。其计算公式为τ=σ*m。最后,结合计算的Schmid因子数值,把计算的应力σHV带入临界分切应力计算公式,可得孪晶的临界分切应力大小。
附图说明
为了更清楚地说明本发明的技术方案,下面将对本申请中所需要使用的附图作简单地介绍。
图1维氏硬度压头示意图。
图2维氏硬度压痕几何关系示意图。
图3 Zr-4合金维氏硬度压缩前后金相形貌图。
图4 Zr-4合金维氏硬度压缩后EBSD测定分析图。
图5 EBSD样品坐标系示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
实施例1
通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法包括以下步骤:
1)、EBSD样品的制备(保证样品的平整度):
先把样品在镶样机上镶样,然后用150#、320#、800#、2000#的水砂纸依次预磨,去除较深的划痕后,在自动抛磨机上进行振动抛光,抛光液为SiO2的纳米悬浊液,大约抛光1小时,最后得到镜面效果的光亮无痕的抛光面;
2)、用维氏硬度标记样品表面某一位置,通过金相显微镜、扫描电子显微镜和EBSD记录该区域的原始形貌和晶体取向;
3)、通过维氏硬度计对该区域进行硬度测定,更换不同大小的载荷(从10-1000g),直至压痕旁边出现孪晶,记录压痕的对角线大小以及硬度值;
4)、通过EBSD测定该压痕所在晶体的取向,并根据压痕的几何关系获得导致孪晶形成的分力方向,结合EBSD标定的晶体结构,计算出该分力下孪晶的Schmid因子数值;
5)、最后根据压痕的几何关系获得导致孪晶形成的应力大小,结合Schmid因子计算结果,最终获得孪晶的临界分切应力。
下述的实施例2是在实施例1的通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法的基础上具体展开实施的,特此说明。
实施例2
通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,通过以上描述的方法对β相区淬火态的Zr-4合金进行{11-21}孪晶的临界分切应力测定。
Zr-4合金的名义成分为Zr-1.5Sn-0.2Fe-0.1Cr,该合金具有非常低的热中子吸收截面,高硬度,延展性和优良的耐腐蚀性,主要用于压水堆,沸水堆,重水堆中的燃料包壳材料。
首先是EBSD样品的制备,通过线切割样品、研磨和机械振动抛光等过程后制备出EBSD样品。通过金相显微镜观察维氏硬度压头压入前后的形貌变化,如图3所示。500g的载荷下保持10秒,维氏硬度计测得的硬度大小为162HV,平均对角线长度为102μm。根据压痕几何计算出应力σHV为873MPa。然后在带有EBSD探头的扫描电镜下测定维氏硬度所在晶粒的取向以及孪晶的类型-{11-21}孪晶,结果如图4所示。从图4可以看出,{11-21}孪晶的形成垂直于压痕的边部,结合EBSD样品坐标系(如图5所示),把分力Pn带入晶体结构(图4)中,计算得出Schmid因子值为0.37。最后通过公式τ=σHV*m,获得{11-21}孪晶的临界分切应力为323MPa。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

1.通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于:首先利用维氏硬度计形成孪晶,记录此时压痕的对角线长度和维氏硬度值;再通过EBSD技术测定该压痕所在晶体的取向,并根据压痕的几何关系获得导致孪晶形成的分力方向,结合EBSD标定的晶体结构,计算出该分力下孪晶的Schmid因子数值;最后结合Schmid因子数值,获得孪晶的临界分切应力的大小。
2.按照权利要求1所述通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于:先制备EBSD样品,在金相显微镜和EBSD测定样品某一区域,并且用维氏硬度标记位置;然后通过不同载荷的维氏硬度对该区域进行硬度测试,直至某一载荷下,硬度压痕旁边出现孪晶,记录硬度压痕的对角线大小以及硬度数值。
3.按照权利要求2所述通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于,具体步骤如下:
1)、制备EBSD块状样品,通过化学擦拭腐蚀或者机械振动抛光保证样品表面的平整度;
2)、用维氏硬度标记样品表面某一位置,通过金相显微镜、扫描电子显微镜和EBSD记录该区域的原始形貌和晶体取向;
3)、通过维氏硬度计对该区域进行硬度测定,更换不同大小的载荷,直至某一载荷下压痕旁边出现孪晶,记录压痕的对角线大小以及硬度值;
4)、通过EBSD测定该压痕所在晶体的取向,并根据压痕的几何关系获得导致孪晶形成的分力方向,结合EBSD标定的晶体结构,计算出该分力下孪晶的Schmid因子数值;
5)、根据压痕的几何关系获得导致孪晶形成的应力大小,结合Schmid因子计算结果,最终获得孪晶的临界分切应力。
4.按照权利要求1所述通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于,步骤1)中,采用以下任一方法对样品表面进行处理:
方法一:
预磨与抛光:采用150#、320#、800#、2000#的水砂纸依次预磨,去除较深的划痕后,在洋绒布上进行机械抛光,抛光液为SiO2的纳米悬浊液,抛光6-10分钟,最后得到镜面效果的光亮无痕的抛光面;
蚀刻:用沾有酸的棉花轻轻快速擦拭样品表面3-10秒,直至样品表面变亮,依次使用清水和无水乙醇冲洗样品,最后干燥保存;
方法二:
先把样品在镶样机上镶样,然后用150#、320#、800#、2000#的水砂纸依次预磨,去除较深的划痕后,最后在自动抛磨机上进行振动抛光,抛光液为SiO2的纳米悬浊液,抛光0.5-1小时,得到镜面效果的光亮无痕的抛光面。
5.按照权利要求1所述通过EBSD技术和维氏硬度计来计算孪晶的临界分切应力的方法,其特征在于:步骤3)中,从10-1000g更换不同大小的载荷,直至某一载荷下压痕旁边出现孪晶。
CN201911126572.3A 2019-11-18 2019-11-18 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法 Expired - Fee Related CN110940686B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911126572.3A CN110940686B (zh) 2019-11-18 2019-11-18 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911126572.3A CN110940686B (zh) 2019-11-18 2019-11-18 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法

Publications (2)

Publication Number Publication Date
CN110940686A CN110940686A (zh) 2020-03-31
CN110940686B true CN110940686B (zh) 2021-12-21

Family

ID=69906899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911126572.3A Expired - Fee Related CN110940686B (zh) 2019-11-18 2019-11-18 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法

Country Status (1)

Country Link
CN (1) CN110940686B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653323B (zh) * 2020-05-11 2022-03-08 季华实验室 一种金属材料变形能力预估方法
CN111965205B (zh) * 2020-07-31 2024-01-12 中国航发北京航空材料研究院 镍基粉末高温合金原位试样微区观察sem+ebsd的制样方法
CN111999323A (zh) * 2020-08-13 2020-11-27 中国科学院金属研究所 一种镁合金再结晶晶粒微观取向演变的原位ebsd观察方法
CN112611661B (zh) * 2020-11-30 2022-04-12 中国科学院金属研究所 一种判断位错滑移类型的方法
CN113155655A (zh) * 2021-03-25 2021-07-23 金川集团股份有限公司 一种高温合金冶金粉末硬度值的测定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2591612Y (zh) * 2002-12-20 2003-12-10 北京有色金属研究总院 由微机实时控制的显微硬度测试***
CN101809179A (zh) * 2007-07-26 2010-08-18 通用汽车环球科技运作公司 形成具有改善的延展性的镁合金
CN203117042U (zh) * 2013-03-04 2013-08-07 江苏上汽汽车同步器厂 维氏硬度仪
CN104569012A (zh) * 2015-01-19 2015-04-29 大连理工大学 一种确定多晶金属变形激活滑移系的方法
CN105784523A (zh) * 2016-03-14 2016-07-20 沈阳航空航天大学 一种基于压痕试验的测试材料真实硬度值的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2591612Y (zh) * 2002-12-20 2003-12-10 北京有色金属研究总院 由微机实时控制的显微硬度测试***
CN101809179A (zh) * 2007-07-26 2010-08-18 通用汽车环球科技运作公司 形成具有改善的延展性的镁合金
CN203117042U (zh) * 2013-03-04 2013-08-07 江苏上汽汽车同步器厂 维氏硬度仪
CN104569012A (zh) * 2015-01-19 2015-04-29 大连理工大学 一种确定多晶金属变形激活滑移系的方法
CN105784523A (zh) * 2016-03-14 2016-07-20 沈阳航空航天大学 一种基于压痕试验的测试材料真实硬度值的装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation;R.Sánchez-Martín等;《Acta Materialia》;20140615;第71卷;第283-292页 *
Numerical study of stress distribution and size effect during AZ31 nanoindentation;Filip Siska等;《Computational Materials Science》;20170115;第126卷;第393-399页 *

Also Published As

Publication number Publication date
CN110940686A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN110940686B (zh) 通过ebsd技术和维氏硬度计来计算孪晶临界分切应力的方法
Maier et al. An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures
Lee et al. Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to the nanoindentation technique
Sawa et al. Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments
CN112611661B (zh) 一种判断位错滑移类型的方法
Kese et al. Nanoindentation method for measuring residual stress in brittle materials
Alekseeva et al. A study of hydrogen cracking in metals by the acoustoelasticity method
Zhang et al. Surface morphologies and corresponding hardness evolution during nanoscratching
Giuffre et al. Numerical and experimental investigation of ice adhesion using the blister test
Fang et al. Emission of partial dislocations in silicon under nanoindentation
Vlasovets et al. Effect of various factors on the measurement error of structural components of machine parts materials microhardness using computer vision methods
Wang et al. Surface residual stress measurement using curvature interferometry
Obiukwu et al. The effect of surface finish on the low cycle fatigue of low and medium carbon steel
Şahin et al. Mechanical characterization for β-Sn single crystals using nanoindentation tests
Yamagishi et al. Determination of the mechanical properties of extruded pure magnesium during tension–tension low-cycle fatigue using ultrasonic testing
Kalinichenko et al. Reference specimens of nonmetallic materials for penetrant nondestructive testing.
Charitidis et al. A study on time dependent properties of aluminum alloy by nanoindentation technique
Bosch et al. Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water
JP2002296125A (ja) 残留応力測定方法
Chai et al. Formation of fine granular area in a non‐defect matrix of austenitic stainless steel during very high cycle fatigue
Xin et al. Quantitative characterization of the fracture surface of Si single crystals by confocal microscopy
CN108254253A (zh) 材料或构件等效应力-应变关系测定方法
Kren Determination of the critical stress intensity factor of glass under conditions of elastic contact by the dynamic indentation method.
CN111982635A (zh) 一种材料内部夹杂的弹性模量测定方法
Maughan et al. Critical issues in MEMS property measurement and variation measured by nanoindentation: Error sources and uncertainty

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211221

CF01 Termination of patent right due to non-payment of annual fee