WO2021087967A1 - 基于生理参数获取血管评定参数的方法、装置及存储介质 - Google Patents

基于生理参数获取血管评定参数的方法、装置及存储介质 Download PDF

Info

Publication number
WO2021087967A1
WO2021087967A1 PCT/CN2019/116664 CN2019116664W WO2021087967A1 WO 2021087967 A1 WO2021087967 A1 WO 2021087967A1 CN 2019116664 W CN2019116664 W CN 2019116664W WO 2021087967 A1 WO2021087967 A1 WO 2021087967A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
flow velocity
dimensional
unit
coronary
Prior art date
Application number
PCT/CN2019/116664
Other languages
English (en)
French (fr)
Inventor
刘广志
龚艳君
李建平
易铁慈
郑博
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Priority to EP19951826.7A priority Critical patent/EP4056109A4/en
Priority to JP2022525373A priority patent/JP7437077B2/ja
Publication of WO2021087967A1 publication Critical patent/WO2021087967A1/zh
Priority to US17/730,578 priority patent/US20220261997A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to the technical field of coronary arteries, in particular to a method, a device, a coronary artery analysis system and a computer storage medium for obtaining coronary artery vessel evaluation parameters based on physiological parameters.
  • cardiovascular disease has become the "number one killer" of human health.
  • hemodynamics to analyze the physiology and pathological behavior of cardiovascular diseases has also become a very important means for the diagnosis of cardiovascular diseases.
  • Blood flow and velocity are very important parameters of hemodynamics. How to accurately and conveniently measure blood flow and velocity has become the focus of research by the majority of researchers.
  • Coronary vascular evaluation parameters include: coronary artery diastolic blood flow velocity CAIFR, and coronary diastolic microcirculation resistance index CAIFMR, etc.; however, due to different vital signs of different people, the evaluation criteria of normal values are slightly different, such as : The myocardial microcirculation function of the elderly is poor, and the blood flow velocity is generally lower than that of the young. If the industry general evaluation standard is adopted, the blood flow velocity used will be higher than the actual value, resulting in the underestimation of CAIFMR, etc., and reducing the measurement of CAIFMR. Accuracy.
  • the present invention provides a method, a device, a coronary artery analysis system and a computer storage medium for measuring and obtaining coronary artery vascular evaluation parameters based on physiological parameters, so as to solve the different vital signs of different groups of people, resulting in slight differences in the evaluation criteria of normal values, resulting in slight differences in the evaluation criteria of normal values.
  • the present application provides a method for obtaining coronary vascular evaluation parameters based on physiological parameters, including:
  • the coronary vascular assessment parameters are obtained.
  • the aforementioned method for obtaining coronary artery vascular assessment parameters based on physiological parameters where the coronary artery assessment parameter is the diastolic microcirculation resistance index CAIFMR, which includes:
  • the time period corresponding to the v max is the diastolic period, and the average aortic diastolic pressure is obtained according to the aortic pressure waveform;
  • P a1 , P a2 , P aj represent the aortic pressure values corresponding to the first point, second point, and j-th point in the diastolic phase on the aortic pressure waveform,
  • j represents The number of pressure points contained in the aortic pressure waveform during diastole,
  • v max represents the maximum blood flow velocity during diastole, which is obtained by selecting the maximum value from all blood flow velocities v;
  • k a ⁇ b
  • a represents the characteristic value of diabetes
  • B represents the characteristic value of hypertension, and
  • c represents gender.
  • the patient's blood pressure value is greater than or equal to 90mmHg, then 1 ⁇ b ⁇ 1.5; if the patient's blood pressure value is less than 90mmHg, then 0.5 ⁇ b ⁇ 1;
  • the method for obtaining blood flow velocity includes:
  • the blood flow velocity is solved.
  • the method for reading a set of two-dimensional coronary angiography images of at least one body position includes:
  • the two-dimensional coronary angiography image group of at least one body position is read through the storage device.
  • the above-mentioned method for obtaining coronary artery vascular evaluation parameters based on physiological parameters the method for extracting a blood vessel segment of interest from the set of two-dimensional coronary angiography images includes:
  • the method for extracting the center line of the blood vessel segment includes:
  • the center line of the blood vessel segment is extracted.
  • the method for extracting the centerline of the blood vessel segment along the blood vessel skeleton further includes:
  • the blood vessel centerline is regenerated along the blood vessel skeleton.
  • the time for the contrast agent in any two frames of two-dimensional coronary angiography images to flow through the blood vessel segment is made difference, and the difference is ⁇ t, And make the difference to the segmented center line, and the difference is ⁇ L;
  • the method for solving the blood flow velocity according to the ratio of the ⁇ L to the ⁇ t includes:
  • the coronary angiography image when the contrast agent flows to the entrance of the coronary artery, that is, the first point of the blood vessel segment is taken as the first frame of image
  • the coronary angiography image when the contrast agent flows to the end point of the blood vessel segment is taken as the Nth Frame image
  • the time difference is ⁇ t 1 ,..., ⁇ t b ,..., ⁇ t a ,..., ⁇ t N-1 ;
  • the center line length difference is ⁇ L 1 ,..., ⁇ L b ,..., ⁇ L a ,... , ⁇ L N-1 ;
  • v ⁇ L/ ⁇ t
  • v represents the blood flow velocity
  • the images from the Nth frame to the N-1th frame are obtained respectively,..., the Nbth frame,..., the Nath frame,..., the first
  • the blood flow velocity of the frame image is v 1 , ..., v b , ..., v a , ..., v N-1 .
  • the time for the contrast agent in any two frames of two-dimensional coronary angiography images to flow through the blood vessel segment is made difference, and the difference is ⁇ t, And make the difference to the segmented center line, and the difference is ⁇ L;
  • the method for solving the blood flow velocity according to the ratio of the ⁇ L to the ⁇ t includes:
  • v ⁇ L/ ⁇ t
  • v represents the blood flow velocity
  • the Nth frame to the bth frame, the N-1th frame to the b-1th frame,..., the Nbath frame to the Nath frame are obtained, respectively. .., the blood flow velocity of the images from N-b+1 to the first frame.
  • the method for selecting the maximum value of the blood flow velocity, that is, the blood flow velocity in the diastolic phase includes:
  • the maximum value of the blood flow velocity is selected from the claim 11 or claim 12, which is the blood flow velocity in the diastolic phase; or
  • the maximum value of the blood flow velocity is selected from the claim 11 or claim 12, which is the diastolic blood flow velocity; the minimum value of the blood flow velocity is selected, which is The speed of blood flow during systole.
  • the contrast agent in any two frames of coronary two-dimensional angiography images is made difference, the difference is ⁇ t, and the difference is made to the segment center line, and the difference value is ⁇ L before the method also includes:
  • the geometric structure information of the blood vessel segment project the two-dimensional angiographic images of the coronary arteries in at least two positions with the center line and contour line of the blood vessel extracted on a three-dimensional plane to synthesize a three-dimensional blood vessel model.
  • the method for calculating the blood flow velocity according to the ratio of the ⁇ L to the ⁇ t includes:
  • the three-dimensional blood vessel model obtain the centerline of the three-dimensional blood vessel model, correct the centerline extracted from the two-dimensional coronary angiography image, and correct the centerline difference ⁇ L to obtain ⁇ L';
  • the blood flow velocity v is calculated.
  • the present application provides a device for obtaining coronary artery vascular evaluation parameters based on physiological parameters, which is used in any one of the above-mentioned methods for obtaining coronary artery vascular evaluation parameters based on physiological parameters, including: a blood flow velocity acquiring unit An aortic pressure waveform acquisition unit and a coronary artery blood vessel evaluation parameter unit, where the coronary artery blood vessel evaluation parameter unit is connected to the blood flow velocity acquisition unit and the aortic pressure waveform acquisition unit;
  • the blood flow velocity obtaining unit is used to obtain the blood flow velocity v;
  • the aortic pressure waveform acquisition unit is used to acquire the aortic pressure waveform that changes over time in real time;
  • the coronary artery blood vessel evaluation parameter unit is configured to receive the blood flow velocity v and the aortic pressure waveform sent by the blood flow velocity acquisition unit and the aortic pressure waveform acquisition unit, and then obtain the coronary artery according to the physiological parameters Evaluation parameters.
  • the above-mentioned apparatus for obtaining coronary artery vascular evaluation parameters based on physiological parameters further includes: an image reading unit, a blood vessel segment extraction unit, a centerline extraction unit connected in sequence, and a time difference unit connected to the image reading unit , A geometric information acquisition unit, a blood flow velocity acquisition unit connected to the time difference unit and the center line difference unit respectively; the center line difference unit is connected to the center line extraction unit, and the geometric information acquisition unit is connected to the center line extraction unit.
  • the image reading unit is used to read a set of two-dimensional coronary angiography images of at least one body position
  • the blood vessel segment extraction unit is configured to receive the coronary two-dimensional angiography image sent by the image reading unit, and extract the blood vessel segment of interest in the image;
  • the centerline extraction unit is configured to receive the blood vessel segment sent by the blood vessel segment extraction unit, and extract the centerline of the blood vessel segment;
  • the time difference unit is configured to receive any two frames of coronary two-dimensional angiography images sent by the image reading unit, and to determine the time when the contrast agent in the two frames of coronary two-dimensional angiography images flows through the blood vessel segment Difference, the difference is ⁇ t;
  • the centerline difference unit is configured to receive the segmented centerline of the blood vessel segment where the contrast agent in the two frames of coronary two-dimensional angiography images sent by the centerline extraction unit is used to make a difference to the segmented centerline,
  • the difference is ⁇ L;
  • the blood flow velocity acquisition unit includes a blood flow velocity calculation module and a diastolic blood flow velocity calculation module.
  • the blood flow velocity calculation module is respectively connected to the time difference unit and the center line difference unit.
  • the flow velocity calculation module is connected to the blood flow velocity calculation module;
  • a blood flow velocity calculation module configured to receive the ⁇ L and the ⁇ t sent by the time difference unit and the centerline difference unit, and calculate the blood flow velocity according to the ratio of the ⁇ L to the ⁇ t;
  • the diastolic blood flow velocity calculation module is configured to receive the blood flow velocity value sent by the blood flow velocity calculation module, and select the maximum value of the blood flow velocity, which is the blood flow velocity in the diastole.
  • the geometric information acquisition unit is used to receive the coronary two-dimensional angiography image of the image reading unit, acquire the patient's physiological parameters and the image shooting angle, and transmit the physiological parameters and the image shooting angle to the coronary artery vascular assessment Parameter unit.
  • the above-mentioned apparatus for obtaining coronary artery vessel evaluation parameters based on physiological parameters further includes: a blood vessel skeleton extraction unit and a three-dimensional blood vessel reconstruction unit that are connected to the image reading unit, and are connected to the blood vessel skeleton extraction unit.
  • a contour line extraction unit, the three-dimensional blood vessel reconstruction unit is connected to the geometric information acquisition unit, the center line extraction unit, and the contour line extraction unit;
  • the blood vessel skeleton extraction unit is configured to receive the coronary two-dimensional angiography image sent by the image reading unit, and extract the blood vessel skeleton in the image;
  • the contour line extraction unit is configured to receive the blood vessel skeleton of the blood vessel skeleton extraction unit, and extract the contour line of the blood vessel segment of interest according to the blood vessel skeleton;
  • the three-dimensional blood vessel reconstruction unit is configured to receive the contour line, the geometric structure information and the center line sent by the contour line extraction unit, the geometric information acquisition unit, and the center line extraction unit, and receive the transmission from the image reading unit
  • the two-dimensional coronary angiography images of the coronary arteries are used to project the coronary two-dimensional angiography images of at least two positions with the center line and contour line of the blood vessel extracted on a three-dimensional plane according to the geometric structure information of the blood vessel segment, Synthetic three-dimensional blood vessel model;
  • the center line extraction unit re-extracts the center line of the blood vessel segment from the three-dimensional blood vessel model of the three-dimensional blood vessel reconstruction unit, and re-acquires the length of the center line.
  • the present application provides a coronary artery analysis system, including: the apparatus for obtaining coronary artery vascular evaluation parameters based on physiological parameters as described in any one of the above.
  • the present application provides a computer storage medium.
  • a computer program is executed by a processor, the method for obtaining coronary artery vascular assessment parameters based on physiological parameters described in any one of the above is implemented.
  • This application provides a method for obtaining coronary artery vascular evaluation parameters based on physiological parameters. According to blood flow velocity v, aortic pressure waveform, and physiological parameters, the coronary artery vascular evaluation parameters are obtained, and the method is performed for patients with different genders and differentiated disease history. The personalized measurement of coronary artery vascular evaluation parameters is more targeted, and the accuracy of the measurement of coronary artery vascular evaluation parameters is improved.
  • Fig. 1 is a flow chart of the method for obtaining coronary vascular evaluation parameters based on physiological parameters of the present application
  • Fig. 2 is a flowchart of acquiring blood flow velocity through two-dimensional contrast images in S010 of the application;
  • Fig. 3 is a flow chart of obtaining blood flow velocity through three-dimensional modeling in S010 of the application;
  • FIG. 4 is a flowchart of S200 of the application.
  • FIG. 5 is a flowchart of S300 of the application.
  • Fig. 6 is a flowchart of S330 of the application.
  • Fig. 7 is a flowchart of method (1) of S400A or S700B of this application;
  • FIG. 8 is a flowchart of method (2) of S400A or S700B of this application.
  • FIG. 9 is a structural block diagram of an embodiment of the apparatus for obtaining coronary artery vascular evaluation parameters based on physiological parameters of the present application.
  • FIG. 10 is a structural block diagram of another embodiment of the apparatus for obtaining coronary artery vascular evaluation parameters based on physiological parameters of the present application;
  • Blood flow velocity acquisition unit 1 blood flow velocity calculation module 101, diastolic blood flow velocity calculation module 102, aortic pressure waveform acquisition unit 2, coronary artery blood vessel evaluation parameter unit 3, image reading unit 4, blood vessel segment extraction unit 5 ,
  • Coronary vascular evaluation parameters include: coronary artery diastolic blood flow velocity CAIFR, and coronary diastolic microcirculation resistance index CAIFMR, etc.; however, due to different vital signs of different people, the evaluation criteria of normal values are slightly different, such as : The myocardial microcirculation function of the elderly is poor, and the blood flow velocity is generally lower than that of the young. If the industry general evaluation standard is adopted, the blood flow velocity used will be higher than the actual value, resulting in the underestimation of CAIFMR, etc., and reducing the measurement of CAIFMR. Accuracy.
  • the present application provides a method for obtaining coronary vascular evaluation parameters based on physiological parameters, including:
  • S030 Acquire coronary vascular assessment parameters according to blood flow velocity v, aortic pressure waveform, and physiological parameters.
  • This application provides a method for obtaining coronary artery vascular evaluation parameters based on physiological parameters. According to blood flow velocity v, aortic pressure waveform, and physiological parameters, the coronary artery vascular evaluation parameters are obtained, and the method is performed for patients with different genders and differentiated disease history. The personalized measurement of coronary artery vascular evaluation parameters is more targeted, and the accuracy of the measurement of coronary artery vascular evaluation parameters is improved.
  • the content of the coronary artery vascular assessment parameters obtained based on physiological parameters is within the scope of protection not applied for, the following describes the specific acquisition method when the coronary artery assessment parameter is the diastolic microcirculation resistance index CAIFMR:
  • Example 1 After a large number of experimental verifications, the history of hypertension, the history of diabetes, and gender all have an impact on the accuracy of the calculation of the coronary artery vascular evaluation parameters. Therefore, the coronary artery evaluation parameters in S030 are specific to the diastolic microcirculation resistance index CAIFMR. The steps include:
  • the maximum value of the blood flow velocity v is selected, that is, the maximum blood flow velocity v max in the diastole period; preferably, the present application selects the maximum value of the blood flow velocity v through a recursive algorithm or a bubbling algorithm;
  • the period corresponding to v max is the diastolic period, and the average aortic diastolic pressure is obtained according to the aortic pressure waveform;
  • P a1 , P a2 , P aj represent the aortic pressure values corresponding to the first point, second point, and j-th point in the diastolic phase on the aortic pressure waveform,
  • j represents The number of pressure points contained in the aortic pressure waveform during diastole,
  • v max represents the maximum blood flow velocity during diastole, which is obtained by selecting the maximum value from all blood flow velocities v;
  • k a ⁇ b
  • a represents the characteristic value of diabetes
  • B represents the characteristic value of hypertension, and
  • c represents gender.
  • S010 when the blood flow velocity is acquired through a two-dimensional contrast image, S010 includes:
  • S100A read a set of two-dimensional coronary angiography images of at least one body position
  • S400A Make the difference between the time of the contrast agent flowing through the blood vessel segment in any two frames of coronary two-dimensional angiography images, the difference is ⁇ t, and the segment center line is the difference, the difference is ⁇ L;
  • ⁇ t m ⁇ fps, because each group of two-dimensional coronary angiography image group contains multiple frames of two-dimensional coronary angiography images that are played continuously, so m represents the two selected coronary arteries in each group of two-dimensional coronary angiography image groups
  • the blood flow velocity v is solved.
  • S010 when the blood flow velocity is acquired through three-dimensional modeling, S010 includes:
  • S100B read the set of two-dimensional coronary angiography images in at least two positions
  • S600B according to the geometric structure information of the blood vessel segment, project the two-dimensional coronary angiography images of at least two positions with the centerline and contour line of the blood vessel extracted on a three-dimensional plane to synthesize a three-dimensional blood vessel model;
  • S700B Make the difference between the time of the contrast agent flowing through the blood vessel segment in any two frames of coronary two-dimensional angiography images, and the difference is ⁇ t; according to the three-dimensional blood vessel model, obtain the center line of the three-dimensional blood vessel model, and compare the two-dimensional coronary artery The center line of the image extraction is corrected, and the corrected segment center line is corrected, and the difference is ⁇ L'; according to the ratio of ⁇ L' to ⁇ t, the blood flow velocity v is calculated.
  • ⁇ t m ⁇ fps, because each group of two-dimensional coronary angiography image group contains multiple frames of two-dimensional coronary angiography images that are played continuously, so m represents the two selected coronary arteries in each group of two-dimensional coronary angiography image groups
  • S100A or S100B includes:
  • the two-dimensional coronary angiography image group of at least one body position is read through the storage device.
  • S200A or S200B includes:
  • S210 Select N frames of two-dimensional coronary angiography images from the group of two-dimensional coronary angiography images;
  • S220 Pick up the first and last points of the blood vessel of interest on the two-dimensional coronary angiography image, and obtain the blood vessel segment of interest.
  • S200A or S200B further includes: defining the first frame of the coronary artery two-dimensional angiography image with the catheter as a reference image, and defining the kth frame of the coronary artery two-dimensional angiography image with the complete coronary artery as the target image, k Is a positive integer greater than 1; subtract the target image from the reference image to extract the characteristic point O of the catheter; preferably, remove part of the static noise; further, use mean filtering to remove part of the dynamic noise; and through gray-scale histogram analysis, The threshold is used to further denoise; the reference image subtracted from the target image is used to extract the regional image of the position of the coronary artery; the regional image uses the characteristic points of the catheter as the seed point for dynamic growth to obtain the blood vessel segment image of interest.
  • S300A or S300B includes:
  • S330 further includes:
  • S331 Add at least one seed point on the blood vessel segment of interest;
  • S332 Regenerate the centerline of the blood vessel along the blood vessel skeleton according to the first and last points and seed points.
  • S400A or S700B includes two acquisition methods.
  • Method (1) is shown in Figure 7 and includes:
  • the coronary angiography image when the contrast agent flows to the entrance of the coronary artery, that is, the first point of the blood vessel segment, is taken as the first frame of image
  • the coronary angiography image when the contrast agent flows to the end point of the blood vessel segment is taken as the Nth frame of image
  • S420I sequentially solve the time difference and the center line length difference of the image from the Nth frame to the N-1th frame,..., the Nbth frame,..., the Nath frame,..., the time difference of the first frame image, respectively ⁇ t 1 ,..., ⁇ t b ,..., ⁇ t a ,..., ⁇ t N-1 ; the centerline length difference is ⁇ L 1 ,..., ⁇ L b ,..., ⁇ L a,. .., ⁇ L N-1 .
  • S400A or S700B includes two acquisition methods.
  • Method (2) is shown in Figure 8 and includes:
  • the coronary angiography image when the contrast agent flows to the entrance of the coronary artery that is, the first point of the blood vessel segment is taken as the first frame of image
  • the coronary angiography image when the contrast agent flows to the end point of the blood vessel segment is taken as the Nth frame of image
  • a recursive algorithm or a bubbling algorithm can also be used to select the minimum blood flow velocity, that is, the blood flow velocity during the systole.
  • the present application provides a device for obtaining coronary artery vascular evaluation parameters based on physiological parameters, which is used in any of the above-mentioned methods for obtaining coronary artery vascular evaluation parameters based on physiological parameters, including: a blood flow velocity acquiring unit 1. Aortic pressure waveform acquisition unit 2. Coronary artery blood vessel evaluation parameter unit 3.
  • Coronary artery blood vessel evaluation parameter unit 3 is connected to blood flow velocity acquisition unit 1, aortic pressure waveform acquisition unit 2; blood flow velocity acquisition unit 1 uses To obtain blood flow velocity v; aortic pressure waveform acquisition unit 2 for real-time acquisition of aortic pressure waveforms that change over time; coronary artery vascular evaluation parameter unit 3 for receiving blood flow velocity acquisition unit 1, aortic pressure waveforms Acquire the blood flow velocity v and the aortic pressure waveform sent by the unit 2, and then obtain the coronary artery assessment parameters according to the physiological parameters.
  • an embodiment of the present application further includes: an image reading unit 4, a blood vessel segment extracting unit 5, a centerline extracting unit 6, and a time difference unit 7 connected to the image reading unit 4, which are connected in sequence.
  • the geometric information acquisition unit 8, the center line difference unit 9 is connected to the center line extraction unit 6, the time difference unit 7, the center line difference unit 9 are both connected to the blood flow velocity acquisition unit 1, and the geometric information acquisition unit 8 is connected to the coronary artery blood vessel evaluation parameter unit 3 connection; image reading unit 4 for reading at least one body position of the coronary two-dimensional angiography image group; blood vessel segment extraction unit 5 for receiving the coronary two-dimensional angiography image sent by the image reading unit 4, and extracting the image
  • the blood vessel segment of interest in the center line extraction unit 6 is used to receive the blood vessel segment sent by the blood vessel segment extraction unit 5 and the center line of the blood vessel segment is extracted; the time difference unit 7 is used to receive any two frames sent by the image reading unit 4
  • a blood vessel skeleton extraction unit 10 a three-dimensional blood vessel reconstruction unit 11 that are all connected to the image reading unit 4, a contour line extraction unit 12 connected to the blood vessel skeleton extraction unit 10, and a three-dimensional blood vessel reconstruction unit 11 is connected to the geometric information acquisition unit 8, the centerline extraction unit 6, and the contour line extraction unit 12;
  • the vascular skeleton extraction unit 10 is used to receive the coronary two-dimensional angiography image sent by the image reading unit 4, and extract the vascular skeleton in the image
  • the contour line extraction unit 12 is used to receive the blood vessel skeleton of the blood vessel skeleton extraction unit 10, and according to the blood vessel skeleton, the contour line of the blood vessel segment of interest is extracted;
  • the three-dimensional blood vessel reconstruction unit 11 is used to receive the contour line extraction unit 12 and geometric information
  • the contour line, the geometric structure information and the center line sent by the acquiring unit 8 and the centerline extracting unit 6 receive the coronary two-dimensional angiography image sent by the image reading unit, which is
  • the present application provides a coronary artery analysis system, including: any one of the above-mentioned devices for obtaining coronary artery vascular evaluation parameters based on physiological parameters.
  • the present application provides a computer storage medium.
  • a computer program is executed by a processor, any one of the above methods for obtaining coronary artery vascular evaluation parameters based on physiological parameters is realized.
  • aspects of the present invention can be implemented as a system, a method, or a computer program product. Therefore, various aspects of the present invention can be specifically implemented in the following forms, namely: complete hardware implementation, complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, Here can be collectively referred to as "circuit", "module” or "system”.
  • various aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, and the computer-readable medium contains computer-readable program code.
  • the implementation of the method and/or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or in a combination thereof.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile memory for storing instructions and/or data, for example, a magnetic hard disk and/or a Move the media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse, is also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including (but not limited to) wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • any combination of one or more programming languages can be used to write computer program codes for performing operations for various aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional process programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block of the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, thereby producing a machine that makes these computer program instructions when executed by the processors of computers or other programmable data processing devices , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced.
  • These computer program instructions can also be stored in a computer-readable medium. These instructions make computers, other programmable data processing devices, or other devices work in a specific manner, so that the instructions stored in the computer-readable medium generate An article of manufacture that implements instructions for the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • Computer program instructions can also be loaded onto a computer (for example, a coronary artery analysis system) or other programmable data processing equipment to cause a series of operation steps to be executed on the computer, other programmable data processing equipment or other equipment to produce a computer-implemented process , Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.
  • a computer for example, a coronary artery analysis system
  • other programmable data processing equipment or other equipment to produce a computer-implemented process
  • Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Quality & Reliability (AREA)
  • Hematology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Robotics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种基于生理参数获取血管评定参数的方法、装置及存储介质。基于生理参数获取冠状动脉血管评定参数的方法包括:获取生理参数(S000);获取血流速度v(S020);实时获取随时间变换的主动脉压波形(S020);根据所述血流速度v、所述主动脉压波形、所述生理参数,获取冠状动脉血管评定参数(S030)。根据血流速度v、主动脉压波形、生理参数,获取冠状动脉血管评定参数,针对不同性别、差异化疾病史的患者进行了冠状动脉血管评定参数的个性化测量,具有更强的针对性,提高了冠状动脉血管评定参数测量的准确性。

Description

基于生理参数获取血管评定参数的方法、装置及存储介质 技术领域
本发明涉及冠状动脉技术领域,特别是涉及一种基于生理参数获取冠状动脉血管评定参数的方法、装置、冠状动脉分析***及计算机存储介质。
背景技术
世界卫生组织统计,心血管疾病已经成为人类健康的“头号杀手”。近些年,使用血流动力学分析心血管疾病的生理和病理行为也已经成为心血管疾病诊断的一个非常重要的手段。
血液流量和流速作为血流动力学的非常重要的参数,如何准确、便捷地测量血液流量和流速成为广大研究学者研究的重点。
冠状动脉血管评定参数包括:冠状动脉舒张期的血流速度CAIFR,以及冠状动脉舒张期的微循环阻力指数CAIFMR等;但是由于不同人群的生命体征不同,导致正常数值的评判标准略有差别,例如:老年人心肌微循环功能较差,血流速度一般低于年轻人,若采用行业通用评价标准,则采用的血流速度会比实际值偏大,导致CAIFMR等被低估,降低了CAIFMR等测量的准确度。
发明内容
本发明提供了一种测量基于生理参数获取冠状动脉血管评定参数的方法、装置、冠状动脉分析***及计算机存储介质,以解决不同人群的生命体征不同,导致正常数值的评判标准略有差别,导致冠状动脉血管评定参数测量不准确的问题。
为实现上述目的,第一方面,本申请提供了一种基于生理参数获取冠状动脉血管评定参数的方法,包括:
获取生理参数;
获取血流速度v;
实时获取随时间变换的主动脉压波形;
根据所述血流速度v、所述主动脉压波形、所述生理参数,获取冠状动脉血管评定参数。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述冠状动脉评定参数为舒张期微循环阻力指数CAIFMR,包括:
选取所述血流速度v的最大值,即为舒张期的最大血流速度v max
所述v max对应的时段为舒张期,根据所述主动脉压波形,获取主动脉舒张期的平均压;
Figure PCTCN2019116664-appb-000001
Figure PCTCN2019116664-appb-000002
其中,
Figure PCTCN2019116664-appb-000003
表示主动脉舒张期的平均压;P a1、P a2、P aj分别表示主动脉压波形上舒张期内第1个点、第2个点、第j个点对应的主动脉压力值,j表示舒张期内主动脉压波形上含有的压力点个数,v max表示舒张期的最大血流速度,通过从全部血流速度v中选取最大值获得;k=a×b,a表示糖尿病特征值,b 表示高血压特征值,c表示性别。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,如果患者没有糖尿病,则0.5≤a≤1;如果患者有糖尿病,则1<a≤2;
如果患者的血压值大于等于90mmHg,则1<b≤1.5;如果患者的血压值小于90mmHg,则0.5≤b≤1;
如果患者为男性,则c=0;如果患者为女性,则c=3~10。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,如果患者没有糖尿病,则a=1;如果患者有糖尿病,则a=2;
如果患者的血压值大于等于90mmHg,则b=1.5;如果患者的血压值小于90mmHg,则b=1;
如果患者为男性,则c=0;如果患者为女性,则c=5。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述获取血流速度的方法包括:
读取至少一个***的冠状动脉二维造影图像组;
从所述冠状动脉二维造影图像组中,提取感兴趣的血管段;
提取所述血管段的中心线;
对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;
根据所述ΔL与所述Δt的比值,求解血流速度。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述读取至少一个***的冠状动脉二维造影图像组的方法包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少一个***的冠状动脉二维造影图像组;或
通过存储装置读取至少一个***的冠状动脉二维造影图像组。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述从所述冠状动脉二维造影图像组中,提取感兴趣的血管段的方法,包括:
从所述冠状动脉二维造影图像组中选取N帧冠状动脉二维造影图像;
在所述冠状动脉二维造影图像上,拾取感兴趣的所述血管的首末点,获取感兴趣的所述血管段。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述提取所述血管段的中心线的方法包括:
从所述冠状动脉二维造影图像中提取血管骨架;
依据所述血管段的延伸方向,以及两点之间获取最短路径的原则;
沿着所述血管骨架,提取所述血管段的中心线。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述沿着所述血管骨架,提取所述血管段的中心线的方法还包括:
在感兴趣的所述血管段上添加至少一个种子点;
根据所述首末点、种子点,沿着所述血管骨架,重新生成所述血管中心线。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述对任意两帧冠状动脉二维造 影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
以造影剂流至冠状动脉入口,即所述血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至所述血管段的末点时的冠脉造影图像作为第N帧图像;
依次求解第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的时间差和中心线长度差,时间差分别为Δt 1,...,Δt b,...,Δt a,...,Δt N-1;中心线长度差分别为ΔL 1,...,ΔL b,...,ΔL a,...,ΔL N-1
根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的血流速度,血流速度分别为v 1,...,v b,...,v a,...,v N-1
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
依次求解第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧的图像的时间差和中心线长度差;
根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧图像的血流速度。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述选取所述血流速度的最大值,即为舒张期的血流速度的方法,包括:
通过递归算法或者冒泡算法,从所述权利要求11或者权利要求12中选取所述血流速度的最大值,即为舒张期的血流速度;或
通过递归算法或者冒泡算法,从所述权利要求11或者权利要求12中选取所述血流速度的最大值,即为舒张期的血流速度;选取所述血流速度的最小值,即为收缩期的血流速度。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,在所述提取所述血管段的中心线的方法之后,在所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL的方法之前,还包括:
读取至少两个***的冠状动脉二维造影图像组;
获取所述血管段的几何结构信息,包括生理参数、图像***拍摄角度;
对感兴趣的所述血管段进行图形处理;
提取所述血管段的血管轮廓线;
根据所述血管段的几何结构信息,将至少两个***的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的方法,所述根据所述ΔL与所述Δt的比值,求解血流速度的方法包括:
根据所述三维血管模型,获取三维血管模型的中心线,对通过所述冠状动脉二维造影图像提取的中心线进行修正,以及对中心线差值ΔL进行修正,得到ΔL’;
根据所述ΔL’与所述Δt的比值,求解血流速度v。
第二方面,本申请提供了一种基于生理参数获取冠状动脉血管评定参数的装置,用于上述任一项所述的基于生理参数获取冠状动脉血管评定参数的方法,包括:血流速度获取单元、主动脉压波形获取单元、冠状动脉血管评定参数单元,所述冠状动脉血管评定参数单元与所述血流速度获取单元、所述主动脉压波形获取单元连接;
所述血流速度获取单元,用于获取血流速度v;
所述主动脉压波形获取单元,用于实时获取随时间变换的主动脉压波形;
所述冠状动脉血管评定参数单元,用于接收所述血流速度获取单元、所述主动脉压波形获取单元发送的所述血流速度v和主动脉压波形,再根据生理参数,获取冠状动脉评定参数。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的装置,还包括:依次连接的图像读取单元、血管段提取单元、中心线提取单元,与所述图像读取单元连接的时间差单元、几何信息获取单元,分别与所述时间差单元、所述中心线差单元连接的血流速度获取单元;所述中心线差单元与所述中心线提取单元连接,所述几何信息获取单元与所述冠状动脉血管评定参数单元连接;
所述图像读取单元,用于读取至少一个***的冠状动脉二维造影图像组;
所述血管段提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中感兴趣的血管段;
所述中心线提取单元,用于接收所述血管段提取单元发送的血管段,提取所述血管段的中心线;
所述时间差单元,用于接收所述图像读取单元发送的任意两帧冠状动脉二维造影图像,对所述两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt;
所述中心线差单元,用于接收所述中心线提取单元发送的两帧冠状动脉二维造影图像中的造影剂流经血管段的分段中心线,对所述分段中心线做差,差值为ΔL;
所述血流速度获取单元,包括血流速度计算模块、舒张期血流速度计算模块,所述血流速度计算模块分别与所述时间差单元、所述中心线差单元连接,所述舒张期血流速度计算模块与所述血流速度计算模块连接;
血流速度计算模块,用于接收所述时间差单元和所述中心线差单元发送的所述ΔL与所述Δt,根据所述ΔL与所述Δt的比值,求解血流速度;
所述舒张期血流速度计算模块,用于接收所述血流速度计算模块发送的血流速度值,选取所述血流速度的最大值,即为舒张期的血流速度。
所述几何信息获取单元,用于接收所述图像读取单元的冠状动脉二维造影图像,获取患者的生理参数和图像拍摄角度,并将生理参数和图像拍摄角度传递给所述冠状动脉血管评定参数单元。
可选地,上述的基于生理参数获取冠状动脉血管评定参数的装置,还包括:均与所述图像读取单元连接的血管骨架提取单元、三维血管重建单元,与所述血管骨架提取单元连接的轮廓线提取单元,所述三维血管重建单元与所述几何信息获取单元、所述中心线提取单元、所述轮廓线提取单元连接;
所述血管骨架提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中的血管骨架;
所述轮廓线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的轮廓线;
所述三维血管重建单元,用于接收所述轮廓线提取单元、所述几何信息获取单元、所述中心线提取单元发送的轮廓线、几何结构信息和中心线,接收所述图像读取单元发送的冠状动脉二维造影图像,用于根据所述血管段的几何结构信息,将至少两个***的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型;
所述中心线提取单元,从所述三维血管重建单元的三维血管模型上重新提取所述血管段的中心线,且重新获取所述中心线的长度。
第三方面,本申请提供了一种冠状动脉分析***,包括:上述任一项所述的基于生理参数获取冠状动脉血管评定参数的装置。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述任一项所述的基于生理参数获取冠状动脉血管评定参数的方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了一种基于生理参数获取冠状动脉血管评定参数的方法,根据血流速度v、主动脉压波形、生理参数,获取冠状动脉血管评定参数,针对不同性别、差异化疾病史的患者进行了冠状动脉血管评定参数的个性化测量,具有更强的针对性,提高了冠状动脉血管评定参数测量的准确性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的基于生理参数获取冠状动脉血管评定参数的方法的的流程图;
图2为本申请的S010中通过二维造影图像获取血流速度的流程图;
图3为本申请的S010中通过三维建模获取血流速度的流程图;
图4为本申请的S200的流程图;
图5为本申请的S300的流程图;
图6为本申请的S330的流程图;
图7为本申请的S400A或S700B的方法(1)的流程图;
图8为本申请的S400A或S700B的方法(2)的流程图;
图9为本申请的基于生理参数获取冠状动脉血管评定参数的装置的一个实施例的结构框图;
图10为本申请的基于生理参数获取冠状动脉血管评定参数的装置的另一实施例的结构框图;
下面对附图标记进行说明:
血流速度获取单元1,血流速度计算模块101,舒张期血流速度计算模块102,主动脉压波形获取单元2,冠状动脉血管评定参数单元3,图像读取单元4,血管段提取单元5,中心线提取单元6,时间差单元7,几何信息获取单元8,中心线差单元9,血管骨架提取单元10,三维血管重建单元11,轮廓线提取单元12。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
冠状动脉血管评定参数包括:冠状动脉舒张期的血流速度CAIFR,以及冠状动脉舒张期的微循环阻力指数CAIFMR等;但是由于不同人群的生命体征不同,导致正常数值的评判标准略有差别,例如:老年人心肌微循环功能较差,血流速度一般低于年轻人,若采用行业通用评价标准,则采用的血流速度会比实际值偏大,导致CAIFMR等被低估,降低了CAIFMR等测量的准确度。
为了解决上述问题,如图1所示,本申请提供了一种基于生理参数获取冠状动脉血管评定参数的方法,包括:
S000,获取生理参数;
S010,获取血流速度v;
S020,实时获取随时间变换的主动脉压波形;
S030,根据血流速度v、主动脉压波形、生理参数,获取冠状动脉血管评定参数。
本申请提供了一种基于生理参数获取冠状动脉血管评定参数的方法,根据血流速度v、主动脉压波形、生理参数,获取冠状动脉血管评定参数,针对不同性别、差异化疾病史的患者进行了冠状动脉血管评定参数的个性化测量,具有更强的针对性,提高了冠状动脉血管评定参数测量的准确性。
只要是基于生理参数获取冠状动脉血管评定参数的内容均在不申请的保护范围内,下面针对冠状动脉评定参数为舒张期微循环阻力指数CAIFMR时的具体获取方式进行说明:
实施例1:经过大量的实验验证,高血压病史、糖尿病病史以及性别均对冠状动脉血管评定参数计算的准确性具有影响,因此S030中的冠状动脉评定参数为舒张期微循环阻力指数CAIFMR的具体步骤包括:
选取血流速度v的最大值,即为舒张期的最大血流速度v max;优选地,本申请通过递归算法或者冒泡算法,选取血流速度v的最大值;
v max对应的时段为舒张期,根据主动脉压波形,获取主动脉舒张期的平均压;
Figure PCTCN2019116664-appb-000004
Figure PCTCN2019116664-appb-000005
其中,
Figure PCTCN2019116664-appb-000006
表示主动脉舒张期的平均压;P a1、P a2、P aj分别表示主动脉压波形上舒张期内第1个点、第2个点、第j个点对应的主动脉压力值,j表示舒张期内主动脉压波形上含有的压力点个数,v max表示舒张期的最大血流速度,通过从全部血流速度v中选取最大值获得;k=a×b,a表示糖尿病特征值,b表示高血压特征值,c表示性别。
本申请的一个实施例中,如果患者没有糖尿病,则0.5≤a≤1,优选地,a=1;如果患者有糖尿病,则1<a≤2,优选地,a=2;
如果患者的血压值大于等于90mmHg,则1<b≤1.5,优选地,b=1.5;如果患者的血压值小于90mmHg,则0.5≤b≤1,优选地,b=1;
如果患者为男性,则c=0;如果患者为女性,则c=3~10,优选地,c=5。
如图2所示,本申请的一个实施例中,通过二维造影图像获取血流速度时,S010包括:
S100A,读取至少一个***的冠状动脉二维造影图像组;
S200A,从冠状动脉二维造影图像组中,提取感兴趣的血管段;
S300A,提取血管段的中心线;
S400A,对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt,且对分段中心线做差,差值为ΔL;
Δt=m×fps,由于每组冠状动脉二维造影图像组中含有连续播放的多帧冠状动脉二维造影图像,因此m表示每组冠状动脉二维造影图像组中,选取的两帧冠状动脉二维造影图像所处帧数的差值,fps表示相邻两帧图像之间切换的间隔时间,优选地,fps=1/15秒;
根据ΔL与Δt的比值,求解血流速度v。
如图3所示,本申请的一个实施例中,通过三维建模获取血流速度时,S010包括:
S100B,读取至少两个***的冠状动脉二维造影图像组;
S200B,从冠状动脉二维造影图像组中,提取感兴趣的血管段;
S300B,获取血管段的几何结构信息,及提取血管段的中心线;
S400B,对感兴趣的血管段进行图形处理;
S500B,提取血管段的血管轮廓线;
S600B,根据血管段的几何结构信息,将至少两个***的提取了血管的中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型;
S700B,对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt;根据三维血管模型,获取三维血管模型的中心线,对通过冠状动脉二维造影图像提取的中心线进行修正,且对修正后的分段中心线做差,差值为ΔL’;根据ΔL’与Δt的比值,求解血流速度v。
Δt=m×fps,由于每组冠状动脉二维造影图像组中含有连续播放的多帧冠状动脉二维造影图像,因此m表示每组冠状动脉二维造影图像组中,选取的两帧冠状动脉二维造影图像所处帧数的差值,fps表示相邻两帧图像之间切换的间隔时间,优选地,fps=1/15秒。
本申请的一个实施例中,S100A或S100B包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少一个***的冠状动脉二维造影图像组;或
通过存储装置读取至少一个***的冠状动脉二维造影图像组。
如图4所示,本申请的一个实施例中,S200A或S200B包括:
S210,从冠状动脉二维造影图像组中选取N帧冠状动脉二维造影图像;
S220,在冠状动脉二维造影图像上,拾取感兴趣的血管的首末点,获取感兴趣的血管段。
优选地,S200A或S200B还包括:将有导管出现的第一帧冠状动脉二维造影图像定义为参考图像,将有完整冠状动脉出现的第k帧冠状动脉二维造影图像定义为目标图像,k为大于1的正整数;将参考图像减去目标图像,提取导管的特征点O;优选地,除去部分静态噪声;进一步地,采用均值滤波,除去部分动态噪声;以及通过灰度直方图分析,利用阈值进一步去噪;将目标图像减去的参考图像,提取冠状动脉所处位置的区域图像;区域图像以导管的特征点作为种子点进行动态生长,获得感兴趣的血管段图像。
如图5所示,本申请的一个实施例中,S300A或S300B包括:
S310,从冠状动脉二维造影图像中提取血管骨架;
S320,依据血管段的延伸方向,以及两点之间获取最短路径的原则;
S330,沿着血管骨架,提取血管段的中心线。
如图6所示,本申请的一个实施例中,S330还包括:
S331,在感兴趣的血管段上添加至少一个种子点;
S332,根据首末点、种子点,沿着血管骨架,重新生成血管中心线。
本申请的一个实施例中,S400A或S700B包括两种获取方法,方法(1)如图7所示,包括:
S410I,以造影剂流至冠状动脉入口,即血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至血管段的末点时的冠脉造影图像作为第N帧图像;
S420I,依次求解第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的时间差和中心线长度差,时间差分别为Δt 1,...,Δt b,...,Δt a,...,Δt N-1;中心线长度差分别为ΔL 1,...,ΔL b,...,ΔL a,...,ΔL N-1
S430I,根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的血流速度,血流速度分别为v 1,...,v b,...,v a,...,v N-1
本申请的一个实施例中,S400A或S700B包括两种获取方法,方法(2)如图8所示,包括:
S410II,以造影剂流至冠状动脉入口,即血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至血管段的末点时的冠脉造影图像作为第N帧图像;
S420II,依次求解第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧的图像的时间差和中心线长度差。
S430II,根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧图像的血流速度。
本申请也可以通过递归算法或者冒泡算法,选取血流速度的最小值,即为收缩期的血流速度。
实施例2:
如图9所示,本申请提供了一种基于生理参数获取冠状动脉血管评定参数的装置,用于上述任一项的基于生理参数获取冠状动脉血管评定参数的方法,包括:血流速度获取单元1、主动脉压波形获取单元2、冠状动脉血管评定参数单元3,冠状动脉血管评定参数单元3与血流速度获取单元1、主动脉压波形获取单元2连接;血流速度获取单元1,用于获取血流速度v;主动脉压波形获取单元2,用于实时获取随时间变换的主动脉压波形;冠状动脉血管评定参数单元3,用于接收血流速度获取单元1、主动脉压波形获取单元2发送的血流速度v和主动脉压波形,再根据生理参数,获取冠状动脉评定参数。
如图10所示,本申请的一个实施例中,还包括:依次连接的图像读取单元4、血管段提取单元5、中心线提取单元6,与图像读取单元4连接的时间差单元7、几何信息获取单元8,中心线差单元9与中心线提取单元6连接,时间差单元7、中心线差单元9均与血流速度获取单元1连接;几何信息获取单元8与冠状动脉血管评定参数单元3连接;图像读取单元4,用于读取至少一个***的冠状动脉二维造影图像组;血管段提取单元5,用于接收图像读取单元4发送的冠状动脉二维造影图像,提取图像中感兴趣的血管段;中心线提取单元6,用于接收血管段提取单元5发送的血管段,提取血管段的中心线;时间差单元7,用于接收图像读取单元4发送的任意两帧冠状动脉二维造影图像,对两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt;中心线差单元9,用于接收中心线提取单元6发送的两帧冠状动脉二维造影图像中的造影剂流经血管段的分段中心线,对分段中心线做差,差值为ΔL;血流速度获取单元1,包括血流速度计算模块101、舒张期血流速度计算模块102,血流速度计算 模块101分别与时间差单元7、中心线差单元8连接,舒张期血流速度计算模块102与血流速度计算模块101连接;血流速度计算模块101,用于接收时间差单元7和中心线差单元8发送的ΔL与Δt,根据ΔL与Δt的比值,求解血流速度;舒张期血流速度计算模块102,用于接收血流速度计算模块发送的血流速度值,选取血流速度的最大值,即为舒张期的血流速度;几何信息获取单元8,用于接收图像读取单元4的冠状动脉二维造影图像,获取患者的生理参数和图像拍摄角度,并将生理参数和图像拍摄角度传递给冠状动脉血管评定参数单元3。
本申请的一个实施例中,还包括:均与图像读取单元4连接的血管骨架提取单元10、三维血管重建单元11,与血管骨架提取单元10连接的轮廓线提取单元12,三维血管重建单元11与几何信息获取单元8、中心线提取单元6、轮廓线提取单元12连接;血管骨架提取单元10,用于接收图像读取单元4发送的冠状动脉二维造影图像,提取图像中的血管骨架;轮廓线提取单元12,用于接收血管骨架提取单元10的血管骨架,根据血管骨架,提取感兴趣的血管段的轮廓线;三维血管重建单元11,用于接收轮廓线提取单元12、几何信息获取单元8、中心线提取单元6发送的轮廓线、几何结构信息和中心线,接收图像读取单元发送的冠状动脉二维造影图像,用于根据血管段的几何结构信息,将至少两个***的提取了血管的中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型;中心线提取单元6,从三维血管重建单元11的三维血管模型上重新提取血管段的中心线,且重新获取中心线的长度。
本申请提供了一种冠状动脉分析***,包括:上述任一项的基于生理参数获取冠状动脉血管评定参数的装置。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述任一项的基于生理参数获取冠状动脉血管评定参数的方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为***、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“***”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或***的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作***执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或***的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、 可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析***)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,包括:
    获取生理参数;
    获取血流速度v;
    实时获取随时间变换的主动脉压波形;
    根据所述血流速度v、所述主动脉压波形、所述生理参数,获取冠状动脉血管评定参数。
  2. 根据权利要求1所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,所述冠状动脉评定参数为舒张期微循环阻力指数CAIFMR,包括:
    选取所述血流速度v的最大值,即为舒张期的最大血流速度v max
    所述v max对应的时段为舒张期,根据所述主动脉压波形,获取主动脉舒张期的平均压;
    Figure PCTCN2019116664-appb-100001
    Figure PCTCN2019116664-appb-100002
    其中,
    Figure PCTCN2019116664-appb-100003
    表示主动脉舒张期的平均压;P a1、P a2、P aj分别表示主动脉压波形上舒张期内第1个点、第2个点、第j个点对应的主动脉压力值,j表示舒张期内主动脉压波形上含有的压力点个数,v max表示舒张期的最大血流速度,通过从全部血流速度v中选取最大值获得;k=a×b,a表示糖尿病特征值,b表示高血压特征值,c表示性别。
  3. 根据权利要求2所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,如果患者没有糖尿病,则0.5≤a≤1;如果患者有糖尿病,则1<a≤2;
    如果患者的血压值大于等于90mmHg,则1<b≤1.5;如果患者的血压值小于90mmHg,则0.5≤b≤1;
    如果患者为男性,则c=0;如果患者为女性,则c=3~10。
  4. 根据权利要求3所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,如果患者没有糖尿病,则a=1;如果患者有糖尿病,则a=2;
    如果患者的血压值大于等于90mmHg,则b=1.5;如果患者的血压值小于90mmHg,则b=1;
    如果患者为男性,则c=0;如果患者为女性,则c=5。
  5. 根据权利要求2所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,所述获取血流速度的方法包括:
    读取至少一个***的冠状动脉二维造影图像组;
    从所述冠状动脉二维造影图像组中,提取感兴趣的血管段;
    提取所述血管段的中心线;
    对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;
    根据所述ΔL与所述Δt的比值,求解血流速度。
  6. 根据权利要求5所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,所述从所 述冠状动脉二维造影图像组中,提取感兴趣的血管段的方法,包括:
    从所述冠状动脉二维造影图像组中选取N帧冠状动脉二维造影图像;
    在所述冠状动脉二维造影图像上,拾取感兴趣的所述血管的首末点,获取感兴趣的所述血管段。
  7. 根据权利要求5所述的测量舒张期血流速度的方法,其特征在于,所述提取所述血管段的中心线的方法包括:
    从所述冠状动脉二维造影图像中提取血管骨架;
    依据所述血管段的延伸方向,以及两点之间获取最短路径的原则;
    沿着所述血管骨架,提取所述血管段的中心线。
  8. 根据权利要求6所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
    以造影剂流至冠状动脉入口,即所述血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至所述血管段的末点时的冠脉造影图像作为第N帧图像;
    依次求解第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的时间差和中心线长度差,时间差分别为Δt 1,...,Δt b,...,Δt a,...,Δt N-1;中心线长度差分别为ΔL 1,...,ΔL b,...,ΔL a,...,ΔL N-1
    根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的血流速度,血流速度分别为v 1,...,v b,...,v a,...,v N-1
  9. 根据权利要求6所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
    依次求解第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧的图像的时间差和中心线长度差;
    根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧图像的血流速度。
  10. 根据权利要求5所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,在所述提取所述血管段的中心线的方法之后,在所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL的方法之前,还包括:
    读取至少两个***的冠状动脉二维造影图像组;
    获取所述血管段的几何结构信息;
    对感兴趣的所述血管段进行图形处理;
    提取所述血管段的血管轮廓线;
    根据所述血管段的几何结构信息,将至少两个***的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
  11. 根据权利要求10所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,所述根 据所述ΔL与所述Δt的比值,求解血流速度的方法包括:
    根据所述三维血管模型,获取三维血管模型的中心线,对通过所述冠状动脉二维造影图像提取的中心线进行修正,以及对中心线差值ΔL进行修正,得到ΔL′;
    根据所述ΔL′与所述Δt的比值,求解血流速度v。
  12. 一种基于生理参数获取冠状动脉血管评定参数的装置,用于权利要求1~11任一项所述的基于生理参数获取冠状动脉血管评定参数的方法,其特征在于,包括:血流速度获取单元、主动脉压波形获取单元、冠状动脉血管评定参数单元,所述冠状动脉血管评定参数单元与所述血流速度获取单元、所述主动脉压波形获取单元连接;
    所述血流速度获取单元,用于获取血流速度v;
    所述主动脉压波形获取单元,用于实时获取随时间变换的主动脉压波形;
    所述冠状动脉血管评定参数单元,用于接收所述血流速度获取单元、所述主动脉压波形获取单元发送的所述血流速度v和主动脉压波形,再根据生理参数,获取冠状动脉评定参数。
  13. 根据权利要求12所述的基于生理参数获取冠状动脉血管评定参数的装置,其特征在于,还包括:依次连接的图像读取单元、血管段提取单元、中心线提取单元,与所述图像读取单元连接的时间差单元、几何信息获取单元,分别与所述时间差单元、所述中心线差单元连接的血流速度获取单元;所述中心线差单元与所述中心线提取单元连接,所述几何信息获取单元与所述冠状动脉血管评定参数单元连接;
    所述图像读取单元,用于读取至少一个***的冠状动脉二维造影图像组;
    所述血管段提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中感兴趣的血管段;
    所述中心线提取单元,用于接收所述血管段提取单元发送的血管段,提取所述血管段的中心线;
    所述时间差单元,用于接收所述图像读取单元发送的任意两帧冠状动脉二维造影图像,对所述两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt;
    所述中心线差单元,用于接收所述中心线提取单元发送的两帧冠状动脉二维造影图像中的造影剂流经血管段的分段中心线,对所述分段中心线做差,差值为ΔL;
    所述血流速度获取单元,包括血流速度计算模块、舒张期血流速度计算模块,所述血流速度计算模块分别与所述时间差单元、所述中心线差单元连接,所述舒张期血流速度计算模块与所述血流速度计算模块连接;
    血流速度计算模块,用于接收所述时间差单元和所述中心线差单元发送的所述ΔL与所述Δt,根据所述ΔL与所述Δt的比值,求解血流速度;
    所述舒张期血流速度计算模块,用于接收所述血流速度计算模块发送的血流速度值,选取所述血流速度的最大值,即为舒张期的血流速度。
    所述几何信息获取单元,用于接收所述图像读取单元的冠状动脉二维造影图像,获取患者的生理参数和图像拍摄角度,并将生理参数和图像拍摄角度传递给所述冠状动脉血管评定参数单元。
  14. 根据权利要求13所述的基于生理参数获取冠状动脉血管评定参数的装置,还包括:均与所述图像读取单元连接的血管骨架提取单元、三维血管重建单元,与所述血管骨架提取单元连接的轮廓线提取单元,所述三维血管重建单元与所述几何信息获取单元、所述中心线提取单元、所述轮廓线提取单元连接;
    所述血管骨架提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像 中的血管骨架;
    所述轮廓线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的轮廓线;
    所述三维血管重建单元,用于接收所述轮廓线提取单元、所述几何信息获取单元、所述中心线提取单元发送的轮廓线、图像拍摄角度和中心线,接收所述图像读取单元发送的冠状动脉二维造影图像,用于根据所述血管段的几何结构信息,将至少两个***的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型;
    所述中心线提取单元,从所述三维血管重建单元的三维血管模型上重新提取所述血管段的中心线,且重新获取所述中心线的长度。
  15. 一种冠状动脉分析***,其特征在于,包括:权利要求12~14任一项所述的基于生理参数获取冠状动脉血管评定参数的装置。
  16. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~11任一项所述的基于生理参数获取冠状动脉血管评定参数的方法。
PCT/CN2019/116664 2019-11-04 2019-11-08 基于生理参数获取血管评定参数的方法、装置及存储介质 WO2021087967A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19951826.7A EP4056109A4 (en) 2019-11-04 2019-11-08 METHOD AND DEVICE FOR DETECTING BLOOD VESSEL ASSESSMENT PARAMETERS BASED ON PHYSIOLOGICAL PARAMETERS AND STORAGE MEDIUM
JP2022525373A JP7437077B2 (ja) 2019-11-04 2019-11-08 生理パラメータに基づき血管評定パラメータを取得する方法、装置及び記憶媒体
US17/730,578 US20220261997A1 (en) 2019-11-04 2022-04-27 Method and apparatus for acquiring blood vessel evaluation parameter based on physiological parameter, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911066155.4A CN110786840B (zh) 2019-11-04 2019-11-04 基于生理参数获取血管评定参数的方法、装置及存储介质
CN201911066155.4 2019-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/730,578 Continuation US20220261997A1 (en) 2019-11-04 2022-04-27 Method and apparatus for acquiring blood vessel evaluation parameter based on physiological parameter, and storage medium

Publications (1)

Publication Number Publication Date
WO2021087967A1 true WO2021087967A1 (zh) 2021-05-14

Family

ID=69442536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116664 WO2021087967A1 (zh) 2019-11-04 2019-11-08 基于生理参数获取血管评定参数的方法、装置及存储介质

Country Status (5)

Country Link
US (1) US20220261997A1 (zh)
EP (1) EP4056109A4 (zh)
JP (1) JP7437077B2 (zh)
CN (1) CN110786840B (zh)
WO (1) WO2021087967A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059165A1 (en) 2019-09-23 2021-04-01 Cathworks Ltd. Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device
CN112164020B (zh) * 2020-03-31 2024-01-23 苏州润迈德医疗科技有限公司 精确提取血管中心线的方法、装置、分析***和存储介质
CN111449638A (zh) * 2020-04-08 2020-07-28 上海祉云医疗科技有限公司 一种基于传感器采集的数据构建三维脉象图的方法及应用
CN112494020B (zh) * 2020-11-26 2024-01-23 苏州润迈德医疗科技有限公司 获取感兴趣的主动脉压力曲线的方法及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456026A (zh) * 2014-04-04 2017-02-22 圣犹达医疗***公司 血管内压力和流量数据诊断***、设备和方法
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN108735270A (zh) * 2018-05-25 2018-11-02 杭州脉流科技有限公司 基于降维模型的血流储备分数获取方法、装置、***和计算机存储介质
CN108742587A (zh) * 2018-06-20 2018-11-06 博动医学影像科技(上海)有限公司 基于病史信息获取血流特征值的方法及装置
CN109009037A (zh) * 2018-06-20 2018-12-18 博动医学影像科技(上海)有限公司 基于个体性别获取血管压力差的计算方法及装置
CN109065170A (zh) * 2018-06-20 2018-12-21 博动医学影像科技(上海)有限公司 获取血管压力差的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300820A (zh) * 2012-03-13 2013-09-18 西门子公司 用于冠状动脉狭窄的非侵入性功能评估的方法和***
US9785746B2 (en) * 2014-03-31 2017-10-10 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
CN108511075B (zh) * 2018-03-29 2022-10-25 杭州脉流科技有限公司 一种非侵入式获取血流储备分数的方法和***
CN109036551B (zh) * 2018-07-10 2021-05-11 北京心世纪医疗科技有限公司 一种冠状动脉生理学指标关系建立及应用方法、装置
CN110384494A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的方法
CN109770888A (zh) * 2019-03-19 2019-05-21 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算瞬时无波形比率的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456026A (zh) * 2014-04-04 2017-02-22 圣犹达医疗***公司 血管内压力和流量数据诊断***、设备和方法
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN108735270A (zh) * 2018-05-25 2018-11-02 杭州脉流科技有限公司 基于降维模型的血流储备分数获取方法、装置、***和计算机存储介质
CN108742587A (zh) * 2018-06-20 2018-11-06 博动医学影像科技(上海)有限公司 基于病史信息获取血流特征值的方法及装置
CN109009037A (zh) * 2018-06-20 2018-12-18 博动医学影像科技(上海)有限公司 基于个体性别获取血管压力差的计算方法及装置
CN109065170A (zh) * 2018-06-20 2018-12-21 博动医学影像科技(上海)有限公司 获取血管压力差的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056109A4 *
XU LIANG, YANG SONG, CHEN YAN-CHUN, JI YAN-NI, ZHUANG QIAN, SUN JUN-XIANG: "Effect of blood glucose control level on coronary index of microcirculatory resistance in diabetic patients", JOURNAL OF SOUTHEAST UNIVERSITY(MEDICAL SCIENCE EDITION), vol. 37, no. 2, 1 April 2018 (2018-04-01), pages 315 - 319, XP055809633, DOI: 10.3969 /j.issn.1671-6264.2018.02.029 *

Also Published As

Publication number Publication date
US20220261997A1 (en) 2022-08-18
EP4056109A1 (en) 2022-09-14
CN110786840B (zh) 2021-06-08
CN110786840A (zh) 2020-02-14
EP4056109A4 (en) 2024-01-03
JP7437077B2 (ja) 2024-02-22
JP2022554297A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2021087967A1 (zh) 基于生理参数获取血管评定参数的方法、装置及存储介质
WO2021092997A1 (zh) 获取血管狭窄病变区间及三维合成方法、装置和***
US20220254028A1 (en) Method and apparatus for adjusting blood flow velocity in maximum hyperemia state based on index for microcirculatory resistance
US20230245301A1 (en) Method and apparatus for accurately extracting vascular centerline, analysis system, and storage medium
US20220277447A1 (en) Method and apparatus for acquiring contour line of blood vessel according to centerline of blood vessel
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、***及存储介质
US20210236000A1 (en) Method, device and system for acquiring blood vessel evaluation parameters based on angiographic image
CN108665449B (zh) 预测血流矢量路径上的血流特征的深度学习模型及装置
WO2020057324A1 (zh) 测量微循环阻力指数的***以及冠脉分析***
WO2022109903A1 (zh) 三维血管合成方法、***及冠状动脉分析***和存储介质
WO2022109905A1 (zh) 调节血管轮廓及中心线的方法及存储介质
CN112494020B (zh) 获取感兴趣的主动脉压力曲线的方法及存储介质
WO2021097821A1 (zh) 从冠状动脉二维造影图像中提取血管中心线的方法和装置
WO2021031355A1 (zh) 测量无波形期压力、比率方法、装置、***及存储介质
WO2020083390A1 (zh) 获取心表大动脉的血流量的方法、装置、***及存储介质
WO2021092889A1 (zh) 基于造影图像的流速的筛选方法、装置、***和存储介质
WO2022161239A1 (zh) 获取流量损失模型、损失比、供血能力的方法和***
WO2021042477A1 (zh) 测量冠状动脉血管评定参数的简化方法、装置及***
WO2022109909A1 (zh) 精确获取狭窄病变区间的方法、***及存储介质
EP4005472B1 (en) Method and apparatus for correcting blood flow velocity on the basis of interval time between angiographic images
WO2022000731A1 (zh) 基于ct序列图像获取心脏重心和脊椎重心的方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951826

Country of ref document: EP

Effective date: 20220607