WO2022109906A1 - 三维血管的渲染合成方法、***及存储介质 - Google Patents

三维血管的渲染合成方法、***及存储介质 Download PDF

Info

Publication number
WO2022109906A1
WO2022109906A1 PCT/CN2020/131702 CN2020131702W WO2022109906A1 WO 2022109906 A1 WO2022109906 A1 WO 2022109906A1 CN 2020131702 W CN2020131702 W CN 2020131702W WO 2022109906 A1 WO2022109906 A1 WO 2022109906A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
dimensional
dimensional blood
synthesizing
interest
Prior art date
Application number
PCT/CN2020/131702
Other languages
English (en)
French (fr)
Inventor
王之元
刘广志
王鹏
徐磊
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2022109906A1 publication Critical patent/WO2022109906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the invention relates to the technical field of coronary medicine, in particular to a method, system and storage medium for rendering and synthesizing three-dimensional blood vessels.
  • Fractional flow reserve usually refers to the fractional myocardial blood flow reserve, which is defined as the ratio of the maximum blood flow that the diseased coronary artery can provide to the myocardium to the maximum blood flow when the coronary artery is completely normal. In the state, the ratio of blood flow can be replaced by the pressure value. That is, the measurement of the FFR value can be calculated by measuring the pressure at the distal stenosis of the coronary artery and the pressure at the proximal end of the coronary stenosis through the pressure sensor under the state of maximum coronary hyperemia.
  • the center line of the blood vessel is directly expanded to the periphery according to the radius, and a three-dimensional tubular object is finally obtained to simulate the blood vessel, but without processing, the obtained simulated blood vessel has a poor shape.
  • the lines are chaotic and complex, and the blood vessels are distorted, which is quite different from the blood vessels in the real world.
  • the invention provides a method, system and storage medium for rendering and synthesizing a three-dimensional blood vessel, so as to reduce the error brought by the imaging device to the blood vessel image during the scanning process, and eliminate the drawback that only pixels and mathematical logic are considered in the three-dimensional reconstruction calculation process.
  • the present application provides a method for rendering and synthesizing a three-dimensional blood vessel, including:
  • the above-mentioned method for rendering and synthesizing a three-dimensional blood vessel further includes: setting the grayscale threshold of the blood vessel of interest in the three-dimensional blood vessel to a different value that is different from the polygon mesh.
  • the above-mentioned method for rendering and synthesizing a three-dimensional blood vessel further includes: setting the grayscale threshold of the blood vessel segment of interest in the blood vessel of interest to be different from the polygon mesh and the blood vessel of interest. Different values of blood vessels.
  • the method for setting the grayscale threshold of the polygon mesh, the blood vessel of interest, and the blood vessel segment of interest includes:
  • Whether the blood vessel is stenotic can be judged according to the radius or/and the FFR value of the blood flow reserve fraction, and then the blood vessel segment of interest can be obtained;
  • the blood vessel segment of interest and the gray value of the blood vessel of interest are filled according to the mapping table.
  • the method for synthesizing three-dimensional blood vessels includes:
  • a three-dimensional blood vessel is synthesized according to the three-dimensional blood vessel centerline and the three-dimensional blood vessel radius.
  • the method for acquiring image information of at least two coronary two-dimensional angiography images with different shooting angles includes:
  • a two-dimensional angiography image of interest is selected from each group of the two-dimensional coronary angiography images.
  • the method for obtaining a three-dimensional blood vessel centerline according to the two-dimensional coronary angiography image includes:
  • each of the two-dimensional blood vessel centerlines is projected into a three-dimensional space to synthesize the three-dimensional blood vessel centerlines.
  • the method for synthesizing the three-dimensional blood vessel centerline and radius includes:
  • the two-dimensional blood vessel centerline is projected into the three-dimensional space
  • the three-dimensional blood vessel radius is obtained according to the two-dimensional blood vessel radius.
  • the method for extracting a two-dimensional blood vessel centerline from each of the two-dimensional coronary angiography images includes:
  • One of the blood vessel path lines is selected as the two-dimensional blood vessel centerline.
  • the above-mentioned method for rendering and synthesizing a three-dimensional blood vessel a method for obtaining a two-dimensional blood vessel contour line according to the blood vessel centerline, is characterized in that, comprising:
  • a preset contour line of the blood vessel is generated on both sides of the blood vessel center straight line;
  • the contour line of the straightened blood vessel is projected back onto the image from which the centerline of the two-dimensional blood vessel is extracted to obtain a two-dimensional blood vessel contour line.
  • the method for synthesizing a three-dimensional blood vessel according to the three-dimensional blood vessel centerline and the three-dimensional blood vessel radius includes:
  • Each point on the center line of the three-dimensional blood vessel is drawn in the three-dimensional space along the corresponding three-dimensional blood vessel radius to obtain a plurality of edge points, and the edge points are connected in sequence to obtain an approximate circle polygon;
  • Points on two adjacent polygons are connected in sequence in the form of right-angled triangles to obtain a three-dimensional blood vessel.
  • the present application provides a three-dimensional blood vessel rendering and synthesis system, including: a three-dimensional blood vessel synthesis device, a segmentation device, a gray value setting device, a downsampling device, an image processing device, and a mesh division device;
  • the three-dimensional blood vessel synthesis device is used to synthesize three-dimensional blood vessels
  • the segmentation device connected to the three-dimensional blood vessel synthesis device, is used to divide the three-dimensional space containing the three-dimensional blood vessels into two parts, including the three-dimensional blood vessel area and the rest area;
  • the gray value setting device is connected to the dividing device, and the mesh dividing device is connected to set the gray value of the remaining area to 0, and is used to set the gray value of the polygon mesh. degree threshold;
  • the down-sampling device connected to the three-dimensional blood vessel synthesis device, for down-sampling the three-dimensional blood vessel to obtain a down-sampled three-dimensional blood vessel;
  • the image processing device connected to the down-sampling device, is configured to perform smooth curve processing on the curve of the down-sampled three-dimensional blood vessel to obtain a smooth three-dimensional blood vessel;
  • the mesh dividing device is connected with the image processing device, and is used for separating a plurality of polygon meshes from the smooth three-dimensional blood vessel.
  • the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned method for rendering and synthesizing a three-dimensional blood vessel is implemented.
  • the present application provides a method for rendering and synthesizing a three-dimensional blood vessel, which can track the direction of the blood vessel, correct the spatial position of the image, and truly and intuitively express the three-dimensional information of the blood vessel.
  • FIG. 1 is a flowchart of an embodiment of a method for rendering and synthesizing a three-dimensional blood vessel according to the present application
  • Fig. 2 is the flow chart of S100 of this application.
  • FIG. 4 is a flowchart of S120 of the application.
  • Fig. 6 is the flow chart of S126 of this application.
  • FIG. 7 is a flowchart of another embodiment of the method for rendering and synthesizing a three-dimensional blood vessel according to the present application.
  • FIG. 9 is a structural block diagram of the three-dimensional blood vessel rendering and synthesis system of the present application.
  • the present application provides a method for rendering and synthesizing three-dimensional blood vessels, including:
  • S110 as shown in FIG. 3, acquiring image information of at least two coronary 2D angiography images with different shooting angles, including:
  • S111 acquiring at least two sets of two-dimensional coronary angiography image groups with different shooting angles
  • S112 read the image information of each group of coronary two-dimensional angiography image groups, including the shooting angle and detection distance;
  • S113 select a two-dimensional angiography image of interest from each group of coronary two-dimensional angiography images respectively.
  • S1215 extract at least one local blood vessel path line from each local blood vessel area map, including:
  • each local blood vessel area map take the blood vessel segment of interest as the foreground and other regions as the background, strengthen the foreground, and weaken the background to obtain a rough blood vessel map with strong contrast;
  • S1217 selecting a blood vessel path line as the two-dimensional blood vessel center line, including: if there are two or more blood vessel path lines, summing the time taken from the start point to the end point of each blood vessel path line; The vessel path line is used as the 2D vessel centerline.
  • obtaining a straightened blood vessel image according to the two-dimensional blood vessel center line including: straightening the two-dimensional blood vessel center line to obtain a blood vessel center straight line; along the blood vessel extension direction from the start point to the end point, dividing the local blood vessel area map into two parts x units, where x is a positive integer; the two-dimensional blood vessel center line of each unit is correspondingly set along the blood vessel center line; the correspondingly set image is a straightened blood vessel image.
  • S1265 moving the preset contour line of the blood vessel to the center of the blood vessel step by step, to obtain the contour line of the blood vessel after straightening, including: dividing the preset contour line of the blood vessel into y units, where y is a positive integer; There are z points on the preset contour line of each blood vessel; along the line perpendicular to the center of the blood vessel, the z points are moved to the center of the blood vessel by grading, and z points are generated, where z is a positive integer; set the RGB difference
  • the value threshold is the ⁇ RGB threshold .
  • the RGB value of the close point is compared with the RGB value of the point on the straight line of the blood vessel center for each close.
  • the close point is Stop straightly approaching the center of the blood vessel; obtain the approaching point as the contour point; the smooth curve formed by connecting the contour points in turn is the contour line of the blood vessel after straightening.
  • R represents the three-dimensional blood vessel radius
  • r 1 , r 2 , and rn represent the two-dimensional blood vessel radius of the first, second, and nth two-dimensional contrast images of interest, respectively.
  • the method further includes: S800 , in the three-dimensional blood vessel, the grayscale threshold of the blood vessel of interest is set to a different value different from the polygon mesh.
  • the grayscale threshold value of the blood vessel segment of interest in the blood vessel of interest is set to a different value that is different from the polygon mesh and the blood vessel of interest.
  • the method for setting the grayscale thresholds of the polygon mesh, the blood vessel of interest, and the blood vessel segment of interest includes:
  • the blood vessel segment of interest and the gray value of the blood vessel of interest are filled according to the mapping table.
  • the present application provides a three-dimensional blood vessel rendering and synthesis system, including: a three-dimensional blood vessel synthesis device 100, a segmentation device 200, a gray value setting device 300, a downsampling device 400, an image processing device 500, a grid The dividing device 600; the three-dimensional blood vessel synthesis device 100 is used for synthesizing the three-dimensional blood vessels; the segmentation device 200 is connected with the three-dimensional blood vessel synthesis device 100, and is used for dividing the three-dimensional space containing the three-dimensional blood vessels into two parts, including the three-dimensional blood vessel area and the rest area; the gray value The setting device 300 is connected to the segmentation device 200, and the mesh dividing device 600 is connected to set the gray value of the remaining area to 0, and is used to set the gray threshold value of the polygon mesh; the downsampling device 400 is connected to the three-dimensional blood vessel.
  • the synthesis device 100 is connected for down-sampling the three-dimensional blood vessels to obtain down-sampled three-dimensional blood vessels;
  • the image processing device 500 is connected to the down-sampling device 400 for performing smooth curve processing on the curves of the down-sampled three-dimensional blood vessels to obtain smooth three-dimensional blood vessels ;
  • the mesh dividing device 600 is connected to the image processing device 500 for separating a plurality of polygon meshes from the smooth three-dimensional blood vessels.
  • the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned method for rendering and synthesizing a three-dimensional blood vessel is implemented.
  • aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, various aspects of the present invention may be embodied in the form of an entirely hardware implementation, an entirely software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software aspects, It may be collectively referred to herein as a "circuit,” "module,” or “system.” Furthermore, in some embodiments, various aspects of the present invention may also be implemented in the form of a computer program product on one or more computer-readable media having computer-readable program code embodied thereon. Implementation of the method and/or system of embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or a combination thereof.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes volatile storage for storing instructions and/or data and/or non-volatile storage for storing instructions and/or data, such as a magnetic hard disk and/or a Move media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse, is optionally also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • a computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • computer program code for performing operations for various aspects of the invention may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages, such as The "C" programming language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network - including a local area network (LAN) or a wide area network (WAN) - or may be connected to an external computer (eg using an Internet service provider via Internet connection).
  • LAN local area network
  • WAN wide area network
  • These computer program instructions can also be stored on a computer readable medium, the instructions cause a computer, other programmable data processing apparatus, or other device to operate in a particular manner, whereby the instructions stored on the computer readable medium produce the An article of manufacture of instructions implementing the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • Computer program instructions can also be loaded on a computer (eg, a coronary artery analysis system) or other programmable data processing device to cause a series of operational steps to be performed on the computer, other programmable data processing device or other device to produce a computer-implemented process , such that instructions executing on a computer, other programmable apparatus, or other device provide a process for implementing the functions/acts specified in the flowchart and/or one or more block diagram blocks.
  • a computer eg, a coronary artery analysis system
  • other programmable data processing device to produce a computer-implemented process , such that instructions executing on a computer, other programmable apparatus, or other device provide a process for implementing the functions/acts specified in the flowchart and/or one or more block diagram blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Graphics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Software Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种三维血管的渲染合成方法、***及存储介质,包括:合成三维血管(S100);将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域(S200);将所述其余区域的灰度值设置为0(S300);对所述三维血管进行降采样,得到降采样三维血管(S400);对所述降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管(S500);从所述平滑的三维血管上分离出多个多边形网格(S600);设定所述多边形网格的灰度阈值(S700)。该方法可追踪血管走向,校正图像空间位置,直观表达出血管三维信息,方法结构简单,易于实现。

Description

三维血管的渲染合成方法、***及存储介质 技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种三维血管的渲染合成方法、***及存储介质。
背景技术
人体血液中的脂类及糖类物质在血管壁上的沉积将在血管壁上形成斑块,继而导致血管狭窄;特别是发生在心脏冠脉附近的血管狭窄将导致心肌供血不足,诱发冠心病、心绞痛等病症,对人类的健康造成严重威胁。据统计,我国现有冠心病患者约1100万人,心血管介入手术治疗患者数量每年增长大于10%。
冠脉造影CAG、计算机断层扫描CT等常规医用检测手段虽然可以显示心脏冠脉血管狭窄的严重程度,但是并不能准确评价冠脉的缺血情况。为提高冠脉血管功能评价的准确性,1993年Pijls提出了通过压力测定推算冠脉血管功能的新指标——血流储备分数(Fractional Flow Reserve,FFR),经过长期的基础与临床研究,FFR已成为冠脉狭窄功能性评价的金标准。
血流储备分数(FFR)通常是指心肌血流储备分数,定义为病变冠脉能为心肌提供的最大血流与该冠脉完全正常时最大供血流量之比,研究表明,在冠脉最大充血状态下,血流量的比值可以用压力值来代替。即FFR值的测量可在冠脉最大充血状态下,通过压力传感器对冠脉远端狭窄处的压力和冠脉狭窄近端压力进行测定继而计算得出。
现有技术中通过将血管的中心线直接按照半径向***做圆形扩展,用最终得到的一个三维形态的管状物来模拟血管,但不进行处理,得到的模拟血管形态较差,血管壁法线纷乱复杂,血管走向多失真,与真实世界中的血管差异较大。
发明内容
本发明提供了一种三维血管的渲染合成方法、***及存储介质,以降低成像设备在扫描过程中给血管图像带来的误差,消除在三维重建计算过程中只考虑像素及数学逻辑的弊端。
为实现上述目的,第一方面,本申请提供了一种三维血管的渲染合成方法,包括:
合成三维血管;
将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域;
将所述其余区域的灰度值设置为0;
对所述三维血管进行降采样,得到降采样三维血管;
对所述降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管;
从所述平滑的三维血管上分离出多个多边形网格;
设定所述多边形网格的灰度阈值。
可选地,上述的三维血管的渲染合成方法,还包括:在所述三维血管中将感兴趣的血管的灰度阈值设定为区别于所述多边形网格的不同数值。
可选地,上述的三维血管的渲染合成方法,还包括:将所述感兴趣的血管中的感兴趣的血管段的灰度阈值设定为区别于所述多边形网格以及所述感兴趣的血管的不同数值。
可选地,上述的三维血管的渲染合成方法,所述设定所述多边形网格、所述感兴趣的血管、所述感兴趣的血管段的灰度阈值的方法包括:
设定半径或/和血流储备分数FFR值对应的灰度阈值,生成映射表;
根据半径或/和血流储备分数FFR值可以判断血管是否狭窄,进而得到感兴趣的血管段;
根据所述感兴趣的血管段获得所述感兴趣的血管;
所述感兴趣的血管段以及所述感兴趣的血管的灰度值依据映射表填充。
可选地,上述的三维血管的渲染合成方法,所述合成三维血管的方法包括:
获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;
根据所述冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径;
依据所述三维血管中心线和所述三维血管半径合成三维血管。
可选地,上述的三维血管的渲染合成方法,所述获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息的方法包括:
获取至少两组拍摄角度不同的冠状动脉二维造影图像组;
读取每组所述冠状动脉二维造影图像组的图像信息,包括拍摄角度和探测距离;
根据所述探测距离,分别从每组所述冠状动脉二维造影图像中选取一幅感兴趣的二维造影图像。
可选地,上述的三维血管的渲染合成方法,所述根据所述冠状动脉二维造影图像获取三维血管中心线的方法包括:
从每幅所述感兴趣的二维造影图像中提取一条二维血管中心线;
根据每幅所述冠状动脉二维造影图像的拍摄角度,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线。
可选地,上述的三维血管的渲染合成方法,所述根据每幅所述冠状动脉二维造影图像的图像信息,包括拍摄角度和探测距离,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线和半径的方法包括:
将放射源投影到所述三维空间内形成放射点;
所述二维血管中心线投影到三维空间内;
所有三维空间内的点均与所述放射点连线,会产生一系列的交叉点;
将所述交叉点依次连接,得到所述三维血管中心线;
根据所述二维血管中心线获取二维血管轮廓线;
根据所述二维血管轮廓线获取每幅所述感兴趣的二维造影图像中的二维血管半径;
根据所述二维血管半径获取所述三维血管半径。
可选地,上述的三维血管的渲染合成方法,所述分别从每幅所述冠状动脉二维造影图像中提取一条二维血管中心线的方法包括:
读取冠状动脉二维造影图像;
获取感兴趣的血管段;
拾取所述感兴趣的血管段的起始点、种子点和结束点;
分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;
从每个所述局部血管区域图中提取至少一条血管局部路径线;
将每个所述局部血管区域图上相对应的血管局部路径线连接,获得至少一条所述血管路径线;
选取一条所述血管路径线作为所述二维血管中心线。
可选地,上述的三维血管的渲染合成方法,根据所述血管中心线获取二维血管轮廓线的方法,其特征在于,包括:
根据冠状动脉二维造影图像提取二维血管中心线;
根据所述二维血管中心线,获得拉直血管图像,;
在所述拉直血管图像上,设定血管直径阈值D
根据所述D ,在血管中心直线两侧生成血管预设轮廓线;
将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;
将所述拉直后血管的轮廓线投射回提取所述二维血管中心线的图像上,获 得二维血管轮廓线。
可选地,上述的三维血管的渲染合成方法,所述依据所述三维血管中心线和所述三维血管半径合成三维血管的方法包括:
每个所述三维血管中心线上的点,均沿着对应的三维血管半径在所述三维空间内画图,得到多个边缘点,将所述边缘点依次连接,得到一个近似圆的多边形;
将相邻两个所述多边形上的点按照直角三角形的形式依次连接,得到三维血管。
第二方面,本申请提供了一种三维血管的渲染合成***,包括:三维血管合成装置、分割装置、灰度值设置装置、降采样装置、图像处理装置、网格划分装置;
所述三维血管合成装置,用于合成三维血管;
所述分割装置,与所述三维血管合成装置连接,用于将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域;
所述灰度值设置装置,与所述分割装置连接,所述网格划分装置连接,用于将所述其余区域的灰度值设置为0,以及用于设定所述多边形网格的灰度阈值;
所述降采样装置,与所述三维血管合成装置连接,用于对所述三维血管进行降采样,得到降采样三维血管;
所述图像处理装置,与所述降采样装置连接,用于对所述降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管;
所述网格划分装置,与所述图像处理装置连接,用于从所述平滑的三维血管上分离出多个多边形网格。
第三方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行 时实现上述的三维血管的渲染合成方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了一种三维血管的渲染合成方法,可追踪血管走向,校正图像空间位置,真实直观表达出血管三维信息。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
下面对附图标记进行说明:
图1为本申请的三维血管的渲染合成方法的一个实施例的流程图;
图2为本申请的S100的流程图;
图3为本申请的S110的流程图;
图4为本申请的S120的流程图;
图5为本申请的S121的流程图;
图6为本申请的S126的流程图;
图7为本申请的三维血管的渲染合成方法的另一实施例的流程图;
图8为本申请的S800的流程图;
图9为本申请的三维血管的渲染合成***的结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
实施例1:
如图1所示,本申请提供了一种三维血管的渲染合成方法,包括:
S100,如图2所示,合成三维血管,包括:
S110,如图3所示,获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息,包括:
S111,获取至少两组拍摄角度不同的冠状动脉二维造影图像组;
S112,读取每组冠状动脉二维造影图像组的图像信息,包括拍摄角度和探测距离;
S113,根据探测距离,分别从每组冠状动脉二维造影图像中选取一幅感兴趣的二维造影图像。
S120,如图4所示,根据冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径,包括:
S121,如图5所示,从每幅感兴趣的二维造影图像中提取一条二维血管中心线,包括:
S1211,读取冠状动脉二维造影图像;
S1212,获取感兴趣的血管段;
S1213,拾取感兴趣的血管段的起始点、种子点和结束点;
S1214,分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;
S1215,从每个局部血管区域图中提取至少一条血管局部路径线,包括:
A)在每幅局部血管区域图中,以感兴趣的血管段作为前景,其他区域作为背景,强化前景,弱化背景,得到对比强烈的粗略血管图;
B)对粗略血管图做网格划分,沿着起始点至结束点方向,提取至少一条血管局部路径线,包括:对粗略血管图进行网格划分;沿着起始点至结束点的血管延伸方向,搜索起始点与周边n个网格上的交叉点的最短时间路径作为第二个点,搜索第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;按照搜索顺序,从起始点至结束点的血管延伸方向连线,获得至少一条血管局部路径线。
S1216,将每个局部血管区域图上相对应的血管局部路径线连接,获得至少一条血管路径线;
S1217,选取一条血管路径线作为二维血管中心线,包括:如果血管路径线为两条或两条以上,则对每条血管路径线从起始点至结束点所用的时间求和;取用时最少的血管路径线作为二维血管中心线。
S122,将放射源投影到三维空间内形成放射点;
S123,二维血管中心线投影到三维空间内;
S124,所有三维空间内的点均与放射点连线,会产生一系列的交叉点;
S125,将交叉点依次连接,得到三维血管中心线;
S126,如图6所示,根据二维血管中心线获取二维血管轮廓线,包括:
S1261,根据冠状动脉二维造影图像提取二维血管中心线;
S1262,根据二维血管中心线,获得拉直血管图像,包括:将二维血管中心线拉直,获得血管中心直线;沿着起始点至结束点的血管延伸方向,将局部血管区域图分为x个单元,其中x为正整数;将每个单元的二维血管中心线沿着血管中心直线对应设置;对应设置后的图像为拉直血管图像。
S1263,在拉直血管图像上,设定血管直径阈值D
S1264,根据D ,在血管中心直线两侧生成血管预设轮廓线;
S1265,将血管预设轮廓线向血管中心直线逐级靠拢,获取拉直后血管的轮廓线,包括:将血管预设轮廓线分成y个单元,其中y为正整数;获取每个单元的位于每条血管预设轮廓线上的z个点;沿着垂直于血管中心直线方向,将z个点分别向血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;设定RGB差值阈值为ΔRGB ,沿着垂直于血管中心直线方向,每次靠拢均将靠拢点的RGB值与血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB 时,则靠拢点停止向血管中心直线靠拢;获取靠拢点作为轮廓点;依次连接轮廓点形成的平滑曲线即为拉直后血管的轮廓线。
S1266,将拉直后血管的轮廓线投射回提取二维血管中心线的图像上,获得二维血管轮廓线。
S127,根据二维血管轮廓线获取每幅感兴趣的二维造影图像中的二维血管半径;
S128,根据二维血管半径获取三维血管半径,具体公式为:
Figure PCTCN2020131702-appb-000001
其中,R表示三维血管半径,r 1、r 2、r n分别表示第一幅、第二幅、第n幅感兴趣的二维造影图像的二维血管半径。
本申请常采用两个角度差为30°及以上的两幅二维造影图像进行三维血管合成,因此在这种情况下,
Figure PCTCN2020131702-appb-000002
S130,依据三维血管中心线和三维血管半径合成三维血管,包括:每个三维血管中心线上的点,均沿着对应的三维血管半径在三维空间内画图,得到多个边缘点,将边缘点依次连接,得到一个近似圆的多边形;将相邻两个多边形上的点按照直角三角形的形式依次连接,得到三维血管。
S200,将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域;
S300,将其余区域的灰度值设置为0;
S400,对三维血管进行降采样,得到降采样三维血管;
S500,对降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管;
S600,从平滑的三维血管上分离出多个多边形网格;
S700,设定多边形网格的灰度阈值。
实施例2:
如图7所示,在实施例1的基础上,还包括:S800,在三维血管中将感兴趣的血管的灰度阈值设定为区别于多边形网格的不同数值。
进一步地,S800中,将感兴趣的血管中的感兴趣的血管段的灰度阈值设定为区别于多边形网格以及感兴趣的血管的不同数值。
如图8所示,本申请的一个实施例中,S800中,设定多边形网格、感兴趣的血管、感兴趣的血管段的灰度阈值的方法包括:
S810,设定半径或/和血流储备分数FFR值对应的灰度阈值,生成映射表;
S820,根据半径或/和血流储备分数FFR值可以判断血管是否狭窄,进而得到感兴趣的血管段;
S830,根据感兴趣的血管段获得感兴趣的血管;
S840,感兴趣的血管段以及感兴趣的血管的灰度值依据映射表填充。
如图9所示,本申请提供了一种三维血管的渲染合成***,包括:三维血管合成装置100、分割装置200、灰度值设置装置300、降采样装置400、图像处理装置500、网格划分装置600;三维血管合成装置100用于合成三维血管;分割装置200与三维血管合成装置100连接,用于将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域;灰度值设置装置300,与分割装置200连接,网格划分装置600连接,用于将其余区域的灰度值设置为0,以及用于设定多边形网格的灰度阈值;降采样装置400与三维血管合成装置100连接,用于对三维血管进行降采样,得到降采样三维血管;图像处理装置500 与降采样装置400连接,用于对降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管;网格划分装置600与图像处理装置500连接,用于从平滑的三维血管上分离出多个多边形网格。
第三方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的三维血管的渲染合成方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为***、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“***”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或***的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作***执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或***的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者 任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析***)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种三维血管的渲染合成方法,其特征在于,包括:
    合成三维血管;
    将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域;
    将所述其余区域的灰度值设置为0;
    对所述三维血管进行降采样,得到降采样三维血管;
    对所述降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管;
    从所述平滑的三维血管上分离出多个多边形网格;
    设定所述多边形网格的灰度阈值。
  2. 根据权利要求1所述的三维血管的渲染合成方法,其特征在于,还包括:在所述三维血管中将感兴趣的血管的灰度阈值设定为区别于所述多边形网格的不同数值。
  3. 根据权利要求2所述的三维血管的渲染合成方法,其特征在于,还包括:将所述感兴趣的血管中的感兴趣的血管段的灰度阈值设定为区别于所述多边形网格以及所述感兴趣的血管的不同数值。
  4. 根据权利要求3所述的三维血管的渲染合成方法,其特征在于,所述设定所述多边形网格、所述感兴趣的血管、所述感兴趣的血管段的灰度阈值的方法包括:
    设定半径或/和血流储备分数FFR值对应的灰度阈值,生成映射表;
    根据半径或/和血流储备分数FFR值可以判断血管是否狭窄,进而得到感兴趣的血管段;
    根据所述感兴趣的血管段获得所述感兴趣的血管;
    所述感兴趣的血管段以及所述感兴趣的血管的灰度值依据映射表填充。
  5. 根据权利要求1所述的三维血管的渲染合成方法,其特征在于,所述合 成三维血管的方法包括:
    获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;
    根据所述冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径;
    依据所述三维血管中心线和所述三维血管半径合成三维血管。
  6. 根据权利要求5所述的三维血管的渲染合成方法,其特征在于,所述获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息的方法包括:
    获取至少两组拍摄角度不同的冠状动脉二维造影图像组;
    读取每组所述冠状动脉二维造影图像组的图像信息,包括拍摄角度和探测距离;
    根据所述探测距离,分别从每组所述冠状动脉二维造影图像中选取一幅感兴趣的二维造影图像。
  7. 根据权利要求6所述的三维血管的渲染合成方法,其特征在于,所述根据所述冠状动脉二维造影图像获取三维血管中心线的方法包括:
    从每幅所述感兴趣的二维造影图像中提取一条二维血管中心线;
    根据每幅所述冠状动脉二维造影图像的拍摄角度,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线。
  8. 根据权利要求7所述的三维血管的渲染合成方法,其特征在于,所述根据每幅所述冠状动脉二维造影图像的图像信息,包括拍摄角度和探测距离,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线和半径的方法包括:
    将放射源投影到所述三维空间内形成放射点;
    所述二维血管中心线投影到三维空间内;
    所有三维空间内的点均与所述放射点连线,会产生一系列的交叉点;
    将所述交叉点依次连接,得到所述三维血管中心线;
    根据所述二维血管中心线获取二维血管轮廓线;
    根据所述二维血管轮廓线获取每幅所述感兴趣的二维造影图像中的二维血管半径;
    根据所述二维血管半径获取所述三维血管半径。
  9. 根据权利要求7所述的三维血管的渲染合成方法,其特征在于,所述分别从每幅所述冠状动脉二维造影图像中提取一条二维血管中心线的方法包括:
    读取冠状动脉二维造影图像;
    获取感兴趣的血管段;
    拾取所述感兴趣的血管段的起始点、种子点和结束点;
    分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;
    从每个所述局部血管区域图中提取至少一条血管局部路径线;
    将每个所述局部血管区域图上相对应的血管局部路径线连接,获得至少一条所述血管路径线;
    选取一条所述血管路径线作为所述二维血管中心线。
  10. 根据权利要求9所述的三维血管的渲染合成方法,其特征在于,根据所述血管中心线获取二维血管轮廓线的方法,其特征在于,包括:
    根据冠状动脉二维造影图像提取二维血管中心线;
    根据所述二维血管中心线,获得拉直血管图像,;
    在所述拉直血管图像上,设定血管直径阈值D
    根据所述D ,在血管中心直线两侧生成血管预设轮廓线;
    将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;
    将所述拉直后血管的轮廓线投射回提取所述二维血管中心线的图像上,获 得二维血管轮廓线。
  11. 根据权利要求10所述的三维血管的渲染合成方法,其特征在于,所述依据所述三维血管中心线和所述三维血管半径合成三维血管的方法包括:
    每个所述三维血管中心线上的点,均沿着对应的三维血管半径在所述三维空间内画图,得到多个边缘点,将所述边缘点依次连接,得到一个近似圆的多边形;
    将相邻两个所述多边形上的点按照直角三角形的形式依次连接,得到三维血管。
  12. 一种三维血管的渲染合成***,用于权利要求1~11任一项所述的三维血管的渲染合成方法,其特征在于,包括:三维血管合成装置、分割装置、灰度值设置装置、降采样装置、图像处理装置、网格划分装置;
    所述三维血管合成装置,用于合成三维血管;
    所述分割装置,与所述三维血管合成装置连接,用于将含有三维血管的三维空间分成两部分,包括三维血管区域和其余区域;
    所述灰度值设置装置,与所述分割装置连接,所述网格划分装置连接,用于将所述其余区域的灰度值设置为0,以及用于设定所述多边形网格的灰度阈值;
    所述降采样装置,与所述三维血管合成装置连接,用于对所述三维血管进行降采样,得到降采样三维血管;
    所述图像处理装置,与所述降采样装置连接,用于对所述降采样三维血管的曲线进行平滑曲线处理,得到平滑的三维血管;
    所述网格划分装置,与所述图像处理装置连接,用于从所述平滑的三维血管上分离出多个多边形网格。
  13. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现 权利要求1~11任一项所述的三维血管的渲染合成方法。
PCT/CN2020/131702 2020-11-25 2020-11-26 三维血管的渲染合成方法、***及存储介质 WO2022109906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011337603.2A CN112419462B (zh) 2020-11-25 2020-11-25 三维血管的渲染合成方法、***及存储介质
CN202011337603.2 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022109906A1 true WO2022109906A1 (zh) 2022-06-02

Family

ID=74843324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131702 WO2022109906A1 (zh) 2020-11-25 2020-11-26 三维血管的渲染合成方法、***及存储介质

Country Status (2)

Country Link
CN (1) CN112419462B (zh)
WO (1) WO2022109906A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115546154A (zh) * 2022-10-11 2022-12-30 数坤(北京)网络科技股份有限公司 图像处理方法、装置、计算设备及存储介质
CN116645383A (zh) * 2023-07-27 2023-08-25 天津恒宇医疗科技有限公司 基于偏折角的感兴趣血管段路径优化方法及***
CN117058328A (zh) * 2023-10-11 2023-11-14 杭州脉流科技有限公司 冠状动脉血管树分级方法、设备、存储介质和程序产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049065A1 (en) * 1996-06-19 1997-12-24 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US7024027B1 (en) * 2001-11-13 2006-04-04 Koninklijke Philips Electronics N.V. Method and apparatus for three-dimensional filtering of angiographic volume data
CN107767435A (zh) * 2016-08-19 2018-03-06 中国科学院深圳先进技术研究院 一种血管管腔结构重建方法
CN110490040A (zh) * 2019-05-30 2019-11-22 浙江理工大学 一种识别dsa冠状动脉图像中局部血管狭窄程度的方法
CN110889896A (zh) * 2019-11-11 2020-03-17 苏州润迈德医疗科技有限公司 获取血管狭窄病变区间及三维合成方法、装置和***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461138B (zh) * 2018-09-29 2020-10-27 深圳睿心智能医疗科技有限公司 参数计算方法、***、可读存储介质及计算机设备
CN110287956B (zh) * 2019-06-13 2021-05-25 北京理工大学 血管中心线自动匹配方法及装置
CN111161342B (zh) * 2019-12-09 2023-08-29 杭州脉流科技有限公司 基于冠脉造影图像获取血流储备分数的方法、装置、设备、***及可读存储介质
CN111680447B (zh) * 2020-04-21 2023-11-17 深圳睿心智能医疗科技有限公司 血流特征预测方法、装置、计算机设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049065A1 (en) * 1996-06-19 1997-12-24 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US7024027B1 (en) * 2001-11-13 2006-04-04 Koninklijke Philips Electronics N.V. Method and apparatus for three-dimensional filtering of angiographic volume data
CN107767435A (zh) * 2016-08-19 2018-03-06 中国科学院深圳先进技术研究院 一种血管管腔结构重建方法
CN110490040A (zh) * 2019-05-30 2019-11-22 浙江理工大学 一种识别dsa冠状动脉图像中局部血管狭窄程度的方法
CN110889896A (zh) * 2019-11-11 2020-03-17 苏州润迈德医疗科技有限公司 获取血管狭窄病变区间及三维合成方法、装置和***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115546154A (zh) * 2022-10-11 2022-12-30 数坤(北京)网络科技股份有限公司 图像处理方法、装置、计算设备及存储介质
CN115546154B (zh) * 2022-10-11 2024-02-06 数坤科技股份有限公司 图像处理方法、装置、计算设备及存储介质
CN116645383A (zh) * 2023-07-27 2023-08-25 天津恒宇医疗科技有限公司 基于偏折角的感兴趣血管段路径优化方法及***
CN116645383B (zh) * 2023-07-27 2023-11-03 天津恒宇医疗科技有限公司 基于偏折角的感兴趣血管段路径优化方法及***
CN117058328A (zh) * 2023-10-11 2023-11-14 杭州脉流科技有限公司 冠状动脉血管树分级方法、设备、存储介质和程序产品
CN117058328B (zh) * 2023-10-11 2024-01-09 杭州脉流科技有限公司 冠状动脉血管树分级方法、设备、存储介质和程序产品

Also Published As

Publication number Publication date
CN112419462B (zh) 2024-07-02
CN112419462A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021196536A1 (zh) 精确提取血管中心线的方法、装置、分析***和存储介质
WO2022109906A1 (zh) 三维血管的渲染合成方法、***及存储介质
US9375191B2 (en) Method and apparatus for determining three-dimensional reconstruction of an object
WO2021092997A1 (zh) 获取血管狭窄病变区间及三维合成方法、装置和***
WO2022109903A1 (zh) 三维血管合成方法、***及冠状动脉分析***和存储介质
JP6912168B2 (ja) 3d+時間再構成を改良する方法および装置
WO2021097817A1 (zh) 根据血管中心线获取血管轮廓线的方法和装置
WO2021097820A1 (zh) 具有狭窄病变区间的血管三维建模方法、装置和***
WO2022109905A1 (zh) 调节血管轮廓及中心线的方法及存储介质
US11017531B2 (en) Shell-constrained localization of vasculature
JP7049402B2 (ja) プロセッサ装置の作動方法
WO2021097821A1 (zh) 从冠状动脉二维造影图像中提取血管中心线的方法和装置
WO2022109902A1 (zh) 三维血管中心线合成方法、***及存储介质
WO2021087967A1 (zh) 基于生理参数获取血管评定参数的方法、装置及存储介质
CN112669449A (zh) 基于3d重建技术的cag和ivus精准联动分析方法及***
CN112151180B (zh) 具有狭窄病变的血管数学模型的合成方法和装置
WO2022109904A1 (zh) 二维图像选取及三维血管合成的方法和存储介质
WO2022109907A1 (zh) 精确获取狭窄病变区间的方法及存储介质
CN112116711B (zh) 用于流体力学分析的圆台血管数学模型的合成方法和装置
JP6726714B2 (ja) 血管内プローブマーカを検出するためのシステムの作動方法、及び血管造影データと、血管に関して取得された血管内データとを重ね合わせ登録するためのシステムの作動方法
JP6748370B2 (ja) 生体モデル生成装置、生体モデル生成方法、および生体モデル生成プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962797

Country of ref document: EP

Kind code of ref document: A1